
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/234230354

A Case Study for HRT-UML

Article · January 2003

CITATION

1
READS

98

3 authors, including:

Some of the authors of this publication are also working on these related projects:

ForeVer View project

CONCERTO View project

S. Mazzini

INTECS

32 PUBLICATIONS 182 CITATIONS

SEE PROFILE

All content following this page was uploaded by S. Mazzini on 04 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/234230354_A_Case_Study_for_HRT-UML?enrichId=rgreq-36d83e8ce359b2f4bfe2cf31de3c6c06-XXX&enrichSource=Y292ZXJQYWdlOzIzNDIzMDM1NDtBUzoxMDQxNTk3MTgxNTAxNDVAMTQwMTg0NTAyMDIzMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/234230354_A_Case_Study_for_HRT-UML?enrichId=rgreq-36d83e8ce359b2f4bfe2cf31de3c6c06-XXX&enrichSource=Y292ZXJQYWdlOzIzNDIzMDM1NDtBUzoxMDQxNTk3MTgxNTAxNDVAMTQwMTg0NTAyMDIzMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/ForeVer?enrichId=rgreq-36d83e8ce359b2f4bfe2cf31de3c6c06-XXX&enrichSource=Y292ZXJQYWdlOzIzNDIzMDM1NDtBUzoxMDQxNTk3MTgxNTAxNDVAMTQwMTg0NTAyMDIzMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/CONCERTO?enrichId=rgreq-36d83e8ce359b2f4bfe2cf31de3c6c06-XXX&enrichSource=Y292ZXJQYWdlOzIzNDIzMDM1NDtBUzoxMDQxNTk3MTgxNTAxNDVAMTQwMTg0NTAyMDIzMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-36d83e8ce359b2f4bfe2cf31de3c6c06-XXX&enrichSource=Y292ZXJQYWdlOzIzNDIzMDM1NDtBUzoxMDQxNTk3MTgxNTAxNDVAMTQwMTg0NTAyMDIzMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/S_Mazzini?enrichId=rgreq-36d83e8ce359b2f4bfe2cf31de3c6c06-XXX&enrichSource=Y292ZXJQYWdlOzIzNDIzMDM1NDtBUzoxMDQxNTk3MTgxNTAxNDVAMTQwMTg0NTAyMDIzMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/S_Mazzini?enrichId=rgreq-36d83e8ce359b2f4bfe2cf31de3c6c06-XXX&enrichSource=Y292ZXJQYWdlOzIzNDIzMDM1NDtBUzoxMDQxNTk3MTgxNTAxNDVAMTQwMTg0NTAyMDIzMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/INTECS?enrichId=rgreq-36d83e8ce359b2f4bfe2cf31de3c6c06-XXX&enrichSource=Y292ZXJQYWdlOzIzNDIzMDM1NDtBUzoxMDQxNTk3MTgxNTAxNDVAMTQwMTg0NTAyMDIzMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/S_Mazzini?enrichId=rgreq-36d83e8ce359b2f4bfe2cf31de3c6c06-XXX&enrichSource=Y292ZXJQYWdlOzIzNDIzMDM1NDtBUzoxMDQxNTk3MTgxNTAxNDVAMTQwMTg0NTAyMDIzMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/S_Mazzini?enrichId=rgreq-36d83e8ce359b2f4bfe2cf31de3c6c06-XXX&enrichSource=Y292ZXJQYWdlOzIzNDIzMDM1NDtBUzoxMDQxNTk3MTgxNTAxNDVAMTQwMTg0NTAyMDIzMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Case Study for HRT-UML

Massimo D’Alessandro, Silvia Mazzini, Francesco Donati

Intecs HRT, Via L. Gereschi 32, I-56127 Pisa, Italy
Silvia.Mazzini@pisa.intecs.it

Abstract

The Hard-Real-Time Unified Modelling Language (HRT-UML) method replaces
HRT-HOOD with a customized version of UML: it incorporates all the advantages of the
HRT-HOOD method and improves the HRT-HOOD design concepts by converging to a
more powerful and expressive modelling notation, that is currently a de-facto standard.
This paper presents the principles of such a method and the related support toolset and
describes the results of a case study showing how the method can be a comprehensive
solution to the modelling of Hard Real Time systems.

1. Introduction
The experience shows that the design of Hard Real-Time systems needs methodologies
suitable for the modelling and analysis of aspects related to time, schedulability and
performance.

In the context of the European Aerospace community a reference methodology for design
is the Hierarchical Object Oriented Design (HOOD) and in particular its extension for the
modelling of hard real time systems, Hard Real Time-Hierarchical Object Oriented Design
(HRT-HOOD), recommended by the European Space Agency (ESA) for the development
of on-board systems.

The Unified Modelling Language (UML) is rapidly emerging as the standard
object-oriented modelling language. Unfortunately the UML support for developing
systems with strict timing requirements is currently poor. This is the motivation for the
development of the HRT-UML method.

The HRT-UML method defines an extension profile of Unified Modelling Language, which
permits the designer to express the concepts and techniques of the HRT-HOOD method in
standard UML. It combines the benefits of a mature, well-understood hard real time design
method and an internationally recognized object-oriented design notation.

2. HRT-UML Basics
HRT-UML is a method suitable for the development of Hard-Real-Time systems. It allows
the user to:

x� design the system taking into account functional requirements

x� design the system taking into account timing requirements

x� analyse the schedulability of the system

x� generate consistent Ada 95 code.

2.1 HRT-UML Object Types
HRT-UML objects types represent the different typical HRT behaviour: Passive, Active,
Protected, Cyclic, and Sporadic. They are defined as follows:

x� Passive - objects that have no control over when invocations of their operations are
executed, and do not spontaneously invoke operations in other objects.

x� Active - objects that may control when invocations of their operations are executed,
and may spontaneously invoke operations in other objects. Active objects are the
most general class of objects and have no restrictions placed on.

x� Protected - objects that may control when invocations of their operations are
executed, and do not spontaneously invoke operations in other objects; in general
protected objects may not have arbitrary synchronization constraints and must be
analysable for the blocking times they impose on their callers.

x� Cyclic - objects that represent periodic activities, they may spontaneously invoke
operations in other objects, but the only operations they have are requests which
demand immediate attention, usually to change the object’s execution mode.

x� Sporadic - objects that represent sporadic activities; sporadic objects may
spontaneously invoke operations in other objects; each sporadic has a single
operation which is called to invoke the sporadic, and one or more operations which
are requests which demand immediate attention, usually to change the object’s
execution mode.

The hard real-time component of a program will contain at the terminal level only cyclic,
sporadic, protected and passive objects. Because they cannot be fully analysed,
terminal active objects are only allowed to design background activities (running at lower
priority levels). Active object types, as well as any other object type, may also be used for
decomposition of the main system, but they have to be decomposed into cyclic, sporadic
or protected, as soon as possible, before reaching the terminal level.

Cyclic and sporadic activities are common in real-time systems; each contains a single
thread that is scheduled at run-time. Protected objects control access to data that is
shared by more than one thread (i.e. cyclic or sporadic object); in particular they provide
mutual exclusion. Protected objects are similar to monitors and conditional critical regions
in that they can block a caller if the conditions are not correct for it to continue.

2.2 HRT-UML Real-Time Attributes
HRT projects, objects and operations have associated real-time attributes. Some attributes
are concerned with mapping timing requirements onto the design (e.g. the deadline). Other
requirements have to be set before the schedulability analysis can be performed (e.g. the
worst case execution time). Other attributes are set after this analysis automatically (e.g.
the priority).

For each specified mode of operation, the cyclic and sporadic objects have a number of
temporal attributes defined:

x� The period of execution for each cyclic object

x� The minimum inter-arrival time for each sporadic object

x� Offset time for each cyclic object

x� Deadlines for all sporadic and cyclic activities.

In order to undertake schedulability analysis, the worst-case execution time for each
thread and all operations (in all objects) must be known. After the design activity these can
be estimated (taking into account the execution environment constraints) and appropriate

attributes assigned. The better the estimates the more accurate the schedulability
analysis. Good estimates come from component reuse or from arguments of comparison
(with existing components on other projects). During detailed design and coding, and
through the direct use of measurement during testing, better estimates will become
available which typically will require the schedulability analysis to be redone.

During the architecture design activity the designer commits to the run-time scheduling
approach, that is the pre-emptive static priority scheduling with priorities assigned using
deadline monotonic scheduling theory [Burns 95].

This requires other attributes to be supported: the priority for cyclic and sporadic objects,
the ceiling priority for protected objects that is assigned at least as high as the maximum
priority of the threads that use the operations defined on that object, and the Boolean
attribute schedulable. Values for these attributes are calculated as a result of the
schedulability analysis.

An UML extension profile, that we call HRT-UML, defines all the stereotypes, tagged
values and constraints, needed to support HRT-HOOD concepts in UML. The definition is
based on the notation defined for stereotype declarations in the OMG-UML [UMLSP 01].

2.3 HRT-UML Design Principles
The starting point for an HRT design is not the definition of classes but rather the set of
objects that compose the system and their interconnections. Therefore an HRT-UML
system is built directly defining objects and links instead of classes and relationships. This
means that the first thing an HRT developer has to deal with is the creation of objects in
the system space, without any concern to class issues. Classes of objects become an
interesting concern only when some reuse of objects is conceived.

Thus a HRT-UML project is composed of a set of interacting objects which are organized
in a structure according to several principles:

x� Structural Decomposition - objects may be decomposed into other objects, so that
the system can be represented as an include graph or parent-child hierarchy of
objects;

x� User-Provider Relations - objects may use services of other objects, so that the
system can be represented as a use graph or user-provider hierarchy of objects;

x� Object Nested Notation - a compact object notation that includes the operation
compartment to avoid users to use different diagrams (i.e. class diagrams) and an
optional compartment showing the object internals (i.e. the decomposition) to allow
users better understand the system topology;

x� Multiple Static Instances - objects may have the same structure and properties but
differ in their attribute initialisation values and have an independent state evolution.
The common structure and properties of such objects is factorised in the Underlying
Class Model, and an object model, the Prototype Instance, from which a new
instance may be cloned.

In the HRT-UML approach the class modelling, which is the constructive way to define the
system in classical OO methods, is considered as a background model which can be
largely derived from the object model in an automatic way.

The HRT-UML toolset allow users to build their system just dealing with objects,
automatically creating and maintaining the underlying class model for the purpose of UML
meta model integrity. This is done in a transparent way for the users.

When multiple static instances are needed, the class concept comes into picture: cloning
the prototype instance creates a new instance of a class. The new object may have
use relations with required objects in the system, represented as unbound placeholders.
They have to be bound (that is redirected) to some real object, which is visible in the
instantiation environment.

On the other hand, any object user relation may be made “unbound”, and show its
placeholder object, to be bound again to another provider object in the system. The target
object of the binding action must obviously be of the same class (interface in the future) of
the placeholder object.

3 The Case Study
The case study is based on the re-design of a Solid State Mass Memory (SSMM)
software. Intecs HRT has originally developed this module for ASI within the frame of the
MITA OBDH Enhanced project, to provide storage capabilities for the next small ASI
missions.

The SSMM software is in charge of managing the SSMM data storage by writing store
pages (SPs) that are based on the type, subtype and application process ID. It provides
also support for the transmission to ground of data pages, through a dedicate channel, and
functionalities for the SSMM self test.

3.1 High Level Decomposition
The design consists of three active non-terminal objects (ssmmStorage,
ssmmCommandManager and ssmmTxManager), a cyclic terminal object (ssmmHk) and
two protected terminal (ssmmBoard and ssmmGlobalData).

As introduction to the HRT object notation, note the following:

x� suitable stereotypes are used to show HRT nature of objects, they are indicated on
the upper left of the object name compartment: A for Active, Pr for Protected, C for
Cyclic, etc.

x� an operation compartment is added to the objects in order to directly expose the list
of operations provided by the object (they correspond to public operations in the
underlying class model).

x� links indicate use relations: continuous lines indicate direct use relations, while
dashed lines indicate intentional use relations, from a non-terminal to a target object,
that have to be further satisfied by a direct structural use from a child to the same
target.

x� in case the UML nested notation is not used for non terminal objects, the
{non-terminal} adornment is shown instead in the object name compartment, and
their background is grey, instead of white.

Figure 1 - Hierarchical First Level Decomposition of the SSMM

3.2 ssmmGlobalData
The ssmmGlobalData object is in charge of managing the global status data for the whole
SSMM. It exports some simple functions to read and write data assuring mutual exclusion
among the different requests. It is redesigned as an HRT-UML protected resource.

This protected resource contains three different structured data: “ssmmStatusData”,
“storeMap”, “spStorageRules”; whose types are defined as global UML Type classes and
instantiated inside the Global Data protected resource, as private attributes.

Note that the HRT-UML does not provide public attributes neither in the notation neither in
the model. This leads to a more compact and sounder design, where all the public
services are operations while data is encapsulated within HRT objects (usually protected
objects).

3.3 ssmmTxManager

Figure 2 - ssmmTxManager

The ssmmTxManager component manages the transmission requests from ground as
sporadic events. The transmission related TCs may either enable the dumping of one (or
more) whole store(s) or request the transmission of a set of pages.

The component is decomposed in three objects: a protected resource
(“ssmmTxManagerProt”) and two sporadic tasks (“signalDumpManager” and
“cmdReadPageManager”). The protected one receives requests through his interface’s
methods (“Signal_Dump”, “ReadPage”). Each method calls the associated sporadic task,
“signalDumpManager” for the method “Signal_Dump” and “cmdReadPageManager” for the
“ReadPage” method.

3.4 ssmmStorage
The ssmmStorage component is in charge of performing the SPs storing in SSMM.
Different source packets in type, subtype and application process identifier are written in
different stores with a prioritised order on the basis of SPs routing rules.

In the HRT-UML solution active tasks are designed as sporadic, while queues are still
protected resources.

Figure 3 - ssmmStorage

Actions sequence:

x� When calling the SSMM_PutSourcePacketToStore method, stores are put in the
entry queue (ssmmSpQueue) and the sporadic task StoreSpRouter is also activated.

x� the sporadic task StoreSpRouter when activated does the following:

- takes a store from the queue through a call with timeout

- chooses the destination queue (store1Queue or store2Queue), moves the store
and activates the sporadic task associated to the queue.

Figure 4 - SSMM_Storage collaboration scenario

ssmmStore1 and ssmmStore2 work in the same way moving the stores from their entry
queue, store1Queue and store2Queue respectively, to the SSMM_BOARD.

Note how the HRT dimension has deep impact on the architectural choice and how
HRT-UML suitably support both the reasoning about the problem and the expression of
the chosen solution.

3.5 ssmmHk
This module is designed as a cyclic task. It is in charge of acquiring the SSMM board
housekeeping data at a fixed frequency (1 Hz) and of providing the overall housekeeping
data to the OBDH).

It allows the execution of housekeeping data collection also during self test or init. It has
the maximum priority among the ones reserved for SSMM SW.

3.6 ssmmCommandManager
This module is the main interface for OBDH commands. It provides functionalities for
SSMM initialisation, stores clearing, and self-test. It also manages some telecommands to
modify the status of stores and pages. It is decomposed in a protected task, which
receives command requests from the external environment (“ssmmCommand
ManagerProt”), and four sporadic tasks that are in charge of executing complex
commands.

Figure 5 - ssmmCommandManager

3.7 ssmmBoard
This module is in charge of managing the SSMM physical board. It provides functions for
writing, reading and controlling the board. It’s modelled as a protected resource. It
provides public function for writing, reading and controlling the board.

4 Performing Schedulability Analysis

4.1 Defining the HRT Attributes Values
In the following we describe the criteria we have applied to define such values:

x� All worst-case execution times (WCETs) have been calculated using the
computational times of the real implementation of the SSMM system in C language,
on the Virtuoso Operating System.

x� Sporadic object’s minimum arrival times (M.A.T.) have been calculated, based on
system assumptions.

x� The period of the “ssmmHk” cyclic and deadlines for cyclic tasks have been derived
from the system requirements.

4.2 Schedulability Analysis Results
All the tasks are schedulable. Below is a table summarizing the results.

Task Name Type Wcet
(ms)

Deadline
(ms)

Period or
M.A.T.
(ms)

Priority Blocking
(ms)

Utilization
(%)

Response
(ms)

SsmmHk Cyclic 0.01208 30.0 1000.0 1 0.00412 1.2080E-3 0.0162

InitSsmmHandler Sporadic 0.02 40.0 8.61E7 2 0.00412 2.3228E-8 0.0362

ClearSsmmStoreHandler Sporadic 7.6908 41.0 8.62E7 3 0.00412 8.9220E-6 7.727

Set&SwitchHandler Sporadic 3.84792 42.0 8.63E7 4 0.00412 4.4587E-6 11.57492

StoreSpRouter Sporadic 4.10944 45..0 50.0 5 0.016 8.2188 15.69624

SsmmStore1 Sporadic 13.97216 50.0 50.0 6 0.016 27.94432 29.6684

SsmmStore2 Sporadic 13.97216 60.0 50.0 7 0.00412 27.94432 43.628679

CmdReadPageManager Sporadic 0.0308 210937.0 210937.0 8 0.00412 1.4601E-6 43.65948

SignalDumpManager Sporadic 102500 8640000.0 8640000.0 9 0.00412 1.1863425 285638.21

SsmmSelfTestHandler Sporadic 3.00E6 8.64E7 8.64E7 10 0.0 34.722222 8929794.0

Relevant properties derived from the schedulability analysis are presented in the
”Utilization Based Analysis” chart (Figure 6), showing the utilization percentages for each
task.

Figure 6 - Utilization based analysis

The system’s total utilization is 68.65 %. The greatest part of the computational time is
assigned to the “SsmmStorage”, which consists of three tasks: storeSpRouter,
ssmmStore1 and ssmmStore2. These sporadic tasks only use 63,97 % of the
computational time.

On this basis, we activated the analysis tool several times, with different values for the
packet minimum arrival time. The chart in figure 7 describes the results calculated by the
analysis tool and shows that the total utilization percentage This value strictly depends on
the packet minimum arrival time and rapidly decreases, when increasing the latter.

This demonstrate how schedulability analysis results can be used to perform “what if”
analysis for the HRT requirements and attributes, possibly contributing to tune system
requirements (e. g. increasing the M.A.T.) or raising the need for code optimisation (e. g.
to reduce some WCET).

0

10

20

30

40

50

60

70

80

50 100 200 400

Packet M.A.T. (ms)

T
o

ta
l
U

ti
li
z
a

ti
o

n
 (

%
)

Figure 7 - Total Utilization depending on M.A.T.

5 Evaluation Results
The design of the SSMM software has confirmed the suitability of both the HRT-UML
method and the HRT-UML toolset.

5.1 Tasks Identification
The main difference between the SSMM software original UML design and the HRT-UML
design is the larger number of tasks in the HRT-UML solution. In fact the original design
contains only 6 tasks, while in the HRT-UML model we have 10 among cyclic and sporadic
objects, plus a number of 9 protected objects.

This difference is mainly due to the reason that the HRT-UML computational model
imposes to split up functionalities among collaborations of the typical HRT tasks,
predefined in such a way that their timing behaviour can be predictable.

5.2 Methodological issues
UML is a general language for describing software and also non-software systems, it is not
tied to a specific computational model, nor to code generation rules for a specific
language, therefore allowing a large flexibility, that can be expressed through many views
and different kind of diagrams.

On the other hand it lacks of a specific methodology so that the designer can get
bewildered, trying to find the right model elements to use and to formalize its design
choices. The case study has proved the following drawbacks:

x� Most of the classes are actually singletons and could be more easily considered as
simple objects. The designer has to define the meaning of any class diagram, by
indicating first level software components, decompositions and associations as use
relations. This has confirmed for the SSMM software the need of a topological and
de-compositional design approach, instead of a logical classification of software
base elements, in the classical bottom-up object-oriented approach. Hierarchical
decomposition is addressed by OMG in future UML version 2.0.

x� In the original UML design the dynamic behaviour of the SSMM software
components is not described, but tasks are identified with textual descriptions
separately, and the help of sequence diagrams to describe some scenarios of their
collaborations.

x� In the UML solution non functional HRT issues are not described. HRT-UML instead
offers the designer building blocks already specialized with respect to the real-time
behaviour and attributes, so that the designer can early reason about concurrency
choices and verify them through system schedulability analysis.

The case study confirms that the main advantage of HRT-UML is its methodological
approach to the modelling of HRT systems as a top down decomposition of interacting
objects with HRT attributes and following a defined HRT computational model (HRT object
types).

5.3 Feedbacks to the SSMM Real Project
No change seems necessary to the original solution, as a result from our re-design activity,
according to the software functional requirements. Based on the HRT estimated attribute
values, the schedulability analysis was positive.

The major feedback for the SSMM project team comes from the charts built with the
support of the analysis tools. Figure 6 describes the utilization analysis results and shows
an high value of CPU utilization percentage (68.65%), were most of the time is spent by
the SsmmStorage sub-system components, even if SsmmStorage has been implemented
accurately, using the most effective solutions. On the other hand figure 7 shows that by
increasing the packet minimum arrival time the total utilization percentage decreases
rapidly.

The SSMM software is only a part of the software running on the OBDH board and the
system RT requirements were not verified at the time the case study was performed.
However the analysis results, raised in context of this case study, are an important input
for the project: in case the whole software on the OBDH board would be not schedulable
at the end, the study has showed how is possible to tune the system. For example specific
requirements could be added in order to limit the packet minimum arrival time, by realizing

control mechanisms and the handling of the specific case of the arrival of packets too
frequent (e.g. lost of packets).

This demonstrates how the adoption of the HRT-UML method, which only requires a
smooth transition effort from pure UML, allows the team to acquire a strict control on the
timing behaviour of the system. Schedulability constraints are mathematically analysable
with results that are unreachable with intuitive or experience-based evaluations.

6 References

[Burns 95] Burns A., Wellings A., HRT-HOOD: A Structured Design Method for
Hard Real-Time Ada. Systems, Elsevier, 1995.

[D’Alessandro 02] D’Alessandro M., Mazzini S., Di Natale M., Lipari G., HRT-UML: a
Design Method for Hard Real-Time Systems based on the UML
Notation, Proceedings of DASIA Conference, 2002.

[Gamma 99] E. Gamma, R. Helm, R. Johnson, and J. Vlissideds [Gang of Four],
“Design Patterns: elements of Reusable Object-Oriented Software”,
Addison-Wesley, 1999.

[HRM 92] HOOD Users’s Group, HOOD Reference Manual, Release 3.1.1, 1992

[Mazzini 02] Mazzini S., D’Alessandro M., Di Natale M., Domenici A., Lipari G.,
Vardanega T., HRT-UML: taking HRT-HOOD into UML, Proceedings
of Ada Europe Conference, 2003.

[UMLSP 01] OMG Unified Modelling Language Specification, Version 1.4,
September 200

View publication statsView publication stats

https://www.researchgate.net/publication/234230354

