AADL.: about scheduling
analysis

Real-time Scheduling analysis/theory,
what 1s 1t?

0 Embedded real-time critical systems have temporal
constraints to meet (e.g. deadline).

2 Many systems are built with operating systems providing
multitasking facilities ... Tasks may have deadline.

0 But, tasks make temporal constraints analysis
difficult to do:

0 We must take interference delaying a task into
account: other tasks, shared resources, ...

2 Need to take scheduling into account.
0 Scheduling (or schedulability) analysis.

Real-Time scheduling theory

1. A set of simplified tasks models (to model functions of
the system)

2. A set of analytical methods (called feasibility tests)
= Example: -
R. < Deadline R =C. + Z LY [
l l . ' P]
Jhp ()| +
3.

A set of scheduling algorithms: build the full
scheduling/GANTT diagram

- -

Task name=T1

Period= 5; Capacity= 1; Deadline= 5; Start time= 0; Priority= 1; CJ

pU=cpus
| — o — e —]
Task name=T2 Period= 10; Capacity= 2; Deadline= 10; Start time= 0; Priority= 1; Cpu=cpua
|—+—4—————t—l-——-—_ |
......... 1
name=T3 Period= 30; Capacity= 12, ne= fart time= y=1

Real-Time scheduling theory is hard to apply

O Real-Time scheduling theory (uniprocessor)

= Theoretical results defined from 1974 to 1994
feasibility tests exist for uniprocessor architectures

O Supported at a decent level since POSIX 1003
real-time operating systems and ARINC653,; ...

O Industry demanding
= Yet, hard to use

Summary

1. Issues about real-time scheduling analysis:
AADL to the rescue

2. Basics on scheduling analysis: fixed-priority
scheduling for uniprocessor architectures

3. AADL components/properties to scheduling
analysis

What to model to achieve early scheduling
analysis

Software side:

= Workload: release time, execution time
= Timing constraints

= Software entity interferences, examples:

= Tasks relationships/communication or synchronization: e.g. shared
data, data flow

= Task containers: ARINC 653 partition, process
Hardware (should be called execution platform) side:
= Available resources, e.g. computing capabilities

= Contention, interference, examples: processing units, cache, memory
bus, NoC, ...

Deployment

=> Architecture models
=> It is the role of an ADL to model those elements 6

Real-Time scheduling theory is hard to apply

O Requires strong theoretical knowledge/skills

= Numerous theoretical results: how to choose the right
one?

= Numerous assumptions for each result.
= How to abstract/model a system to verify deadlines?

O How to integrate scheduling analysis in the engineering
process?

= When to apply it? What about tools?

=> It is the role of an ADL to hide those details

AADL to the rescue?

0 Why AADL helps:

= All required model elements are given for the analysis
Component categories: thread, data, processor
Feature categories: data access, data port, ...
Properties: Deadline, Priority, WCET, Ceiling Priority, ...
Annexes (e.g. behavior annex)

= AADL semantic: formal and natural language
E.g. automata to define the concept of periodic thread
Close to the real-time scheduling analysis methods

= Model engineering: reusability, several levels of abstraction

= Tools & chain tools: AADL as a pivot language (international
standard)
VERSA, OSATE, POLA/FIACRE/TINA, CARTS, MAST, Marzhin,

Cheddar, ... by Ocarina, TASTE, AADLInspector, RAMSES, MOSART,
8 OSATE ...

AADIL. to the rescue?

0 But AADL does not solve everything:

AADL is a complex language

How to ensure model elements are compliant with analysis
requirements/assumptions, sustainability, accuracy, ...

Not a unique AADL model for a given system to model

Not a unique mapping between a design model and an analysis
model

Having AADL scheduling analysis tools is not enough too, how to
use them?

Summary

1. Issues about real-time scheduling analysis:
AADL to the rescue

2. Basics on scheduling analysis: fixed-priority
scheduling for uniprocessor architectures

3. AADL components/properties to scheduling
analysis

10

Real-time scheduling theory : models of task

0 Task simplified model: sequence of
statements + data.

0 Usual kind of tasks:
= Independent tasks or dependent tasks.

= Periodic and sporadic tasks (critical
functions) : have several jobs and release
times

= Aperiodic tasks (non critical functions) : only

. one job and one release time

Real-time scheduling theory : models of task

Task | capacity
Si Pi / Di

t1 t2 /‘ t3 t4

Task i release times

0 Usual parameters of a periodic task I:

= Period: Pi (duration between two release times). A task starts a job
for each release time.

Deadline to meet: Di, timing constraint to meet.
First task release time (first job): Si.

Worst case execution time of each job: Ci (or capacity or WCET).
Priority: allows the scheduler to choose the task to run

to

12

Real-time scheduling theory : models of task

O Assumptions for the next slides (synchronous
periodic task with deadlines on requests):

13

= All tasks are periodic.
= All tasks are independent.

= Vi: Pi=Di : a task must end its current job before its next
release time.

= Vi: Si=0 => called critical instant (worst case on
processor demand).

Uniprocessor fixed priority scheduling

O Fixed priority scheduling:
= Scheduling based on fixed priority => priorities do not
change during execution time.
= Priorities are assigned at design time (off-line).
= Efficient and simple feasibility tests.
= Scheduler easy to implement into real-time operating
systems.
O Priority assignments:
= Rate Monotonic, Deadline Monotonic, OPA, ...

14

Uniprocessor fixed priority scheduling

0 Rate Monotonic:

= Optimal priority assignment in the case of fixed
priority scheduling and uniprocessor.

= Periodic tasks.
= The highest priority tasks have the smallest periods.

15

Uniprocessor tixed priority scheduling

0 Rate Monotonic assignment and preemptive

fIXEd prlorlty SChEdUllng: T2 is preempted
Deadline
of T2
T2 LI T TP T T P [[[B]
Deadline Deadline Deadline
of T1 of T1 of T1
T1 EEEEEET [[T PEETETETEET 1 PP [[
0 6 10 16 20 26 27 30

= Assuming VxWorks priority levels (high=0 ; low=255)
= T1:C1=6, P1=10, Prio1=0
m T2:C2=9, P2=30, Prio2=1 16

Uniprocessor fixed priority scheduling

O Feasibility/Schedulability tests to predict on
design-time if deadline will be met:

1. Run simulations on feasibility interval = [0,LCM(Pi)].
Sufficient and necessary condition.

2. Processor utilization factor test:

1
U=Y7,Ci/Pi <n.(2n-1) (about 69%)
Rate Monotonic assignment and preemptive scheduling.
Sufficient but not necessary condition.

3. Task worst case response time, noted Ri : delay between
task release time and task completion time. Any priority

assignment, preemptive scheduling.
17

Uniprocessor fixed priority scheduling

0 Compute Ri, task i worst case response time:

= Task i response time = task i capacity + delay the task i
has to wait for higher priority task j. Or:

R =C + Zwaiting time due to j or R =C, + Z

JUhp (i) JUhp (i)

&
J
Pj

= hp(i) Iis the set of tasks which have a higher priority than
task i.

= [x] returns the smallest integer not smaller than x.

18

Uniprocessor tixed priority scheduling

0 To compute task response time: compute wi® with:

wi = Ci + ¥ ieppiy|[Wi" 1/ Pj|. Cj

0 Start with wi®=Ci.
0 Compute wil, wi?, wi3, ...wi¥ upto:

= If wi* >Pi. No task response time can be computed for
task i. Deadlines will be missed !

w If wi* = wi*=1, wik is the task i response time. Deadlines
will be met.

19

Uniprocessor fixed priority scheduling

o Example: T1(P1=7, C1=3), T2 (P2=12, C2=2), T3 (P3=20, C3=5)

wi®=Cl1=3=R1=3

w20 =(C2=2
. W20 2]
w2 =C2+W.C1:2+7.3=5
w2!] 5]
w22 =C2+ 71 Cl=2+ - .3=5=>R2=5
w3 =(C3=5
. (w30°] (w3°]
w3+ =C3 + ﬁ .C1+ E .C2 =10
5 (w31] (w31]
w3 =(C3 + W .C1+ ﬁ .C2 =13
5 (w3?] (w3?]
w3® =(C3+ W .C1l+ ﬁ .C2 =15
(w33] (w33]
W34=C3+ W .C1l+ ﬁ .C2 =18
c (w34 (w34]
w3 =C3+W.C1+W.C2=18$R3=18

20

Uniprocessor fixed priority scheduling

0 Example with the AADL radar case study:
= “display_panel” thread which displays data. P=100, C=20.
= “receiver” thread which sends data. P=250, C=50.
= “analyser” thread which analyzes data. P=500, C=150.

0O Processor utilization factor test:
= U=20/100+150/500+50/250=0.7

= Bound=3.(2: — 1)=0.779
= U<Bound => deadlines will be met.
O Worst case task response time: R, 41y5er=330,
Rdisplay_panel=205 Ry eceiver =/0.
o Run simulations on feasibility interval: [0,LCM(Pi)] = [0,500].

21

Uniprocessor fixed priority scheduling

Response times = 20

display_panel [[[[[[[[[[[[[[[[[[[[] IIHIIHI‘IIIIIIII
0 100 200 220 300 400 500

receiver | T W [[[[[[[[T[T 00O | [[[([T T[]
° 70\ Response time = 70 20 3;0\ Response time = 50 >

analyzer [T T T 71 [[[ey [e [[[[[[[T[T T[]
0 Response time = 330 /;’0 500

22

FFixed priority and shared resources

O Previous tasks were independent ... does not
exist in real life.

0 Task dependencies:

m Shared resources.

E.g. with AADL.: threads may wait for AADL protected data
component access.

m Precedencies between tasks.

E.g with AADL: threads exchange data by data port
connections.

23

FFixed priority and shared resources

O Shared resources can be modeled by semaphores for scheduling
analysis.

O We use specific semaphores implementing inheritance protocols:
= To take care of priority inversion.

= To compute worst case task waiting time for the access to a shared
resource => Blocking time Bi.

O Inheritance protocols:

= PIP (Priority inheritance protocol), cannot be used with more than
one shared resource due to deadlock.

= PCP (Priority Ceiling Protocol) , implemented in most of real-time
operating systems (e.g. VxWorks).

= Several implementations of PCP exists: OPCP, ICPP, ...

24

Fixed priority and shared resources

0 What is priority inversion: a low priority task blocks a
high priority task

Task is preempted

lock(mutex) ' ‘ unlock(mutex)
T1 (low) | . i >
0 1 3
h lock(mutex) unlock(mutex)
T3 (high) —% v -
' 4 3 Task is blocked
T2 (medium) .
LW A B 4

O B; = worst case on the shared resource blocking time.

25

Fixed priority and shared resources

Priority of T1 = priority of T3
Priority of T1 = initial static priority
lock(mutex)-., unlock(mutex)_ ...~

T1 (low) " i >~
0 1 4 5
b lock(mutex) unlock(mutex)
T3 (high) — - —
4 2 3 Task is blocked
T2 (medium) i -
L »-
l."- ".. P 4
Task release times

O PIP (Priority Inheritance Protocol):

= A task which blocks a higher priority task runs its critical section
with the priority level of the blocked task

= Only one shared resource, deadlock otherwise

= B; = sum of critical section durations of lower priority tasks than i
26

Fixed priority and shared resources

Priority of T1= ceiling priority of « mutex » = high

Priority of T1= initial priority of T1 = low

IOCk(mUt?-'(’ 4 unlock(mutex) ..
£ e
T1 (low) .
OL 1
lock(mutex) unlock(mutex)
T3 (high) — i | .
: ..42
T2 (medium) > = [—
B - ...- 4

Task release times

0 ICPP (Immediate Ceiling Priority Protocol):

= Ceiling priority of a resource = maximum fixed priority of the tasks
which use it.

= Dynamic task priority = maximum of its own fixed priority and the
ceiling priorities of any resources it has locked.

- = B;=longest critical section ; prevent deadlock and reduce blocking

FFixed priority and shared resources

0 How to take into account Bi (blocking time):

m Processor utilization factor test :

. . 1
i—1 Ck Ci+Bi . =
= < i.(2i—1
k=1pk ° Ppi ()

Vi,l <i<n:)

= Worst case response time :

R=B+C+) % T,
J

JUhp (i)

28

To conclude on scheduling analysis

= Many feasibility tests: depending on task, processor, scheduler,
shared resource, dependencies, multiprocessor, hierarchical,
distributed...

R =w +/J,

+J
R=B+C+ Y {%}B@ R. w,=C+ D {R, J]—‘mj
| By Ri =C + Z —L mjj G

R=C+) {ﬁw [T, + max(C, 0k Ohp(i))

JOhp(i)

J

= Many assumptions: require preemptive, fixed priority scheduling,
synchronous periodic, independent tasks, deadlines on requests...

Many feasibility tests... Many assumptions...
How to choose them?

29

Summary

1. Issues about real-time scheduling analysis:
AADL to the rescue

2. Basics on scheduling analysis: fixed-priority
scheduling for uniprocessor architectures

3. AADL components/properties to scheduling
analysis

30

AADL to the rescue ?

O Issues:

1. Ensure all required model elements are given for the analysis

2. Ensure model elements are compliant with analysis
requirements/assumptions

0 AADL helps for the first issue:

= AADL as a pivot language between tools. International
standard.

= Close to the real-time scheduling theory: real-time scheduling
analysis concepts can be found. Ex:
Component categories: thread, data, processor

Property: Deadline, Fixed Priority, ICPP,
Ceiling Priority,
31

Property sets for scheduling analysis

O Properties related to processor components:

Preemptive_Scheduler : aadlboolean applies to
(processor);

Scheduling_Protocol: inherit list of
Supported_Scheduling_Protocols
applies to (virtual processor, processor);

-- RATE_MONOTONIC_PROTOCOL,
-- POSIX_1003_HIGHEST_PRIORITY_FIRST_PROTOCOL, ...

32

Property sets for scheduling analysis

O Properties related to the threads/data components:

Compute_Execution_Time: Time_Range applies to (thread, subprogram, ...);
Deadline: inherit Time => Period applies to (thread, ...);
Period: inherit Time applies to (thread, ...);

Dispatch_Protocol: Supported_Dispatch_Protocols applies to (thread);
-- Periodic, Sporadic, Timed, Hybrid, Aperiodic, Background, ...

Priority: inherit aadlinteger applies to (thread, ..., data);
Concurrency_Control_Protocol: Supported_Concurrency_Control_Protocols

applies to (data);
-- None, PCP, ICPP. ... 33

AADI. to the rescue ?

O Issues:
1. Ensure all required model elements are given for the
analysis

2. Ensure model elements are compliant with analysis
requirements/assumptions

0o And for the second issue?

34

Cheddar : a framework to assess

schedulability of AADIL models

o Cheddar tool =
+ analysis framework (queueing system theory & real-time scheduling theory)
+ internal ADL (analysis model)
+ simple analysis model editor
+ optimization tools

+ ...

o Two versions:
= Open source (Cheddar) : teaching/research, TASTE, OSATE, MOSART, RAMSES,

= Commercial product (AADLInspector) : Ellidiss Tech product.

O Supports : Ellidiss Tech., Conseil regional de Bretagne, Brest Métropole, Campus
France, BPI France

35

Cheddar : main analysis features
(see http//beru.univ-brest.fr/~singhoff/cheddar)

0 Analysis by scheduling simulations:

= Various scheduling policies, uniprocessor,
multiprocessor, cache, ...

= Simulation data analysis
O Task schedulability/feasibility tests
O Design space exploration methods
O Task and resource priority assignments
O Partitioning algorithms
O Queueing system theory models/buffer feasibility tests
0 Modeling/analysis with task dependencies

36

AADL “design pattern” approach to automatically
perform scheduling analysis

O Let assume we have to evaluate a given
architecture model in a designh exploration
flow.

0 Problem statement reminder:

= Numerous schedulability tests ; how to choose the right
one?

= Numerous assumptions for each schedulability test ;
how to enforce them for a given model?

= How to automatically perform scheduling analysis?

37

AADL “design pattern” approach to automatically perform
scheduling analysis

= Approach:

Define a set of AADL architectural design patterns of real-time
(critical) systems:

= models a typical thread communication or synchronization + a
typical execution platform

= set of constraints on entities/properties of the model.

For each design pattern, define schedulability tests that can be
applied according to their applicability assumptions.

Schedulability analysis of an AADL model:

1. Check compliancy of his model with one of the design-patterns ...
which then gives him which schedulability tests we can apply.

. 2. Perform schedulability verification.

Design pattern compliancy verification

A real- t|me
system 8o0n Platypus =
arch|tecture | (Tamaris) (o) E)XEEEND) (U0 X)EXEXE))BADAB)@ ™ > 5 @) (&) a ‘RTPattems' mgD)
E]
model _AMTYD
m.;c - TASK(7. 29, 29. 0, 1, 0):
&l #2=PERIODIC_TASK(3, 10, 10, 0, 1, 0);
J #3=PERIODIC_TASK(L, 5. 5. 0. 1. 0%

Jexpress » #1=PERIODIC_" g,
mrnh}:i o’ oEoINMIC - - [EF
| | Tamaris 7 o) B)@ELBEE) ¢

<tamaris|~ ([Jexpress2cheddar
DemoPla |- @cheddar_data
Express t|- (Wcheddar data ma
EREEEEN |- @jcheddar_data
express t|r @RTPatterns
morphtre| - smFeasibility_tests

¥
&) | ¢, Simuitaneou$ 3|

nbpt : INTEGER := SIZEOF (Periodic_Task);
p1 : Periodic_Task := Periodic_Task [1];
END_LOCAL;

2l A feasibility test

platypus-| »sSimultaneous A WHERE : Y

Evaluatlonj settings | rswSimultaneous Re (* All tasks share the same release time) app||cab| ||ty
It »w interface "

resu assumption

r:(nbpt<2)OR
(SIZEOF (QUERY (p <* Periodic_Task |
p.Release_Time <> p1.Release_Time)) =0
2 .; B, RULE;

= Top right part: real-time system architecture model
to verify.

= Bottom right part: modeling of a feasibility test
applicability assumption.

= Left part: result of the model compliancy analysis. =

Example : «Ravenscar» design pattern

O

Specification of various design patterns:
Time-triggered : sampling data port communication between threads
Ravenscar : PCP shared data communication between threads
Queued buffer/ARINC653 : producer/consumer synchronization
Black board/ARINC653 : readers/writers synchronization

Compositions of design patterns.
Ravenscar: used by TASTE/ESA

Constraints defining “Ravenscar” to perform the analysis with a given
schedulability test:

Constraint 1 : all threads are periodic

Constraint 2 : threads start at the same time

Constraint 3 : shared data with PCP

Constraint n : fixed preemptive priority scheduling + uniprocessor

40

-

model

Hxample : «Ravenscar compliant AADL

thread implementation receiver.impl

properties

Dispatch_Protocol => Periodic;
Compute_Execution_Time => 31 ms .. 50 ms;
Deadline => 250 ms;

Period => 250 ms;

end receiver.impl;

data implementation target_position.impl

properties

Concurrency_Control_Protocol
=> PRIORITY_CEILING_PROTOCOL;

end target_position.impl;

41

process implementation processing.others
subcomponents
receiver : thread receiver.impl;
analyzer : thread analyzer.impl;
target : data target_position.impl;

processor implementation leon2
properties
Scheduling_Protocol =>
RATE_MONOTONIC_PROTOCOL,;
Preemptive_Scheduler => true;

end leon?2;

system implementation radar.simple
subcomponents
main : process processing.others;
cpu : processor leon2;

Demos, practical labs

cheduling analysis of the radar example with
AADLInspector & OSATE/Cheddar

43 AADLinspector (Cy/ProjetsfAADLInspector/Al-1.2/examples/arincsimple2.aadl) =8 =

File View Tools

EEE 2B File Edit View Tools Help

mple2 7 ity [Schedule Table] Consistency | Legaiity] Metrics| Naming | Qlﬁ!@|@|ﬂ| @5'%|D|:l
arincsimple2 | ARINCSS3 | g
[eacwace arincsimple_Pkg A

arin

2 |PUBLIC | test entity 2 L 1
& { | Task name=T1 Period= 15: Capacity= 5 Dealine= 15; Start time= 0; Priority= 1; Cpu=arinc
3 |WITH ARINCGS3: | & @Fask response time computed from simulatio cpu No deadline mis e e
4 Number of preemptions cpu 4 1
5 |SYSTEM arincsimple : I
& |[END arinsimple; Number of contedt switches cpu . Taskneme=T2 Periog= 151, Capacity=17: Deadline= 151; Start time= 0; Pricrity= 1; Cpu=arinc
7 Task response time computed from simulatio cpu.partitionl_pr.T worst =5, best =
8 |SYSTEM IMPLEMENTATION arincsimple.others = Task response time computed from simulatio cpu.partitionl_pr.T worst = 15, best | | }
|
2 | SHRCOMEGUENTS Task response time computed from simulatio cpu.partition2_pr1 worst = 15, best| Taskname=T3 Period= 20; Capscity= 3, Desdline= 20 Start time= 0; Prionty= 1; Gpu=arinc

10| ecpu : PROCESSOR powerpc.impl;

11| parcitionl pr : PROCESS partitionl _process.impl:
12| partivion2 pr : PROCESS partition2 process.impl;
13|PROPERTIES

Set priorities according to Rate Monotonic cpu

Set priorities according to Deadline Monctoni cpu
— . . Taskname=T4 Period= 6; Capacity= 1; Desdline=6; Start time= 0; Priority= 1, Cpu=srinc

i, »

14| Actuel Processor Binding => (REFERENCE (cpu.partl)) APEL /
15| Actual Processor_Binding => (REFERENCE (cpu.part2)) APPL T P T I I - = (3 S |

!GIE.‘!D arincsimple.others; P> O E 20 40 llil IIIU 14-0 180

18|PROCESSOR powerpc cpu ‘

18|END powezpcs: 2]

20| r

T ——— ‘ Scheduling simulation, Processor arinc :
22 |SUBCCMPONENTS ion2orT2] M W m W m w m = - Number of preemptions : 760
23| parcl : VIRTUAL PROCESSOR parctitionl rt.impl: e ‘ - Number of context switches : 3205

é:;ag;;ilés"m’“ﬂ EROCESSER pATL I Fondo voh tmel s patitionzpr{ N EE EN EE BN BN =S B - Task response time computed from simulation @

26| Scheduling Protocol => ARINC653: itiont_pr.T34 i — N — 1= P 6/worst 6/best 6.00000/average

Pk on ks M meyl Al o T2 => 56/worst 35/best 46.81667/average

25| MZINCESS..,n;;l’.;_nujﬂr_Frme>‘“; 20ms: fprreily el === —— T3 => 10/worst 4/best 6.00000/average

30/END powespe. impl; partition_pr{ I S - - T4 => 1/worst 1/best 1.00000/average)

= — No deadline missed in the computed scheduling : the task set =&
32|VIRTUAL PROCESSOR partitionl re -

seems to be schedulable.

. v -

Simulator Stop

42

