
TIMES: a Tool for Schedulability Analysis and

Code Generation of Real-Time Systems

Tobias Amnell, Elena Fersman, Leonid Mokrushin,
Paul Pettersson, and Wang Yi?

Department of Information Technology,
Uppsala University, P.O. Box 337, SE-751 05 Uppsala, Sweden

Email: {tobiasa,elenaf,leom,paupet,yi}@it.uu.se

Abstract Times is a tool suite designed mainly for symbolic schedu-
lability analysis and synthesis of executable code with predictable be-
haviours for real-time systems. Given a system design model consist-
ing of (1) a set of application tasks whose executions may be required
to meet mixed timing, precedence, and resource constraints, (2) a net-
work of timed automata describing the task arrival patterns and (3)
a preemptive or non-preemptive scheduling policy, Times will generate
a scheduler, and calculate the worst case response times for the tasks.
The design model may be further validated using a model checker e.g.
UPPAAL and then compiled to executable C-code using the Times com-
piler. In this paper, we present the design and main features of Times
including a summary of theoretical results behind the tool. Times can
be downloaded at www.timestool.com.

1 Introduction

In classic scheduling theory, real time tasks (processes) are usually assumed to
be periodic, i.e. tasks arrive (and will be computed) with �xed rates periodically.
Analysis based on such a model of computation often yields pessimistic results.
To relax the stringent constraints on task arrival times, we have proposed to use
automata with timing constraints to model task arrival patterns [1]. This yields
a generic task model for real time systems. The model is expressive enough to
describe concurrency and synchronization, and real time tasks which may be
periodic, sporadic, preemptive or non-preemptive, as well as precedence and re-
source constraints. We believe that the model may serve as a bridge between
scheduling theory and automata-theoretic approaches to system modeling and
analysis. The standard notion of schedulability is naturally generalized to au-
tomata. An automaton is schedulable if there exists a scheduling strategy such
that all possible sequences of events accepted by the automaton are schedulable
in the sense that all associated tasks can be computed within their deadlines.
It has been shown that the schedulability checking problem for such models is
decidable [1]. A recent work [6] shows that for �xed priority scheduling strategy,

? Corresponding author.

the problem can be e�ciently solved by reachability analysis on timed automata
using only 2 extra clock variables. The analysis can be done in a similar manner
to response time analysis in classic Rate-Monotonic Scheduling.

The �rst main function of Times is developed based on these recent results
on schedulability analysis. Its second main function is code generation. Code
generation is to transform a validated design model to executable code whose
execution preserves the behaviour of the model. Given a system design model
in Times including a set of application tasks, task constraints, tasks arrival
patterns and a scheduling policy adopted on the target platform, Times will
generate a scheduler and calculate the worst-case response times for all tasks.
The model may be further validated by a model-checker e.g. UPPAAL [9], and
then compiled to executable C-code. We assume that the generated code will be
executed on a platform on which every annotated task in the design model will
not take more than the given computing time. Further assume that the platform
guarantees the synchronous hypothesis in the sense that the times for handling
system functions e.g. collecting external events can be ignored compared with the
computing times and deadlines for the annotated tasks. Under these assumptions
on the platform, code generation is essentially to resolve non-determinism in
the design model. In Times, time non-determinism is resolved by the maximal
progress assumption, that is, whenever a transition is enabled, it should be taken.
External non-determinism in accepting events is resolved using priority order.

The rest of the paper is organized as follows: the next section describes
the core of the input Times language and its informal semantics. Section 3
summarizes brie�y the main theoretical work on schedulability analysis and code
synthesis. Section 4 describes the main features of Times, the tool architecture
and the main components in the implementation. Section 5 concludes the paper
with a summary of ongoing work and future development.

2 Task Models in Times

The two central concepts in Times are task and task model. A task (or task type)
is an executable program (e.g. in C) with task parameters: worst case execution
time and deadline. A task may have di�erent task instances that are copies of the
same program with di�erent inputs. A task model is a task arrival pattern such
as periodic and sporadic tasks. In Times, timed automata are used to describe
task arrival patterns.

2.1 Tasks Parameters and Constraints

Following the literature [4], we consider three types of task constraints.

Timing Constraints A typical timing constraint on a task is deadline, i.e. the
time point before which the task should complete its execution. We assume that
the worst case execution times (WCET) of tasks are known (or pre-speci�ed).
We characterize a task as a pair of natural numbers denoted (C;D) with C � D,

where C is the WCET of P , D is the relative deadline for P . In general, the
execution time of a task can be an interval [CB ; CW] where CB and CW are
the best and worst case execution times. The deadline D is a relative deadline
meaning that when task P is released, it should �nish within D time units.

Precedence Constraints The execution of a task set may have to respect some
precedence relations. These relations are usually described through a precedence
graph in which nodes represent tasks and edges represent precedence relation. In
Times, we use cyclic AND/OR-precedence graphs in which we distinguish ordi-

nary and inter-iterative edges (denoted 9 9 K) [3] such that inter-iterative prece-
dence constraints apply to all task instances except for the �rst one. An example
of such graph is shown in Figure 1.

P1

P3

P2

OR AND P4

P5

Figure1. Example of cyclic AND/OR precedence graph.

According to the graph, P4 can start its execution only if it is preceded by
P3 and either P1 or P2. The �rst instance of task P1 can start its execution at
any time while any further instance of P1 must be preceded by task P4.

0

Start EndP(s1) V(s1)V(s2)P(s2)

3

13

C

6

11

Figure2. An example semaphore access pattern.

Resource Constraints Tasks may share resources or data variables protected by
semaphores. A task must follow its given semaphore access pattern to lock and
unlock semaphores, which is the resource constraint on the task. The access to
semaphores will be scheduled using priority ceiling protocols e.g. the highest
locker protocol [10]. A semaphore access pattern for a task is a list of timed
semaphore-operations in the form: fSi(Pi; Vi)g where Si is the semaphore name,
Pi is the accumulated execution time needed for the task to reach the lock-
operation on Si and Vi is the accumulated execution time needed for the task
to reach the unlock-operation on Si. The blocking time for Si is Vi � Pi. An
example semaphore access pattern fS1(3; 13)g;S2(6; 11)g of a task is illustrated
in Figure 2. The task will try to lock S1 when it has been executed for 3 time
units and it will lock it for 10 time units.

2.2 Timed Automata as Task Arrival Patterns

The core of the Times input language is timed automata extended with data
variables [9] and tasks [5] and [7]. As in the UPPAAL model, each edge of such
an extended automaton is labeled with three labels:

1. a guard containing a clock constraint and/or a predicate on data variables.

2. an action which can be an input or output action in the form of a! and a?.

3. a sequence of assignments in the form: x := 0 when x is a clock or v := E
when v is a data variable, where E is a mathematical expression over data
variables and constants.

A location of an extended automaton may be annotated with a task or a
set of tasks that will be triggered when the transition leading to the location
is taken. The triggered tasks will be put in a task queue (i.e. ready queue in
operating system) and scheduled to run according to a given scheduling policy.
The scheduler should make sure that all the task constraints are satis�ed in
scheduling the tasks in the task queue. To model concurrency and synchronisa-
tion between automata, networks of automata are constructed in the standard
way as in e.g. UPPAAL with the annotated sets of tasks on locations unioned.

2.3 Shared Data Variables

Four types of shared data variables can be used for communication and resource
sharing:

1. Tasks may have shared variables with each others, protected by semaphores.

2. Tasks may read and update variables owned by the automata.

3. Automata can read (but not update) variables owned by the tasks.

4. Automata may have shared variables with each other.

3 Analysis and Synthesis

In Times, a timed automaton annotated with tasks (or network of such au-
tomata) is considered as a design model. The tool o�ers two main functions:
schedulability analysis of design models and generation of executable code from
the models.

3.1 Schedulability Analysis

In [7], an operational semantics for timed automata extended with tasks is de-
veloped. A semantic state of such an automaton is a triple (l; u; q) where l is
the current control location, u denotes the current values of clocks and data
variables, and q is the current task queue keeping all the released tasks to be
executed. The semantics of an automaton is de�ned by a transition system in
which the transition rules are parameterized by a scheduling policy to schedule
the task queue when new tasks are released.

Given an extended automaton and a scheduling policy, the related schedula-
bility analysis problem is to check whether there exists a reachable state (l; u; q)
of the automaton where the task queue q contains a task which misses its given
deadline. Such states are called non-schedulable states. An automaton is said
to be non-schedulable with the given scheduling policy if it may reach a non-
schedulable state. Otherwise the automaton is schedulable. As the number of
reachable states of an extended automaton is in�nite, it is not obvious that the
schedulability analysis problem is decidable.

The �rst decidability result is presented at TACAS 2002 showing that the
schedulability checking problem for the optimal scheduling policy i.e. EDF can
be solved by reachability analysis on timed automata extended with subtraction
on clocks. Consider an automaton A and a scheduling strategy Sch. To check if
A is schedulable with Sch, we construct timed automata E(Sch) (the scheduler),
and E(A) (the task arrival pattern), and check the reachability of a prede�ned
error state in the product automaton of the two. If the error state is reachable,
automaton A is not schedulable with Sch.

The maximal number of clock variables needed in constructing the sched-
uler automaton is 2n where n is the total number of schedulable task instancesP

i2P dDi=Cie where P is the set of task types, and Ci; Di are the computing
time and deadline for each task type i.

To construct E(A), the automaton A is annotated with distinct synchroniza-
tion actions releasei on all edges leading to locations labeled with the task name
Pi (assume that only one task is annotated). The actions will allow the scheduler
to observe when a task is released by A for execution. The structure of E(Sch)
is shown in Figure 3.

The main idea is to keep track of the task queue, denoted by q on each step of
the reachability analysis. Therefore in the encoding E(Sch) there is a transition
with the guard nonschedulable(q) from every location where the queue is not
empty (i.e. from all locations except Idle) to the error state. In the encoding, the
task queue q is represented as a vector containing pairs of clocks (ci; di) for every

Idle
C

Arrived(Pi)

C
Finish j)

cjc <=CjC

Error

q:=Pi::q
releasei

releasei
q:=Pi::q

PjP :=Hd(Sch(q))

nonschedulable(q)

==CjC

not(empty(q))
PjP :=Hd(Sch(q))

empty(q)

nonschedulable(q)

ck:=ck-CjC

Figure3. Scheduler automaton.

released task instance, called execution time and deadline clock respectively. The
intuitive interpretation of the locations in E(Sch) is as follows:

� Idle - the task queue is empty,
� Arrived(Pi) - the task instance Pi has arrived,
� Run(Pj) - the task instance Pj is running,
� Finished - a task instance has �nished,
� Error - the task queue is non-schedulable.

Locations Arrived(Pi) and Finished are marked as committed, which means that
they are being left directly after entering.

We use the predicate nonschedulable(q) to denote the situation when the task
queue becomes non-schedulable and naturally there is a transition labeled with
the predicate leading to the error-state. The predicate is encoded as follows:
9Pi 2 q such that di > Di.

We use Sch in the encoding as a name holder for a scheduling policy to
sort the tasks queue. A given scheduling policy is represented by the predicate:
Pi = Hd(Sch(q)). For example, Sch can be:

� Highest priority �rst (FPS): Pi 2 q;8Pk 2 q Pri(Pi) � Pri(Pk) where Pri(P)
denotes the �xed priority of P .

� First come �rst served (FCFS): Pi 2 q;8Pk 2 q di � dk
� Earliest deadline �rst (EDF): Pi 2 q;8Pk 2 q Di � di � Dk � dk
� Least laxity �rst (LLF): Pi 2 q;8Pk 2 q ci�di+Di�Ci � ck�dk+Dk�Ck

For more detailed description of the automaton E(Sch), see [7].

Variant execution times. The analysis for tasks with constant execution times
can be extended to deal with interval execution times: [CiB ; CiW] for each task
Pi (the best case and worst case execution times). The idea is to modify the
scheduler automaton as shown in Figure 4. We use ci to keep track of the lower

c1:=0
w1:=C1W

-C1B

P0

P1

t

C1B
<=c1<=C1B

+w1

c0:=0
w0:=C0W

-C0B

C0B
<=c0<=C0B

+w0c1:=c0-C1B
w0:=w0+w1

Figure4. Varying execution times.

bound of the accumulated execution time for Pi, and wi to denote the accu-
mulated di�erence between best and worst completion time of Pi. Obviously wi
should be set to CiW � CiB in the beginning of task execution. Observe that
each preemption will enlarge the di�erence for the preempted task with lower
priority by the di�erence for the �nishing task with higher priority. Accordingly,
we modify the scheduler automaton as follows: The guard on edge from loca-
tion Run(Pj) to Finished should be CjB � cj � CjB + wj and variable updating
should be ck := ck �CjB ; wk := wk +wj for all k such that preempted(Pk). The
rest of the scheduler automaton reamins the same as before.

Fixed priority scheduling policy. In a recent work [6], it is shown that the schedu-
lability problem for Fixed Priority Scheduling Policy can be solved e�ciently
using ordinary timed automata with only two clock variables (in addition to
the original clocks used to describe task arrivals). For models with shared data
variables (e.g. data dependent control when the values of data variables of a task
may in�uence the release time of task instances), the number of clocks needed
in the analysis is n+1 where n is the number of tasks involved in the data shar-
ing. More recently these results are extended to handle precedence and resource
constraints [8] and implemented in Times.

3.2 Code Generation

The second main function of the tool is code generation. We consider automata
extended with tasks as design models. Code generation is to transform a vali-
dated design model to executable code whose execution preserves the behaviour
of the model. We assume that the generated code will be executed on a platform
on which every annotated task in the design model will not take more than the
given computing time. Further assume that the platform guarantees the syn-
chronous hypothesis in the sense that the times for handling system functions
e.g. collecting external events can be ignored compared with the computing times
and deadlines for the annotated tasks. Under these assumptions on the platform,
code generation is essentially to resolve non-determinism in the design model.

Deterministic semantics A model can exhibit two types of non-determinism:
time non-determinism, i.e. that enabled transition can be taken at any time point

within the time-zone, and external non-determinism i.e. that several actions may
be simultaneously present from the environment. To overcome the problems
introduced by this we adopt a deterministic semantics that de�ne a subset of
the behaviour. External non-determinism is resolved by de�ning priorities for
action transitions in the controller. If several transitions are enabled in a state
the one with the highest priority is taken. Time non-determinism is resolved
by adopting the so-called maximal-progress assumption [11]. Maximal-progress
means that the controller should take all enabled transitions until the system
stabilises, i.e. no more action transitions are enabled.

Structure of the generated code Times is currently able to generate code for
a small generic operating system (brickOS), and code for platform independent
execution. The generated code is in C and an optimising compiler is used to
compile the �nal program. For both cases, the control structure of the timed
automata is encoded into four tables and two functions. These are used by an
event handling procedure which is invoked on events (such as timeouts and ar-
rival of external events) to update the state of the controller. When an action
transition has been executed the event handling procedure will continue to ex-
ecute transitions until a stable state is reached, i.e. it implements the maximal
progress or run-to-completion semantics.

Code generation for brickOS brickOS is a small open source operating sys-
tem designed to run on the Hitachi H8 equipped RCX control brick in the
LEGOMindstorms system. We consider brickOS to be a reasonable example
of a target platform running a small operating system. On this target we let the
tasks execute as separate threads which are scheduled by the underlying operat-
ing system. Due to limited support for interrupts the event handling procedure
is executed every time the OS scheduler is executed (i.e. every 20 ms).

Platform-independent code generation The platform independent target does not
rely on any speci�c operating system, instead it implements its own run-time
system based on the scheduler automaton created for schedulability analysis.
The run-time system also includes code to handle task release and execution,
and an event handler that is invoked periodically to poll for new events. The
current implementation of the platform independent code can only handle non-
preemptive tasks.

4 Tool Overview

In this section, we present the main features of Times, the tool architecture and
the main components in the implementation.

4.1 Features

Figure 5 illustrates a design process using Times. As shown in the use case,
Times o�ers the following main features:

• Functional specification

• Assumptions about environment

• Worst Case Response Times

• Functional and safety requirements

• Task code

• Executable application code

• Task parameters

• Control structure

• Scheduling strategy

• Precedence constraints

• Resource constraints

• Environment model

Modelling

Simulation

Verification

Schedulability analysis

Code Synthesis

Animation

OK?

• Logical and temporal properties

OK?

NO

NO

YES

YES

YES

NO
OK?

Figure5. The design process using Times.

� Editor (see Figure 6) to graphically model a system and the abstract be-
haviour of its environment. A system description consists of a task set and
a network of timed automata extended with the tasks.

A task is described by the task code (in C), its (worst-case) computation time
and (relative) deadline, and if applicable optional parameters for priority (for
�xed priority scheduling), period (for periodic tasks), and minimal inter-
arrival time (for sporadic tasks). It is also possible to specify precedence
constraints on the tasks using an editor for AND/OR precedence graphs,
and resource access patterns using semaphores.

� Simulator (see Figure 7) to visualise the dynamic behaviour of a system
model as Gantt charts and message sequence charts. The simulator can be
used to randomly generate possible execution traces, or alternatively the
user can control the execution by selecting the transitions to be taken. The
simulator can also be used to visualise error traces produced in the analysis
phase.

� Analyser to check that the tasks associated to a system model are guar-
anteed to always meet their deadline. In case schedulability analysis �nds a
task that may fail to meet its deadline, a trace is generated and visualised in
the simulator. It is also possible to compute the worst-case response times
of individual tasks. Recently, an improved schedulability analysis algorithm
has been developed for tasks with �xed priorities without dependencies [6].
The schedulabilty analysis has also been extended to handle resource and
precedence constraints [8]. In addition to scheduling, it is possible analyse
safety and liveness properties speci�ed as temporal logic formulae.

� Compiler to generate executable C code from timed automata with tasks.
The compiler assumes that the target platform ensures the asynchronous

Figure6. The Times editor.

hypothesis and that the task code can be executed in the speci�ed computa-
tion time. To produce executable code, the compiler relies on a deterministic
re�nement of the semantics that realise a subset of the behaviour speci-
�ed in the timed automata of a system model. In this way, the generated
code is guaranteed to satisfy analysis results from e.g. schedulabilty analysis
when executed on the target platform. The currently implemented compiler
supports code generation for: the brickOS operating system (that uses the
scheduler in the brickOS runtime system), platform independent code (C
code for GNU gcc, including code for a scheduling policy), and code for the
Animator of Times.

� Animator to transform hybrid automata modeling the controlled environ-
ment into C code simulating the controlled objects in the environment of
the embedded system. The simulated environment enables the designer to
experiment with the design prior to implementation.

4.2 Implementation

The architecture of the Times tool is illustrated in Figure 8. Logically it is
divided in three main parts:

� Graphical User Interface consisting of editors, simulator, analyser, and
animator, as described above. The graphical user interface is implemented

Figure7. The Times simulator.

entirely in Java and uses XML to represent the system descriptions both
internally and externally (on �le).

� Server consisting of two parts: a scheduler generator implemented in Java,
and a module for schedulabilty analysis based on the Uppaal engine [9] with
extensions, like the rest of the Uppaal engine implemented in C++. The
scheduler generator produces a scheduler automaton based on input from the
editor, which is composed in parallel with an annotated version of the original
system automata. The parallel composition is analysed by on-the-�y reacha-
bility techniques in the schedulabilty analysis module. Currently supported
scheduling policies are: rate monotonic, deadline monotonic, �xed priority
scheduling (with user de�ned priorities), earliest deadline �rst (EDF), and
�rst come �rst served (FCFS). All scheduling policies support preemptive or
non-preemptive task sets.

� Compiler that takes as input the XML system representation from the
editor and the task code segments to produce executable code of the appli-
cation. The generated code consists of three main parts: a set of C-functions
(look-up tables) representing the automata of the system representation, a
generic part storing and updating the current state according to the look-up
tables, and possibly an implementation of the scheduling strategy (in case
platform independent code is produced).

Figure8. The Times tool architecture.

5 Applications and Current Development

Case Studies Currently we are in the process of using Times to verify reliable
message transmission with TTCAN (Timed Triggered CAN). So far, the only
non-trivial example using Times is the development of the control software of
a production cell (a well-studied case in veri�cation), consisting of an industrial
robot, a press and two transportation belts to process and move metal plates.
The robot controller is designed as a timed automaton annotated with tasks.
A complete description of the case study can be found in [2]. It is a non-trivial
application involving 12 tasks (task types), 7 automata, 17 integers, 24 booleans
and 31 clock variables (7 in the model and 24 in the scheduler). The schedulability
(and a number of other requirements) of the system is veri�ed on a machine
equipped with two 1.8 GHz AMD processors and 2 GB of main memory, running
Mandrake Linux. Times consumes 207 MB of memory and terminates in 11
minutes. Using the option for over approximation (based on the convex-hull
approximation, the analysis requires only 13 MB and 9 seconds on the same
machine.

UML SPT pro�le SPT (Scheduling, Performance, and Time) speci�cation
is a UML pro�le developed recently as an extension of the UML standard to
model time and time-related aspects of embedded systems. An ongoing work has
been initiated with I-Logix to develop Times as a plug-in tool for schedulability
analysis of UML diagrams in Rhapsody, annotated with stereotypes, constraints,
and tag de�nitions according to the UML SPT pro�le.

Appendix: A Brief Tutorial

This section contains a step-by-step tutorial describing how to create and verify
a model using the Times tool.

Creating a project: Run the Times tool and it will open an editor with a
new empty project. Specify the project name SporadicPeriodic in the Name
�eld of the project attribute window. Save the project (File!Save as...) using
the name SporadicPeriodic.xml.

Adding tasks: Start modelling by creating four tasks and specifying their
parameters in the task table as shown in Figure 9(a). In order to add a periodic
or non-periodic task to the task table right click inside the table and select
the item Add periodic task or Add controlled task respectively. To change a task
parameter double click on an appropriate �eld of the table and type in a new
value. Select preemptive Dealine Monotonic scheduling policy as shown in Figure
9(a).

(a) Task table (b) Project properties

Figure9. Times project elements.

A task table can be imported from an external text �le using menu command
File!Import.... An example �le representing the task table from the Figure 9(a)
is shown in Figure 10.

Declaring global variables: Declare three integer variables i, aver and n in
the global declarations table of the properties window as shown in Figure 9(b).
In order to add a variable right click inside the table and select the item Add
declaration from the popup menu. Assign an appropriate name to each variable
and set the value of the Type �eld to int by making a selection from the drop-
down menu.

Figure10. Task table speci�ed as a text �le.

Creating a control structure: The next step is creating timed automaton
representing the release pattern for task A, or rather an automaton template
that will be instantiated later forming a runtime release control thread for the
task A.

Right click on the project tab and select the item Add template from the
popup menu. A new tab named Template1 will be added to the project. Open
it and enter Automaton_A in the Name �eld of the properties window. Type in
const N in the Parameters �eld and add two local clocks x and y as shown in
Figure 11(a).

(a) Template properties (b) Creating a transition

Figure11. Creating an automaton template.

Draw the timed automaton shown in Figure 6 in the drawing area under the
template tab. In order to create a location, double click on the drawing area,
or right click on it and select Create!Location from the popup menu. Drag a

Task name Interface expression Semaphores

A aver:=(n==0?i:(aver*n+i)(n+1)) res1(0,1)

B i:=i*i res1(4,5),res2(1,2)

C i:=i+1 res1(3,7),res2(1,2)

D i:=(i>=24?0:i) res1(4,5)

Table1. Task interfaces and semaphores

location to arrange its position. In order to modify location arguments double
click on it and make changes using an inline editor. In order to mark location as
initial, right click on it and select Location!Make initial from the popup menu.

To create a transition from one location to another, double click on a port
(blue cross) of the source location, move the pointer to the destination location
and click on its port as shown in Figure 11(b). Nails (turning points) can also
be added to the transition line by clicking at their positions while creating a
transition. The trasition arguments are modi�ed using the same procedure as
applied to the location arguments.

Specifying interfaces: After a task has completed its execution it may update
some of the system variables. In order to re�ect that in the model an interface
between the task and the control structure is de�ned. In the Times model an
interface is an expression assigned to every task describing how the global vari-
ables are changed by the end of its execution. In order to de�ne an interface
select a task in the task table, then open the Tasks tab, and enter an expression
in the Interface �eld. Use expressions from Table 5 to specify interfaces for all
the tasks.

Instantiating the control structure: The automaton template that we have
created on an earlier stage should be instantiated. In order to do that open the
project tab and create a process in the drawing area by right clicking on it and
selecting Create!Process from the popup menu. Set the name of the process to
Control_A, the Template argument to Automaton_A and pass 5 as a constant
parameter.

Introducing semaphores: Let us assume that tasks are using a shared re-
source. In order to keep it in a consistent state only one party at a time is al-
lowed to access it. To achieve this, a mutual exclusion mechanism between tasks
is implemented based on the semaphores associated with the shared resources.
The lock and unlock primitives, which delimit a critical section, are de�ned by
the time points relative to the task execution time. The list of semaphores with
lock/unlock time points is speci�ed for each task in the Semaphores �eld of the
Tasks tab in the form:

semaphore_name(lock_timepoint; unlock_timepoint); :::

For example, an expression res1(4; 5) is read "the task has an exclusive access
to the resource controlled by a semaphore res1 for 1 time unit staring at the
moment it has been running for 4 time units". In our example there are two
resources guarded by semaphores res1 and res2 respectively. Use expressions
from Table 5 to de�ne semaphores for all the tasks.

Creating a precedence graph: Sometimes tasks have to respect certain prece-
dence relations to express, for example, explicit input/output relation between
them. A precedence graph allows us to describe these relations inducing a partial
order over a task set. Here we show how to specify such order between task D
and task C such that task D will always precede task C. Open the Precedence tab,
and create two graph nodes using procedure similar to one of creating locations
in the automaton template. Set the task argument to task_D for one node and
task_C for another. Create a precedence relation starting at node task_D and
ending at node task_C using the technique similar to one for creating transitions
in the automaton template. The �nal result should look as in Figure 12.

task_D task_C

Figure12. The precedence graph

Simulating the system: Simulation is the �rst step in the model analysis.
Run the simulator selecting item Run!Simulation in the main menu. A syntax
checking procedure will be run automatically and if the model is syntactically
correct, the simulator window will be opened immediately (see Figure 7).

The simulator window is divided in four parts: Enabled transitions, Message
sequence chart (MSC), Gantt chart, and Watches. In the �rst part there is a list of
transitions that the system can perform from the current state. The message se-
quence chart displays processes within the control structure and communications
between those. For example, the timed automaton, which we have instantiated
with the name Process_A is displayed as the leftmost process. Process that
controls releases of periodic tasks as well as the scheduler process have been
generated automatically by the Times tool. Red horizontal arrows in MSC show
message passing between the processes. For example, the scheduler process re-
ceives noti�cations about task releases from the task control processes. On the
Gantt chart one can see the timeline with the tasks being executed, and the
processor idle time. The watches part has a tabbed layout and is intended for
tracing the values of variables, clocks, and other readings such as processor uti-
lization, and task queue utilization during simulation. Use the control buttons
to start simulation in a step-by-step or random run mode.

Let us check using the simulator that the precedence relation between task
D and task C holds, and the shared resource is accessed by the tasks correctly.
Indeed, as follows from the Gantt chart shown in Figure 7, task C is preempted
twice by task D due to a precedence relation, even though task C has a higher
priority. Shared resource is exclusively accessed by the tasks causing blocking of
the task B on an interval [40,42], and task A on an interval [66,67].

Analysing schedulability: Schedulability analysis checks, exploring all possi-
ble execution traces, whether resources needed to execute tasks are assigned so
that all the tasks meet their deadlines. Run the schedulability analysis selecting
the item Run!Schedulability analysis from the main menu. The result should be
SATISFIED. Once schedulability analysis has been performed and the result is
positive, the values of the task worst case response times (WCRT) are available.
These values are the longest times needed for a task to complete its execution
taken among all its instances. In order to display a list of WCRT values press
the Show WCRT button in a schedulability analysis dialog window. Clearly, in a
correct system WCRT value of a given task should be greater or equal than its
execution time and less or equal than its relative deadline.

Checking safety and liveness properties: Apart from schedulability, other
model properties can be checked. Safety properties assert what the system al-
lowed to do, or equivalently, what it may not do, while liveness properties spec-
ify what the system must do. Open the veri�er dialog window by selecting
Run!Veri�cation from the main menu. Enter and check the following proper-
ties:

A[] (aver<10) (The variable aver is always lower than 10)
E<> (aver>5) (The variable aver eventually becomes greater than 5)

After obtaining the result of the veri�cation of the last property press the
Show trace button in the veri�cation dialog window. The shortest execution trace
satisfying the liveness property will be loaded in the simulator. Use the variable
watches to check that the value of the variable aver is greater than 5. Navigate
the simulator one step back along the trace and ensure that aver is less than 5.

Generating executable application code: Before generating executable ap-
plication code out of the model it is necessary to associate appropriate pieces
of the code with every task. Close the simulator and open the Tasks tab in the
editor. Under this tab there is a text editor where you can create the code and
associate it with the task. Enter the code from Table 5 to the corresponding task
code editors and save each piece in a separate �le on the disk. A reference to the
saved �le should appear in the Code pointer �eld in the Tasks tab.

Select Run!Code synthesis in the main menu to run the code generator. This
will create C-code in SporadicPeriodic.c and SporadicPeriodic.h �les. Additional
target speci�c �les will be created in the same directory together with the make

Task A Task B

if(n == 0) { #include <math.h>

aver = i;

} else { i = pow(i , 2);

aver = (aver*n+i)/(n+1);

}

Task C Task D

i = i + 1; if (i >= 24)

i = 0;

Table2. Task code.

�le. Build an application by executing make in the source directory.

References

1. T. Amnell, E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Times - a tool
for modelling and implementation of embedded systems. In Proc. of TACAS'02,
volume 2280 of LNCS, pages 460�464. Springer, 2002.

2. Tobias Amnell, Elena Fersman, Paul Pettersson, Hongyan Sun, and Wang Yi. Code
synthesis for timed automata. Nordic Journal of Computing, 9(4):269�300, 2002.

3. F. Balarin, L. Lavagno, P. Murthy, and A. Sangiovanni-vincentelli. Scheduling
for embedded real-time systems. IEEE Design & Test of Computers, 15(1):71�82,
1998.

4. G. C. Buttazzo. Hard Real-Time Computing Systems. Predictable Scheduling Al-

gorithms and Applications. Kulwer Academic Publishers, 1997.
5. C. Ericsson, A. Wall, and W. Yi. Timed automata as task models for event-driven

systems. In Proceedings of Nordic Workshop on Programming Theory, 1998.
6. E. Fersman, L. Mokrushin, P. Pettersson, and W. Yi. Schedulability analysis using

two clocks. In Proc. of TACAS'03, volume 2619 of LNCS, pages 224�239. Springer,
2003.

7. E. Fersman, P. Pettersson, and W. Yi. Timed automata with asynchronous pro-
cesses: Schedulability and decidability. In Proc. of TACAS'02, volume 2280 of
LNCS, pages 67�82. Springer, 2002.

8. Elena Fersman and Wang Yi. A generic approach to schedulability analysis of
real-time tasks. Submitted for publication., 2003.

9. K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a Nutshell. Int. Journal on

Software Tools for Technology Transfer, 1(1�2):134�152, October 1997.
10. R. Rajkumar, L. Sha, and J.P. Lehoczky. An experimental investigation of syn-

chronisation protocols. In Proceedings 6th IEEE Workshop on Real-Time Operating

Systems and Software, pages 11�17. IEEE Computer Society Press, 1998.
11. Wang Yi. A Calculus of Real Time Systems. PhD thesis, Department of Computer

Science, Chalmers University of Technology, 1991.

