
The Design and Analysis of a Close-In Weapons System
Simulator using HRT-HOOD*

Pete Cornwell, Alan Burns and Andy Wellings

Real-Time Systems Research Group,
Department of Computer Science

University of York

cornwell@minster.york.ac.uk
or

 pcornwel@bournemouth.ac.uk

Abstract

This paper examines the architectural design and analysis of a naval
close-in weapons system simulator. Using the TARDIS development
framework we trace the emergence of a design solution using HRT-
HOOD. We examine the formulation of a logical architecture, based on
functional and non-functional requirements and demonstrate how this
may be mapped to the constraints imposed by a particular target
environment through a 'physical' process of timing and schedulability
analysis.

*This work was funded by the Defence Research Agency (Maritime Division) as part of a "feasibility
study of rigorous development methods for real-time software-intensive projects".

Glossary of Terms

Abbreviations

Block - Blocking Time
BRW - Best Real-World
CIW - Close-In Weapon Event (from dedicated fire control radar)
CIWS - Close-In Weapons System
DRA - Defence Research Agency
ES - Electronic Surveillance
ESA - European Space Agency
HRT-HOOD - Hard Real-Time Hierarchical Object-Oriented Design
LRR - Long Range Radar
PPI - Plan Position Indicator
WCET - Worse Case Execution Time

Time Units

sec - Seconds
ms -Milliseconds
µs - Microseconds

Unless explicitly stated all times are in milliseconds.

2

1.0 The Close-In Weapons System

The close-in weapons system case study (CIWS) is a simple naval command-control
application managing point defence on board a British Type 42 destroyer. Designed to
act as a last line of defence, the CIWS itself is a rotary machine cannon with a high rate
of fire, that engages incoming missiles by simply attempting to shoot them down at
short range. As part of a process of research undertaken on behalf of the Defence
Research Agency (Maritime Division) [Glen 1992], the CIWS and its associated
command control system were developed as a hard real-time case study utilising the
HRT-HOOD design technique [Burns 1992] [Burns 1994a].

This report is divided into three complementary sections. The first is an
introductory section that provides an overview of the case study requirements and
constraints. The second examines the formulation of a requirements-based logical
architecture for the CIWS. The third section demonstrates the translation from logical
to physical design, where the logical requirements of the CIWS are resolved against
the constraints imposed by an underlying 68020 target, through a process of timing
and schedulability analysis.

1.1 System Requirements

The CIWS itself is supported by an infrastructure that collates information received by
various sensors on the ship. These sensors are as follows:

• Long Range Radar (LRR) - A radar system thats gives bearing and distance of a
given contact external to the ship.

• Electronic Surveillance (ES) - A system that attempts to invoke an IFF
(identification friend or foe) transponder held aboard external 'friendly' vehicles.
This sensor returns bearing.

• Own Ship Sensor (OSS) - The movements of the ship also have an effect on the
bearing of various contacts external to the vessel. Therefore this is treated as a
separate "sensor".

• Close-In Weapons Sensor (CIW) - A short range fire control radar mounted on the
CIWS, returns bearing and distance.

From these four sources a best real-world or BRW picture is formed that fuses these
contacts into distinct 'vehicles' external to the ship* . It is from this list of vehicles that
targets are identifed and engaged by the CIWS.

The BRW picture is plotted to a display that contains the following elements:

• PPI (Plan Position Indicator) - A radar-like display with the ship plotted at the
centre. Eight lines radiate out from the ship dividing the space around the ship into
eight regular sectors. Two scaled range circles are drawn on the display

* The requirements actually state that only CIW events are received by the simulator. The HRT-
HOOD graphical design decomposition (presented below) gives two versions: one with, and one
without sensor fusion.

3

representing the maximum attack range (at 5000 metres) and the maximum
detection range (at 25000 metres). It is here that the position of external vehicles
are plotted and updated in real-time.

• Menu - A list of options which allow the user to interact with the system.

• Messaging Lines - Three text lines plotted at the top and bottom of the display.
The first line (plotted at the top the display) records display configuration
information such as orientation, magnification, mode of operation, and elapsed
time since the simulation was started. The second and third lines (plotted at the
bottom of the display) record the current user selected target, abort requests and
attack messages from the CIWS.

Briefly, the display offers the following functionality to the user.

• Vehicle Selection - the user may click on any plotted vehicle on the PPI to select /
deselect it as a target (except the ship itself!).

• Display Orientation - the PPI may be oriented as either NORTH_UP (with the top
of the display pointing to magnetic north) or OWN_SHIP_UP (with the top of the
display oriented in the direction of the ship's bow).

• Display Zoom / Unzoom - The PPI may be zoomed / unzoomed from 1.0 to 5.7
times magnification.

• Text Small / Large - Message text on the display may be plotted in a 7 or 25 point
font.

• Icon Zoom / Unzoom - Vehicle icons on the PPI may be magnified / unmagnified
to increase or decrease visibility.

• System Mode - This toggles the CIWS between MANUAL (where the user selects
targets to engage) and AUTOMATIC (where the system selects targets to attack).

• Select / Deselect Sector (1-8) - This selects or deselects one of the eight sectors
around the ship (the sector becomes highlighted in red). A selected sector is
ineligable for target selection (in AUTOMATIC mode) by the CIWS.

• Abort - The user may use this option to abort an attack in progress.

• Quit - The user ends the simulation and dumps a timing log for later examination.

As the system mode function listed above implies, the CIWS has two modes of
operation, MANUAL and AUTOMATIC respectively. In MANUAL mode the choice
of target is determined by the user (by selecting the appropriate vehicle icon on the
PPI). In AUTOMATIC mode the system hunts for targets itself, although the user is
allowed to interrupt this process at any point by selecting a target him / herself. This
will then be attacked in preference to any other target - but when destroyed or aborted
the system will continue to hunt targets automatically.

4

For a vehicle plotted on the PPI to be considered a target by the CIWS it must
fulfill the following criteria for eligability:

• Range - The vehicle must be at or less than 5000 metres from the ship.

• Speed - The vehicle must be travelling at or greater than 200 m/s.

• Allegiance - The vehicle must be registered as a 'Neutral' or 'Hostile' ** contact.

In addition, if the system is in AUTOMATIC mode the system may not select a target
if it is within a selected sector (although the user may manually select targets in either
MANUAL or AUTOMATIC modes). A vehicle that is selected by the user, but not
considered a "target" by the criteria outlined above is never attacked by the system.

When a target is selected for attack in any mode of operation the following
attack sequence is initiated:

1. A request abort message is sent to the display - the user is given two seconds to
select the menu abort option.

2. If an abort is not received within two seconds the CIWS attacks the target - after a
further period of one second the target vehicle is removed from the PPI and
assumed destroyed. A contact lost message is sent to the display.

3. If the abort is recieved within two seconds, the attack does not take place. In
addition the target becomes ineligable for future selection by the system in
AUTOMATIC mode (although the user may manually re-select it in any mode).

1.2 Hardware

In order to provide a realistic platform for the CIWS study a three node distributed
architecture is specified in the system requirements. This is composed of the following
elements:

• A Sun 3/50 - based around a M68000 architecture

• A 16.2 Mhz M68020 board

• A Ferranti VARS-H graphics display

The Sun 3/50 was responsible for the timed dispatch of sensor events. Containing the
complete scenario log it represented the devices used by the ship to detect external
vehicle contacts. The Sun3 supports 4 MB of memory.

The M68020 board housed the CIWS system itself. The system received
contacts dispatched from the sun 3/50 and built them into a list of vehicle contacts.
Utilising this information the CIWS hunted for viable targets manually or automatically
selected (dependent on the mode of operation), and drove the VARS display unit. The

** Commonly known as a "baddie".

5

M68020 board runs at 16.2 Mhz and supports 3 MB of memory with 2 memory wait
states.

The VARS-H graphics display facilitated user interaction with the CIWS.
Driven through the use of the Graphics Kernel System (GKS) the VARS display was
utilised to plot the current vehicle contacts and allow the operator to perform a number
of basic system operations through a menu interface. These operations range from
manipulation of the display through zoom or re-orientation functions, to key modal
and abort features. The software that drove this node (from the 68020) was derived
from prototype code originally developed by the YARD company.

The hardware was linked in a Sun3-68020-VARS series using asynchronous
interrupt driven serial communications. The overheads imposed by this arrangement
were intended to represent the combat systems highway linking the disparate elements
of a CIWS in a "real world" implementation. The respective speeds of these links are
as follows:

1. Sun 3/50 to M68020 board - 2400 Baud.

2. M68020 board to VARS-H display - 19200 Baud.

1.3 Tools

The design, analysis and implementation of the CIWS were supported through the
utilisation of a set of development tools, these are:

• The HRT-HOOD graphical notation and ODS editors.

• The Ada worse case execution time tool (WCET).

• Schedulability analysis tools reflecting current research at York.

• York/Ada ESA M68020 cross compiler.

• York/Ada Sun3 compiler.

• Scenario Preprocessor

• Sun3 Event Dispatcher*

The graphical and ODS editor is a prototype tool for the formulation of object-
oriented designs in HRT-HOOD. Written in C under Xview, the tool supports the
formulation of hierarchical architectures, allows the association of textual information
with each object component and provides a persistent store (through the use of an
underlying ONTOS database). Although currently incomplete the toolset was
invaluable in the formulation (and verification) of the final CIWS design.

The worse case execution time (WCET) tool facilitates the timing analysis of
object code produced by the York/Ada compiler. This process is accomplished in
three stages [Forsyth 1992][Burns 1994b]:

* This tool appears as the EVENT_DISPATCHER object in the logical architecture.

6

1. The compiler includes Ada structural data from the source code in the symbolic
debugging section of each object file

2. Texts segments from the object code file are read by a dissembler which converts
each machine instruction into a convenient internal representation.

3. The dissembler output is then analysed to form basic blocks at the assembler level.
Using the structural data included in (1), a worse case flow graph is produced.
The respective times of each assembler block are determined by table lookup.

The schedulability tool performs deadline monotonic schedulability analysis,
based on the work of Audsley et al at the University of York [Audsley 1993a][Audsley
1993b]. The tool performs the test based on the real-time characteristics of application
tasks and the overheads imposed by the scheduler and Ada runtime system.

Two versions of the York/Ada compiler were utilised for the implementation of
the CIWS. The Sun3 compiler was used in the development of the timed event
dispatcher, hosted on the Sun3 node, and is a standard Ada 83 compiler [Firth 1988].
The ESA cross compiler for the 68020 was specifically developed to support hard real-
time development and therefore included many non-standard features, many of which
will duly appear in the forthcoming real-time annex for Ada 95 [Burns 1993b][Firth
1992]. The modifications made to the current Ada standard that directly effected the
CIWS design and implementation are summarised in section 2.6 on terminal ODS
specification.

Contact information sent from the Sun3 to the 68020 node was read from a
scenario file, that listed the type of contact and the time at which it was to be
dispatched. In order to convert this text-based file into a suitable Ada-based
representation we employed an independently developed scenario preprocessor tool.
This tool converted the file into a set of CIW sensor contacts, by "fusing" LRR and ES
event lists into a single data structure (in essence producing a "best real-world" picture
of contacts around the ship). These CIW events were written into a sequential data file
for extraction by the event dispatcher tool.

The event dispatcher tool faciliated the timed dispatch of CIW events from the
Sun3 to the 68020 node. The tool was composed of two components:

• Setup - this was a simple C program that configured the serial port on the Sun3 as
the standard output stream, and set up the line speed (at 2400 baud).

• Dispatcher - this was an Ada program that read the preprocessed scenario file,
loaded it into an internal event list and converted it into a set of simple character-
based packets for transmission to the 68020 node. As each CIW event was tagged
with a dispatch time (a monotonic offset), the tool was able to send events to the
68020 node at times consistent with their listing in the scenario file.

 2.0 The Logical Architecture

This section outlines the practical design decisions and process that culminated in the
development of the CIWS logical architecture. Particular emphasis will be placed on
the hierarchical "top-down" development process central to the HRT-HOOD design

7

philosophy and the gradual evolution of the architecture in response to underlying
constraints imposed by the target environment, and a greater understanding of the
application domain.

2.1 The Root Level

The top level of any HRT-HOOD design tree is known as the root object. This object
represents the system to design at the highest level of abstraction, and may be
subsequently refined through a recursive process of structural decomposition into a
detailed set of encapsulated child objects, which may themselves be decomposed and
so on.

The root level of the CIWS is an ACTIVE object simply called 'SYSTEM' (fig
1). SYSTEM does not offer 'services' to external objects within the design space (i.e.
constant, exception, operation and type definitions) and therefore does not support a
PROVIDED_INTERFACE.

A SYSTEM

A AEVENT_DISPATCHER COMMAND_CONTROL_SYSTEM

WRITE_EVENTASER_BY_IT

E BASIC_IOE TEXT_IO

E HARDWARE_SUPPORT

SCENARIO_DATA

TIMING_LOG STATUS_REG

CONTACT_DATA

fig (1) The Root Level SYSTEM object

8

The distributed configuration of the target hardware, seemed to indicate a
'natural' decomposition of the SYSTEM object into two child objects. These objects
are represented in the design as:

• EVENT_DISPATCHER (ACTIVE)

• COMMAND_CONTROL_SYSTEM (ACTIVE)

This decomposition was made as it was felt that each child object had a distinct area of
responsibility. The EVENT_DISPATCHER object, residing on the Sun3 node, would
read contact events from a scenario file and then dispatch them to the
COMMAND_CONTROL_SYSTEM object residing on the 68020 board. The
COMMAND_CONTROL_SYSTEM object would implement the 'core' of the system,
driving the display, managing contact information and attacking valid targets.

This relationship is formalised by a use relationship between the two objects.
EVENT_DISPATCHER uses the single Write_Event operation declared in the
PROVIDED_INTERFACE of COMMAND_CONTROL_SYSTEM. There is also an
in data flow of 'contact_data' between these objects.

Three environment objects also appear at the root level of the design, these are:

• TEXT_IO (PASSIVE) - this environment object represents the standard Ada
package for the management of I/O on the Sun3 node, and is used by the
EVENT_DISPATCHER object to convert, read and dispatch contact data from
the scenario file.

• BASIC_IO (PASSIVE) - this environment object represents the standard I/O
package for serial line communication between the 68020 and the Sun3 or VARS
nodes and is used by the COMMAND_CONTROL_SYSTEM to send control
characters to the VARS-H display or dump a timing log at the end of the
simulation to the Sun3.

• HARDWARE_SUPPORT (PASSIVE) - this environment object provides facilities
for the enabling and disabling of interrupts generated by MC68681 serial port
controller on the 68020 board.

2.2 EVENT_DISPATCHER

The EVENT_DISPATCHER object is a high level representation of the dispatcher
tool, that sent CIW_EVENTS from the Sun3 to 68020 node.

2.3 COMMAND_CONTROL_SYSTEM

The COMMAND_CONTROL_SYSTEM object encompasses the bulk of the system
specified in the original CIWS requirements. As previously mentioned its
responsibilities encompass the management of the VARS-H display, the organisation
and processing of contact information, and the close-in weapons system itself which
may attack targets in either automatic or manual modes of operation.

9

This section of the design underwent significant refinement between the initial
design [Cornwell 1993] and the present logical architecture. The reader is invited to
compare and contrast the original decomposition (fig 2) with the finalised design (fig
3).

The original design decomposed COMMAND_CONTROL_SYSTEM into
three child objects, these were:

• SENSORS (ACTIVE) - a repository for incoming contact events dispatched from
the Sun3.

• USER_INTERFACE (ACTIVE) - an object that managed the users interaction
with the VARS-H display.

• CIWS (SPORADIC) - the close-in weapons system itself.

A COMMAND_CONTROL_SYSTEM

A

A

SENSORS

USER_INTERFACE

OSS_EVENT (ASER)

ASER

ASER

ASER

OSS_EVENT

LRR_EVENT

ES_EVENT

LRR_EVENT (ASER)

ES_EVENT (ASER)

S CIWS

{ EVENTS }

TARGET

ASER

ASER

ASER START

ABORTASER

SENSOR_DATA

TARGET SELECTION

ABORT

TARGET

fig (2) The Original COMMAND_CONTROL_SYSTEM decomposition

In many respects this was a satisfactory decomposition, and many elements survived to
appear in the finalised design. Each child object had a reasonably well defined area of
responsibility. The SENSORS object implemented the original interface of its parent,
providing a repository for incoming contact information which could be used by
USER_INTERFACE. Furthermore this object would scan its internal contact lists,
retrieve appropriate targets and dispatch them to the SPORADIC CIWS object which
would then engage them, subject to the receipt of an abort request.

10

The USER_INTERFACE object managed the display, retrieving contact
information from SENSORS and informing that object of changes to the target
acquistion process (i.e. manual or automatic) or manual selection of a given contact.
This object also informed the CIWS object of a user abort.

However, it soon became clear that this original design was not wholly
satisfactory for four reasons:

1. The SENSORS object did not represent a particularly cohesive abstraction. It was
simultaneously a repository for incoming contact data, the Sun3-68020
communications interface and the determinant for eligable targets dispatched to the
CIWS.

2. The dialogue between USER_INTERFACE and CIWS was strictly one way (i.e.
through the dispatch of an abort request), the user would need to be informed of
the progress of the CIWS through text written to the display, such as requests for
abort, engaging target and contact lost messages. All of which necessitated a rapid
two-way dialogue not reflected in the original design.

3. Although a simple polling mechanism had sufficed to handle control characters sent
from the VARS to the 68020 in the original YARD CIWS prototype, a full
implementation with a greater task load would be unable to poll the appropriate
port fast enough to prevent character loss through subsequent overwriting (the
MC68681 serial port controller only has a 3 character buffer). Instead it was
decided that all serial port communications should be interrupt-driven to prevent
data loss. However the the MC68681 only allows the association of a single
interrupt vector for both ports, which would necessitate handling input from the
VARS and Sun3 at the same point in the design (i.e through a single interrupt
handler). This was not reflected in the original design decomposition.

4. As a scenario preprocessor tool was utilised to "pre-fuse" incoming contacts, only
CIW events would need to be received by the system. The LRR_EVENT,
OSS_EVENT and ES_EVENT operations provided by SENSORS therefore
became redundant.

To resolve these issues the COMMAND_CONTROL_SYSTEM object was re-
configured at the child level. Although many of the original design features were
retained, the role of each object was significantly revised to produce a more cohesive
(and hence comprehendable) design decomposition. This resulted in the following
child objects:

• COMMS_RESOURCE (ACTIVE) - This object handles serial communication
with both the Sun3 and VARS display. Contact data is placed in the
DATA_STORE object for eventual retrieval and use by other objects in the
system. GKS commands from the VARS-H display are stored for retrieval by the
USER_INTERFACE object.

• DATA_STORE (PROTECTED) - This object acts as a central repository for
contact and system mode information and is used by both the CIWS and
USER_INTERFACE objects.

11

• USER_INTERFACE (ACTIVE) - This object drives and manages user interaction
with the VARS display. Contacts are retrieved from the DATA_STORE object
and plotted to the display. A two way dialogue is also faciliated with the CIWS via
the PROTECTED DIALOGUE_CONTROLLER object.

• CIWS (ACTIVE) - This object scans the DATA_STORE object for eligable
targets. If an eligable target is retrieved the system will begin to attack. The
CIWS will block on either Abort_Fore_Check or Abort_Aft_Check in
DIALOGUE_CONTROLLER for two seconds awaiting an abort request from the
USER_INTERFACE. If nothing is received during that period the CIWS will
engage the retrieved target. Messages indicating the current status of the CIWS
are also asynchronously refered to the USER_INTERFACE via the
DIALOGUE_CONTROLLER.

• DIALOGUE_CONTROLLER (ACTIVE) - This object controls the dialogue
between the CIWS and USER_INTERFACE objects. This dialogue encompasses
both the user abort and messages sent from the CIWS to the display.

Much of the original functionality attributed to the SENSORS object was disseminated
between the CIWS , DATA_STORE and COMMS_RESOURCE objects that appear
in the final logical architecture.

12

A COMMAND_CONTROL_SYSTEM

A

A

COMMS_RESOURCE

USER_INTERFACE

WRITE (ASER_BY_IT)
(ASER_BY_IT)
WRITE_EVENT

READ_VARS (LSER)

READ_SUN (LSER)

A DIALOGUE_CONTROLLER

TOER_HSERABORT_FORE_CHECK
ABORT_AFT_CHECK

VARS_DATA

ABORT_ATTACK_FORE
ABORT_ATTACK_AFT

TOER_HSER
HSER
HSER
HSER
HSER

Pr DATA_STORE

CIW_EVENT
RETRIEVE_DATA
GET_TARGET_DATA
UPDATE_CONTACT_STATUS
UPDATE_SELECTED_STATUS
UPDATE_MANUAL_SELECT
SET_MODE
INTERROGATE_MODE
GET_STATUS
UPDATE_ACTIVE_SECTORS
RETRIEVE_SECTOR_LIST

CIW_DATA

A CIWS
TARGET

WRITE_MESSAGE
READ_MESSAGE

MESSAGE

DESELECT
CONTACT_STATUS

OUTPUT_TEXT SENSOR_DATA
VEHICLE_CONTACT

CONTACT_STATE
SECTOR_NUMBER
MODE

SECTOR_LIST

BASIC_IOE

HARDWARE_SUPPORTE

STATUS_REG

VARS_DATA

TIMING_LOG

DUMP_LOGASER

CURRENT_TARGET

MODE

PSER
PSER
PSER
PSER
PSER
PSER
PSER
PSER
PSER
PSER
PSER

fig (3) The COMMAND_CONTROL_SYSTEM object

13

2.4 COMMS_RESOURCE

This object encapsulates the terminal level children that capture, decode and store
input from the Sun3 and VARS-H system nodes (fig 4). These child objects are:

• COMMS_MANAGER (PROTECTED) - An object that handles interrupts from
both serial ports on the 68020 board (linked to the Sun3 and VARS-H nodes). It
also encapsulates control characters sent from the VARS box to the 68020 board
(for asynchronous consumption by the USER_INTERFACE object) and contact
data sent from the EVENT_DISPATCHER object (for asynchronous consumption
by the COMMS_CONSTRUCTOR object).

• COMMS_CONSTRUCTOR (CYCLIC) - An object that extracts contact data
packets from the COMMS_MANAGER. This data is unpacked by the PASSIVE
DATA_CONSTRUCTOR object, returned, and then forwarded to the
DATA_STORE object, which appears as an uncle object on this diagram.

• DATA_TRANSLATOR (PASSIVE) - This object unpacks and then returns
contact information sent to it by COMMS_CONSTRUCTOR.

This simple and satisfactory design solution was fairly easily arrived at. Data is
received and stored by the COMMS_MANAGER object which maintains two lists of
information, one pertaining to information recieved from the VARS-H, the other
storing contact information recieved from the Sun3 EVENT_DISPATCHER. As the
VARS commands are only used by the USER_INTERFACE object this information
may be retrieved by that object calling the read_vars ASER operation in
COMMS_RESOURCE.

In contrast contact data must be made visible to both the USER_INTERFACE
and the CIWS objects which necessitates its avaliability in the central repository
represented by DATA_STORE. The CYCLIC COMMS_CONVERTER object
facilitates this by extracting a packet of information pertinent to each distinct sensor
contact, having this converted, then forwarding it to DATA_STORE for system-wide
consumption.

14

A COMMS_RESOURCE

Pr COMMS_MANAGER

READ_SUN (PSER)

E HARDWARE_SUPPORT

WRITE (ASER_BY_IT)

READ_VARS (PSER)

WRITE

READ_VARS

STATUS_REG

Pa DATA_TRANSLATOR

CIW_REBUILDER

C COMMS_CONVERTER

COMMS_DATA

COMMS_DATA

CIW_DATA

Pr DATA_STORE

CIW_DATA

INIT_COMMS

E BASIC_IO

fig (4) The COMMS_RESOURCE object

2.5 DATA_STORE

The DATA_STORE object is the central repository for contact data dispatched from
the scenario file on the Sun3 node. During the logical design phase this object evolved
from the less cohesive SENSORS abstraction into its final form. In order to trace this
evolution and examine the underlying design decisions that formulated this core part of
the system we present three designs for this object, these are:

1. The original SENSORS object.

2. The final DATA_STORE object. This is the object that appears in the final CIWS
implementation, but assumes the existence of a scenario pre-processor on the Sun3
node.

15

3. An 'ideal' DATA_STORE object. This object receives contact data from LRR , ES
and OSS sources and fuses them to produce a 'best real world' picture of the
environment surrounding the ship.

As aforementioned the SENSORS object had four areas of responsibility:

1. Receiving contact data from the Sun3 node.

2. A central repository for contact information.

3. A basis for the fusion of contact data.

4. A determinant and dispatcher of targets to the CIWS (which was a SPORADIC in
the original design - see above).

As well as being less than fully cohesive, the object also failed to encompass the
interrupt vector constraint identifed earlier, as it only made provision for the receipt
and storage of information from the Sun3 node only. The SENSORS object was
decomposed into the following children (fig 5):

• OSS_CONTROLLER (SPORADIC) - This object would handle interrupts
pertaining to the arrival of OSS (Own Ship) events.

• LRR_CONTROLLER (SPORADIC) - This object would handle interrupts
pertaining to the arrival of LRR (Long Range Radar) events.

• ES_CONTROLLER (SPORADIC) - This object would handle interrupts
pertaining to the arrival of ES (Electronic Surveillance) events.

• SENSOR_BASE (ACTIVE) - This object would both act as a repository for
incoming contact data, produce and dispatch target data to the CIWS (data which
is referred to as a CIW event).

The SPORADIC handlers that handled and dispatched contact events to the
SENSOR_BASE object became obsolete when the underlying interrupt constraints
were factored into the design. It was also felt that the overhead imposed by three
distinct threads of control on the implementation would be prohibitive. Instead this
element of the design became part of the COMMS_RESOURCE object and its
children (see above), where the single interrupt channel was serviced by an unthreaded
PROTECTED interrupt handler (COMMS_MANAGER) and unpacked by the
CYCLIC child object COMMS_CONVERTER. All in all a much more efficent
arrangement in terms of overall performance.

The SENSOR_BASE child object was the least cohesive aspect of the parent,
as it managed sensor fusion, target identification and dispatch. In the final , stable
version of the system the logical architecture was reconfigured to place the
responsibility for target selection and retrieval within the CIWS object itself which
appeared to be a more comprehendable and cohesive design solution.

16

A SENSORS

S OSS_EVENT

A USER_INTERFACE

STARTOSS_EVENT

A SENSOR_BASE

OSS_EVENT

S CIWS

ES_EVENT

LRR_EVENT

S ES_EVENT

STARTES_EVENT

S LRR_EVENT

STARTLRR_EVENT

OSS_EVENT

ES_EVENT

LRR_EVENT

MESSAGE

TARGET

fig (5) The original SENSORS object

This overall change in emphasis resulted in the formulation of the
DATA_STORE object (fig 6).

The two versions of the design presented below are both equally valid solutions
- one represents the actual solution, where the scenario events were pre-processed to
extract valid targets for the close-in weapons system to engage. The other is an ideal
solution where LRR and ES contacts are fused on 'the fly' by the system to produce
eligable targets for the system to attack. The ideal solution decomposes into two child
objects:

• CONTACT_STORE (PROTECTED) - This object is a repository for OSS , LRR,
ES and CIW events. It also encapsulates data pertinent to sector management and
the current mode of operation (MANUAL or AUTOMATIC modes).

• CIW_CONSTRUCTOR (CYCLIC) - This object extracts arriving LRR and ES
events and fuses them to produce valid CIW contacts, placing these back into
CONTACT_STORE for consumption by the CIWS object.

17

A DATA_STORE

ASER
ASER

ES_EVENT
LRR_EVENT

C CIW_CONSTRUCTOR

CIW_EVENT

Pr CONTACT_STORE

CIW_EVENT

RETRIEVE_DATA
GET_TARGET_DATA
UPDATE_CONTACT_STATUS
UPDATE_SELECTED_STATUS
UPDATE_MANUAL_SELECT
SET_MODE
INTERROGATE_MODE
GET_STATUS
UPDATE_ACTIVE_SECTORS
RETRIEVE_SECTOR_LIST

LRR_EVENT
ES_EVENT (PSER)

LRR_EVENT

ES_EVENT

PSER
(PSER)

PSER
PSER
PSER
PSER
PSER
PSER
PSER
PSER
PSER
PSER

fig (6) The "ideal" design decomposition (with sensor fusion)

The actual solution removes the CIW_CONSTRUCTOR object (as the data arrives
pre-fused). In this case decomposition of the DATA_STORE object becomes
unnecessary (as it would only have a single child object). Instead the actual logical
design considers DATA_STORE to be a terminal object, and promotes it from an
ACTIVE to a PROTECTED type. In essence CONTACT_STORE in the ideal design
becomes DATA_STORE at a higher level of abstraction.

2.6 USER_INTERFACE

This object manages the VARS-H display and handles interaction between the user and
the system. Its responsibilities include:

• PPI Orientation (either NORTH_UP or OWN_SHIP_UP)

• Display Magnification (from 1.0 to 5.7 times magnification)

• System Mode (either MANUAL or AUTOMATIC operation modes)

• Manual Target Selection (Selecting a contact with the pointer device).

• Abort (Aborting an attack on an eligable target).

18

• Sector Management (making one or more octal segments around the ship ineligable
for AUTOMATIC target selection)

• Messaging (Informing the user of the state of the CIWS through text messages)

As this section of the system was already supplied for us (through pre-existing Ada
code written by YARD), the code was manually reverse-engineered and adapted for
our purposes. This resulted in the following 'design decomposition' (fig 7):

• VARS_DRIVER (CYCLIC) - handles incoming events from the VARS (by
reading incoming data from COMMS_RESOURCE), extracts and plots contact
data from the DATA_STORE repository and manages the display functionality.

• VARS_IO (PROTECTED) - this object used by VARS_DRIVER retrieves data
from the VARS (via COMMS_RESOURCE) and outputs directly to the display
through BASIC_IO.

• GKS (PROTECTED) - this object encapsulates the primitives and data used to
draw to the display.

Our modifications to this design have primarily involved linking the
USER_INTERFACE object with both the DATA_STORE (to update the display with
current sensor contacts) and the CIWS (to abort an attack or inform the user of the
state of the CIWS).

The VARS_DRIVER therefore interacts with the external system in four ways:

1. Incoming data from the VARS-H display is retrieved from the PROTECTED
object COMMS_RESOURCE (through VARS_IO).

2. Contact and mode is retrieved from the central DATA_STORE object.

3. Messages from the CIWS object are read via the PROTECTED object
DIALOGUE_CONTROLLER.

4. Abort requests are sent to the CIWS via the PROTECTED object
DIALOGUE_CONTROLLER.

19

A USER_INTERFACE

Pr DATA_STOREA

Pr DIALOGUE_CONTROLLER

C VARS_DRIVER

Pr VARS_IO

COMMS_RESOURCE

MESSAGE

Pr GKS

{GKS_OPERATIONS}

DISPLAY_DATA

E BASIC_IO

VARS_DATA

{I/O_OPERATIONS}

GKS_DATA

VARS_DATA

A CIWS

SENSOR_DATA
VEHICLE_CONTACT

CONTACT_STATE
SECTOR_NUMBER
MODE

SECTOR_LIST

CURRENT_TARGET

MODE

fig (7) The USER_INTERFACE object

2.7 CIWS

In many respects this object forms the core of the case study. This is the weapon
system that engages incoming targets if they fill the predefined engagement criteria.
Originally this object was visualised as a simple terminal abstraction of SPORADIC
type, to which eligable targets were forwarded, and attacks made or aborted, by the
user. However as the design evolved the CIWS was given responsibilities both to
examine the DATA_STORE object for eligable targets and engage them (or abort if a
user request is so received).

The complexification of responsibilities within CIWS necessitated a change of
type from SPORADIC to ACTIVE, and further decomposition into four child objects
(fig 8), these were:

• TARGET_SELECT (CYCLIC) - This object periodically examines the
DATA_STORE object for eligable targets to engage. If an eligable target is

20

retrieved then it is forwarded to either CIWS_FORE or CIWS_AFT dependent on
the bearing of the sensor contact from the ship.

• CIWS_FORE (SPORADIC) - This object attacks targets in the 180 degree fore
arc of the vessel. When a target is received from TARGET_SELECT this object
will block on the DIALOGUE_CONTROLLER TOER_PSER operation
Abort_Fore_Check for two seconds. If an abort flag is not received from the
USER_INTERFACE object within this time the CIWS will continue the attack.
After a further period of one second the target is considered destroyed and the
DATA_STORE object is updated accordingly - all further references to that
contact are ignored until the end of the scenario.

• CIWS_AFT (SPORADIC) - This object attacks targets in the 180 degree aft arc of
the vessel. When a target is received from TARGET_SELECT this object will
block on the DIALOGUE_CONTROLLER TOER_PSER operation
Abort_Aft_Check for two seconds. If an abort flag is not received from the
USER_INTERFACE object within this time the CIWS will continue the attack.
After a further period of one second the target is considered destroyed and the
DATA_STORE object is updated accordingly - all further references to that
contact are ignored until the end of the scenario.

• TIMING_LOG (PROTECTED) - This object maintains a timing log of the time
taken for each abort. This is automatically dumped to the Sun3 display at the end
of the scenario.

It should be noted that beyond the basic functionality outlined above the CIWS_FORE
and CIWS_AFT objects also asynchronously communicate their state to the
USER_INTERFACE through the DIALOGUE_CONTROLLER object. These
messages are:

• ATTACKING TARGET N - DO YOU WISH TO ABORT? - prompts the user for
an abort request

• ATTACKING TARGET N - informs the user that an attack against a given target
has begun.

• CONTACT LOST TARGET N - the contact has been lost / destroyed

• ATTACK ON TARGET N ABORTED - the attack on the target has been aborted

It should be noted that N refers to a numbered vehicle within the scenario file.

21

A CIWS

Pr

S

TIMING_LOG

CIWS_AFT

WRITE_FORE_TIME

WRITE_AFT_TIME

DUMP_LOG

STARTASER

PSER

PSER

PSER

S CIWS_FORE

STARTASER

C TARGET_SELECT

ABORT_TIME ABORT_TIME

TARGETTARGET

DATA_STOREPr

DIALOGUE_CONTROLLERPr

TARGET

BASIC_IOE

TIMING_LOG

CONTACT_STATUSCONTACT_STATUS

DUMP_LOGASER

DESELECTION DESELECTION

MESSAGEMESSAGE

fig (8) The CIWS object

2.8 DIALOGUE_CONTROLLER

This PROTECTED object manages the interaction between the USER_INTERFACE
and CIWS objects. The DIALOGUE_CONTROLLER has two key responsibilities:

1. Messages written from the CIWS for consumption by the USER_INTERFACE
object (see CIWS above).

22

2. Requests sent from the USER_INTERFACE to abort an attack by the CIWS.

In order to satisfy these requirements DIALOGUE_CONTROLLER was decomposed
into the following child configuration (fig 9).

• ABORT_CONTROLLER (PROTECTED) - This object manages the abort
between the USER_INTERFACE and CIWS. CIWS blocks on either the
Abort_Fore_Check or Abort_Aft_Check TOER_PSER operations for two
seconds. If an abort flag is not received from USER_INTERFACE the CIWS will
then continue to attack and destroy the target.

• MESSAGE_LOG (PROTECTED) - This object is a repository for messages sent
from the CIWS to USER_INTERFACE (see CIWS above).

A DIALOGUE_CONTROLLER

Pr

Pr

ABORT_CONTROLLER

MESSAGE_LOG

TOER_PSERABORT_FORE_CHECK
ABORT_AFT_CHECK
ABORT_ATTACK_FORE
ABORT_ATTACK_AFT

TOER_PSER
PSER

PSER
PSER

WRITE_MESSAGE
READ_MESSAGE

PSER

ABORT_FORE_CHECK
ABORT_AFT_CHECK
ABORT_ATTACK_FORE
ABORT_ATTACK_AFT

WRITE_MESSAGE
READ_MESSAGE

fig (9) The DIALOGUE_CONTROLLER Object

23

2.9 Terminal ODS Specification

As the CIWS design was to be implemented using Ada, the behaviour of each terminal
object was specified using an Ada-derived pseudocode to facilitate easy translation to
the target language.

In order to submit the design for timing analysis using the WCET analyser it
was necessary to translate the terminal specification of each ODS into Ada code. One
of the strengths of the HRT-HOOD approach is that it provides a clear and
comprehendable design translation scheme for both Ada '83 and 95. This mapping
scheme is briefly summarised below [Burns 1992] (fig 10):

Object Mapping
PASSIVE An Ada package with each operation as

a procedure / function
ACTIVE An Ada package with each operation as

a procedure / function and a set of
internal tasks and a synchronisation
agent

PROTECTED An Ada package with each operation as
a procedure / function, and a
synchronisation agent

CYCLIC An Ada package with each ATC
operation as a procedure / function, a
synchronisation agent and a single
periodic task. The synchronisation agent
can affect the flow of control in the task.

SPORADIC An Ada package with each ATC and
START operation as a procedure /
function, a synchronisation agent and a
single aperiodic task. The
synchronisation agent can affect the flow
of control in the task. For the START
operation the aperiodic task executes
one iteration. Alternative mappings may
be provided for SPORADICs invoked by
interrupt.

fig (10) A Summary of the HRT-HOOD Mapping Scheme

One of the most consistent criticisms levelled at the Ada '83 language was the
inadequate support for hard real-time development [Burns 1989]. The York/Ada
68020 compiler used as the basis for both specification and implementation of the
CIWS case study addressed these issues by offering modified and extended facilities
for real-time development. The modifications pertinent to the CIWS case study are
outlined as follows [Firth 1992] (fig 11):

24

Modification Overview
Large Priority Range The scheduler supports 64 run queues

from 0 (the default) to 63. In addition
the developer may specifiy priorities in
the range 64..70 to indicate hardware
prioritisation.

Priority Queuing Entry queues are now ordered according
to the priority of the calling task, rather
than the usual FIFO arrangement.

Protected Tasks A monitor-like construct using the Ada
'83 task semantics. Used as the basis for
asynchronous dialogue between system
tasks.

Delay_Until This procedure is implemented by
subtracting the current time from a later
time supplied as a parameter. This will
then delay the task for the appropriate
amount of clock ticks (unlike the original
delay statement which does not enforce
an upper bound on the delay time).

Fast Interrupt Handlers This facility allows the association of an
interrupt address with a procedure,
rather than the usual entry clause address
attached to a task, which tends to be
performance-inefficient.

Fig (11) Real-Time Modifications to the 68020 Ada Compiler

In order to constrain the design for worse case timing analysis the following limitations
were placed on the Ada-based ODS specifications [Forsyth 1992] [Burns 1994b]:

• pragma LOOPCOUNT - This implementation dependent pragma is used to
indicate the maximum number of times that a loop is executed.

• No Recursion - This is not permitted as it .makes it difficult for the WCET analyser
to detect loops.

• No Goto - This is not permitted as it makes it difficult for the WCET analyser to
detect loops.

• No Non-Static Array Operations - To implement operations on an array (such as
assignment) a "hidden loop" is generated by the compiler. Non-static array
operations are therefore prohibited, as the number of times a "hidden loop" is
executed cannot be bounded.

25

3.0 The Physical Design

HRT-HOOD supports the development of a physical architecture through the
association of timing and schedulability information with terminal objects. The
REAL_TIME_ATTRIBUTES section of the ODS provides a framework through
which the terminal set of objects in a HRT-HOOD design decomposition may be
analysed to determine if they are correct with respect to their original real-time
requirements.

In this section of the paper we will trace the influences the physical phase of
development exerted on the final design and implementation of the case study. Like
the logical design step this was very much an evolutionary process and aptly
demonstrates the essentially iterative relationship between the logical and physical
phases of development.

3.1 Worse Case Execution Time Analysis

Our first examination of the worse case timings revealed a number of significant
problems with the logical architecture. These problems were primarily focussed on the
USER_INTERFACE object. For the purposes of clarity the original worse case times
for each threaded object are listed below (fig 12):

Threaded Object WCET (ms)
COMMS_CONSTRUCTOR 295.177
VARS_DRIVER 9274.06
TARGET_SELECT 469.278
CIWS_FORE 4.25741
CIWS_AFT 4.25741

fig (12) Threaded Object Worse Case Execution Times

Obviously the WCET for the VARS_DRIVER task was wholly unacceptable, and we
sought ways to reduce this significantly by examining both the logical design and the
original YARD interface code (from which the USER_INTERFACE object was
derived). Examination of the design indicated that VARS_DRIVER periodically
invoked the following operations (fig 13):

Operations WCET (ms)
Display_Handler.Check_Events 199.356
 " . Update_Graticule 239.733
 " . Update_Icons 2014.21
 " . Update_Track_Display 2405.34
" . Update_Status_Line 74.2916
Gks.Set_Deferral_State 5.13167 (x2)
Gks.Redraw_All_Segments_On_WS 1.61596
Target_Handler.Update_Positions 4327.61
others 1.6401

fig (13) Operations Invoked by VARS_DRIVER

26

A general implementation constraint that placed an enormous overhead on the
performance of the application was the protocol between the 68020 and VARS-H
nodes. This dialogue was accomplished through the use of a character-based protocol,
with all operations implemented by the GKS object ultimately being implemented in
terms of character packets dispatched along the serial line to the VARS. The time
taken to construct these commands, and the time required to flush them through the
serial port imposed enormous overheads.

An obvious solution was to make the display as "minimalist" as possible, either
in terms of removing extraneous features of the PPI or reducing the number of plotted
vehicle icons (which took 60.1462 ms per icon to plot!). Close examination of the
most computationally expensive operations, namely update_icons,
update_track_display and update_positions showed that these iterated through a
vehicle list updating each respective vehicle in turn. Our original assumption was that
50 vehicles would be present on the display at any one time. While this was not an
unreasonable "real-world" estimate, the time taken to construct and dispatch the
respective graphical commands required by each operation was somewhat prohibitive
to performance. After consulation with the DRA this was reduced to 2 vehicles in the
worse case** .

This produced the following revision of worse case times for VARS_DRIVER
(fig 14):

Operations WCET (ms)
Vars_Driver.Check_Events 199.356
 " . Update_Graticule 239.733
 " . Update_Icons 237.014
 " . Update_Track_Display 283.145
" . Update_Status_Line 74.2916
Gks.Set_Deferral_State 5.13167 (x2)
Gks.Redraw_All_Segments_On_WS 1.61596
Vars_Driver.Update_Positions 505.01
others 1.6401

fig (14) Revised Threaded Object Worse Case Execution Times

While the results were still somewhat excessive, the new vehicle assumptions did
significantly reduce the original WCET, bringing the VARS_DRIVER thread WCET
down to 1552.07 ms (with an average execution time of 880 ms).

The thread WCET for TARGET_SELECT was also an area of concern. This
object periodically polled the DATA_STORE repository for new targets, which
required that each vehicle be compared against the eligability criteria (see section 1.1).
However, with the reduction of our worse case assumption from 50 to 2 vehicles, the
thread WCET shrunk from 469.278 ms to 29.181 ms.

** This represented the maximum number of missiles present in the largest scenario we had avaliable.
All other vehicles (i.e. ships, helicopters, subs, planes etc) would not be plotted to the display.

27

3.2 Schedulability Analysis

For each thread the following overheads were added to the WCET derived from the
timing analysis tool (fig 15):

Overhead Time (ms)
Context Switch (In) 0.216
Context Switch (Out) 0.184 + 0.0048 per shorter delay task
Protected Entry (Unblocked) 0.088
Protected Entry (Blocked) 0.252
Timed Protected Entry (Blocked) 0.276
Protected Exit 0.136
Interrupt Handling Overhead 0.044

fig (15) Ada Runtime System Overheads

This resulted in the following WCET and prioritisation of the tick driven scheduler,
arriving interrupts and system tasks (fig 16):

Task_ID WCET (ms) Priority
CLOCK 0.024 H*
VARS_INTERRUPTS 9.630** 69***
SUN_INTERRUPT 0.535** 69***
CIWS_FORE 5.293 15
CIWS_AFT 5.293 15
TARGET_SELECT 29.815 10
COMMS_RESOURCE 295.806 8
VARS_DRIVER 1562.830 2
* 'H' represents the highest priority
** See fig (17) Note 3 .
*** The hardware interrupt priority (5)+ highest system priority (64)

fig (16) The 'Task' Prioritisation Hierarchy

With the exception of VARS_DRIVER, the prioritisation hierarchy of system tasks
accurately reflected the relative criticality of each individual object as derived from the
original requirements.

After a comprehensive process of re-evaluating the original YARD interface
implementation, the VARS_DRIVER thread WCET still remained a significant
bottleneck to overall system performance. The display implementation (and the
subsequent reverse engineered design), appeared to be a satisfactory functional design
solution but was hindered by the performance constraints imposed by the underlying
serial port communications infrastructure. As these constraints were specified in the
original requirements they were not subject to change.

The WCET for the VARS_DRIVER thread exceeded 1.5 seconds which
dictated that each update of the display would take at least this long, assuming that the
thread was released immediately after completion and ran at the highest priority!
The display update rate dictated by VARS_DRIVER was too slow to fulfill the two

28

second abort requirement, even without the obligatory interference generated by more
critical tasks. The overheads imposed by generating and sending a request abort
message to the display, the response time of the operator, and the dispatch, unpacking
and actual execution of the abort far exceeds the two second requirement. While
alloting the VARS_DRIVER thread a higher priority would minimise interference, the
rapid update rate necessitated by the requirements would in all probability make lower
priority "hard" tasks unschedulable. In other words the design would still be incorrect.

The most "satisfactory" (and schedulable) solution was to demote the
VARS_DRIVER from a "hard" to "soft" level of importance, and run it at the lowest
level of priority, allowing it to soak up all the spare processor capacity.

The schedulability analysis was based on the following model (fig 17):

Task_ID Period5 Deadline WCET Block Priority
CLOCK1 10.0 10.0 0.024 0 H*
CIWS_FORE_REL2 300.0 300.0 0.072 0 H*
CIWS_AFT_REL2 300.0 300.0 0.072 0 H*
TARGET_SELE_REL2 300.0 300.0 0.072 0 H*
COMMS_RESOURCE
_REL2

700.0 700.0 0.072 0 H*

VARS_DRIVER_REL2 10000** 10000** 0.072 0 H*
VARS_INTERRUPTS3 103.5 - 9.63 0.288Θ 69
SUN_INTERRUPT4 3.3 - 0.535 0.288Θ 69
CIWS_FORE 300.0 300.0 5.293 30.778 15
CIWS_AFT 300.0 300.0 5.293 30.778 15
TARGET_SELECT 300.0 300.0 29.815 30.778 10
COMMS_RESOURCE 700.0 700.0 295.806 30.778 8
VARS_DRIVER 10000** 10000** 1562.83 0 2
*H - represents the highest system priority
** - An arbitary "soft" value
Θ - this represents the maximum time the Sun and Vars interrupt were turned off.

fig (17) The Schedulability Analysis

Notes

(1) This models the clock handler, with a "tick" of 10ms and an overhead for
recognising pre-emption of 24µs.

(2) Each _REL "task" models the interference generated by the scheduler by moving
each respective system task from the delay queue (72µs).

(3) The arrival rate of interrupts from the VARS was "bursty" with a worse case
arrival of 18@440µs intervals and a gap of 95.6 ms. This combined value (plus
overheads) of 18 * 440µs was utilised to model the interference due to interrupt
handling on lower priority tasks.

29

(4) The worse case arrival rate was a constant dictated by the speed of the serial link
(set at 2400 BAUD). This constant was utilised to calculate the listed period.

(5) For all other tasks period equals deadline.

From the schedulability analysis we were able to determine the following response
times for the CIWS case study (fig 18).

Task_ID Response Time (ms)
CLOCK 0.256*
VARS_INTERRUPTS 11.068**
SUN_INTERRUPT 11.068**
CIWS_FORE 55.3
CIWS_AFT 61.68
TARGET_SELECT 97.459
COMMS_RESOURCE 557.501
VARS_DRIVER 8935.872(!)

*This was calculated as follows: the response time of the clock (0.024ms) + the
release time of the first task (0.072ms), plus release time for all four other tasks (4 *
0.040ms).
** As interrupt arrivals were "bursty" this led to a seperate determination of response
time, with the longest being 11.068 ms.

fig(18) System Response Times

3.3 An Alternative Design

Although the full system is incorrect with respect to its original non-functional
requirements, we were able to produce a "correct", albeit limited, version of the CIWS
system that met the key abort criteria. The requirements were changed in the
following manner:

• The system was restricted to a Sun3 and 68020 configuration.

• The user interacted with the system through a simple text interface on the Sun3.

• The only commands accepted by the system were (a) abort an attack by the fore
gun (b) abort an attack by the aft gun.

• The system would operate in AUTOMATIC mode only.

• Only messages indicating the state of the CIWS were echoed to the Sun3. The
original functionality of the VARS display was not supported.

The logical architecture was adapted in the following fashion (fig 20):

30

• The USER_INTERFACE object was removed from the design.

• A Use relationship was established between COMMS_MANAGER and
DIALOGUE_CONTROLLER - this allowed the user to abort an attack from the
Sun3 node through a simple text interface.

• A Use relationship was established between MESSAGE_LOG and the environment
object BASIC_IO. This allowed messages from the CIWS to be output to the
Sun3 node.

The breakdown of system tasks was as follows (fig 19):

Task_ID WCET (ms) Priority
CLOCK 0.024 H*

SUN_INTERRUPT 0.535 69**
CIWS_FORE 5.293 15
CIWS_AFT 5.293 15

TARGET_SELECT 194.09 10
COMMS_RESOURCE 295.806 8

* 'H' represents the highest priority
** The hardware interrupt priority (5)+ highest system priority (64)

fig 19 The "Alternative" Prioritisation Hierarchy

The removal of the USER_INTERFACE object from the logical architecture
facilitated the following changes to the analysis model:

• The worse case assumption of tasks moved by the scheduler from the delay queue
could be reduced from 5 to 4 (which consequently reduced the clock response time
in the worse case).

• The two node architecture facilitated the removal of the VARS_INTERRUPTS
from the analysis.

• The worse case number of targets could be increased from 2 to 20.

• The maximum blocking time (originally caused by VARS_DRIVER) was reduced
from 30.778ms to 26.576ms.

31

A COMMAND_CONTROL_SYSTEM

A COMMS_RESOURCE

WRITE (ASER_BY_IT)
(ASER_BY_IT)
WRITE_EVENT

READ_VARS (ASER)

READ_SUN (ASER)

Pr DIALOGUE_CONTROLLER

TOER_PSERABORT_FORE_CHECK
ABORT_AFT_CHECK

ABORT

ABORT_ATTACK_FORE
ABORT_ATTACK_AFT

TOER_PSER
PSER
PSER
PSER
PSER Pr DATA_STORE

CIW_EVENT
RETRIEVE_DATA
GET_TARGET_DATA
UPDATE_CONTACT_STATUS
UPDATE_SELECTED_STATUS
UPDATE_MANUAL_SELECT
SET_MODE
INTERROGATE_MODE
GET_STATUS
UPDATE_ACTIVE_SECTORS
RETRIEVE_SECTOR_LIST

CIW_DATA

A CIWS

WRITE_MESSAGE
READ_MESSAGE

MESSAGE

BASIC_IOE

HARDWARE_SUPPORTE

STATUS_REG

TIMING_LOG

TARGET

DESELECT
CONTACT_STATUS

PSER
PSER
PSER
PSER
PSER
PSER
PSER
PSER
PSER
PSER
PSER

fig (20) The "alternative" design

The analysis included the following components (fig 21):

32

Task_ID Period4 Deadline WCET Block Priority
CLOCK1 10.0 10.0 0.024 0 H*
CIWS_FORE_REL2 700.0 700.0 0.072 0 H*
CIWS_AFT_REL2 700.0 700.0 0.072 0 H*
TARGET_SELE_REL2 700.0 700.0 0.072 0 H*
COMMS_RESOURCE
_REL2

600.0 600.0 0.072 0 H*

SUN_INTERRUPT3 3.3 - 0.535 0.288Θ 69
CIWS_FORE 700.0 700.0 5.293 26.576 15
CIWS_AFT 700.0 700.0 5.293 26.576 15
TARGET_SELECT 700.0 700.0 194.09 26.576 10
COMMS_RESOURCE 600.0 600.0 295.806 0 8
*H - represents the highest system priority.
Θ - this represents the maximum time the Sun and Vars interrupts were turned off.

fig (21) The "Alternative" Schedulability Analysis.

Notes

(1) This models the clock handler, with a "tick" of 10ms and an overhead for
recognising pre-emption of 24µs.

(2) Each _REL "task" models the interference generated by the scheduler by moving
each respective system task from the delay queue (72µs).

(3) The worse case arrival rate was a constant dictated by the speed of the serial link
(set at 2400 BAUD). This constant was utilised to calculate the listed period.

(4) For all tasks period equals deadline.

From the schedulability analysis we were able to determine the following response
times for the alternative CIWS design (fig 22).

Task_ID Response Time (ms)
CLOCK 0.216*
SUN_INTERRUPT 11.350
CIWS_FORE 38.673
CIWS_AFT 45.060
TARGET_SELECT 277.152
COMMS_RESOURCE 599.580

*This was calculated as follows: the response time of the clock (0.024ms) + the
release time of the first task (0.072ms), plus release time for all four other tasks (3 *
0.040ms).

fig (22) "Alternative" System Response Times

33

3.4 Results

Through the analysis process outlined above, and rigorous testing of the final
implementation we were able to determine two key points of interest concerning
performance:

1. The maximum number of targets that the CIWS can destroy in AUTOMATIC
mode.

2. The shortest abort time recorded by the TIMING_LOG object.

For (1) we made the assumption that the worse case number of targets are fired at the
ship, and simultaneously reach the 5000 metre engagement range. The system is left in
AUTOMATIC mode, and will engage these targets in turn, waiting for 2 seconds to
request an abort, then delaying a further second to destroy the target. No abort is
assumed to be received by the system.

The worse case attack time is simply the end-to-end transaction time derived by
adding together the periods of COMMS_RESOURCE , TARGET_SELECT and
either CIWS_FORE or CIWS_AFT. The following table lists the maximum number of
targets that can be destroyed by the full and alternative designs, assuming the worse
case scenario outlined above (fig 23):

Closing Speed1 Time To Target2 Full Design3 Alt. Design4

200 m/s 25.0 s 2 5
300 m/s 16.66 s 2 3
400 m/s 12.5 s 2 2
500 m/s 10.0 s 2 2

fig (23) Targets Destroyed In Worse Case Scenario

Notes:

(1) Closing speed on the ship, measured in metres per second.

(2) The number of seconds required for the missile to move from maximum
engagement range to impact.

(3) This column lists the number of missiles that may be destroyed by the full design
(with the VARS display) in the worse case scenario. The worse case number of
targets is 2.

(4) This column lists the number of missiles that may be destroyed by the alternative
design (without the VARS display) in the worse case scenario. The worse case
number of targets is 20.

When viewing these results it should be noted that for each target engaged by the
system there is a three second overhead specified by the requirements; two seconds to
wait for a possible abort request by the user, and a further second to attack and destroy

34

the selected target. These overheads have a significant impact on the worse case
attack time, for example a system that ran instantaneously would only be able to
engage eight targets travelling at 200 m/s , five targets travelling at 300 m/s and so on.

The shortest recorded abort time for both the full and alternative designs are
listed below. Note that these times are best case results, that also include a period of
'thinking time' by the user (fig 24).

Design Abort Time (seconds)
Full Design 2.6
Alternative Design 0.9

fig (24) Best Case Abort Times

4.0 Recommendations

It is our opinion that the strict performance constraints imposed by the
communications infrastructure placed serious overheads on the CIWS design. As we
have demonstrated, the primary bottleneck appeared to be in the USER_INTERFACE
object which updated the display and system state in response to contacts recieved by
the CIWS or commands issued by the user. Primarily this performance shortfall (in
order of precedence) was due to:

• The serial-based communications architecture, particularly in the transmission of
control characters from the 68020 board (through an MC68681 serial controller)
to the VARS.

• The complex conversion process required to convert the design and
implementation based data structures used by the CIWS into commands for the
VARS display (accomplished by the VARS_IO object).

Our primary recommendation would therefore be to seriously reconsider the original
hardware constraints specified in the requirements document. The following list
encompasses tentative (and mutually exclusive) possibilities for change:

• A fast ethernet-based communications infrastructure between the 68020 board and
the VARS-H display.

• A dedicated processor for driving the VARS-H display.

• Replacing the 68020 / VARS-H configuration with a single processor board with
dedicated graphics hardware, display and input device.

As we have shown through the “original” CIWS design (presented above), the current
hardware architecture is insufficient to meet the hard deadlines specified in the
requirements, particularly the “abort” function. As the “alternative” design
demonstrates, the removal / amelioration of these constraints would allow the
formulation of a hard real-time system “correct” with respect both to its functional and
temporal requirements.

35

5.0 Conclusions

In this study we have traced the design and analysis of a simple command-control
system using the HRT-HOOD development technique. HRT-HOOD offers a flexible,
comprehendable and expressive hierarchical design notation for object-oriented real-
time development while still maintaining a manageable degree of simplicity and ease-
of-use. Fundamentally, HRT-HOOD offers the developer leeway to consider the
implication of environmental constraints on performance at the design level, allowing
the design to be easily and inexpensively changed if the logical architecture does not
meet its required non-functional obligations. This is in direct contrast to the more
traditional view of real-time development, where non-functional obligations are
considered at the implementation stage of the lifecycle, and a necessary change to the
design becomes more expensive by several degrees of magnitude. Finally the transition
from design to implementation, often ill-defined in many structural notations, is
supported by a simple (and automatable) direct structural mapping to Ada '83 and 95
source code.

Through the CIWS case study we have examined both the logical and physical
aspects of real-time development using HRT-HOOD. By tracing the structural
evolution of the logical architecture we have demonstrated how hierarchical
structuring and object-based modularity using HRT-HOOD facilitates the development
of comprehendable design solutions. Enhanced comprehendability facilitates not just
easy communication of the design solution to a third party, but also has the potential to
significantly reduce maintenance costs in the long term.

Our physical analysis of the CIWS design aptly demonstrated the advantages of
considering performance requirements at the design level. The failure of the CIWS to
meet performance requirements (due to the overheads imposed by the serial
communications architecture) was identified at the detailed design stage. This
facilitated a review of the specified hardware constraints, the formulation of a set of
recommendations for change, and the development of an "alternative" design that
demonstrated the correctness of the design without the overheads imposed by the
VARS display. An implementation-centred approach to analysis would potentially
have been more costly.

36

References

Audsley 1993a
N.C. Audsley, A.Burns and A.J. Wellings 1993 "Deadline Monotonic Scheduling
Theory and Practice" , Control Engineering Practice, Vol 1, No. 1, Pages 71-78.

Audsley 1993b
N.C.Audsley, A. Burns, M. Richardson, K,Tindell and A. Wellings 1993 “Applying
New Scheduling Theory To Static Priority Pre-emptive Scheduling”, Software
Engineering Journal, Vol 8, No 5.

Burns 1989
A. Burns and A.J. Wellings. 1989 "Ada 9X - The Need For Change". YCS 117
[Internal Report].

Burns 1992
A. Burns and A.J. Wellings 1992 "HRT-HOOD: A Design Method for Hard Real-
Time Ada 9X Systems", Proceedings of Ada UK 1991.

Burns 1993a
A. Burns, A.J. Wellings, C.M. Bailey and E.Fyfe 1993 "The Olympus Attitude and
Orbital Control System: A Case Study in Hard Real-Time System Design and
Implementation". YCS 190 [Internal Report]

Burns 1993b
A. Burns and A.J. Wellings 1993 “Bridging the Real-Time Gap between Ada’83 and
Ada 9X”, in E.C. Loftus (ed) 1993 Ada Year Book. IOS Press.

Burns 1994a
A. Burns and A.J. Wellings 1994 "HRT-HOOD: A Design Method for Hard Real-
Time Ada", Real-Time Systems Journal, Vol 6, pages 73-114.

Burns 1994b
A. Burns, A.J. Wellings, C.H. Forsyth and C.M. Bailey 1994 "A Performance Analysis
of a Hard Real-Time System". YCS 224 [Internal Report]

Cornwell 1993
Pete Cornwell and Andy Wellings 1993 "The Close-In Weapons System, A Case Study
in HRT-HOOD (Preliminary Design)". DRA Deliverable.

Firth 1988
J.R. Firth, C.H. Forsyth and I.C. Wand 1988 "York Ada Compiler Release 3
(SUN/UNIX) - User Guide". YCS 97 [Internal Report]

Firth 1992
John Firth 1992 "Hard Real-Time Operating System Kernel Study, Task 8, Volume A,
Modifications to York Ada", ESTEC/Contract No. 9198/90/Nl/SF. York Software
Engineering Limited.

37

Forsyth 1992
C.H. Forsyth 1992 "Hard Real-Time Operating System Kernel Study, Task 8, Volume
E, Implementation of the Worse-Case Execution Time Analyser", ESTEC/Contract
No. 9198/90/Nl/SF. York Software Engineering Limited.

Glen 1992
J.A. Glen 1992 "Statement of Requirements for a Feasibility Study of Rigorous
Development Methods for Real-Time Software-Intensive Projects". Yard Document
4808, Contract No. C2432, Yard Ltd Consulting Engineers, Glasgow.

Hutcheon 1992
A.D. Hutcheon 1992 "Hard Real-Time Operating System Kernel Study, Task 8,
Volume C, Timings of Run-Time Operations in Modified York Ada",
ESTEC/Contract No. 9198/90/Nl/SF. York Software Engineering Limited.

Lister 1990
A. Lister and A.Burns 1994 "An Architectural Framework for Timely and Reliable
Distributed Information Systems (TARDIS): Description and Case Study". YCS 140
[Internal Report]

38

