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Abstract
SymTA/S is a system-level performance and timing analy-

sis approach based on formal scheduling analysis techniques
and symbolic simulation. The tool supports heterogeneous
architectures, complex task dependencies and context aware
analysis. It determines system-level performance data such
as end-to-end latencies, bus and processor utilization, and
worst-case scheduling scenarios. SymTA/S furthermore com-
bines optimization algorithms with system sensitivity anal-
ysis for rapid design space exploration. This paper gives
an overview of the current research interests in the SymTA/S
project.

1. Introduction

With increasing embedded system complexity, there is a
trend towards heterogeneous, distributed architectures. Mul-
tiprocessor system on chip designs (MpSoCs) use complex
on-chip networks to integrate multiple programmable pro-
cessor cores, specialized memories, and other intellectual
property (IP) components on a single chip. MpSoCs have be-
come the architecture of choice in industries such as network
processing, consumer electronics, and automotive systems.
Their heterogeneity inevitably increases with IP integration
and component specialization, which designers use to opti-
mize performance at low power consumption and competi-
tive cost. Tomorrow’s MpSoCs will be even more complex,
and using IP library elements in a ‘cut-and-paste’ design style
is the only way to reach the necessary design productivity.

Systems integration is becoming the major challenge in
MpSoC design. Embedded software is increasingly im-
portant to reach the required productivity and flexibil-
ity. The complex hardware and software component in-
teractions pose a serious threat to all kinds of perfor-
mance pitfalls, including transient overloads, memory over-
flow, data loss, and missed deadlines. The Interna-
tional Technology Roadmap for Semiconductors, 2003 Edi-
tion, (http://public.itrs.net/Files/2003ITRS/Design2003.pdf)
names system-level performance verification as one of the
top three codesign issues.

Simulation is state of the art in MpSoC performance ver-
ification. Tools from many suppliers support cycle-accurate

cosimulation of a complete hardware and software system.
The cosimulation times are extensive, but developers can
use the same simulation environment, simulation patterns,
and benchmarks in both function and performance verifica-
tion. Simulation-based performance verification, however,
has conceptual disadvantages that become disabling as com-
plexity increases.

MpSoC hardware and software component integration in-
volves resource sharing that is based on operating systems
and network protocols. Resource sharing results in a con-
fusing variety of performance runtime dependencies. For
example, figure 1 shows a CPU subsystem executing three
processes. Although the operating system activatesT1, T2,
andT3 strictly periodically (with periodsP1, P2, andP3, re-
spectively), the resulting execution sequence is complex and
leads to output bursts.

As figure 1 shows,T1 can delay several executions ofT3.
After T1 completes,T3 –with its input buffers filled– tem-
porarily runs in burst mode with the execution frequency lim-
ited only by the available processor performance. This leads
to transientT3 output burst, which is modulated byT1’s exe-
cution.

Figure 1 does not even include data-dependent process ex-
ecution times, which are typical for software systems, and
operating system overhead is neglected. Both effects further
complicate the problem. Yet finding simulation patterns -or
use cases- that lead to worst-case situations as highlighted in
Figure 1 is already challenging.

Network arbitration introduces additional performance de-
pendencies. Figure 2 shows an example. The arrows indicate
performance dependencies between the CPU and DSP sub-
systems that the system function does not reflect. These de-
pendencies can turn component or subsystem best-case per-
formance into system worst-case performance -a so-called
scheduling anomaly. Recall theT3 bursts from Figure 1 and
consider thatT3’s execution time can vary from one execu-
tion to the next. There are two critical execution scenarios,
called corner cases: The minimum execution time forT3 cor-
responds to the maximum transient bus load, slowing down
other components’ communication, and vice versa.

The transient runtime effects shown in figures 1 and 2 lead
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Figure 1. CPU Subsystem

Figure 2. Scheduling Anomaly

to complex system-level corner cases. The designer must
provide a simulation pattern that reaches each corner case
during simulation. Essentially, if all corner cases satisfy the
given performance constraints, then the system is guaranteed
to satisfy its constraints under all possible operation condi-
tions. However, such corner cases are extremely difficult to
find and debug, and it is even more difficult to find simula-
tion patterns to cover them all. Reusing function verification
patterns is not sufficient because they do not cover the com-
plex nonfunctional performance dependencies that resource
sharing introduces. Reusing component and subsystem veri-
fication patterns is not sufficient because they do not consider
the complex component and subsystem interactions.

The system integrator might be able to develop additional
simulation patterns, but only for simple systems in which the
component behavior is well understood. Manual corner case
identification and pattern selection is not practical for com-
plex MpSoCs with layered software architectures, dynamic
bus protocols, and operating systems. In short, simulation-
based approaches to MpSoC performance verification are
about to run out of steam, and should essentially be enhanced
by formal techniques that systematically reveal and cover
corner cases.

Real-time systems research has addressed scheduling anal-
ysis for processors and buses for decades, and many pop-
ular scheduling analysis techniques are available. Exam-
ples include rate-monotonic scheduling and earliest deadline
first [16], using both static and dynamic priorities; and time-

slicing mechanisms like TDMA or round-robin [5]. Some
extensions have already found their way into commercial
analysis tools, which are being established e. g. in the au-
tomotive industry to analyze individual units that control the
engine or parts of the electronic stability program.

The techniques rely on a simple yet powerful abstraction
of task activation and communication. Instead of consid-
ering each event individually, as simulation does, formal
scheduling analysis abstracts from individual events to event
streams. The analysis requires only a few simple characteris-
tics of event streams, such as an event period or a maximum
jitter. From these parameters, the analysis systematically de-
rives worst-case scheduling scenarios, and timing equations
safely bound the worst-case process or communication re-
sponse times.

It might surprise that –up to now– only very few of these
approaches have found their way into the SoC (system-on-
chip) design community by means of tools. Regardless of the
known limitations of simulation such as incomplete corner-
case coverage and pattern generation, timed simulation is still
the preferred means of performance verification in MpSoC
design. Why then is the acceptance of formal analysis still
very limited?

One of the key reasons is a mismatch between the schedul-
ing models assumed in most formal analysis approaches and
the heterogenous world of MpSoC scheduling techniques and
communication patterns that are a result of a) different appli-
cation characteristics; b) system optimization and integration
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which is still at the beginning of the MpSoC development
towards even more complex architectures.

Therefore, a new configurable analysis process is needed
that can easily be adapted to such heterogeneous architec-
tures. We can identify different approaches: the holistic ap-
proach that searches for techniques spanning several schedul-
ing domains; and hierarchical approaches that integrate local
analysis with a global flow based analysis, either using new
models or based on existing models and analysis techniques.

In the following section, we will deeply review the exist-
ing analysis approaches from the literature on real-time anal-
ysis and identify key requirements for their application to
MpSoC design. In Section 3, we introduce the fundamen-
tals and basic models of our unique SymTA/S technology.
Section 4 surveys a large number of extensions that enable
the analysis of complex applications. Section 5 shows how
the overall analysis accuracy can be deliberately increased
when designers specify few additional correlation informa-
tion. Automatic optimizations using evolutionary algorithms
is explained in Section 6, while Section 7 introduces the idea
of sensitivity analysis. An experiment is carried out in sec-
tion 8. We interpret the experimental results, before we draw
our conclusions.

2. Formal Techniques in System Performance
Analysis

Formal approaches to heterogeneous systems are rare. The
“holistic” approach [28, 6] systematically extends the classi-
cal scheduling theory to distributed systems. However, be-
cause of the very large number of dependencies, the com-
plexity of the equations underlying the analysis grows with
system size and heterogeneity. In practice, the holistic ap-
proach is limited to those system configurations which sim-
plify the equations, such as deterministic TDMA networks.
However, there is, up to now, no general procedure to set-up
and solve the holistic equations for arbitrary systems. This
could explain, why such holistic approaches are largely ig-
nored by the SoC community even though there are many
proposals for multiprocessor analysis in real-time comput-
ing.

Gresser [7] and Thiele [27] established a different view
on scheduling analysis. The individual components or sub-
systems are seen as entities which interact, or communicate,
via event streams. Mathematically speaking, the stream rep-
resentations are used to capture the dependencies between
the equations (or equations sets) that describe the individual
components timing. The difference to the holistic approach
(that also captures the timing using system-level equations)
is that the compositional models are well-structured with re-
spect to the architecture. This is considered a key benefit,
since the structuring significantly helps designers to under-
stand the complex dependencies in the system, and it enables
a surprisingly simple solution. In the “compositional” ap-
proach, an output event stream of one component turns into
an input event stream of a connected component. Schedula-
bility analysis, then, can be seen as a flow-analysis problem

for event streams that, in principle, can be solved iteratively
using event stream propagation.

Both approaches use a highly generalized event stream
representation to tame the complexity of the event streams.
Gresser uses a superpositionalevent vector system, which is
then propagated using complex event dependency matrices.
Thiele et. al. use a more intuitive model. They usenumer-
ical upper and lower bound eventarrival curves for event
streams, and similarservice curvesfor execution modeling.

This generality, however, has its price. Because they intro-
duced new stream models, both Thiele and Gresser had to de-
velop new scheduling analysis algorithms for the local com-
ponents that utilize these models; the host of existing work
in real-time system can not be re-used. Furthermore, the new
models are far less intuitive than the ones known from the
classical real-time systems research, e. g. the model of rate-
monotonic scheduling with its periodic tasks and worst-case
execution times. A system-level analysis should be simple
and comprehensible, otherwise its acceptance is extremely
doubtful.

The compositional idea is a good starting point for the fol-
lowing considerations. It uses some event stream representa-
tion to allow component-wise local analysis. The local anal-
ysis results are, then, propagated through the system to reach
a global analysis result. We don’t necessarily need to develop
new local analysis techniques if we can benefit from the host
of work in real-time scheduling analysis.

A key novelty of our unique SymTA/S approach is that we
use intuitivestandard event models(section 3.2) from real-
time systems research rather than introducing new, complex
stream representations. Periodic events or event streams with
jitter and bursts [31] are examples of standard models that
can be found in literature. Our SymTA/S technology lets
us extract this information from a given schedule and auto-
matically interface or adapt the event stream to the specific
needs within these standard models, so that designers and
analysts can safely apply existing subsystem techniques of
choice without compromising global analysis.

3. The SymTA/S approach

SymTA/S [8] is a formal system-level performance and
timing analysis tool for heterogeneous SoCs and distributed
systems. The application model of SymTA/S is described
in section 3.1. The core of SymTA/S is our recently de-
veloped technique to couple local scheduling analysis algo-
rithms using event streams [21, 24]. Event streams describe
the possible I/O timing of tasks. In our compositional per-
formance analysis methodology [22, 23], input and output
event streams are described by standard event models which
are introduced in detail in section 3.2. The analysis composi-
tion using event streams is described in section 3.3. A second
key property of our compositional approach is the ability to
adapt the possible timing of events in an event stream. The
event stream adaptation concept is described in section 3.4.



3.1 SymTA/S application model
A task is activated due to an activating event. Activating

events can be generated in a multitude of ways, including
expiration of a timer, external or internal interrupt, and task
chaining. Our existing approach assumes that each task has
one input FIFO. A task reads its activating data from its input
FIFO and writes data into the input FIFO of a dependent task.
A task may read its input data at any time during one execu-
tion. We therefore assume that the data needs to be available
at the input during the whole execution of the task. We also
assume that input data is removed from the input FIFO at the
end of one execution.

A task needs to be mapped on acomputationor commu-
nication resourceto execute. When multiple tasks share the
same resource, then two or more tasks may request the re-
source at the same time. In order to arbitrate request con-
flicts, a resource is associated with aschedulerwhich selects
a task to which it grants the resource out of the set of ac-
tive tasks according to some scheduling policy. Other active
tasks have to wait.Scheduling analysiscalculates worst-case
(sometimes also best-case) task response times, i.e. the time
between task activation and task completion, for all tasks
sharing a resource under the control of a scheduler. Schedul-
ing analysis guarantees that all observable response times
will fall into the calculated [best-case, worst-case] interval.
We therefore say that scheduling analysis is conservative. We
assume that a task writes its output data at the end of one ex-
ecution. This assumption is standard in scheduling analysis.

Figure 3. System modeled with SymTA/S

Figure 3 shows an example of a system modeled with
SymTA/S. The system consists of 2 resources each with 2
tasks mapped on it.R1 andR2 are both assumed to be prior-
ity scheduled.Src1 andSrc2 are the sources of the external
activating events at the system inputs. The possible timing
of activating events is captured by so-calledevent models,
which are introduced in section 3.2.

3.2 SymTA/S standard event models
Event models can be described by sets of parameters. For

example, aperiodic with jitterevent model has two parame-
ters(P , J ) and states that each event generally occurs period-
ically with periodP , but that it can jitter around its exact po-
sition within a jitter intervalJ . Consider an example where
(P , J ) = (4,1). This event model is visualized in figure 4.
Each gray box indicates a jitter interval of lengthJ = 1. The
jitter intervals repeat with the event model periodP = 4. The

figure additionally shows a sequence of events which satis-
fies the event model, since exactly one event falls within each
jitter interval box, and no events occur outside the boxes.
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Figure 4. Example of an event stream that sat-
isfies the event model (P = 4, J = 1)

An event model can also be expressed using twoevent
functionsηu(∆t) andηl (∆t).

Definition 1 (Upper Event Function) The upper event
function ηu(∆t) specifies themaximum number of events
that can occur during any time interval of length∆t.

Definition 2 (Lower Event Function) The lower event
functionηl (∆t) specifies theminimumnumber of events that
have to occur during any time interval of length∆t.

Event functions are piecewise constant step functions with
unit-height steps, each step corresponding to the occurrence
of one event. Figure 5 shows the event functions for the event
model (P = 4, J = 1). Note that at the points where the
functions step, the smaller value is valid for the upper event
function, while the larger value is valid for the lower event
function (indicated by dark dots). For any time interval of
length∆t, the actual number of events is bound by the upper
and lower event functions. Event functions resemble arrival
curves [3] which have been successfully used by Thiele et al.
for compositional performance analysis of network proces-
sors [26]. In the following, the dependency ofηu andηl on
∆t is omitted for brevity.
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Figure 5. Upper and lower event functions for
the event model (P = 4, J = 1)

A periodic with jitterevent model is described by the fol-
lowing event functionsηu

P+J andηl
P+J [23].

ηu
P+J =

⌈
∆t + J

P

⌉
(1)

ηl
P+J = max

(
0,

⌊
∆t− J

P

⌋)
(2)



To get a better feeling for event functions, imagine a slid-
ing window of length∆t that is moved over the (infinite)
length of an event stream. Consider∆t = 4 (gray vertical
bar in figure 5). The upper event function indicates that at
most 2 events can be observed during any time interval of
length∆t = 4. This corresponds e. g. to a window position
betweent0 + 8.5 andt0 + 12.5 in figure 4. The lower event
function indicates that no events have to be observed during
∆t = 4. This corresponds e. g. to a window position between
t0 +12.5 andt0 +16.5 in figure 4.

Let us further introducedistancefunctions δmin(N ≥ 2)
and δmax(N ≥ 2), which return the minimum respectively
maximum distance betweenN ≥ 2 consecutive events in an
event stream.

Definition 3 (Minimum Distance Function) The mini-
mum distance functionδmin(N ≥ 2) specifies theminimum
distance between N≥ 2 consecutive events in an event
stream.

Definition 4 (Maximum Distance Function) The maxi-
mumdistance functionδmax(N ≥ 2) specifies themaximum
distance between N≥ 2 consecutive events in an event
stream.

For periodic with jitterevent models we obtain

δmin(N≥ 2) = max{0, (N−1)∗P − J } (3)

δmax(N≥ 2) = (N−1)∗P + J (4)

For example, the minimum distance between 2 events in a
periodic with jitterevent model with(P = 4, J = 1) is 3 time
units, and the maximum distance between 2 events is 5 time
units.

If in a periodic with jitter event models, the jitter is larger
than the period, then two or more events can occur at the
same time, leading to bursts. To describe abursty event
model, theperiodic with jitter event model can be extended
with admin parameter that captures the minimum distance be-
tween events within a burst. A more detailed discussion can
be found in [23].

Additionally, sporadicevents are also common [22]. We
model sporadic event streams with the same set of param-
eters as periodic event streams. The difference is that for
sporadic event streams, the lower event functionηl (∆t) is al-
ways zero. The maximum distance functionδmax(N≥ 2) ap-
proaches infinity for all values ofN [23]. Note thatjitter and
dmin parameters are also meaningful in sporadic event mod-
els, since they allows to accurately capture sporadic transient
load peaks.

Event models with this small set of parameters have sev-
eral advantages. Firstly, they are easily understood by a de-
signer, since period, jitter etc. are familiar event stream prop-
erties. Secondly, the corresponding event functions and dis-
tance functions can be evaluated quickly, which is important
for scheduling analysis to run fast. Thirdly, as we will see in
section 3.3.2, compositional performance analysis requires

the modeling of possible timing of output events for propa-
gation to the next scheduling component. Our event models
allow us to specify simple rules to obtain output event mod-
els (section 3.3.1) that can be described with the same set of
parameters as the activating event models. Therefore, we do
not have to depart from our event models independent of size
and structure of the composed system (hence the term ‘stan-
dard’). This makes our compositional performance analysis
approach very general.

3.3 Analysis composition

In our compositional performance analysis methodol-
ogy [22, 23], we alternate local scheduling analysis and event
model propagation, during system-level analysis. This re-
quires the modeling of possible timing of output events for
propagation to the next scheduling component. In the fol-
lowing, first we explain the output event model calculation.
Then we present our compositional analysis approach.

3.3.1 Output event model calculation

Our event models allow us to specify simple rules to ob-
tain output event models that can be described with the same
set of parameters as the activating event models. The out-
put event model period obviously equals the activation pe-
riod. The difference between maximum and minimum re-
sponse times (the response time jitter) is added to the activat-
ing event model jitter, yielding the output event model jitter
(equation 5).

Jout = Jact +(tresp,max− tresp,min) (5)

Note that if the calculated output event model has a larger
jitter than period, this information alone would indicate that
an early output event could occur before a late previous out-
put event, which obviously cannot be correct. In reality, out-
put events cannot follow closer than the minimum response
time of the producer task. This is indicated by the value of
theminimum distanceparameter.

3.3.2 Analysis composition using standard event models

In the following, we explain our compositional analysis ap-
proach using the system example in figure 3. Initially, only
event models at the external system inputs are known. Since
an activating event model is available for each task onR1, a
local scheduling analysis of this resource can be performed
and output event models are calculated forT1 andT3 (sec-
tion 3.3.1). In the second phase, all output event models are
propagated. The output event models become the activating
event models forT2 andT4. Now, a local scheduling analy-
sis ofR2 can be performed since all activating event models
are known.

However, it is sometimes impossible to perform system
level scheduling analysis as explained above. This is shown
in the system example in figure 6.



Figure 6. Example of a system with cyclic
scheduling dependency

Figure 6 shows a system consisting of 2 resources,R1 and
R2, each with 2 tasks mapped on it. Initially, only the acti-
vating event models ofT1 andT3 are known. At this point
the system cannot be analyzed, because on every resource an
activating event model for one task is missing. I.e. we need
to calculate response times onR1 to be able to analyzeR2.
On the other hand, we cannot analyzeR1 before analyzing
R2. We call this problemcyclic scheduling dependency.

One solution to this problem is to initially propagate all
external event models along all system paths until an initial
activating event model is available for each task [20]. This
approach is safe since on one hand scheduling cannot change
an event model period. On the other hand, scheduling can
only increasean event model jitter [31]. Since a smaller jitter
interval is contained in a larger jitter interval, the minimum
initial jitter assumption is safe.

After propagating external event models, global system
analysis can be performed. A global analysis step consists
of two phases [23]. In the first phase local scheduling anal-
ysis is performed for each resource and output event models
are calculated (section 3.3.1). In the second phase, all out-
put event models are propagated. It is then checked if the
first phase has to be repeated because some activating event
models are no longer up-to-date, meaning that a newly prop-
agated output event model is different from the output event
models that was propagated in the previous global analysis
step. Analysis completes if either all event models are up-
to-date after the propagation phase, or if an abort condition,
e. g. the violation of a timing constraint has been reached.

3.4 Event Stream Adaptation
A key property of our compositional performance analysis

approach is the ability to adapt the possible timing of events
in an event stream (expressed through the adaptation of an
event model [23]). There are several reasons to do this. It
may be that a scheduler or a scheduling analysis for a par-
ticular component requires certain event stream properties.
For example, rate-monotonic scheduling and analysis [16]
require strictly periodic task activation. Alternatively, an
integrated IP component may require certain event stream
properties. External system outputs may also impose event
model constraints, e. g. a minimum distance between out-
put events or a maximum acceptable jitter. Such a constraint
may be the result of a performance contract with an external
subsystem [29]. Event stream adaptation can also be done

for the sole purpose oftraffic shaping[23]. Traffic shaping
can be used e. g. to reduce transient load peaks, in order to
obtain more regular system behavior. Practically, we distin-
guish event modeladaptationfrom event modelshapingin
SymTA/S [25]. Adaptation is required to satisfy an event
model constraint, while shaping is voluntary to obtain more
regular system behavior. We have currently implemented two
types of event adaptation functions (EAF): aperiodic EAF
produces periodic event stream from aperiodic with jitter in-
put event stream. Admin-EAF enforces a minimum distance
between output events.

4. Complex embedded applications

Compositional performance analysis as described so far is
not applicable to embedded applications with complex task
dependencies. This is because it uses a simple activation
model where the completion of one task directly leads to the
activation of a dependent task. However, activation depen-
dencies in realistic embedded applications are usually more
complex. A consumer task may require a different amount
of data per execution than produced by a producer task, lead-
ing to multi-rate systems. Task activation may also be con-
ditional, leading to execution-rate intervals. Furthermore,
a task may consume data from multiple task inputs. Task
with multiple inputs also allow to form cyclic dependencies
(e. g. in a control loop).

In this section, we focus on multiple inputs (both AND-
and OR-activation) and functional cycles [11]. We skip
multi-rate systems and conditional communication, since
these features have not yet been incorporated into SymTA/S.
The reader interested in their theoretical foundations is re-
ferred to [10].

4.1 Basic thoughts

The activation function of a consumer taskC with multi-
ple inputs is a boolean function of input events at the dif-
ferent task inputs. A restriction we impose is that activa-
tion must not be invalidated due to the arrival of additional
tokens [34]. This means that negation is not allowed in
the activation function. Consequently, the only acceptable
boolean operators areANDandOR, since an input is negated
in all other commonly used boolean operators (NOT, XOR,
NAND, NOR).

In order to perform scheduling analysis on the resource to
which taskC is mapped, activating event functions for taskC
have to be calculated from all input event functions. In the
following we demonstrate how to do this for AND- and OR-
activation using our standard event models (section 3.2). An
extended discussion covering event models in general can be
found in [10].

4.2 AND-activation

For a consumer taskC with multiple inputs, AND-
activation implies thatC is activated after an input event has
occurred at each inputi. An example of an AND-activated
task with three inputs is shown in figure 7.
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Figure 7. Example of an AND-activated task C

Note that AND-activation requires input data buffering,
since at some inputs data may have to wait until data has
arrived at all other inputs for one consumer activation. We
will refer to this source of buffering asAND-buffering. We
also use the termtoken[14] to refer to a the amount of data
required for one input event.

4.2.1 AND-Activation Period

To ensure bounded AND-buffer sizes, the period of all input
event models must be the same. The period of the activating
event model equals this period.

Pi
!= P j ; i, j = 1..k ⇒

PAND = Pi ; i = 1..k (6)

4.2.2 AND-Activation Jitter

In order to obtain the AND-activation jitter, let us consider
how often activation of the AND-activated task can occur
during any time interval∆t. Obviously, during any time
interval ∆t, the port with the smallest minimum number of
available tokens determines the minimum number of AND-
activations. Likewise, the port with the smallest maximum
number of available tokens determines the maximum num-
ber of AND-activations.

The number of available tokens at porti during a time inter-
val ∆t depends on both the number of tokens arriving during
∆t, and on the number of tokens that arrived earlier, but did
not yet lead to an activation because tokens at one or more
other ports are still missing. This is illustrated in the follow-
ing example. Let us assume that our task in figure 7 receives
tokens at each with the followingperiodic with jitter input
event models:

P1 = 4, J1 = 0

P2 = 4, J2 = 2

P3 = 4, J3 = 3

Figure 8 shows a possible sequence of input events that ad-
here to these event models, and the resulting AND-activation
events. The numbering of events in the figure indicates which
events together lead to one activation of AND-activated
taskC.

As can be seen, the minimum distance between two AND-
activations (activations 3 and 4 in figure 8) equals the mini-
mum distance between two input events at input 3, which is
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Figure 8. AND-activation timing example

the input with the largest input event model jitter. Likewise,
the maximum distance between two AND-activations (acti-
vations 1 and 2 in figure 8) equals the maximum distance
between two input events at input 3. It is not possible to
find a different sequence of input events leading to a smaller
minimum or a larger maximum distance between two AND-
activations. From this we can conclude that the input with
the largest input event jitter determines the activation jitter of
the AND-activated task. I. e.

JAND = max{Ji} ; i = 1..k (7)

This statement also remains true if the first set of input
events do not arrive at the same time (as is the case in fig-
ure 8). A proof is given in [10]. Calculation of the worst-
case delay and backlog at each input due to AND-buffering
can also be found in [10].

Note that in some cases it may be possible to calculate
phases between the arrival of corresponding tokens in more
detail, e. g. through the use of inter-event-stream contexts
(section 5.3). It may then be possible to calculate a tighter
activating jitter if it can be shown that a certain input cannot
(fully) influence the activation timing of an AND-activated
task, because tokens at this input arrive relatively early. This
is particularly important for the analysis of functional cycles
(section 4.4).

4.3 OR-activation

For a consumer taskC with multiple inputs, OR-activation
implies thatC is activated each time an input event occurs
at any input ofC. Different to AND-activation, input event
models are not restricted, and no OR-buffering is required,
since a token at one input never has to wait for tokens to
arrive at a different input in order to activateC. Of course,
activation buffering is still required.

ORex
C
OR

1

1

Figure 9. Example of an OR-activated task C

An example of an OR-activated task with two inputs is
shown in figure 9. Let us assume the followingperiodic with
jitter event models at the two inputs of taskC:



P1 = 4, J1 = 2

P2 = 3, J2 = 2

The corresponding upper and lower input event functions
are shown in figure 10. Since each input event immediately
leads to one activation of taskC, the upper and lower activat-
ing event functions are constructed by adding the respective
input event functions. The result is shown in figure 11(a).

Recall a key requirement of compositional performance
analysis, namely that event streams are described in a form
that can serve both as input for local scheduling analysis, and
can be produced as an output of local scheduling analysis for
propagation to the next analysis component (section 3.3.2).
Due to the irregularly spaced steps (visible in figure 11(a)),
the exactactivating event functions cannot be described by
a periodic with jitter event model, and thus cannot serve di-
rectly as input for local scheduling analysis. Furthermore,
after local scheduling analysis aperiodic with jitter output
event model has to be propagated to the next analysis compo-
nent. We need an activation jitter in order to calculate an out-
put jitter (section 3.3.1). Therefore, we need to find conser-
vative approximations for the exact activating event functions
that can be described by aperiodic with jitter event model
(POR,JOR). The intended result is shown in figure 11(b) (the
exact curves appear as dotted lines).

4.3.1 OR-Activation Period

The period of OR-activation is the least common multiple
LCM(Pi) of all input event model periods (themacro period),
divided by the sum of input events during the macro period
assuming zero jitter for all input event streams.

POR =
LCM(Pi)

∑n
i=1

LCM(Pi)
Pi

=
1

∑n
i=1

1
Pi

(8)

4.3.2 OR-Activation Jitter

A conservative approximation for the exact activating event
functions with aperiodic with jitterevent model implies the
following inequations.

⌈
∆t + JOR

POR

⌉
≥

n

∑
i=1

⌈
∆t + Ji

Pi

⌉
(9)

max

(
0,

⌊
∆t− JOR

POR

⌋)
≤

n

∑
i=1

max

(
0,

⌊
∆t− Ji

Pi

⌋)
(10)

In order to be as accurate as possible, we are interested
in the minimum jitter that satisfies inequations 9 and 10. It
can be shown that the minimum jitter that satisfies inequa-
tion 9 and the minimum jitter that satisfies inequation 10
are the same [10]. In the following, the upper approxima-
tion (inequation 9) is used to calculate the OR-activation jit-

ter. Since the left and right sides of this inequation are only
piecewise continuous, the inequation cannot be simply trans-
formed to obtain the desired minimum jitter. The solution
used here is to evaluate inequation 9 piecewise for each inter-
val ]∆t j ,∆t j+1], during which the right side of the inequation
has a constant valuek j ∈ N. For each constant piece of the
right side, a condition for alocal jitter JOR, j is obtained that
satisfies the inequation for all∆t : ∆t j < ∆t ≤ ∆t j+1.

For each constant piece of the right side, inequation 9 be-
comes

⌈
∆t + JOR, j

POR

⌉
≥ k j ; ∆t j < ∆t ≤ ∆t j+1 , k j ∈ N

Since the left side of this inequation is monotonically in-
creasing with∆t, it is sufficient to evaluate it for the smallest
value of∆t, which approaches∆t j . I. e.

lim
ε→+0

⌈
∆t j + ε+ JOR, j

POR

⌉
≥ k j ; k j ∈ N

⇔ lim
ε→+0

∆t j + ε+ JOR, j

POR
> k j −1

⇔ lim
ε→+0

(JOR, j + ε) > (k j −1)∗POR−∆t j

⇔ JOR, j ≥ (k j −1)∗POR−∆t j (11)

The global minimum jitter is then the smallest value which
satisfies all local jitter conditions. As already said,ηu

OR dis-
plays a pattern of distances between steps which repeats pe-
riodically every macro period. Therefore, it is sufficient to
perform above calculation for one macro period. An algo-
rithm can be found in [9].

4.4 Cyclic Task Dependencies

Tasks with multiple inputs allow to build cyclic dependen-
cies. A typical application is a control loop, where one task
represents the controller and the other task a model of the
controlled system. A task graph with a cycle is shown in
figure 12.

1
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c 11
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Figure 12. Example of a cyclic dependency

We assume that tasks with multiple inputs in cycles are
AND-activated, and that they produce one token at each out-
put per execution. This implies that at least one initial token
must be present inside the cycle to avoid deadlock [14], and
that the number of tokens inside the cycles remains constant.
Consequently, the period of the cycle-external event model
determines the period of all cycle tasks. Finally, we assume



5 10 15
∆t

5

events

u
1η

l
1η

ORin_a

(a) OR input 1(P1 = 4, J1 = 2)

5 10 15
∆t

5

events
u
2η

l
2η

ORin_b

(b) OR input 2(P2 = 3, J2 = 2)

Figure 10. Upper and lower input event functions in our OR-example

u
ORη

l
ORη

5 10 15
∆t

5

events

10

ORout_exact

14
15

135
164

(a) exact

5 10 15
∆t

5

events

10

ORout_pju
JPOR +,η

l
JPOR +,η

(b) periodic with jitterapproximation

Figure 11. Upper and lower activating event functions in our OR-example

exactly one cycle-task with one cycle-external and one cycle-
internal input. All other cycle-tasks only have cycle-internal
inputs. These restrictions allow us to concisely discuss the
main issues resulting from functional cycles. A much more
general discussion can be found in [10].

In section 4.2 we established that the activation jitter of
an AND-activated task is bounded by the largest input jit-
ter. As was the case for cyclic scheduling dependencies (sec-
tion 3.3.2), we have to start system analysis with an initial as-
sumption about the cycle-internal jitter of the AND-activated
task, since this value depends on the output jitter of that task,
which we have not calculated yet. A conservative starting
point is to initially assume zero internal jitter. We can now it-
erate analysis and event model propagation around the cycle,
hoping to find a fix-point.

However, if only one task along the cycle has a response
time which is an interval, then after the first round of anal-
ysis and event model propagation the internal input jitter of
the AND-activated task will be larger than the external input
jitter. In our compositional performance analysis approach,
this larger jitter will be propagated around the cycle again,
resulting in an even larger jitter at the cycle-internal input of
the AND-activated task (section 3.3.2). It is obvious that the

jitter appears unbounded if calculated this way.
The problem boils down to the fact that event model prop-

agation as presented so far captures neither correlations be-
tween the timing of events in different event streams, nor the
fact that the number of tokens in a cycle is fixed. Therefore,
the activation jitter for the AND-activated task is calculated
very conservatively.

4.5 Analysis Idea

Cycle analysis requires detailed consideration of the possi-
ble phases between tokens arriving at the cycle-external and
the cycle-internal inputs of the AND-activated task. The so-
lution that we propose in the following has the advantage to
require only minor modifications to the feed-forward system-
level analysis already supported by SymTA/S. The idea goes
as follows:
We initially assume that the cycle-internal input cannot in-
crease the activation jitter of the AND-activated task. This
allows us to ‘cut’ the cycle-internal edge, rendering a feed-
forward system which can be analyzed as explained in sec-
tion 3.3.2. We then calculate the time it takes a token to travel
around the cycle, and reason about the validity of the initial
assumption.

In the following, the idea is explained for cycles with one



initial tokens. Let us assume an externalperiodic with jitter
event model with periodPext and jitterJext. Let us definetmin

f f
andtmax

f f to be the minimum respectively maximum sum of
worst-case response times of all tasks belonging to a cycle
(the ‘time around the cycle’) as obtained through analysis of
the corresponding feed-forward system. Let us further as-
sume that after analysis of the corresponding feed-forward
system,tmax

f f ≤ Pext.
At system startup, the first token arriving at the

cycle-external input will immediately activate the AND-
concatenated task together with the initial token already wait-
ing at the cycle-internal input. No further activation of the
AND-activated task is possible until the next token becomes
available at the cycle-internal input of that task. If feed-
forward analysis was valid, then this will take betweentmin

f f
andtmax

f f time units.
The maximum distance between two consecutive external

tokens isδmax
ext (2) = Pext + Jext (equation 4). Fromtmax

f f ≤
Pext follows that it is not possible that the 2nd external token
arriving aslate as possible after the 1st external token has to
wait for an internal token.

The 3rd external token can arrive at mostδmax
ext (3) = 2∗

Pext+ Jext after the 1st external token. Therefore, if both the
2ndand the 3rd external tokens arrive as late as possible, then
the 3rd arrivesPext after the 2nd. From tmax

f f ≤ Pext follows
that the 3rd external token arriving aslate as possible after
the 1st external token cannot wait for an internal token, even
if the 2nd external token also arrived aslateas possible. This
argument can be extended to all further tokens. We infer that
no external token arriving as late as possible has to wait for
an internal token.

Activation of taskb also cannot happen earlier than the
arrival of an external token. Therefore, the activating event
model of taskb is conservatively captured by the external
input event model (equation 12). We conclude that our ap-
proach is valid for a cycle withM = 1 initial token, for which
tmax
f f ≤ Pext.

Pact = Pext ; Jact = Jext (12)

In [10] it is shown that the approach presented in this
section is also valid for a cycle withM > 1 initial tokens,
for which (M − 1) ∗ Pext < tmax

f f ≤ M ∗ Pext. In [10] it is
also shown how to extend the approach to nested cycles. In
SymTA/S, the feed-forward analysis is performed for every
cycle, and the required number of initial tokens is calculated
from tmax

f f . This number is then compared against the number
of cycle-tokens specified by the user in the same manner as
any other constraint is checked.

5. System contexts
Performance analysis as described so far can be unnec-

essarily pessimistic, because it ignores certain correlations
between consecutive task activations or assumes a very pes-
simistic worst-case load distribution over time.

We have therefore added advanced performance analysis
techniques taking correlations between successive computa-

tion or communication requests as well as correlated load
distribution into account, in order to yield tighter analysis
bounds. Cases where such correlations have a large impact
on system timing are especially difficult to simulate and,
hence, are an ideal target for formal performance analysis.
We call such correlationssystem contexts.

In Section 5.1, using an example of a hypothetical set-top
box, we review the assumptions made by a typical perfor-
mance analysis, calledcontext blindanalysis. Then, we show
the analysis improvements that can be obtained when consid-
ering two different types of system contexts separately and
also in combination:intra event stream contexts, which con-
sider correlations between successive computation or com-
munication requests (section 5.2), andinter event stream con-
texts, which consider possible phases between events in dif-
ferent event streams (section 5.3). The combination of both
system contexts is explained in section 5.4.

5.1 Context blind analysis
The SoC implementation of a hypothetical set-top box

shown in figure 13 is used as an example throughout this sec-
tion. The set-top box can process MPEG-2 video streams
arriving from the RF-module (r f video) and sent via the
bus (BUS) to the TV (tv). In addition, a decryption unit
(DECRYPTION) allows to decrypt encrypted video streams.
The set-top box can additionally process IP traffic and down-
load web-content via the bus (ip) to the hard-disk (hd).

Figure 13. hypothetical set-top-box system

We will focus on worst-case response time calculation for
the system bus. We assumestatic priority-based scheduling
on the bus. The priorities are assigned as follows:enc>
dec> ip. MPEG-2 Video frames are assumed to arrive peri-
odically from the RF-module. The arrival period is normal-
ized to 100. The core execution and communication times of
the tasks are listed in table 1.

task CET

enc [10,30]
dec [10,30]
ip [50,50]
decryption [40,40]

Table 1. Core execution times

The worst-case response time ofip, calculated by a con-
text blind analysis, is 170. As can be seen in figure 14, even
though a data dependency exists betweenencanddec, which
may even out their simultaneous activation, a context blind



analysis assumes that in the worst-case all communication
tasks are activated at the same instant. Furthermore, even
though MPEG-2 frames may have different sizes depending
on their type, a context blind analysis assumes that every acti-
vation ofencanddecleads to a maximum transmission time
of one MPEG-2 frame.

Figure 14. Worst case response time calcula-
tion for ip withoutcontexts, using SymTA/S

5.2 Intra Event Stream Context
Context-blind analysis assumes that in the worst-case, ev-

ery scheduled task executes with its worst case execution
time for each activation. In reality, different events often ac-
tivate different behaviors of a computation task with differ-
ent WCET, or different bus loads for a communication task.
Therefore, a lower maximum load (and a higher minimum
load) can be determined for a sequence of successive activa-
tions of a higher-priority task if the types of the activating
events are considered. This in turn leads to a shorter cal-
culated worst-case response time (and a longer best case re-
sponse time) of lower-priority tasks. We call the correlation
within a sequence of different activating events anintra event
stream context.

Mok, Chen and Baruah introduced this idea in [17] and
showed promising results for MPEG-streams where the av-
erage load for a sequence of I-, P- and B-frames is much
smaller than in a stream that consists only of large I-frames,
which is assumed by a context-blind worst-case response
time analysis. However, the periodic sequence of types of
activating events was supposed to be completely known.

In reality, intra event stream contexts can be more com-
plicated. If no complete information is available about the
types of the activating events, it is no longer possible to ap-
ply Mok’s and Chen’s approach. Mok and Chen also do not
clearly distinguish between different types of events on one
hand, and different task behaviors, calledmodes[35], on the
other. However, this distinction is crucial for subsystem in-
tegration and compositional performance analysis. Different
types of events are a property of the sender, while modes are
a property of the receiver. Both can be specified separately
from each other and later correlated. Furthermore, it may
be possible to propagate intra event stream contexts along a
chain of tasks. It is then possible to also correlate the modes
of consecutive tasks.

We extended intra event stream contexts by allowing
minimum- and maximum-conditions for the occurrence of a

certain type of events in a sequence of a certain lengthn, in
order to capture partial information about an event stream.n
is an arbitrary integer value. A single worst-case and a single
best-case sequence of events with lengthn can be determined
from the available min- and max-conditions that can be used
to calculate the worst- and best-case load due to any number
of consecutive activations of the consumer task. In [12], we
have extended static-priority preemptive response-time cal-
culation to exploit this idea.

Let us apply this approach to our set-top box example.
Suppose that the video stream sent from the RF to the
bus, is encoded in one of several patterns of I-, P- and
B-frames (IBBBBB, IBBPBB, IPBBBB...), or that several
video streams are interleaved. Therefore, it is impossible
to provide a fixed sequence of successive frame types in the
video stream. However, it may be possible to determine min-
and max-conditions for the occurrence of each frame type.

The communication times of tasksencanddecdepends on
the received frame type. I-frames have the largest size and
lead to the longest execution time, P-frames have the mid-
dle size and B-frames have the smallest size. Therefore, the
mode corresponding to the transmission of an I-frame has the
largest communication time and the mode corresponding to
the transmission of a B-frame has the lowest communication
time.

Having both intra event stream context information and
modes of the consumer tasks, we can determine a weight-
sorted worst case sequence of frame types with lengthn. The
reader interested in knowing our algorithm to exploit min-
and max-conditions is referred to [12].

Now we can determine forl successive activations ofenc
and dec the worst case load produced on the bus. This is
performed, by iterating through the weight-sorted sequence
starting from the first event, adding up loads until the worst
case load forl activations has been calculated. Ifl is bigger
than n, the sequence length, we go only throughl mod n
events and adds the resulting load to the load of the whole
sequence multiplied byl div n.

In figure 15, assuming that the worst case sequence of
frame types with length 2 is: IP; and that the transmission
time for an I-frame is 30 and for a P-frame is 20, we show
the calculated worst case response time ofip, when consider-
ing the available intra event stream context information. As
can be seen, for both tasksencanddec, the produced load
on the bus due to a transmission of two successive MPEG-
2 frames is smaller than in the context-blind case (see fig-
ure 14). This leads to a reduction of the calculated worst-case
response time ofip: 150 instead of 170.

5.3 Inter Event Stream Context

Context-blind analysis assumes that all scheduled tasks
sharing a resource are independent and that in the worst-case
all tasks are activated simultaneously. In reality, activating
events are often time-correlated, which rules out simultane-
ous activation of all tasks. This in turn may lead to a lower
maximum number (and higher minimum number) of inter-



Figure 15. Worst case response time calcula-
tion for ip considering intra contexts

rupts of a lower-priority task through higher-priority tasks,
resulting in a shorter worst-case response time (and longer
best-case response time) of the lower priority task. We call
the correlation between time-correlated events in different
event streams aninter event stream context.

Tindell introduced this idea for tasks scheduled by a static
priority preemptive scheduler [30]. His work was later gen-
eralized by Palencia and Harbour [18]. Each set of time-
correlated tasks is grouped into a so calledtransaction. Each
transaction is activated by a periodic sequence of external
events. Each task belonging to a transaction is activated when
a relative time, calledoffset, elapses after the arrival of the
external event.

To calculate the worst-case response time of a task, a
worst-case scenario for its execution must be build. Tindell
[30] showed that the worst-case interference of a transaction
on the response time of a task occurs at thecritical instant
which correspond to the most delayed activation of a higher-
priority task belonging to the transaction. The activation time
of the analyzed task and all higher-priority tasks have to hap-
pen as soon as possible after the critical instant.

Since all activation times of all higher-priority tasks be-
longing to a transaction are candidates for the critical instant
of the transaction, the worst-case response time of a lower-
priority task has to be calculated for all possible combina-
tions of all critical instants of all transactions that contain
higher priority tasks, to find the absolute worst-case.

Figure 16. Worst case response time calcula-
tion for ip considering inter contexts

Let us apply Tindell’s approach to our set-top box exam-
ple. Due to the data dependency betweenenc, decryption
anddec, these tasks are time-correlated. The offset between
the activations ofencanddecryptioncorresponds to the ex-
ecution time ofenc. Based on this offset and the execution

time of decryption, we can calculate the offset between the
activations ofencanddec.

In order to show in isolation the analysis improvement due
to inter event stream contexts, we will assume for now that
all video-frames are I-frames. Figure 16 shows for the inter
event stream context case the calculated worst case response
time of ip due to interrupts byencanddec. As can be seen,
a gap exists between successive executions ofencanddec.
Since ip executes during this gaps, one interrupt less ofip
is calculated (in this case throughenc). This leads to a re-
duction of the calculated worst-case response time ofip: 140
instead of 170.

Figure 17. Improved worst-case response time
calculation due to inter contexts

In figure 17, analysis improvements with inter event stream
context information in relation to the context-blind case are
shown as a function of the offset betweenencanddec, which
is equal to the execution time of the decryption unit.

Curvea shows the reduction of the calculated worst-case
response time ofdec. Depending on the offset,decis either
partially (offset value less than 30), completely (offset value
more than 70) or not interrupted at all byenc (offset value
between 30 and 70). The latter case yields a maximum re-
duction of 50 %.

Curvesb - g show the reduction in the calculated worst-
case response time ofip for different IP traffic sizes. The
reduction is visible in the curves as dips. If no gaps exists
between two successive executions ofencanddec, no worst-
case response time reduction ofip can be obtained (offset
value less than 30 or more than 70). If a gap exists, then
sometimes one interrupt less ofip can be calculated (either
throughencor dec), or there is no gain at all (curvesd and
f). Since the absolute gain that can be obtained equals the
smaller worst case execution time ofencanddec, the relative
worst-case response time reduction is bigger for shorter IP-
traffic.

An important observation is that inter event stream con-
text analysis reveals the dramatic influence that a small local
change, in our example the speed of the decryption unit read-
ing data from the bus and writing the results back to the bus,
can have on system-performance, in our example the worst-
case transmission time of lower-priority IP traffic.



5.4 Combination of Contexts

Inter event stream contexts allow to calculate a tighter
number of interrupts of a lower-priority task through higher-
priority tasks. Intra event stream contexts allow to calcu-
late a tighter load for a number of successive activations of
a higher-priority task. The two types of contexts are orthog-
onal: the worst-case response time of a lower-priority task
is reduced both because fewer high-priority task activations
can interrupt its execution during a certain time interval, and
because the time required to process a sequence of activa-
tions of each higher-priority task is reduced. Therefore, per-
formance analysis can be further improved if it is possible
to consider both types of contexts in combination. This is
shown in figure 18 for the worst-case response time calcula-
tion of ip: 130 instead of 170.

Figure 18. Worst-case response time calcula-
tion for ip with combinationof contexts

In figure 19, we show analysis improvements considering
both inter and intra event stream contexts in relation to the
context-blind case as a function of the offset betweenencand
dec. Curvea shows the reduction of the calculated worst-
case response time ofdec. Sincedec is interrupted at most
once byenc, and the worst-case load produced due to one
activation ofencis the transmission time of one I-frame, no
improvement is obtained through the context combination in
comparison to curvea in figure 17.

Figure 19. Analysis improvement due to the
combination of intra and intercontexts

Curvesb - g show the reduction of the calculated worst-

case response time ofip for different IP traffic sizes. When
comparing curvesb and c (IP traffic sizes of 5 and 10) to
curvesb andc in figure 17, it can be seen that no improve-
ment is obtained through the context combination. This is
due to the fact thatip is interrupted at most once byencand
at most once bydec. Therefore, as in casea, the calculated
worst-case load produced by the video streams is the same
no matter whether the available intra event stream context
information is considered or not.

Curved shows that for an IP traffic size of 30, no improve-
ments are obtained through the context combination in com-
parison to thecontext-blindcase. This is due to the fact that
for all offset-values,ip is interrupted exactly once byencand
exactly once bydec, and that the calculated worst-case load
produced by the video streams due to one activation is the
same no matter if intra event stream contexts are considered
or not.

Curvee and f show that for IP traffic sizes of 50 and 70
improvements are obtained as a result of the context combi-
nation in comparison to both the intra and inter event stream
context analysis. Let us focus on curvee. Since intra and
inter event stream contexts are orthogonal, the reduction of
the calculated worst-case response time ofip due to the intra
event stream context is constant for all offset values. Since no
reduction due to inter event stream context can be obtained
for an offset value of 0 (equivalent to the inter event stream
context-blind case), we are sure that the reduction shown in
the curve for this offset value is only a result of the intra event
stream context. On the other hand, the additional reduction
between the offset values 25 and 75 is obtained due to the
inter event stream context.

Curveg shows that for an IP traffic size of 90, even though
the inter event stream context leads to an improvement (see
curveg in figure 17), the improvement due to the intra event
stream context dominates, since no dip exists in the curve.
I.e. no additional improvements are obtained due to the con-
text combination in comparison to the intra event stream con-
text case.

This example shows that considering the combination
of system contexts can yield considerably tighter perfor-
mance analysis bounds compared to a context-blind analy-
sis. Equally important, this example reveals the dramatic
influence that a small local change can have on system-
performance. Systematically identifying such system-level
influences of local changes is especially difficult using simu-
lation due to the large number of implementations that would
have to be synthesized and executed. On the other hand,
formal performance analysis can systematically and quickly
identify such corner cases. All this results took a couple of
milliseconds to compute using SymTA/S.

6. Design Space Exploration for System Opti-
mization

In this section we will give a brief overview about the evo-
lutionary design space exploration and system optimization
techniques used in SymTA/S. We will first describe system



parameters which can be subject to optimization and how
they can be composed to define the search space. Then we
will give some examples of metrics expressing desired or
undesired system properties, forming so-called optimization
objectives. Finally, we will explain the design space explo-
ration loop performed in SymTA/S.

6.1 Search Space
The search space and the optimization objectives can be

multidimensional, which means that several system parame-
ter can be explored simultaneously to optimize multiple ob-
jectives. Possible search parameter include:

• mapping of tasks onto different resources

• changing priorities on priority-scheduled resources

• changing time slot sizes and time slot order on TDMA
or round robin scheduled resources

• changing the scheduling policy on a resource

• modifying resource speed

SinceEAFs in SymTA/S allow to control the timing of
events and data between connected components (see sec-
tion 3.4), additional exploration is possible using systematic
traffic shaping. Thereby,dmin-EAFs, allowing to extend the
minimum distance between successive output events, are of
particular interest. We will see in section 8.2 that they can be
used to weaken the global impact of bursts, which can lead
to interesting optimization results.

The compositional structure of SymTA/S allows a flexible
coding of the search space. Search parameter can be defined
very precisely. They can be limited locally to one or several
components, or can be of global scope. The combination of
a search parameter and its scope is called achromosomein
the context of evolutionary algorithms. Chromosomes form
modular entities and can be combined arbitrarily to span the
search space. Anindividual, representing a specific system
configuration, consists of immutable system parameters and
a set of chromosomes, which represent the variable system
parameters. This modular design supports the explicit com-
bination of local and global exploration techniques. For ex-
ample, the designer can optimize the TDMA slot sizes on a
single resource while allowing system-wide traffic shaping,
or optimize the priority assignments on all priority scheduled
resources in the system while varying the speed of a single
resource.

Each chromosome carries the variation operators neces-
sary for combination with other chromosomes of its type. In
SymTA/S we currently use the most popular operators: mu-
tation and crossover. The operators are applied chromosome-
wise. Figure 20 illustrates the functionality of the crossover
operator.

6.2 Optimization Objectives
Optimization objectives can be any kind of metric defined

on desired or undesired properties of the considered system.

Figure 20. Functionality of crossover operator
in SymTA/S

Note that some metrics only make sense in combination
with constraints. Each individual is associated with a
fitness vector containing one entry for every concurrent
optimization objective. We use the following notation:

R - maximum response time of a task or
maximum end-to-end latency along a path

D - deadline (task or end-to-end)
ω - constant weight> 0
k - number of tasks or

number of constrained tasks/paths in the system

and define following example optimization objectives:

1. minimization of the (weighted) sum of completion
times

k

∑
i=1

ωi ∗Ri

2. minimization of the maximum lateness

max(R1−D1, . . . ,Rk−Dk)

3. maximization of the minimum earliness

min(D1−R1, . . . ,Dk−Rk)

4. minimization of the (weighted) average lateness

k

∑
i=1

ωi ∗ (Ri −Di)



5. maximization of the (weighted) average earliness

k

∑
i=1

ωi ∗ (Di −Ri)

6. minimization of end-to-end latencies

7. minimization of jitters

8. minimization of the sum of communication buffer sizes

The choice of the metric for optimization of a specific sys-
tem is very important to obtain satisfying results. Example
metrics 4 and 5, for instance, express the average timing be-
havior of a system with regard to its timing constraints. They
might mislead an evolutionary algorithm and prevent it from
finding system configurations fulfilling all timing constraints,
since met deadlines compensate linearly for missed dead-
lines. For systems with hard real-time constraints, metrics
with higher penalties for missed deadline and less rewards
for met deadlines can be more appropriate, since they lead
to a more likely rejection of system configurations violating
hard deadline constraints. Following example metric penal-
izes violated deadlines in an exponential way and can be used
to optimize the timing properties of a system with hard real-
time constraints:

k

∑
i=0

cRi−Di
i , ci > 1 constant

Performing a multi-objective optimization in SymTA/S
usually leads to the discovery of severalpareto-optima.
Definition 5 (Pareto-optimal) Given a set V of k-
dimensional vectors v∈ Rk. A vector v∈ V dominates a
vector w ∈ V iff for all elements0≤ i < k we have vi ≤ wi

and for at least one element l we have vl < wl .
A vector is called pareto-optimal iff it is not dominated by
any other vector in V .

Pareto-optimal solutions represent a certain trade-off be-
tween two or more objectives, leaving it to the designer to
decide which solution to adopt. In our case, individuals with
pareto optimal fitness vectors represent the different system
design trade-offs.

6.3 Design Space Exploration Loop

Figure 21 shows the design space exploration loop per-
formed in SymTA/S. TheOptimization Controlleris the cen-
tral element. It is connected to SymTA/S, which performs
the analysis of the individuals, and to an evolutionary multi-
objective optimizer. The latter is responsible for the problem-
independent part of the optimization problem, i.e. elimina-
tion of individuals and selection of interesting individuals
for variation. Currently, we use FEMO (Fair Evolutionary
Multiobjective Optimizer) [13] and SPEA2 (Strength Pareto
Evolutionary Algorithm 2) [36] for this part. Both are cou-
pled via PISA (Platform and Programming Language Inde-
pendent Interface for Search Algorithms) [2]. Note that the

problem-specific part of the optimization problem is coded
inside the chromosomes and their variation operators.

An example for a variation operator isorder crossover[4].
It is applicable for priority assignments coded as lists, in
which each entry corresponds to the priority of a specific
task. The offspring inherits the priority assignments of the
tasks between two randomly chosen positions in the priority
list from the first parent. The remaining priorities are inher-
ited from the second parent, beginning at the first position of
its priority list, starting from the second chosen position and
skipping over all priorities already assigned in the offspring.
Example:

Parent 1 : 1 2 3 4 5 6
Parent 2 : 3 2 6 5 4 1
Cross Pts : * *
Offspring : 6 1 3 4 5 2

Figure 21. Design space exploration loop
Before the exploration loop is started, SymTA/S is initial-

ized with the immutable part of the system architecture. In
order to analyze a design alternative represented by an in-
dividual, its chromosomes are transformed into commands
and applied to SymTA/S. This completes the system design
which can then be analyzed by SymTA/S. After analysis the
optimization controller requests the system parameters nec-
essary to determine the fitness values according to the op-
timization objectives. This procedure is performed for every
individual currently considered. The individuals and their fit-
ness vectors are then sent to the evolutionary multi-objective
optimizer. On the basis of the fitness values the optimizer
creates two sets. One set contains individuals selected for
elimination, the other contains individuals selected for varia-
tion (mutation and crossover). These sets are communicated
to the optimization controller, which deletes eliminated indi-
viduals and performs the requested mutation and crossover
operations. The next iteration is then started with the surviv-
ing and newly created individuals.

Note that the selection of individuals for elimination and
variation depends on the used multi-objective optimizer. For
instance FEMO [13], eliminates all dominated individuals in
every iteration and pursuits a fair sampling strategy, i.e. each
parent participates in the creation of the same number of off-
springs. This leads to a uniform search in the neighborhood
of elitist individuals.



The performance of the search procedure in SymTA/S is
affected by the search strategy of the optimizer, the coding of
the chromosomes and their variation operations as well as the
choice of the optimization objectives. As far as the optimizer
is concerned, it is known that no general purpose optimiza-
tion algorithm exists that is able to optimize effectively all
kinds of problems [33].

7. Sensitivity analysis

Most analysis techniques known from literature give a pure
Yes/Noanswer regarding the timing behavior of a specific
system with respect to a set of timing constraints defined for
that system. Usually the analyses consider a predefined set of
input parameters and determine the response times, and thus,
the schedulability of the system.

However, in a realistic system design process it is impor-
tant to get more information with respect to the effects of
parameter variations on system performance, as such varia-
tions are inevitable during implementation and integration.
Capturing the bounds within which a parameter can be var-
ied without violating the timing constraints offers more flex-
ibility for the system designer and supports future changes.
These bounds shows howsensitivethe system or system parts
are to system configuration changes.

Liu and Layland [16] defined a maximum load bound on
a resource that guarantees the schedulability of that resource
when applying a rate monotonic priority assignment scheme.
The proposed algorithm is limited to specific system config-
urations: periodically activated tasks, tasks with deadlines at
the end of their period and tasks that do not share common re-
sources (like semaphores) or that do not inter-communicate.

Later on, Lehoczky [15] extended this approach to systems
with arbitrary priority assignment. However, his approach
does not go beyond the limitations mentioned above. Steve
Vestal [32] proposed a fixed-priority sensitivity analysis for
tasks with linear computation times and linear blocking time
models. His approach is still limited to tasks with periodic
activation patterns and deadlines equal to the period. Pun-
nekkat [19] proposed an approach that uses a combination of
a binary search algorithm and a slightly modified version of
the response time schedulability tests proposed by Audsley
and Tindell [1][31].

In the following we give a brief overview about the sensi-
tivity analysis algorithm and the analysis models and metrics
used in SymTA/S. As already mentioned above, different ap-
proaches were proposed for the sensitivity analysis of differ-
ent system parameters. However, all can perform only single
resource analysis as they are bounded by local constraints
(tasks deadlines). Due to a fast increase of system complex-
ity and heterogeneity, the current distributed systems usually
have to satisfy global constraints rather than local one. End-
to-end deadlines or global buffer limits are an example of
such constraints. Hence, the formal approaches used for the
sensitivity analysis at resource level can not be transformed
and applied at the system level, as this implies huge effort
and less flexibility.

Our sensitivity analysis framework combines a binary
search technique and the hierarchical analysis model imple-
mented in SymTA/S. As described in section 3, SymTA/S
couples the local scheduling analysis algorithms into a global
analysis model.

Since deadlines are the major constraints in real-time sys-
tems it makes sense to measure the sensitivity of paths laten-
cies. As the latency of a path is determined by the response
times of all tasks along that path, and the response time of a
task directly depends of its core execution time, we consider
the following issues as important metrics for the sensitivity
analysis:

1. Maximum permissible variation of the core execution
time of a task without violating the system constraints
or the system schedulability.

2. Minimum speed of a resource. The decrease of a re-
source speed directly affects the core execution times of
all tasks mapped on that resource but also reduces the
energy required by that resource.

Variation of task execution/computation times The
search interval is determined by the current WCET value
tcore,max and the value corresponding to the maximum load
bound on the resource holding the task. If we denote byRload

the current load on the resourceRand byRload,max the maxi-
mum load bound on resourceR, then the search interval is:

[tcore,max; tcore,max+P × (Rload,max−Rload)]

where P represents the activation period in case of periodic
tasks or the minimum inter-arrival period in case of sporadic
tasks. If, for the current system configuration, the constraints
are violated or the system is not schedulable then the search
interval is[0;tcore,max.

The algorithm selects the middle interval value and veri-
fies if the constraints are satisfied for the configuration ob-
tained by replacing the task WCET value with the selected
value. Ifyes, then the second half of the interval becomes the
new search interval, otherwise the first half of the interval is
searched. The algorithm iterates until the size of the search
interval becomes smaller than a specific predefined value.

Variation of resource speed The same algorithm is ap-
plied to find the minimum resource speed. If, for the cur-
rent configuration, the constraints are satisfied and the sys-
tem is schedulable then the search space is determined by
[Rspeed,min;Rspeed] whereRspeed is the current speed factor
(usually 1) andRspeed,min is the speed factor corresponding
to the maximum resource load bound. Otherwise, the search
space is[Rspeed;Rspeed,max] whereRspeed,max is the speed fac-
tor corresponding to the minimum resource load bound (be-
low 1%).

The ideal value for the maximum resource load bound is
100%. We performed experiments on different system mod-
els and we observed that for load values above 98% the



Figure 22. System on chip example

run-time of the sensitivity analysis algorithm drastically in-
creases. This is due to an increase of the analyzed period
(busy period) in case of local analysis scheduling algorithms.
However, a resource load above 98% is not realistic due to
variations of the system clock frequency or other distorting
factors.

8. System on chip example

In this section, using SymTA/S, we apply the techniques
from the previous sections to analyze the performance of a
system on chip example shown in figure 22.

The embedded system in figure 22 represents a hypothet-
ical SoC consisting of a micro-controller (uC), a digital sig-
nal processor (DSP) and dedicated hardware (HW), all con-
nected via an on-chip bus (Bus). DSPanduC are equipped
with local memory. TheHW acts as an interface to a phys-
ical system. It runs one task (sysif ) which issues actuator
commands to the physical system and collects routine sensor
readings.sysif is controlled by taskctrl, which evaluates the
sensor data and calculates the necessary actuator commands.
ctrl is activated by a periodic timer (tmr) and by the arrival
of new sensor data (AND-activation in a cycle). We assume
2 initial tokens in the cycle.

The physical system is additionally monitored by 3 sensors
(sens1- sens3), which produce data sporadically as a reaction
to irregular system events. This data is registered by an OR-
activated monitor task (mon) on theuC, which decides how
to update the control algorithm. This information is sent to
taskupd on theDSP, which updated parameters into shared
memory.

The DSP additionally executes a signal-processing task
(fltr), which filters a stream of data arriving at inputsig in,
and sends the processed data via outputsig out. All commu-
nication, except for shared-memory on theDSP, is carried
out by communication tasksc1 - c5 over the on-chipBus.
Core execution times for each task are shown in Tab. 2.

We assume the following event models at system inputs
(Tab. 3).

In order to function correctly, the system has to satisfy a

computation task C communication task C

mon [10,12] c1 [8,8]
sysif [15,15] c2 [4,4]
fltr [12,15] c3 [4,4]
upd [5,5] c4 [4,4]
ctrl [20,23] c5 [4,4]

Table 2. Core execution and communication
times

input s/p Pin Jin dmin,in

sens1 s 1000 0 0
sens2 s 750 0 0
sens3 s 600 0 0
sig in p 60 0 0
tmr p 70 0 0

Table 3. Event models at external system in-
puts.

set of path latency constraints (Tab. 4). Constraints 1 and 3
have been explicitly specified by the designer. The 2nd con-
straint implicitly follows from the fact that the cycle contains
2 initial tokens. Constraint 3 is defined for causally depen-
dent tokens [34]. We shall also impose a maximum jitter
constraint at outputsig out (Tab. 5).

constraint # path maximum latency

1 sens1, sens2, sens3→ upd 70
2 sig in → sig out 60
3 cycle (ctrl → ctrl) 140

Table 4. Path latency constraints

constraint # output event model period event model jitter

4 sig out Psig out = 60 Jsig out,max= 18

Table 5. Output jitter constraint

8.1 Analysis

We will use static priority scheduling both on theDSPand
the Bus. The priorities on theBusrespectivelyDSPare as-
signed as follows:c1> c2> c3> c4> c5 and f ltr > upd>
ctrl .

Performance analysis results were obtained using
SymTA/S [8]. In the first step, SymTA/S performs OR-
concatenation of the output event models ofsens1- sens3
and obtains the followingsporadicactivating event model
for taskmon:

Pact = POR = 250, Jact = JOR = 500



The large jitter is due to the fact that input events happen-
ing at the same time lead to a burst of up to 3 activations (we
assume no correlations betweensens1- sens3). Since task
mon is the only task mapped ontouC, we can now perform
local scheduling analysis for this resource, in order to cal-
culate the minimum and maximum response times, as well
as the output event model of taskmon. The results of this
analysis are shown in Tab. 6.

task s/p Activating EM r s/p Output EM

mon s P (250) J (500) d(0) [10, 36] s P (250) J (526) d(10)

Table 6. Scheduling analysis results on uC

The worst-case response time of taskmon increases com-
pared to its worst-case core execution time, since later activa-
tions in a burst have to wait for the completion of the previ-
ous activations. The output jitter increases by the difference
between maximum and minimum core execution times com-
pared to the activation jitter. The minimum distance between
output events equals the minimum core execution time.

At this point, the rest of the system cannot be analyzed, be-
cause on every resource activating event models for at least
one task are missing. SymTA/S therefore generates a conser-
vative starting-point by propagating all output event models
along all paths until an initial activating event model is avail-
able for each task. SymTA/S then checks that the system
cannot be overloaded in the long term. This calculation re-
quires only activation periods and worst-case core execution
times and thus can be done before response-time calculation.

System-level analysis can now be performed by iterat-
ing local scheduling analysis and event model propagation.
SymTA/S determines that taskctrl belongs to a cycle, checks
that AND-concatenation is selected, and then proceeds to an-
alyze the corresponding feed-forward system. SymTA/S exe-
cutes until a fix-point for the whole system has been reached,
and then compares the calculated performance values against
performance constraints.

Table 7 shows the calculated response times of the com-
putation and communication tasks with and without taking
into account inter contexts. We observe that the exploita-
tion of context information leads to much tighter response
time intervals in the given example. This in turn reduces the
calculated worst-case values for the constrained parameters.
Table 8 shows that, in contrast to the inter context blind anal-
ysis, all system constraints are satisfied when performance
analysis takes inter context into account. In other words, a
context blind analysis would have discarded a solution which
is in reality valid.

comp task Respblind Respsens comm. tasks Respblind Respsens

mon [10,36] [10,36] c1 [8,8] [8,8]
sysif [15,17] [15,15] c2 [4,12] [4,4]
fltr [12,15] [12,15] c3 [4,16] [8,12]
upd [5,22] [5,22] c4 [4,28] [8,20]
ctrl [20,53] [20,53] c5 [4,32] [8,32]

Table 7. Context blind and sensitive analysis

# constraint inter context-blind inter context-sensitive

1 sens1, sens2, sens3→ upd 74 70
2 sig in → sig out 35 27
3 cycle (ctrl → ctrl) 130 120
4 Jsig out,max = 18 11 3

Table 8. Constraint values for context blind and
sensitive analysis

# Bustasks DSPtasks con. 1 con. 2 con. 3 con. 4

1 c1, c2, c3, c4, c5 upd, fltr, ctrl 55 42 120 18
2 c1, c2, c4, c3, c5 upd, fltr, ctrl 59 42 112 18
3 c2, c1, c4, c5, c3 upd, fltr, ctrl 63 42 96 18
4 c1, c2, c3, c4, c5 fltr, upd, ctrl 70 27 120 3

Table 9. Pareto optimal solutions

8.2 Optimizations

Let us now try to optimize our example architecture. Op-
timization objectives are the four defined constraints. We try
to minimize the latencies on paths 1-3 and the jitter at output
sig out.

In the first experiment our search space consists of the pri-
ority assignments on theBUSand theDSP. Table 9 shows the
existing pareto optimal solutions. In the first two columns,
tasks are ordered by priority, highest priority on the left. In
the last four columns, we give the actual value for all four
constrained values. The best reached values for each con-
straint are emphasized.

As we can observe there are several possible solutions,
each with its own advantages and disadvantages. We also
observe that in each solution one constraint is only barely
satisfied. A designer might want to find some alternative so-
lutions where all constraints are fulfilled with a larger margin
to the respective maximum values.

We extend our search space by using a shaper at the output
of taskmon. It is making sense to perform traffic shaping at
this location, because the OR-activation ofmoncan lead in
the worst-case scenario to bursts at its output. That is, if all
threesensorstrigger at the same time,monwill send three
packets over theBUSwith a distance of 10 time units, which
is its minimum core execution time. This transient load peak
affects the overall system performance in a negative way. A
shaper is able to increase this minimum distance in order to
weaken the global impact of the worst-case burst.

Table 10 shows pareto optimal solutions using a shaper at
the output ofmonextending the minimum distance of suc-
cessive events at the output ofmonto 12 time units, and thus
weakening the global impact of the worst-case burst. The re-
quired buffer for this shaper is minimal, because at most one
packet needs to be buffered at any time.

We observe that several new solutions are found. Not
all best values for each constraint from the first attempt are
reached, yet configurations 3 and 5 are interesting since they
are more balanced regarding the constraints.

8.3 Sensitivity analysis

We applied the sensitivity analysis algorithms presented
in Section 7 to the pareto optimal system configurations ob-



# Bustasks DSPtasks con. 1 con. 2 con. 3 con. 4

1 c2, c1, c3, c4, c5 upd, fltr, crtl 59 42 120 18
2 c1, c2, c4, c3, c5 upd, fltr, ctrl 63 42 112 18
3 c3, c2, c1, c4, c5 fltr, upd, ctrl 64 35 120 11
4 c2, c1, c5, c4, c3 upd, fltr, ctrl 67 42 96 18
5 c2, c3, c1, c5, c4 fltr, upd, ctrl 68 31 134 7

Table 10. Pareto optimal solutions: shaper at
mon output

tained in Section 8.2. The∆ values show the maximum per-
missible changes in tasks execution/computation times. Ta-
ble 11 present the current task execution times and the∆s
obtained for the system configurations described in table 9.

c1 c2 c3 c4 c5 upd fltr ctrl sysif mon

WCET 8 4 4 4 4 5 15 23 15 12

# ∆c1 ∆c2 ∆c3 ∆c4 ∆c5 ∆upd ∆ f ltr ∆ctrl ∆sys i f ∆mon

1 0 0 1.11 3.33 10 0 0 7 13 5
2 0 0 3.66 6 18 0 0 7 21 3.66
3 0 0 2.33 2.5 2.5 0 0 7 9 2.33
4 0 0 0 3.33 13.5 0 0 7 13 0

Table 11. Sensitivity analysis of tasks execu-
tion/computation times

Figure 23 shows the current task times and the slack values
corresponding to #2 in Table 11.

Figure 23. The slack values corresponding to
task core times

As future work we will implement the values obtained by
the sensitivity analysis as optimization objectives in the ex-
ploration framework presented in Section 6.

9. Conclusion
The component integration step is critical in MpSoC de-

sign since it introduces complex component performance de-
pendencies, many of them can not be fully overseen by any-
one in a design team. Finding simulation patterns covering
all corner cases will soon become virtually impossible as Mp-
SoCs grow in size and complexity, and performance verifica-
tion is increasingly unreliable. In industry, there is an urgent
need for systematic performance verification support in Mp-
SoC design.

We have seen that the host of work in formal real-time
analysis can be nicely applied to individual, local compo-
nents or subsystems. However, the well established view
on scheduling analysis has shown to be incompatible with

the component integration style which is common practice
in MpSoC design due to heavy component reuse. The re-
cently adopted event stream view on component interactions
represents a significant improvement for all kind of system
performance related issues.

First, the stream model elegantly illustrates the conse-
quences of a) resource sharing, and b) component integra-
tion, two of the main sources of complexity. This helps
to identify previously unknown global performance depen-
dencies, while tackling the scheduling problem itself locally
where it can be overseen.

Secondly, the use of intuitive stream models such as pe-
riodic events, jitter, burst, and sporadic streams, allows to
adopt existing local analysis and verification techniques. Es-
sentially, SymTA/S provides automatic interfacing and adap-
tation among the most popular and practically used event
stream models. In other words, SymTA/S is the enabling
technology for the re-use of known local component design
and verification techniques without compromising global
analysis.

In this paper, we have surveyed the basic ideas underly-
ing the SymTA/S technology. We subsequently introduced a
variety of features that enable the analysis of complex em-
bedded applications which can be found in practice. This in-
cludes multi-input tasks with complex activation functions,
cyclic functional dependencies between tasks, systems with
mutually exclusive execution modes, and correlated task ex-
ecution (intra and inter contexts). These powerful concepts
make SymTA/S a unique performance analysis tool that ver-
ifies end-to-end deadlines, buffer over-/underflows, and tran-
sient overloads. SymTA/S eliminates key performance pit-
falls and systematically guides the designer to likely sources
of constraint violations.

And the analysis with SymTA/S is extremely fast (10 sec-
onds for the system in section 8, including optimization). The
turn-around times are within seconds. This opens the door
to all sorts of explorations, which is absolutely necessary
for system optimization. SymTA/S uses genetic algorithms
to automatically optimize systems with respect to multiple
goals such as end-to-end latencies, cycles, buffer memory,
and others. Exploration is also useful for sensitivity analy-
sis in order to determine slack and other popular measures of
flexibility. This is specifically useful in systems which might
experience later changes or modifications, a design scenario
often found in industry. We have carried out a large set of ex-
periments that demonstrate the application of SymTA/S and
the usefulness of the results.

We have already applied the technology in case studies
in cooperation with industry partners in telecommunications,
multimedia, and automobile manufacturing. The cases had a
very different focus. In one telecommunications project, we
resolved a severe transient-fault system integration problem
that not even prototyping could solve. In the multimedia case
study, we modeled and analyzed a complex two-stage dy-
namic memory scheduler to derive maximum response times
for buffer sizing and priority assignment. In several auto-



motive studies, we showed how the technology enables a
formal software certification procedure. The case studies
have demonstrated the power and wide applicability of the
event flow interfacing approach. The approach scales well to
large, heterogeneous embedded systems including MpSoC.
And the modularity allows to customize SymTA/S libraries
to specific needs of our partners.

We consider the SymTA/S approach a serious alternative or
supplement to performance simulation. The unique technol-
ogy allows comprehensive system integration and provides
much more reliable performance analysis results at far less
computation time
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