
Presentation of the AADL:

Architecture Analysis and

Design Language

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components

2. Properties

3. Component connection

4. Behavior annex

3. AADL: tool support

2

Introduction

� ADL, Architecture Description Language:

� Goal : modeling software and hardware architectures

to master complexity … to perform analysis

� Concepts : components, connections, deployments.

� Many ADLs : formal/non formal, application domain,

…

� ADL for real-time critical embedded systems: AADL

(Architecture Analysis and Design Language).

3

AADL: Architecture Analysis & Design Language

� International standard promoted by SAE, AS-2C

committee, released as AS5506 family of standards

� Core language document:
� AADL 1.0 (AS 5506) 2004

� AADL 2.0 (AS 5506A) 2009

� AADL 2.1 (AS 5506B) 2012

� AADL 2.2 (AS 5506C) 2017

� Annex documents to address specific concerns
� Annex A: ARINC 653 Interface (AS 5506/1A) 2015
� Annex B: Data Modelling (AS 5506/2) 2011
� Annex C: Code Generation Annex (AS 5506/1A) 2015
� Annex D: Behavior Annex v2 (AS 5506/3) 2017
� Annex E: Error Model Annex v2 (AS 5506/1A) 2015

4

AADL is for Analysis

� AADL objectives are “to model a system”

� With analysis in mind (different analysis)

� To ease transition from well-defined

requirements to the final system : code

production

� Require semantics => any AADL entity has

semantics (natural language or formal methods).

5

AADL: Architecture Analysis & Design Language

� Different representations :

� Textual (standardized representation),

� Graphical (declarative and instance views),

� XML/XMI (not part of the standard: tool specific)

� Graphical editors:
� OSATE (SEI):

� declarative model editor
� instance model viewer

� MASIW (ISPRAS)

� Scade Architect (Ansys): instance model editor

� Stood for AADL (Ellidiss) : instance model editor

6

AADL components

� AADL model : hierarchy/tree of components

� Composition hierarchy (subcomponents)

� Inheritance hierarchy (extends)

� Binding hierarchy (e.g. process->processor)

� AADL component:

� Model a software or a hardware entity

� May be organized in packages : reusable

� Has a type/interface, zero, one or several implementations

� May have subcomponents

� May combine/extend/refine others

� May have properties : valued typed attributes (source code file name, priority,

execution time, memory consumption, …)

� Component interactions :

� Modeled by component connections

� Binding properties express allocation of SW onto HW
7

AADL components

� How to declare a component:

� Component type: name, category, properties, features => interface

� Component implementation: internal structure (subcomponents),
properties

� Component categories: model real-time abstractions,

close to the implementation space (ex : processor, task,

…). Each category has well-defined semantics/behavior,

refined through the property and annexes mechanisms

� Hardware components: execution platform

� Software components

� Systems : bounding box of a system. Model deployments.

8

Component type

� Specification of a component: interface

� All component type declarations follow the same

pattern:

AADL Tutorial -- MODELS'14

9

<category> foo [extends <bar>]

features

-- list of features

-- interface

properties

-- list of properties

-- e.g. priority

end foo;

Inherit features and

properties from parent

Interface of the component:

Exchange messages, access to

data or call subprograms

Some properties describing

non-functional aspect of the

component

Component type

� Example:

-- model a sequential execution flow

subprogram Spg -- Spg represents a C function,

features -- in file "foo.c", that takes one

in_param : in parameter foo_data; -- parameter as input

properties

Source_Language => C;

Source_Text => ("foo.c");

end Spg;

-- model a schedulable flow of control

thread bar_thread -- bar_thread is a sporadic thread :

features -- dispatched whenever it

in_data : in event data port foo_data; -- receives an event on its “in_data"

properties -- port

Dispatch_Protocol => Sporadic;

end bar_thread;

Standard properties, one can

define its own properties

10

Component implementation

� Implementation of a component: body

� Think spec/body package (Ada), interface/class (Java)

<category> implementation foo.i [extends <bar>.i]

subcomponents

…

calls

-- subprogram subcomponents

-- called, only for threads or subprograms

connections

properties

-- list of properties, e.g. Deadline

end foo.i;

foo.i implements foo

11

Component implementation

� Example:

thread implementation bar_thread.impl -- in this implementation, at each

calls -- dispatch we execute the "C" call

C : { S : subprogram spg; }; -- sequence. We pass the dispatch

connections -- parameter to the call sequence

parameter in_data -> S.in_param;

end bar_thread.impl;

Connect

data/parameter

subprogram Spg

features

in_param : in parameter foo_data;

properties

Source_Language => C;

Source_Text => ("foo.c");

end Spg;

thread bar_thread

features

in_data : in event data port foo_data;

properties

Dispatch_Protocol => Sporadic;

end bar_thread;

AADL concepts

� AADL introduces many other concepts:

� Related to embedded real-time critical systems :

� AADL flows: capture high-level data+control flows

� AADL modes: model operational modes in the form of an alternative set of

active components/connections/…

� To ease models design/management:

� AADL packages (similar to Ada/Java, renames, private/public)

� AADL abstract component, component extension

� …

� AADL is a rich language :

� Around 200 entities in the meta-model

� Around 200 syntax rules in the BNF (core)

� Around 250 legality rules and more than 500 semantics rules

� 355 pages core document + various annex documents
13

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components

2. Properties

3. Component connection

4. Behavior annex

3. AADL: tool support

14

AADL workflow

15

1. Declarative model (Packages)

� HW libraries

� SW libraries

� Applicative composite systems

2. Instance model

� Selection of the Root System

� Expanded HW hierarchy

� Expanded SW hierarchy

3. Deployed model

� SW instances binding onto HW instances

similar to
UML classes

or SysML blocks

exhaustive
representation of

the system
hierarchy

required for many
advanced analysis:
-schedulability
-simulation
-safety
-security
-…

bottom-up

top-down

A full AADL system : a tree of component

instances

� Component types and
implementations only define a
library of entities (classifiers)

� An AADL model is a set of
component instances (of the
classifiers)

� System must be instantiated
through a hierarchy of
subcomponents, from root
(system) to the leafs
(subprograms, ..)

� We must choose a system
implementation component as
the root system model !

System

Sub System Process Processor

Thread Data

Subprogram

16

Software components categories

� thread : schedulable execution flow, Ada or VxWorks task,

Java or POSIX thread. Execute programs

� data : data placeholder, e.g. C struct, C++ class, Ada record

� process : address space. It must hold at least one thread

� subprogram : a sequential execution flow. Associated to a

source code (C, Ada) or a model (SCADE, Simulink)

� thread group : hierarchy of threads

� subprogram group : library or hierarchy of subprograms

Thread data Threadgroup processsubprogram

17

Software components

� Example of a process component : composed

of two threads

thread receiver

end receiver;

thread implementation receiver.impl

end receiver.impl;

thread analyser

end analyser;

thread implementation analyser.impl

end analyser.impl;

process processing

end processing;

process implementation processing.others

subcomponents

receive : thread receiver.impl;

analyse : thread analyser.impl;

. . .

end processing.others;

18

Software components

� Example of a thread component : a thread

may call different subprograms

thread receiver

end receiver;

thread implementation receiver.impl

CS : calls {

call1 : subprogram Receiver_Spg;

call2 : subprogram ComputeCRC_Spg;

};

end receiver.impl;

subprogram Receiver_Spg

end Receiver_Spg;

subprogram ComputeCRC_Spg

end ComputeCRC_Spg;

. . .

19

Hardware components categories

� processor/virtual processor : scheduling component

(combined CPU and OS scheduler).

� memory : model data storage (memory, hard drive)

� device : component that interacts with the environment.

Internals (e.g. firmware) is not modeled.

� bus/virtual bus : data exchange mechanism between

components

Device Memory bus Processor

20

« system » category

� system :

1. Help structuring an architecture, with its own

hierarchy of subcomponents. A system can include

one or several subsystems.

2. Root system component.

3. Bindings : model the deployment of components

inside the component hierarchy.

System

21

subprogram Receiver_Spg …

thread receiver …

thread implementation receiver.impl

call1 : subprogram Receiver_Spg;

…

end receiver.impl;

process processing

end processing;

process implementation processing.others

subcomponents

receive : thread receiver.impl;

analyse : thread analyser.impl;

. . .

end processing.others;

« system » category

system radar

end radar;

system implementation radar.simple

subcomponents

main : process processing.others;

cpu : processor leon2;

properties

Actual_Processor_Binding =>

reference cpu applies to main;

end radar.simple;

device antenna

end antenna;

processor leon2

end leon2;

22

About subcomponents

� Semantics: restrictions apply on subcomponents

� e.g. hardware cannot contain software, etc

23

category allowed subcomponent categories

system all but thread group and thread

processor virtual processor, memory, bus

memory memory, bus

process thread group, thread, subprogram, data

thread group thread group, thread, subprogram, data

thread subprogram, data

subprogram data

data data, subprogram

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components

2. Properties

3. Component connection

4. Behavior annex

3. AADL: tool support

24

AADL properties

� Property:

� Typed attribute, associated to one or more entities

� Property definition = name + type + possible owners

� Property association to a component = property name

+ value

� Can be propagated to subcomponents: inherit
� Can override parent’s one, case of extends

� Allowed types in properties:

� aadlboolean, aadlinteger, aadlreal, aadlstring, range, list,

enumeration, record, user defined (Property type)

25

AADL properties

� Property sets :

� Group property definitions.

� Property sets part of the standard, e.g. Thread_Properties.

� Or user-defined, e.g. for new analysis as power analysis

� Example :

property set Thread_Properties is

. . .

Priority : aadlinteger applies to (thread, device, …);

Source_Text : inherit list of aadlstring applies to (data, port, thread, …);

. . .

end Thread_Properties;

26

AADL properties

� Properties are typed with units to model physical

systems, related to embedded real-time critical

systems.

property set AADL_Projects is

Time_Units: type units (

ps,

ns => ps * 1000,

us => ns * 1000,

ms => us * 1000,

sec => ms * 1000,

min => sec * 60,

hr => min * 60);

--

end AADL_Projects;

property set Timing_Properties is

Time: type aadlinteger

0 ps .. Max_Time units Time_Units;

Time_Range: type range of Time;

Compute_Execution_Time: Time_Range

applies to (thread, device, subprogram,

event port, event data port);

end Timing_Properties;

AADL properties

� Properties can apply to (with increasing priority)

� a component type (1)

� a component implementation (2)

� a subcomponent (3)

� a contained element path (4)

process implementation processing.others

subcomponents

receive0 : thread receiver.impl;

receive1 : thread receiver.impl;

receive2 : thread receiver.impl

{Deadline => 200 ms;}; -- (3)

properties -- (4)

Deadline => 300 ms applies to receive1;

end processing.others;

thread receiver
properties -- (1)
Compute_Execution_Time => 3 ms .. 4 ms;
Deadline => 150 ms ;

end receiver;

thread implementation receiver.impl
properties -- (2)

Deadline => 160 ms;
end receiver.impl;

28

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components

2. Properties

3. Component connection

4. Behavior annex

3. AADL: tool support

29

Component connection

� Connection: model component interactions, control flow and/or
data flow. E.g. exchange of messages, access to shared data,
remote subprogram call (RPC), …

� features : connection point part of the interface. Each feature has a
name, a direction, and a category

� Features category: specification of the type of interaction
• event port: event exchange (e.g. alarm, interrupt)

• data port: data exchange triggered by the scheduler

• event data port: data exchange of data triggered with sender (message)

• subprogram parameter

• data access : access to external data component, possibly shared

• subprogram access : RPC or rendez-vous

� Features direction for port and parameter:
• input (in), output (out), both (in out). 30

Component connection

� Features of subcomponents are connected in

the “connections” subclause of the enclosing

component

� Ex: threads & thread connection on data port

thread analyser

features

analyser_out : out data port

Target_Position.Impl;

end analyser;

thread display_panel

features

display_in : in data port Target_Position.Impl;

end display_panel;

process implementation processing.others

subcomponents

display : thread display_panel.impl;

analyse : thread analyser.impl;

connections

port analyse.analyser_out -> display.display_in;

end processing.others;

31

Data connection policies

� Allow deterministic communications

� Multiple policies exist to control production and
consumption of data by threads:

1. Sampling connection: takes the latest value

� Problem: data consistency (lost or read twice) !

32

Data connection policies

2. Immediate: receiver thread is immediately

awaken, and will read data when emitter finished

3. Delayed: actual transmission is delayed to the

next time frame

33

data shared_var

end shared_var;

data implementation shared_var.impl

end shared_var.impl;

thread analyser

features

share : requires data access shared_var.impl;

end analyser;

thread display_panel

features

share : requires data access shared_var.impl;

end display_panel;

process implementation processing.others

subcomponents

analyse : thread analyser.impl;

display : thread display_panel.impl;

a_data : data shared_var.impl;

connections

cx1 : data access a_data -> display.share;

cx2 : data access a_data -> analyse.share;

end processing.others;

Component connection

�Connection for shared data :

34

data shared_var

end shared_var;

data implementation shared_var.impl

end shared_var.impl;

thread analyser

features

share : requires data access shared_var.impl;

end analyser;

thread display_panel

features

share : requires data access shared_var.impl;

end display_panel;

process implementation processing.others

subcomponents

analyse : thread analyser.impl;

display : thread display_panel.impl;

a_data : data shared_var.impl;

connections

cx1 : data access a_data -> display.share;

cx2 : data access a_data -> analyse.share;

end processing.others;

Component connection

�Connection for shared data :

35

Component connection

�Connection between thread and subprogram :

36

thread implementation receiver.impl
calls {

RS: subprogram Receiver_Spg;

};

connections

parameter RS.receiver_out -> receiver_out;

parameter receiver_in -> RS.receiver_in;

end receiver.impl;

subprogram Receiver_Spg

features

receiver_out : out parameter

radar_types::Target_Distance;

receiver_in : in parameter

radar_types::Target_Distance;

end Receiver_Spg;

thread receiver

features

receiver_out : out data port

radar_types::Target_Distance;

receiver_in : in data port

radar_types::Target_Distance;

end receiver;

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components

2. Properties

3. Component connection

4. Behavior annex

3. AADL: tool support

37

AADL Behavior Annex

38

� Provides more details on the internal behavior of threads

and subprograms.

� Complements, extends or replaces Modes, Calls and

some Properties defined in the core model.

� Required for accurate timing analysis and virtual

execution of the AADL model.

� State Transition Automata with an action language:

� dispatch conditions

� actions: event sending, subprogram call, critical sections, …

� control structures: loops, tests, …

AADL Behavior Annex example

39

thread transmitter

features

transmitter_out : out data port radar_types::Radar_Pulse;

end transmitter;

thread implementation transmitter.impl

…

annex Behavior_Specification {**

states

s : initial complete final state;

transisitons

t : s -[on dispatch]-> s { transmitter_out := "ping" };

**};

end transmitter.impl;

annex identifier

transition condition

transition actions

state declaration

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components

2. Properties

3. Component connection

4. Behavior annex

3. AADL: tool support

40

AADL & Tools

� OSATE (SEI/CMU, http://aadl.info)

� Eclipse-based tools. Reference implementation.

� Textual and graphical editors + various analysis plug-ins

� STOOD (Ellidiss, http://www.ellidiss.com)

� Graphical editor, code/documentation generation

� Guided modeling approach, requirements traceability

� Cheddar (UBO/Lab-STICC, http://beru.univ-brest.fr/~singhoff/cheddar/)

� Performance analysis

� AADLInspector (Ellidiss, http://www.ellidiss.com)

� Standalone framework to process AADL models and Behavior Annex

� Industrial version of Cheddar + Simulation Engine

� Ocarina (ISAE, http://www.openaadl.org)

� Command line tool, library to manipulate models.

� AADL parser + code generation + analysis (Petri Net, WCET, …)

� Others: RAMSES, PolyChrony, ASSIST, MASIW, MDCF, TASTE, Scade Architect,

Camet, Bless, …
41

Tools used for the tutorial

42

P
ro

c
e
s
s
in

g
 g

o
a
ls

Scheduling Analysis

Safety Analysis

Security Analysis

End to End Flow
Analysis

Power Consumption

Cost Analysis

Requirements
Coverage

Simulation

Code Generation

pivot
model

textual
AADL

AADL Inspector

Cheddar

Marzhin

Ocarina

M
o

d
e
ls

SysML+Variants

MARTE+Variants

UML+Variants

OSATE

Capella

TASTE

EEA

Stood

43

� AADLInspector, OSATE/Cheddar

Tools used for the tutorial

