The Olympus Attitude and Orbital Control Systemt

A Case Study in Hard Real-time System Design and
I mplementation

A. Burnsand A.J. Wellings

Real-time and Distributed Systems Research Group,
Department of Computer Science, University of York, UK

C.M. Bailey and E. Fyfe

British Aerospace Space Systems L td,
Communication Satellites Division, Stevenage, UK

ABSTRACT

This paper describes the details of, and the experiences gained from, a case study
undertaken by the authors on the design and re-implementation of the Olympus
Satellite’s Attitude and Orbital Control Systems (AOCS). The god of the study was to
demonstrate that real-time systems can be implemented using Ada and its tasking facili-
ties. The system was designed using HRT-HOOD, analysed using Deadline Monotonic
Scheduling Analysis, and implemented on a M68020-based system using a modified
York compiler and run-time support system (the modifications are compatible with
those proposed for Ada 9X). Our results indicate that systems can be designed to have
the flexibility given by multi-tasking solutions, and yet till obtain the same levels of
guarantees as those given by cyclic executives.

1. Introduction

Although Ada 83 has made some inroads into the real-time embedded computer systems market, often
these systems are programmed in sequential Ada using cyclic executives. Over the last decade much
research has been undertaken on the use of process-based systems using preemptive priority scheduling.
Techniques such as Rate Monotonic!® and Deadline Monotonicl’ schedulability analysis are now gaining
favour; furthermore the real-time limitations of Ada 83 are well understood?2: 8.9 and extensive changes
have been made in Ada 9X to make the language more responsive to the needs of the real-time
community.16

This paper describes the details of, and the experiences gained from, a case study undertaken by the
authors on the design and re-implementation of the Olympus Satellite’s Attitude and Orbital Control
Systems (AOCS). The goa of the study’ was to demonstrate that real-time systems can be implemented
using Ada and its tasking facilities (see Locke 19 for a discussion on the advantages of process-based
scheduling over cyclic executive). The paper is structured as follows:

e Anoverview of the system, giving the functional and non-functional requirements.
e Thedesign of the system using the HRT-HOOD design method.13 12,10

e Theimplementation of the design in Ada 83 running on top of an augmented stand-alone Ada run-
time support system kernel. The kernel has been augmented by those facilities which will be
availablein Ada9xX.

e A discussion on the problems encountered and how they were solved.

T Thework has been supported by the European Space Agency (ESTEC Contract 9198/90/NL/SF).

2. TheModelled System: The Olympus AOCS

The Olympus satellite was launched in July 1989 as the world's largest and most powerful civil three-
axis-stabilised communications satellite. Situated at longitude 19 degrees West, Olympus provides direct
broadcast TV and’distance learning’ experiments to Italy and Northern Europe.

The AOCS subsystem exists to acquire and maintain the desired spacecraft position and orientation.
The AOCS software may operate in six modes of operation, of these the Norma Mode is the most
complex and is used for the greatest percentage of the satellites lifetime. It is this mode that the study has
elected to model.

Hardwar e Architecture

As depicted in Figure 1, the Normal Mode software is embedded in the Spacecraft Microcomputer
Module (SMM) and communicates with the following devices over a serial databus

e A Telemetry & Telecommand Subsystem (TMTC),
e AnlInfraRed Earth Sensor (IRES),

e A Digital Sun Sensor (DSS),

e A Rate Gyro Sensor (RGS),

e Four reaction wheels (RWs),

e Thrusters.

TMTC SMM

< >

§ ¢ & & ¢

DSS IRES RGS RWs Thrusters

Figure 1. The AOCS Hardware Architecture

Thereis a cold-standby SMM which is powered up should afailure be detected. In this case study we are
interested in real-time aspects of the system, and therefore we shall assume the system’s hardware and
software isreliable.

Serial bus messages are placed on the bus according to the priority of the transmitting device. Gyros
have the highest priority, followed by the TMTC and the SMMs. The bus has time dots reserved for
replies, ensuring that SMM requests for sensor data receive responses within a 960 pstime slot. Thereis
a 10ms real-time clock.

Softwar e Requirements

The object of ‘Normal Mode’ attitude control is to maintain the satellite’s orientation to Earth. Thisisto
be achieved by a 200 ms cyclic task that forces IRES roll and pitch angles and a rate-gyro derived yaw
angle to zero by controlling the speed of four reaction wheels.

For two spells per day of 15 minutes, a one second period task calibrates the gyro drift rate by

comparing the yaw estimate, derived from an integration of gyro rate, against the sun and earth positions.
The gyro angle and gyro drift rate are corrected at the end of each spell. The gyro data is received
approximately every 100ms (without being requested).

In addition to the regular activities identified above, further attitude control functions occur at less

frequent or irregular intervals.

Momentum dumping is triggered when the speed of any reaction wheel exceeds a preset threshold.
This congists of a reduction in the reaction wheel speed in a series of steps, while compensating
bursts of thruster firings prevent the loss of Earth-pointing. Dumping on the three axes operates
independently.

The Telemetry and Telecommand Subsystem (TMTC) routinely requests status information from the
AOCS software. This task, which has a minimum period of 62.5 ms, keeps the ground informed of
the spacecraft state. The SMM is unable to respond to a telemetry request in the same bus time dlot,
S0 it transmits aresponse in alater time slot.

A telecommand function allows ground to enable or disable control, to enable or disable dumping, to
trigger gyro calibration, or to set areaction wheel failed or operational. Telecommands can occur at a
minimum interval of 190 ms.

For afull description of the Requirements see Bailey.5

The application selected contains many typical features of embedded rea-time space software,?

namely:

Cyclic tasks,

Sporadic tasks,

Hard real-time tasks, Soft real-time tasks,
Background tasks,

Communication over abus.

Currently, the operational software is coded in 9989 assembler and scheduled by a cyclic scheduler.

3. Software Design

We represent the redesign of the AOCS using HRT-HOOD.1312 HRT-Hood is a new design
methodology that builds on the foundations of HOOD.2 It combines object oriented design and
hierarchica decomposition with explicit abstractions which support common hard rea-time design
paradigms. HRT-HOOD recognises the following object types:

passive — similar to thosein HOOD

active — similar to those in HOOD

cyclic — objects which represent periodic activities

sporadic — objects which represent aperiodic, or sporadic, activities
protected — objects which control access to resources

class— similar to those in HOOD

op_control — similar to those in HOOD

environment — similar to thosein HOOD

Objects are described by their operations, their threads of control, their synchronisation with other objects,
and their real-time attributes. For a full description of HRT-HOOD, the reader is referred to the
literature. 13, 12

DSS RW

DSS reading
Required wheel torque

Control Whedl speed readings
IRES
Thruster command
RGS Gyro readings Thrusters

Figure 2: Relationship between External Devices and the Control System

3.1. Relationship between External Devices and the Control System
Figure 2 shows the context in which the control software isto be designed.

It should be noted that all sensor readings and actuator commands are communicated over a serial
bus.

3.2. First Level Decomposition

Figure 3 shows the first level decomposition of the software. The software is basically constructed from
three subsystems:. the CONTROLLER, an active object, which implements the main AOCS software
(monitoring sensors, initiating actuators, and implementing the control laws), the interface to the
Telemetry and Telecommand Subsystem (which is shown for convenience as two objects. a terminal
sporadic object to implements the incoming commands, and an active object which is responsible for
sending status reading to ground), and a bus controller subsystems (which again for convenience is shown
as two objects. an active object for handling incoming messages, and a terminal protected objects for
placing datain the hardware FIFO buffer for output onto the network). The diagram also shows the real-
time attributes of the terminal objects which have been added.

3.3. The CONTROLLER Object
The decomposition of the controller object is shown in Figure 4. It consists of:

e several protected objects — which are used to control access to data which is shared between the
activities of the system; in particular the SERIAL BUS IP protected object is used to encapsulate the
datareceived from the bus (viathe RECEIVE FROM BUS object),

e the"CONTROL_LAW" termina cyclic object — which implements the basic control laws, and is
therefore responsible for maintaining the Satellites Earth point.

e the"SENSOR" active object — — which monitors the satellites sensors and provide information for
the CONTROL_LAW object,

e the"ACTUATORS' active object — which controls access to the actuators.

CONTROL SOFTWARE

(Al RECEIVE FROM BUS) 500 (A| CONTROLLER (Pa] CONVERSION

al
CSa0000 = »| csio0 CST00

IN_Raw_Data i is ohi

s Cdibrate Gyro(Mode) The operations of this object
O_} 5| LEytoMod) perform unchecked conversions

Process Gyro_rate(rate) for the interpretation of serial
- bus messages.

Set_Control(Inhibited/Enabl :

 Contoibted Enebec) Itisshown here at the top level
Set_Dump(Inhibited/Enabled) but isalso used at lower levels,
et Wines (A faledok) athough thisis not shown.

Set_Orhit_Angle(angle) CTRL_messages

i Write Message(Message) O\A

(Pr] SERIALBUSOP)

IN_TM_Request \ J
CS50000

Gyro CTRL_State
aes (ﬂ'c_to_Controlle(Y Send_Bus_Message(Msg)

22

(A TELEMETRY
CS40000

Store_Gyro_drift_TM(drift)

TM_Response
Y Echo_Telecommand(TC) ahas

(S‘ TEL ECOM MANDS Z Write_Error(Error)
€S20000 4 o

(Pal S_UNITS
CS60000

5 Handler(message)
ASER Store Wheel_TM(Intxyz, wheel_status)
> Process TC_Word(Message) o

Store_Gyro_cdlibration_TM(dss_yaw, SP) This object d_eﬂ nestypes &
Store IRES_TM(X, y, EP) maths operations used by

Min Interval 187 ms > every other object. Itis
W | O\ic_Echo Clear_Last_Error_Message shown here at the top leve,

| Sore bum i butisimplicitinall lower
> Dump_TM(Now_dumping, :
O\ zero_dumping, dump_warning) !ﬁ\ﬁl giltagrams All callsare
Error_Message :

> Store_Gyro_speed_TM(gyro, speed) Y,
CIearfLastﬁErrorﬁMweo\ &S| Store Gyro_TM(rate, angle)

b

CE_DISK_92_044:CS00000
Last Modified: 08/Aug/92

Figure 3: The Control Software

ASER
=
ASER

ASER

ASER

CONTROLLER

A

CONTROLLER

(Pr] EQuiPVENT STATUS)

ASER

=

_ = CS14000
Set Wheel(Axis, status) | _ _ _ _ _ _ _ _ :?) oL Wi A 18]
Set_Dump(inhibited/ >
odbledy =020 - - ——- - - - — PSE?) Set_Dump(inhibited/ enabled)

. WCET Time 0.13mg
Set_Control(inhibitedd | _ _ _ _ _ _ _ | s Contolinitite enbied) |Cei|in Plriorit 11
enabled) PR |

F | Read_Wheels Status
I (Pr| inmaLsaion) =
3 | Read Dump_Status
pser | CS15000 PSR
Start_Cyclics L —K St Cydics | Read Conol_Stus
PSER | Read Start_Time(T)
id \ A Control
WCET Time__0:63ms|[— A& ot salus
Ceiling Priorit 21 status
Whee!
(Al seNsors C| CONTROLLAW) ?staus
Process_Gyro_rate(rate) %ER CS11000
— —)»|Process Gyro_rate(rate)
ASER
Set_Orhit_Angle(angle) — E) Sa_Ortit_Angle(angle)
DU
. F | caiee gropin san
Calibrate_ Gyro(Mode) — — Y| Calibrate_gyro(Mode)
HSER
d) 0 A | TELEMETRY
NRM
Sensor g RW ? demands Senor TM
raw raw
data data (Y O]
(FTSRALBUSIPY \O—> (AL AcTuarors S
per | CS16000 < CS13000 ™
Write Message(Msg) | _ﬁ Wi e) ASR (I?’glrrl%]dTorque
PSR Read_Message(Source, data) id
WCET Time 0.58ms
Ceiling Priority 24
Sensor RW data
data request f) Actuator CE_DISK_92 44:CS10000
request commands

Last Modified: 8/0ct/92

Pr| SERIAL BUSO/P

Figure 4: The CONTR:

OLLER Object

Further decomposition of the SENSOR object is shown in Figures 5 to 9.

CONTROLLER.SENSORS

Pr SERIAL BUSO/P

DSS
data
request

TELEMETRY

IRES IRES
I
(T ATTUDE) oAl RS
oS11400 <0 CSt1100 .
g Write_ Gyro_Angle(angle)
PSER | Write IRES Angles(angles)
g Read_attitude(— Z%)Read_amude(mnude)
BItItUde) g Read_orhit_angle d IRES
ASER Set_orbit_ang|e(L &y Set_orbit_angle(angle) ™
= | agle) e E— C&
WCET Time 052 A/ \ J
Celling Priority 16 ||
— IRES
angles Y\O Start
Time
Gyro Orhit
;(nwlve angle GyroT™
0
O/Y
(A] YAWGYRO \/ Start
§ <« Time
ASER | Cdlibrate Gyro 5 CSLLA0
= (Mode) — — P Caibrae(Mode) //
ASER
ASER |Process Gyro_ >
=5 |Rate(Rate) — ¥ Pomadie) (A A
L 7 »| cs11300 p
C g Start
aDnzlse Read DSS angle Time
k.
IRES
raw DSS
data raw
data

Pr

SERIAL BUSI/P

Figure 5: The SENSOR Object

INITIALISATION

CE_DISK_92 44: CS11000
Date last Modified: 08/0ct/92

CONTROLLER.SENSORS.IRES

/CT REQUESTTRESDATA)

CS11110 Pr SERIAL BUSO/IP

Pr INITIALISATION

(C| PROCESSIRESDATA
CS11120

A TELEMETRY

Pr ATTITUDE

\ 7
\ O\A Pr SERIAL BUSI/P

(Pa | IRES ROLL_2ND_ORDER) (Pa | IRES PITCH_2ND_ORDER)
CS11130 CS11140

filter(error) (Instantiation of filter(error) (Intantiation of

Classobject reset Class object
second_order_filter) second_order_filter)

\ \

reset

CE_DISK_92 44: CS11100
Last modified: 8/0ct/92

Figure 6: The IRES Object

The IRES sensor controller consists of two precedent constrained cyclic objects with a time offset
between the two implementing the required synchronisation. The first object, REQUEST IRES DATA,
sends a request to the IRES (via the serial bus). The second object will receive and interpret the sensor
values. The relative time offset between the task releases and the deadline of the first object ensures that
the sensor device has a chance to respond (at least 30 ms).

CONTROLLER.SENSORSYAW_GYRO

Statt INITIALISATION
<0 time il
(C| CALIBRATEGYRO DSS
CS11220 1 0 g#gsmce <0 agle
’I’ A DSS
Orbitangle |RrEs angled
“0 <0
DSS Pr ATTITUDE
angle Sun Gyro yaw 4
O\ presace angle’ (7
O\ IRES angles
fS\ READ YAW GYRO) Gyro drift
CS11210 estimate
Process Rate(Rate) - — — — — + — — — — Start(Rate) A TELEMETRY
0> <core O
(Pr| GYROSTATE 4l <Uncorrected>
Gyro Yaw angle

CS11230

Calibrate(Mode) | Start_Cdlibration(Mode) O/<Uncorrected>
Gyro Yaw angle
Gyro Yaw angle

Calibrate(DSS, Yaw, drift).

Integrate_gyro(gyro_rate,
IRES roll, uncorrected_angle,

id corrected_angle, corrected rate). <Corrected>

Gyrorate

CE_DISK_92_044: CS11200
Celling Priority 13

Last Modified: 28/5ep/92

Figure 7: The YAW GY RO Object

The gyro processing consists of cyclic object which calibrates the gyros every second. The sporadic
object, READ YAW GYRO, processes the incoming data from the sensors. Note that this object is a
sporadic even though the data comes in regularly. This is because the sensor has a different clock and
there may be somejitter on the received data.

CONTROLLER.SENSORS.DSS

A

DSS

HSER| Read DSS angle(

= | angle, SP)

DSSdata
request

7 |Read(angle, SP)
>

(Pr| DSSANGLE)

CS11330

3 |Write

e onm] N T0
Caling Priority 7 \
A0

DSSangle

presence

(C REQUEST DSSDATA \

CS11310

Period 200 ms
0

[Offel__T50ms |
(WCET _T23ms |

Start g
time

\/

Pr SERIAL BUSO/P

Pr

INITIALISATION

(C| PROCESSDSSDATA)

CS11320

Q{Error ? Error

Y

A TELEMETRY

Figure 8: The DSS Object

DSS
raw
data
Pr SERIAL BUSI/P

CE DISK 92 44: CS11300
Last modified: 08/Oct/92

The digital sun sensor, again, consists of two cyclic objects with a relative offset between them. The
deadline of 20ms on the REQUEST DATA object ensures that there are 30 ms available for delivery of
the message and for the sensor to respond.

CONTROLLER. CONTROL_LAW

CONTROL LAW

(Pa| ROLL2ND ORDER)

CS12200
filter(error) (Intantiation of

classobject
resd second order filter)

K Control

status
(C| conTROL <0 Pr| EQUIPMENT STATUS

CS12100

Pr INITIALISATION

(Pa| PITCH 2ND_ORDER)
CS12300 Attitude

filter(error) (Instantiation of ¢ O
reset classobject SENSORS
second_order_filter) ET 9 A

(Pa ‘ YAW_2ND_ORDER \ A ACTUATORS
CS12400 Error
filter(error) (Instantiation of O\A
classobject
reset second_order_filter)
A TELEMETRY
(Pa| ROLL_IST ORDER) (Pa| YAWIST ORDER)
CS12500 CS12600
filter(error) (Instantiation of filter(error) (Instantiation of
class object classobject
reset first_order filter) reset first_order filter)
K \ CE_DISK_92_44: CS12000

Last Modified: 08/Oct/92

Figure 9: The CONTROL LAW Object

The CONTROL LAW Object consists of a 200 ms cyclic object which implements the basic control laws
for the satellite by monitoring the sensors and sending commands to the actuators.

CONTROLLER. ACTUATORS

Whed Dumping
status status
(A] REACTION WHEELS \ «O <0
CS13100 Pr EQUIPMENT STATUS
ASER Demand Torqu
— | Demand Torque(- — — — — — = > Gt R speets
Transmit command 4_O
Pr SERIAL BUSI/P
ASR | o > |Rest
= S O\L Dumping
Sate

A TELEMETRY

Pr INITIALISATION

Y

(A THRUSTERS O\
CS13200 RW

Commands

3 | Demand Bum Pr SERIAL BUSO/P

Transmit command

WCET Time 0.78 m: Thruster

Celling Priority 21 commands

CE_DISK 92 044:CS13000
Last modified: 02/October/92

Figure 10: The ACTUATORS Object

The ACTUATOR object encapsulates the reaction wheels and the thruster actuators. The decomposition
of the REACTION WHEEL S object is shown in Figures 11 to 13.

CONTROLLER. ACTUATORS. REACTION_WHEELS

REACTION WHEELS

ASER | Demand Torque

ASER Ti tC d
Z ransmit Comman

(A| WHEEL DEMAND)
CS13120 —

ASER
— — —| Demand Torque)
ASER ~

x
L)i Rest y
\ J

Whed
commands

\

(Pr| WHEEL COMMAND

CS13130
PSER
> (Write

PSER

Tranamit
. _ 5 WCETTlme 076m

(

J

Figure 11: The REACTION WHEELS Object

«0 <0
<—O
RW speeds
Ow

RW Integrator state O\;

Dumping sate

Thruster

demand O\

(C | REQUEST WHEEL SPEEDS

Whed satus Dumping status

Pr | EQUIPMENT STATUS

Pr| SERIALBUSI/P

A TELEMETRY

Pr THRUSTERS

CS13110

Pr| INITIALISATION

SERIAL BUSO/P

CE_DISK_92 44:CS13100
Last Mociified: 08/0ct/92

The REACTION WHEELS object controls the operation of the reaction wheels. Although we consider
the whedls to be actuators, they also provide readings giving their current speed. The cyclic object
REQUEST WHEEL SPEEDS requests those speeds every 200 ms. The values returned from the deviceis
held in the SERIAL BUS I/P Object.

The WHEEL COMMAND object smply constructs the command for forwarding onto the SERIAL

BUS1/O object for transmission across the network.

CONTROLLER. ACTUATORS. REACTION_WHEELS. WHEEL_DEMAND

WHEEL DEMAND

(Pr|PROCESS DEMAND \ Whed
= commands O_>
CSl3121 Pr | WHEEL COMMAND
————————— ') D d 1
ASER | Demand Torque o | Torque | |[WoET T2
= (Pa] WHEEL_INTEGRATORY 3 Cellng Pty 91N «O rw Pr| SERIALBUSI/P
ASER CS13123 (Ingtantiation of ¢ ! pects
Reset filt ;
= - g
) ITn,\tAegrator
Oy TELEMETRY

Wheel
speeds

Wheel
datus

Combined Fead
whedl forwards

speeds ?
Dump J

Pr | EQUIPMENT STATUS

™
Y

(AT DUMPING ‘
Cs13122 120 Dumhing
pser | dump(wheel_speeds, combined_speeds,
3 | whed_satus, feed forward) _ b Pr THRUSTERS
Thruster
k _J demand

CE_DISK_92 44: CS13120
Last Modified: 08/0Oct/92

Figure 12: The WHEEL DEMAND Object

The WHEEL DEMAND object provides the functionality for driving the actuator. It consists of two
protected object which either issue commands to the wheels or instructs the thrustersto fire.

CONTROLLER. ACTUATORS. REACTION_WHEELS. WHEEL_DEMAND. DUMPING

DUMPING
(Pr| CONTROL DUMPINGY
CS13122.1
> ump(wi combin
PSER | dump(whesl_speeds o S
= | combined_speeds,
whed staus, WeET Te 5|

EQUIPMENT STATUS

TELEMETRY

feed forward) Callng Priorly 10|

g Feed forwards

gThruster demand
Axis?
Zero

dumping
Substituted
speed

Y

\OFeed forwards
%Thruster demand

: '\4 Now
Axis dumping
Directiglk(

Thruster
demand

THRUSTERS

(Pal ZERO DUMPING '\

(P4 MOMENTUM DUMPING)

CS13122.3

CS13122.2

trigger(axis)
dump(axis, thruster_demand, feedforward,
now_dumping)

zero_crossing_update(axis,substituted_speed)
A

trigger (axis, direction)
dump(axis)

\

Figure 13: The DUMPING Object

CE_DISK_92 44: CS13122
Last Modified: 8/0ct/92

3.4. RECEIVE FROM BUS Object

The RECEIVE FROM BUS object handles the input data arriving on the serial bus. A sporadic object

responds to the bus interrupt and places the data into a buffer. A cyclic objects then retrieves the data and
passes it on to the appropriate receiving object.

RECEIVE_FROM_BUS

RECEIVE FROM BUS

(S| BUSINTERRUPT)
CS31000

sy | Interrupt Code

Z
Min Interval 0.96 mg
WCET 0.18mg

Deadine 0,631 (Pr[BUS IP FIFO)
Pnonﬂ 63

CS32000

Push(msy)

Pop(msg)

-

WCET Time 0.06 m:
Ceiling Priori 63

(C READ BUS IP
CS33000

Period 10ms
Offset 0ms
WCET 1/oms
Deadline 10ms

Priority 3

Telecommand

Gyro block %
receved IN % Accept TC

CE_DISK_92_044: CS30000
Last modified: 7/Jan/93

A | CONTROLLER S | TELECOMMANDS A | TELEMETRY

Figure 14: RECEIVE FROM BUS Object

3.5. TELEMETRY Object

TELEMETRY.

N

ASER

N

TELEMETRY

Pr SERIAL BUSO/P

Figure 15: TELEMETRY Object

Store_Dump_TM(Now_dumping, zero_dumping, (Pr| T™ DATA STORE \
dump_warning) . CSA1000
R
_____________ 3% | Store_ Dump_TM(Now_dumping,
Siore_IRES TM(x,y, EF) T St g v
Store gyro TM(rate,angl = - — — — — — — — — — — — — :R—P Store_IRES TM(x, , EP)
_____________ ¥
Store_gyro_calibration TM(yaw_angle, SP) ez | S0 90 THI(1te g
————————————— x—? Store_gyro_cdlibration_TM(yaw_angle, SP)
Store_wheel_TM(Integrated, wheel_status) PSR
_____________ g—> Store whesl_TM(ntegrated, wheel_staius)
Sore gyro_dift TM(drift) L - _ _ _ _ _ _ _ _ _ _ :R—b Store_gyro_arift_TM(drift)
Store_gyro_speed(yaw_gyro, speed) - — — — — — — — — — — — — x" Store_gyro_speed(yaw_gyro, speed)
I (Pr] ECHO OR ERROR Echo_or_ Er O
) PSER C$43000
Write_Error(Error) | ;%, E— —— —
L = Caling Priority 24
Clear_Last_Error_Message Ed g Clear_Las|_Error_Message T g
— 3% Y| Wiite_TC(TC)
Echo_Telecommand(TC) Read(msg_block)
N\ * Get 15t sdf word
Get_next_sf_word
(P ERRORQUEUE el
S0 Get_ecl6
prm— (‘S| TELEMETRY_RESPONSE) Get_ed
Pop(Error) | (Ingtantiation of €400 | Get_gyro_speed
Is Empty class object »
Is Full FIFO_gueue)
[Min Interval 62.5 ms|
[WCET 319 ms| J
Handler(messge) — — — — — — — — — — — » Handler(message)
N J

CE _DISK_92 044:CS40000
Last Modified: 8/0ct/92

The TELEMETRY object is responsible for storing sensor readings and passing them to ground when
requested.

4. The Execution Environment

This section describes the proposed execution environment for the system and how the software design is
mapped to it.

4.1. TheHardware Platform

The case study runs on 2 VME boards containing a 68020 processor, a 68881 floating point coprocessor, 1
MByte RAM, timers, and dedicated chips for communication over the Olympus seria bus.

These new cards replace the current Spacecraft Microcomputer Module (SMM) in the Olympus
[AOCS] Engineering Model testbed to demonstrate successful operation of the unit.

For ease of timing analysis, neither the processor cache nor DMA was used.

4.2. TheOperating System

The YSE Ada compiler! and a modified stand-alone run-time kernel has been used in this study. The
system has been modified to support some of the new features proposed for the new Ada 9X standard.

e Largepriority range

e Priority queuing

e Protected objects — implemented as optimised passive tasks

e Deay until

For ease of analysis, the following features of Ada have not been used:
e Dynamic task creation and abortion,

e Accesstypes,

e Dynamic memory allocation or deallocation,

e TheAda83 rendezvous (rather protected objects are used).

4.3. Mapping the Softwar e Ar chitecture to the Execution Environment
Thefinal HOOD design containing the following application terminal objects:
e 9cyclic objects,

e 3 sporadic objects,

14 protected objects

e 16 passive objects,

and produced atotal of 3300 lines of Ada code (see Appendix 1 for an overview of mapping HRT-HOOD
designs to Ada 83 code).

Criticality
The requirement for the AOCS identified two levels of software criticality. The majority of software must
be guaranteed to met all deadlines; these are denoted as HARD. The remaining software is non-critical

and denoted as SOFT. In the following scheduling analysis, the HARD process are considered first. All
SOFT processes are assigned priorities below those used by the HARD.

Schedulability Analysis

Using Deadline Monotonic scheduling analysisl’ each task is given a unique priority (P); the higher the
priority the shorter the task’s deadline. In the following discussions the task set is assumed to be ordered
by priority such that P isthe highest priority and Py, the lowest.

To determine whether a given task set is schedulable, it is necessary to calculate the worst case
response time of each task in the system (the time at which each task finishes its execution). The worst

case response time, R, for each task can be calculated using the following relationships (see Auddey et
a? for a derivation of these equations). If the method fails to converge to a value of R (or the value
obtained is greater than D, the deadline requirement) then the task cannot be guaranteed. The
relationships assume the following:

e Thereexists the possibility that all tasks will be released at the same time (the critical instant). If it
can be proved that the tasks do not share a critical instant then the predictions made by these
relationships are pessimistic.

e Kend costs such as context switch time are subsumed into the computation time of each
thread/process.

e Clock overheads are modelled as a single cyclic task with constant execution time. It should be noted
that thisis pessimistic and better models are now available.14

The basic scheduling equation issimple (for all tasks T,):
R =G +B +1

Where B; is the blocking time that the task experiences, and I; is the interference 1; experiences from
higher priority tasks.

A task is blocked when it is prevented from running by a lower priority task. For example, if a high
priority task sharesa critical section with alow priority task then it is possible for the high priority task to
be delayed while the other task is actually executing within the critical section. Blocking (priority
inversion) can aso occur when the lower priority task is executing a non-preemptable kernel routine.

In order to bound the blocking time some form of priority inheritance is needed.?! In this study we
used immediate ceiling priority inheritance (also called ceiling priority emulation). Critical sections are
assigned ceiling priorities. This represents the highest priority of any task that uses that critical section.
Whenever a task accesses a critical section its priority is immediately raised to that of the ceiling. As a
consequence mutua exclusion (on a single processor) is assured (the current task is running with a
priority at least as high as any task that could also wish to enter the critical section). It is also the case that
a task is blocked at most once during its execution (the proof of this statement can be found in the
literature?1. 20,

An estimation of |; is obtained by noting that in any time interval [O,R;) the maximum load to be
asserted by higher priority tasksis

i-1] R
> -;l G
=1
Hence we get the relationship:
i-1[R
R=C +B + 3| —|C
=1 i
To solve this an interactive approach is used:*
i-1) RM1
A Ej T “

with R equal to C
Thisinteraction terminates when either R" ™1 = R" or (unsuccessfully) when R" > D; .

Resultsof the Analysis

In order to undertake schedulability analysis it is necessary to have the real-time characteristics of the
termina objects. The worst case execution times of the objects were calculated using a tool constructed
by the project.1® Other characteristics, such as cycle times of periodic processes are known from the
requirements. The following tables summarise the real-time characteristic of the final system, and gives
the task and protected object priorities which were calculated by a tool constructed by the project.1 All
timesarein ms. A more detailed description of the resultsis given in Appendix 2.

Task Required Achieved

name Importance Period Offset WCET Deadline Deadline Priority
RTC HARD 50 0 0.28 9.0 3.52 27
Read Bus IP HARD 10 0 1.76 10.0 6.99 23
Command_Actuators HARD 200 50 2.13 14.0 13.52 20
Request_DSS Data HARD 200 150 1.43 17.0 15.87 19
Request Wheel_Speeds HARD 200 0 1.43 22.0 18.22 18
Request_IRES_data HARD 100 0 1.43 24.0 23.37 17
Process IRES data HARD 100 50 8.21 50.0 44.13 14
Control_Law HARD 200 50 52.84 200.0 183.50 8
Process DSS Data HARD 1000 200 5.16 400.0 198.38 6
Calibrate_Gyro HARD 1000 200 6.91 900.0 389.49 5

Table 1. Cyclic Thread Characteristics

Minimum Required Achieved
Task name Importance Arrival WCET Deadline Deadline Priority
Time
Bus_Interrupt INTERRUPT 0.96 0.18 0.63 -- 62
Telemetry Response HARD 62.5 3.19 30.0 28.73 15
Read Yaw_Gyro HARD 100.0 4.08 100.0 55.84 12
Telecommands SOFT 187.0 2.5 187.0 FAIL 4

Table 2: Sporadic Thread Characteristics

Ceiling
PR name WCET Priority
Bus IP_FIFO 0.06 63
Initialisation 0.63 27
Serial_Bus IP 0.58 24
Read Yaw_Gyro.OBCS 0.15 24
Telecommands.OBCS 0.15 24
Telemetry Response.OBCS 0.15 24
Echo_or_Error 0.30 25
Seria_Bus OP 0.39 22
Whed_command 0.76 21
Thrusters 0.78 21
TM_data store 1.37 24
Attitude 0.52 16
Gyro_dstate 1.38 13
Equipment_status 0.13 11
Control_dumping 19.15 10
Process_demand 44.09 9
DSS angle 0.16 7

Table 3: Protected Tasks Characteristics

Note that to implement sporadic objects requires a synchronisation agent. This is in fact a form of
protected object. There are three of these identified as X_OBCS.

5. Problems Encountered

The main problem we encountered was associated with handling the interrupts off the bus. Originaly we
attempted to map a sporadic object to the bus interrupt and to have this object pass on the data to the
various sensor objects. A sporadic object in HRT-HOOD is mapped to an Ada task and a passive
(protected) Ada task (representing an Ada 9X protected object). The passive task handles the interrupt,
and releases the other task to deal with the recelved data. However, the schedulability analysis indicated
that with a minimum inter-arrival time of 960 s for the sporadic (the estimated minimum time between
interrupts) the system was not schedulable. In fact the overhead of entering the Ada passive task and
releasing the sporadic was almost 960 ps. This reflected the prototype nature of our modifications to Ada
to implement the equivalent of an Ada 9X protected record.

The problem was overcome by

1) Modifying the analysis — it was recognised that the minimum inter-arrival rate for the interrupt was
not sustained over along period; the system (for analysis purposes) was more accurately modelled as
the sum of four interrupts (representing the four different message types that could be received from
the sensors — called Message here, TM_here, Z1 here, and TC _here in Appendix 2), each with
their characteristic minimum interarrival time. These task are not themselves analysed but rather are
used to model the interference on other tasks.

2) Modifying the design — the system design was modified to that presented in this paper; the interrupt
handling sporadic simply places the data in a buffer and a cyclic object removes the data at an even
rate (calculated to ensure that all the sensor objects get adequately fresh data) and calls the relevant
sensor obyjects.

3) Modifying the trandation to Ada 83 — the interrupt handling was implemented as a call to an Ada
procedure (thus representing an optimised protected object in Ada 9X).

Given these modifications, the analysis indicated that the one soft task, TELECOMMANDS, would not

meet its deadline in the worst case. In practice, the task did meet its deadline because of pessimism in:

1) the analysis techniques — some of the objects have offsets specified relative to other objects; the
equations we were using assumed all tasks had a critical instance when thisis clearly not the case
(we now have more sophisticated analysis which will handle task offsets?3).

2) thekernel — in order to take into account the overheads introduced by the kernel, we had to make
some assumptions in the analysis techniques; these, on closer inspection, were alittle pessimistic.14

3) the WCET tool — we estimate that our worst case execution time tooll® is between 5-15%
pessimistic because the tool does not model the m68020 interna pipeline and because some
hardware times are data dependent and the tool has to assume the worst case.

6. Conclusions

The goal of the project was to illustrate that hard real-time systems can be programmed in a multi-tasking
Ada environment, and yet give the same guarantees as those offered by the cyclic executive approach.
The following points should be emphasi sed:

1) Theuse of a multi-tasking design introduced flexibility into the design; for example when the early
design was shown not to meet its deadline it was not necessary to redo complex cyclic schedules.
Instead the design could be easily atered and the schedulability analysis re-done.

2) The use of deadline monotonic scheduling, together with offsets between processes allowed input
and output jitter to be kept to a minimum.

3) Itisextremely important to model accurately the performance properties of the real-time operating
system kernel if the scheduling analysisisto berelied on.

Acknowledgement

The authors would like to thank Paco Gomez Molinero, Fernando Gonzalez-Barcia and Tullio Vardanega
for their help during the course of the project.

APPENDI X 1: Mapping HRT-HOOD to Ada 83

A.1Introduction

In this appendix we consider the systematic trandation of HRT-HOOD designs to Ada 83. The structure
of the mappings given is based on the structure given for HOOD.3 Other mappings are possible.

It isinevitable that a restricted subset of Adawill be required if atool isto be designed that analyses
Adacode for itsworst case execution times. This subset excludes the following features:

e recursive or mutually recursive subprogram calls

e unbounded loop constructs

e dynamic storage alocation

e uncongtrained arrays or types containing unconstrained arrays

Although periodic threads are implemented using an Ada delay statement, the schedulability analysis
cannot cope with arbitrary delays in thread execution. Consequently we do not allow the application
programmer to use

e thedeay statement.

A.2HRT-HOOD Trandation

A.2.1 The Approach

It is widely accepted that Ada 83 lacks sufficient expressive power for programming hard real-time
systems. Although Ada 9X has addressed many of these limitations, it will be some years before real-
time Ada 9X development environments become available. Consequently the project attempted to
provide much of the Ada 9X real-time functionality by making simple modifications to the Y ork compiler
and its stand-alone run-time system. Our approach to hard real-time system design requires the following
to be supported by the implementation language and environment.

a) A large range of priorities — in Ada 83 there was no minimum range of priorities that an
implementation had to support; in Ada9X a minimum range of 32 priority levelsisrequired.

b) Asynchronous (data-oriented) communication with bounded blocking — Ada 9X has introduced the
notion of a protected object which can be used to decouple interacting tasks; a protected object
enables the data to be shared between tasks to be encapsulated and operations to be defined which
have automatic mutual exclusion. For single processor systems the mutual exclusion can be
implemented by allocating a "ceiling" priority to the protected object; all operations are then
executed at thispriority. Thereisno direct equivalent facility in Ada 83.

c) Synchronisation with a monotonically increasing clock — Ada 9X alows a task to "delay until” a
time in the future, where the time can either be specified by the time-of-day clock or the
monotonically increasing clock. The latter is required to give a more accurate representation of a
periodic task. Ada83 simply allows atask to issue arelative delay.

d) Interrupt handling via protected objects — Ada 9X allows a protected operation to be called directly
by an interrupt. In Ada 83, interrupts are mapped to task entries.

Support for aLarge Priority Range

For most run-time support systems, increasing the range of priorities to be supported is arelatively simple
matter. Furthermore ordering entry queues and a priority driven select statement can easily be added.
However if the application areais using only protected tasks for communication and synchronisation (see
below) and not the generalised rendezvous primitives, then a priority select is not required, priority entry
gueues are only required if more than one task can be queued on a protected task entry.

Support for Asynchronous (data-oriented) Communication

Many Ada 83 compilers already support the notion of a "passive”’ task. Passive tasks usualy control
access to shared data or are used to provide fast interrupt handlers, and therefore do not require an
independent thread of control. Passive tasks are typically indicated by a pragma and the compiler will
generate specific callsto the run-time systems.

In Ada 83 protected object semantics can be implemented by a passive task. For example the
following task implements a protected object which has two protected access operations. opl and op2;
oplisonly accepted if an appropriate guard is open (it therefore represents a protected entry).

t ask PROTECTED i s
pragma PRI ORI TY(CEl LI NG ;
pragnma PROTECTED; -- recognised by the conpiler
entry OP1(...);
entry OP2(...);
end PROTECTED,

task body PROTECTED i s
-- no local variabl es

begi n
| oop
sel ect
when Gl =>
accept OP1(...) do
end OP1;
or
accept OP2(...) do
end OP2;
or
term nate;
end sel ect;
end | oop;

end PROTECTED;

The structure can be recognised by the compiler; note that no run-time inheritance protocols are required
as the PROTECTED task can be assigned a priority greater than its callers. The semantics for releasing
tasks blocked on an entry can be implemented by the run-time system according to the Ada 9X protected
object semantics.

Support for Periodic Task Execution

It is possible to provide the following simple run-time package which provides access to a monotonic
clock, and therefore the following routine can be defined.

with MONOTONI C; use MONOTON C,
package DELAY SUPPORT i s

procedure DELAY _UNTIL(T : TIM);

end DELAY_SUPPORT,;
A periodic task can take the form:

decl are

NEXT . TI ME;

| NTERVAL : constant DURATION := ...;
begi n

NEXT : = CLOCK + | NTERVAL;

| oop

-- code to be executed
DELAY_UNTI L(NEXT) ;
NEXT : = NEXT + | NTERVAL:
end | oop;
end;

Support for Interrupt Handling

The Ada 9X approach to interrupt handling is to alow interrupts to call a procedure in a protected object.
Given the implementation of protected tasks described above it is relatively simple to alow an address
clause to be placed on an entry. However, in our case study we did not have an optimised form of a
protected task and therefore interrupt handling was too slow. Consequently we also allowed an interrupt
address clause to be associated with an Ada procedure.

A.2 The Mappings

In this section we illustrate the mappings of HRT-HOOD to Ada 83. We make certain simplifications for
the purpose of presentation. See Burns and Wellings for afull description of the mapping.10

Ada 83 mapping for aPROTECTED terminal Object <Name>
L et such an object have the following:

PSER for an operation which requires mutual exclusion.
FPSER for an operation which requires mutual exclusion and has a functional
activation constraint.

The specification of the package giving the provided operations is. (we assume appropriate "with"
clauses):

package <NAME> is

task OBCS is
pragma CEl LI NG PRI ORI TY(CEl LI NG ;
pragma PROTECTED,
entry PSER(<PARAMETER PART>) ;
ent ry FPSER(<PARAMETER PART>);
end OBCS;

procedur e PSER(<PARAMVETER PART>) renanes OBCS. PSER
procedur e FPSER(<PARAMETER PART>) renanmes OBCS. FPSER,

end <NAVE>;
The following body has the same semantics as the Ada 9X protected records.

wi th CPU BUDGETI NG use CPU BUDCETI NG
package body <NAME> is

procedure OPCS_PSER(<PARAMETER PART>) i s separate;
procedure OPCS_FPSER(<PARAMETER PART>) is separate;
procedure OPCS FPSER FAC i s separate; -- not shown

task body OBCS is
-- no local variables

begi n
| oop
sel ect
when OPCS_FPSER FAC =>
accept FPSER(<PARAMETER PART>) do
OPCS_FPSER(<PARAMETER PART>) ;
end FPSER;
or
accept PSER(<PARAMETER PART>) do
OPCS_PSER(<PARAMETER PART>) ;
end PSER;
or
term nat e;
end sel ect;
end | oop;
end OBCS;
end <NAVE>;

separ at e(<NAME>) ;
procedure OPCS_PSER(<PARAMETER PART>) is
begi n
<OPCS_CODE>;
end OPCS_PSER

Ada 83 mapping for aCYCLIC terminal Object <Name>
L et such an object have no interface. The specification of the package

package <NAME> i s
end <NAVE>;

not

shown

package body <NAME> is
procedure OPCS PERI ODI C CODE i s separate;

task body THREAD i s
T : MONOTONI C. Tl ME
PERI OD : DURATI ON;
begi n
DELAY_UNTI L(GET_START Tl ME+OFFSET); -- if the THREAD has an of f set
-- CGET_START_TIME returns the
-- programis start tine
T: = CLOCK + PERI OD;
| oop
begi n
OPCS_PERI ODI C_CCODE;
DELAY_UNTIL (T);
T:=T + PER OO
end;
end | oop;
end;

separ at e(<NAVE>) ;
procedure OPCS PERIODIC CODE is
begi n
<OPCS_CODE>;
end CP_NAME;

Ada 83 mapping for a SPORADIC terminal Object <Name>
L et such an object have the following:
START for an asynchronous operation which invokes the sporadic thread.
The package specification is:
package <NAME> i s
task GBCS is
pragma PRI ORI TY(CEl LI NG ;
pragma PROTECTED,
entry START(<PARAMETER PART>);

entry WAl T_START(<PARAMETER PART>) ;
end OBCS;

procedur e START(<PARAMETER PART>) renanmes OBCS. START;

end <NAVE>;
The package body is:

package body <NAME> is
procedure OPCS _START(<PARAMETER PART>) is separate; --
task body OBCS is

START_CPEN : BOCLEAN : = FALSE;
T : MONOTONI C. Tl ME

begi n
| oop
sel ect
when not START _OPEN =>
accept START (<PARAMETER PART>) do
-- save parans
T : = MONOTON C. CLOCK
START_COPEN : = TRUE;
end START
or
when START_OPEN =>
accept WAI T_START (<PARAMETER PART>) do
-- Wwite parans and T
START_OPEN : = FALSE;
end WAI T_START;
or
term nate;
end sel ect;
end | oop;
end OBCS;
task body THREAD i s
MAT : DURATION, -- mninmuminter-arrival tinme
begi n
| oop

OBCS. WAl T_START(<PARAMETER PART>);
-- paraneters includes T
OPCS_START(<PARAMETER PART>);
DELAY_UNTIL (MAT + T);
end | oop;
end;

not

shown

APPENDIX 2: Detailed Results

In this appendix we give more details of the timing of the control system and the execution environment.
Our intention is that the information should be complete enough for others to reproduce our resullts.

The Real-time Properties of Cyclic Objects

The following table summarises the characteristics of the periodic threads. In it WCET is the time taken
by the thread to execute its code and to execute any protected object entries. Computation Time is the
time the thread executes including the overheads of the execution environment. The blocking time is the
time the thread is blocked by alower priority thread executing in a protected object.

Object Name READ_BUS |IP
Object Number C1
Period 1.00000E+01
WCET 1.76386E+00
Critical Level HARD
Deadline 1.00000E+01
Offset 0.00000E+00
Priority 23
Computation Time 2.46386E+00
Block Time 1.37371E+00
Scheduling Result TRUE
Deadline Met 6.99194E+00
Object Name REAL_TIME_CLOCK
Object Number C2
Period 5.00000E+01
WCET 2.82484E-01
Critical Level HARD
Deadline 9.00000E+00
Offset 0.00000E+00
Priority 26
Computation Time 7.54484E-01
Block Time 3.72000E-01
Scheduling Result TRUE
Deadline Met 3.52636E+00
Object Name COMMAND_ACTUATORS
Object Number C3
Period 2.00000E+02
WCET 2.12646E+00
Critical Level HARD
Deadline 1.40000E+01
Offset 5.00000E+01
Priority 20
Computation Time 3.73845E+00
Block Time 1.37371E+00
Scheduling Result TRUE
Deadline Met 1.35223E+01
Object Name REQUEST_WHEEL _SPEEDS
Object Number C4
Period 2.00000E+02
WCET 1.42574E+00
Critical Level HARD
Deadline 2.20000E+01
Offset 0.00000E+00
Priority 18
Computation Time 2.35374E+00
Block Time 1.37371E+00

Scheduling Result TRUE
Deadline Met 1.82297E+01
Object Name CONTROL_LAW
Object Number C5
Period 2.00000E+02
WCET 5.28458E+01
Critical Level HARD
Deadline 2.00000E+02
Offset 5.00000E+01
Priority 8
Computation Time 5.67378E+01
Block Time 1.38224E+00
Scheduling Result TRUE
Deadline Met 1.83506E+02
Object Name PROCESS DSS DATA
Object Number Cc6
Period 1.00000E+03
WCET 5.15615E+00
Critical Level HARD
Deadline 4.00000E+02
Offset 2.00000E+02
Priority 6
Computation Time 6.31215E+00
Block Time 1.38224E+00
Scheduling Result TRUE
Deadline Met 1.98386E+02
Object Name REQUEST_DSS DATA
Object Number c7
Period 2.00000E+02
WCET 1.42574E+00
Critical Level HARD
Deadline 1.70000E+01
Offset 1.50000E+02
Priority 19
Computation Time 2.35374E+00
Block Time 1.37371E+00
Scheduling Result TRUE
Deadline Met 1.58760E+01
Object Name CALIBRATE_GYRO
Object Number Cc8
Period 1.00000E+03
WCET 6.91404E+00
Critical Level HARD
Deadline 9.00000E+02
Offset 2.00000E+02
Priority 5

Computation Time 8.98204E+00
Block Time 1.38224E+00
Scheduling Result TRUE
Deadline Met 3.89492E+02
Object Name PROCESS IRES DATA
Object Number C9
Period 1.00000E+02
WCET 8.20642E+00
Critical Level HARD
Deadline 5.00000E+01
Offset 5.00000E+01
Priority 14
Computation Time 9.81842E+00
Block Time 1.37371E+00
Scheduling Result TRUE
Deadline Met 4.41384E+01
Object Name REQUEST _IRES DATA
Object Number C10
Period 1.00000E+02
WCET 1.42574E+00
Critical Level HARD
Deadline 2.40000E+01
Offset 0.00000E+00
Priority 17
Computation Time 2.35374E+00
Block Time 1.37371E+00
Scheduling Result TRUE
Deadline Met 2.33753E+01

The Real-time Properties of Sporadic Objects

Object Name TELEMETRY_RESPONSE
Object Number S1

WCET 3.19298E+00
Critical Level HARD
Deadline 3.00000E+01
Gap 6.25000E+01
Priority 15
Computation Time 5.36098E+00
Block Time 1.37371E+00
Scheduling Result TRUE
Deadline Met 2.87363E+01
Object Name TELECOMMANDS
Object Number 2

WCET 2.50060E+00
Critical Level SOFT
Deadline 1.87000E+02
Gap 1.87000E+02
Priority 4
Computation Time 4.44060E+00
Block Time 3.72000E-01
Scheduling Result FALSE
Deadline Met -

Object Name READ_YAW_GYRO
Object Number S3

WCET 4.07858E+00
Critical Level HARD

Deadline 1.00000E+02
Gap 1.00000E+02
Priority 12
Computation Time 6.70258E+00
Block Time 1.38224E+00
Scheduling Result TRUE
Deadline Met 5.58463E+01
Object Name MESSAGES HERE
Object Number S
WCET 1.34240E+00
Critical Level INTERRUPT
Gap 5.00000E+01
Priority 62
Computation Time 1.45040E+00
Object Name TM_HERE
Object Number S5
WCET 9.91602E-02
Critical Level INTERRUPT
Gap 6.25000E+01
Priority 62
Computation Time 2.07160E-01
Object Name Z1 HERE
Object Number S6
WCET 9.91602E-02
Critical Level INTERRUPT
Gap 1.00000E+02
Priority 62
Computation Time 2.07160E-01
Object Name TC_HERE
Object Number SY4
WCET 9.91602E-02
Critical Level INTERRUPT
Gap 1.87000E+02
Priority 62
Computation Time 2.07160E-01

Thread/Protected Object Interaction

Object Name SERIAL_BUS OP
Object Number P1
WCET 3.95441E-01
Celiling 22
Used By C3, C4, C7, C10,
S1
Object Name TELEMETRY_RESPONSE.OBCS
Object Number P2
WCET 1.45171E-01
Ceiling 24
Used By C1
S1
Object Name ECHO_OR_ERROR
Object Number P3
WCET 3.04499E-01
Ceiling 25
Used By C3, C4, C5, C6, C7, C8, C9, C10

S1,82,S3

Object Name TM_DATA_STORE
Object Number P4
WCET 1.37371E+00
Ceiling 24
Used By C1,C5,C8,C9
S1, S2, S3

Object Name TELECOMMANDS.OBCS
Object Number P5
WCET 1.45171E-01
Ceiling 24
Used By C1

S2
Object Name BUS_IP_FIFO
Object Number P6
WCET 0.06000E+00
Ceiling 63
Used By C1l

S5
Object Name SERIAL_BUS |IP
Object Number P7
WCET 5.80204E-01
Ceiling 24
Used By C1, C5,C6,C9
Object Name INITIALISATION
Object Number P8
WCET 6.34193E+00
Ceiling 27
Used By C2, C3, C4, C5, C6, C7,C8, C9, C10
Object Name EQUIPMENT_STATUS
Object Number P9
WCET 1.34853E-01
Ceiling 11
Used By C5

S2
Object Name THRUSTERS
Object Number P10
WCET 7.84509E-01
Ceiling 21
Used By C3,C5
Object Name WHEEL_COMMAND
Object Number P11
WCET 7.63872E-01
Ceiling 21
Used By C3,C5
Object Name CONTROL_DUMPING
Object Number P12
WCET 1.91515E+01
Ceiling 10
Used By C5
Object Name PROCESS DEMAND
Object Number P13
WCET 4.40894E+01
Ceiling 9
Used By C5
Object Name ATTITUDE
Object Number P14
WCET 5.17816E-01

Ceiling 16
Used By C5, C8, C9
S1, S2, S3
Object Name DSS ANGLE
Object Number P15
WCET 1.55669E-01
Ceiling 7
Used By C6, C8
Object Name GYRO_STATE
Object Number P16
WCET 1.38224E+00
Ceiling 13
Used By C8
S2, S3

Object Name READ_YAW_GYRO.OBCS
Object Number P17
WCET 1.45051E-01
Ceiling 24
Used By C1

S3

Protected Object Interactions

The following table summarises which protected
objects make use of other protected objects.
Note that to implement sporadic objects requires
a synchronisation agent. Thisisin fact aform of
protected object. The name given to one of these
objectsis "sporadic name_OBCS".

Object Name SERIAL_BUS OP
Used By Protected P10, P11
Object Name ECHO_OR_ERROR
Used By Protected P4

Object Name TM_DATA_STORE
Used By Protected P12,13

Object Name SERIAL_BUS IP
Used By Protected P13

Object Name EQUIPMENT_STATUS
Used By Protected P12, P13
Object Name THRUSTERS
Used By Protected P12

Object Name WHEEL_COMMAND
Used By Protected P13

Object Name CONTROL_DUMPING
Used By Protected P13

Execution Environment

The execution environment has certain charac-
teristics which must be accounted for, if the
analysis is to be accurate. The following table
summarises the rea-time characteristics of our
execution environment. Theentries are:

e INTERRUPT _CONTEXT_SWITCH_TIME

Thetime cost of ainterrupt sporadic context switch.
CONTEXT_SWITCH_TIME

The time cost of anormal context switch.
RELEASE_QUEUE_TIME

The time cost of releasing a thread from the delay
gueue and moving it to the run queue (dispatch
queue).

DELAY_QUEUE_TIME
Thetime cost of putting athread in the delay queue.
RELEASE QUEUE BLOCKING_TIME

The blocking time cost of releasing a cyclic thread
from the delay queue and moving it to the run
queue.

PROTECTED_RECORD _ENTER_TIME The time
cost of entering a protected object.

PROTECTED_RECORD_LEAVE_TIME
Thetime cost of leaving a protected object.
DISABLE_INTERRUPT_TIME

Thetime cost of disabling interrupts.
ENABLE_INTERRUPT_TIME

Thetime cost of enabling interrupts.

DELAY_EXPIRATION_TIME The maximum time
between a delay expiring and the theoretical time at
which it should expire (releasejitter).

MAX_NON_PREEMPTION_TIME

The maximum period of non pre-emption exhibited
by the execution environment.

MAX_RUN_TIME_SYSTEM_OVERHEAD
Worst case system overhead time.

MAX_FREQUENCY_RTS OVERHEAD Period of
MAX_RUN_TIME_RTS OVERHEAD

PRIORITY_FIRST

Lowest software priority allowed for this hardware
platform.

PRIORITY_LAST

Highest software priority allowed for this hardware
platform.

BLOCKING_APPROACH
Either IPCI or DISABLE_INTERRUPTS

Interrupt Context Switch Time
Context Switch Time

Release Queue Time

Delay Queue Time

Release Queue Blocking Time
Protected Record Enter Time
Protected Record Leave Time
Disable Interrupt Time

Enable Interrupt Time

Delay Expiration Time

Max Non Preemption Time
Maximum Run Time System Overhead
Max Frequency RTS Overhead
Priority First

Priority Last

Blocking Approach

5.40000E-02
1.64000E-01
6.00000E-02
8.40000E-02
0.00000E+00
8.80000E-02
1.40000E-01
4.00000E-03
4.00000E-03
0.00000E+00
3.72000E-01
3.28000E-01
1.00000E+01

2

63

[PCI

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

York Ada Compiler Environment (York ACE) Reference Guide, Y ork Software Engineering Lim-
ited (1991). (Release5.1)

European Space Agency, ‘‘HOOD Reference Manual Issue 3.0, WME/89-173/IB (September
1989).

European Space Agency, ‘‘HOOD Reference Manua Issue 3.0, WME/89-173/JB (September
1989).

N. Audsley, A. Burns, M. Richardson, K. Tindell and A. Wellings, **Applying New Scheduling
Theory to Static Priority Pre-emptive Scheduling’’, Submitted to Software Engineering Journal (to
appear).

C. Bailey, ‘*Survey of Typical Space Applications’, Task 6 Deliverable on ESTEC Contract
9198/90/NL/SF, British Aerospace Space Systems Ltd. (September 1991).

C. Bailey, ** Software Requirements Document for the Olympus AOCS'’, Task 10 Deliverable on
ESTEC Contract 9198/90/NL/SF, British Aerospace Space Systems Ltd. (March 1992).

C.M. Bailey, A. Burns, E. Fyfe, F. Gomez-Molinero and A.J. Wellings, ‘‘Implementing Hard
Real-time Systems. A Case Study’’, Proceeeding International Symposium on Real-time Embedded
Processing for Space Applications, Les Saintes-Maries-de-la-Mer, France (November 1992).

A. Burns and A.J. Wdllings, ‘‘Real-time Ada: Outstanding Problem Areas'’, Proceedings of the
3nd International Workshop on Real Time Ada Issues, ACM Ada Letters, Ada Letters X(4), pp. 5-
14 (1990).

A. Burnsand A.J. Wellings, ‘*Usability of the Ada Tasking Model’’, Proceedings of the 3nd Inter-
national Workshop on Real Time Ada Issues, ACM Ada Letters, Ada Letters X(4), pp. 49-56
(1990).

A. Burns and A.J. Wellings, ‘‘Development of a Design Methodology’’, Task 3 Deliverable on
ESTEC Contract 9198/90/NL/SF, Department of Computer Science, University of York (Sep-
tember 1991).

A. Burns and A.J. Wellings, ‘‘Definition of Tools’, Task 4 Deliverable on ESTEC Contract
9198/90/NL/SF, Department of Computer Science, University of Y ork (September 1991).

A. Burns and A.J. Wellings, ‘*Designing Hard Real-time Systems'’, pp. 116-127 in Ada: Moving
Towards 2000, Proceeedings of the 11th Ada-Europe Conference, Lecture Notes in Computer Sci-
ence Vol 603, Springer-Verlag (1992).

A. Burnsand A.J. Wellings, Hard Real-time HOOD: A Design Method for Hard Real-time Ada 9X
Systems, Towards Ada 9X, Proceedings of 1991 Ada UK International Conference, |OS Press
(1992).

A. Burns, A.J. Wellings and A.D. Hutcheon, ‘* The Impact of an Ada Run-time System’s Perfor-
mance Characteristics on Scheduling Models’, in Ada sans frontieres Proceeedings of the 12th
Ada-Europe Conference, Lecture Notes in Computer Science, Springer-Verlag (to appear).

C.H. Forsyth, *‘Implementation of the Worst-Case Execution Time Analysier’’, Task 8 Volume E,
Deliverable on ESTEC Contract 9198/90/NL/SF, York Software Engineering Limited, University
of York (June 1992).

Intermetrics, *‘Draft Ada 9X Mapping Document, Volume Il, Mapping Specification’’, Ada 9X
Project Report (December 1991).

J.Y.T. Leung and J. Whitehead, ‘*On the Complexity of Fixed-Priority Scheduling of Periodic,
Real-Time Tasks’, Performance Evaluation (Netherlands) 2(4), pp. 237-250 (December 1982).

C.L. Liuand JW. Layland, ** Scheduling Algorithms for Multiprogramming in a Hard Real-Time

Environment’’, JACM 20(1), pp. 46-61 (1973).
C.D. Locke, ‘*Software architecture for hard real-time applications. cyclic executives vs. fixed

20.

21.

22.

23.

priority executives’, Real-Time Systems 4(1), pp. 37-53, Red-Time Syst. (Netherlands) (March
1992).

M. PRilling, A. Burns and K. Raymond, ‘‘Formal Specification and Proofs of Inheritance Protocols
for Real-Time Scheduling’’, Software Engineering Journal (to appear) (1990).

L. Sha, R. Rgkumar and J. P. Lehoczky, ‘‘Priority Inheritance Protocols. An Approach to Real-
Time Synchronisation’’, |EEE Transactions on Computers 39(9), pp. 1175-1185 (September 1990).
L. Shaand J. B. Goodenough, ‘‘Real-Time Scheduling Theory and Ada’, IEEE Computer (April
1990).

K. Tindell, **Using Ofset Information to Analyse Static Pre-emptive Scheduled Task Sets'’, YCS
182, Department of Computer Science, University of Y ork (September 1992).

