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Abstract cosimulation of a complete hardware and software system.

SymTA/S is a system-level performance and timing anaiUJe cosimulatio_n time_s are gxtensive, b_ut de\_/elopers can
sis approach based on formal scheduling analysis techniquii€ the same simulation environment, simulation patterns,
and symbolic simulation. The tool supports heterogeneoagd ber_mhma_rks in both function and perf_orm_ance verifica-
architectures, complex task dependencies and context awiff- Simulation-based performance verification, however,
analysis. It determines system-level performance data sUeRs _cor_meptual disadvantages that become disabling as com-
as end-to-end latencies, bus and processor utilization, afEXity increases. _ o
worst-case scheduling scenarios. SymTA/S furthermore comMPS0C hardware and software component integration in-
bines optimization algorithms with system sensitivity ana¥°/ves resource sharing that is based on operating systems
ysis for rapid design space exploration. This paper give"smq netwqu protocols. Resource ;harmg results in a con-
an overview of the current research interests in the SymTAM$ING variety of performance runtime dependencies. For

project. example, figure 1 shows a CPU subsystem executing three
) processes. Although the operating system activiie3y,
1. Introduction andTs strictly periodically (with period$;, P,, andPs, re-

With increasing embedded system complexity, there isspectively), the resulting execution sequence is complex and
trend towards heterogeneous, distributed architectures. M{@2ds to output bursts.
tiprocessor system on chip designs (MpSoCs) use complexXs figure 1 showsT; can delay several executions B
on-chip networks to integrate multiple programmable prdfter Ti completes,Ts —with its input buffers filled— tem-
cessor cores, specialized memories, and other intellect@rarily runs in burst mode with the execution frequency lim-
property (IP) components on a single chip. MpSoCs have gted only by the available processor performance. This leads
come the architecture of choice in industries such as netwdfk{ransienffs output burst, which is modulated By's exe-
processing, consumer electronics, and automotive systef¢i4lion.

Their heterogeneity inevitably increases with IP integration Figure 1 does not even include data-dependent process ex-
and component specialization, which designers use to ogtfution times, which are typical for software systems, and
mize performance at low power consumption and compefPerating system overhead is neglected. Both effects further
tive cost. Tomorrow’s MpSoCs will be even more complexcomplicate the problem. Yet finding simulation patterns -or
and using IP library elements in a ‘cut-and-paste’ design stylse cases- that lead to worst-case situations as highlighted in
is the only way to reach the necessary design productivity.Figure 1 is already challenging.

Systems integration is becoming the major challenge inNetwork arbitration introduces additional performance de-
MpSoC design. Embedded software is increasingly inpendencies. Figure 2 shows an example. The arrows indicate
portant to reach the required productivity and flexibilperformance dependencies between the CPU and DSP sub-
ity. The complex hardware and software component isystems that the system function does not reflect. These de-
teractions pose a serious threat to all kinds of perfopendencies can turn component or subsystem best-case per-
mance pitfalls, including transient overloads, memory ovefermance into system worst-case performance -a so-called
flow, data loss, and missed deadlines. The Internacheduling anomaly. Recall tfig bursts from Figure 1 and
tional Technology Roadmap for Semiconductors, 2003 Edtonsider thafl’s execution time can vary from one execu-
tion, (http:/public.itrs.net/Files/2003ITRS/Design2003.pdftjon to the next. There are two critical execution scenarios,
names system-level performance verification as one of thalled corner cases: The minimum execution timelgcor-
top three codesign issues. responds to the maximum transient bus load, slowing down

Simulation is state of the art in MpSoC performance vesther components’ communication, and vice versa.
ification. Tools from many suppliers support cycle-accurate The transient runtime effects shown in figures 1 and 2 lead
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Figure 2. Scheduling Anomaly
to complex,SySteBLIRYRhFOMES FasErs THRAGSIGRET MILLNG,IRChanisns) e TRMA of fgundrropjs(s]. Some

provide a simulation pattern that reaches each corner ca&stensions have alfeady found their way into commercial
during simulation. Essentially, if all corner cases satisfy th@nalysis tools, which are being established e.g. in the au-
given performance constraints, then the system is guarantéshotive industry to analyze individual units that control the
to satisfy its constraints under all possible operation condiéngine or parts of the electronic stability program.

tions. However, such corner cases are eXtremely difficult tOThe techniques re|y on a Simp|e yet powerfu| abstraction
find and debug, and it is even more difficult to find simulaof task activation and communication. Instead of consid-
tion patterns to cover them all. Reusing function verificatiogring each event individually, as simulation does, formal
patterns is not sufficient because they do not cover the costheduling analysis abstracts from individual events to event
plex nonfunctional performance dependencies that resouitfeams. The analysis requires only a few simple characteris-
sharing introduces. Reusing component and subsystem Vs of event streams, such as an event period or a maximum
fication patterns is not sufficient because they do not ConSiqmer_ From these parameterS, the ana|ysis Systematica”y de-
the complex component and subsystem interactions. rives worst-case scheduling scenarios, and timing equations

The system integrator might be able to develop additiona@fely bound the worst-case process or communication re-
simulation patterns, but only for simple systems in which theponse times.
component behavior is well understood. Manual corner casét might surprise that —up to now— only very few of these
identification and pattern selection is not practical for comapproaches have found their way into the SoC (system-on-
plex MpSoCs with layered software architectures, dynamiship) design community by means of tools. Regardless of the
bus protocols, and operating systems. In short, simulatiokaown limitations of simulation such as incomplete corner-
based approaches to MpSoC performance verification argse coverage and pattern generation, timed simulation is still
about to run out of steam, and should essentially be enhaneld preferred means of performance verification in MpSoC
by formal techniques that systematically reveal and coveesign. Why then is the acceptance of formal analysis still
corner cases. very limited?

Real-time systems research has addressed scheduling an@ne of the key reasons is a mismatch between the schedul-
ysis for processors and buses for decades, and many pimgr models assumed in most formal analysis approaches and
ular scheduling analysis techniques are available. Exathe heterogenous world of MpSoC scheduling techniques and
ples include rate-monotonic scheduling and earliest deadlioemmunication patterns that are a result of a) different appli-
first [16], using both static and dynamic priorities; and timeeation characteristics; b) system optimization and integration
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which is still at the beginning of the MpSoC developmenfior event streams that, in principle, can be solved iteratively
towards even more complex architectures. using event stream propagation.

Therefore, a new configurable analysis process is needeggth approaches use a highly generalized event stream
that can easily be adapted to such heterogeneous archit@gresentation to tame the complexity of the event streams.
tures. We can identify different approaches: the holistic agsresser uses a superpositiosaént vector systenwhich is
proach that searches for techniques spanning several scheghgn propagated using complex event dependency matrices.
ing domains; and hierarchical approaches that integrate loGgiele et. al. use a more intuitive model. They usemer-
analysis with a global flow based analysis, either using nqaa| upper and lower bound eveatrival curvesfor event
models or based on existing models and analysis techniqu§$eams, and similaervice curve$or execution modeling.

. In the folllowmg section, we wil pleeply review thE.) exist- This generality, however, has its price. Because they intro-
ing analysis approaches from the literature on real-time aNfliced new stream models, both Thiele and Gresser had to de-

ysis and identify key requirements for their application t\)/elop new scheduling analysis algorithms for the local com-

{\/IIpSoCddbe&gn. Ind Slect|fon 3, we mtrgduc_?At/hSetfurr\]daTe onents that utilize these models; the host of existing work
als and basiC mode's of our unique sym €chNology, real-time system can not be re-used. Furthermore, the new

Section 4 SUrveys a large nqmbgr of extensions that ena Gdels are far less intuitive than the ones known from the
the analysis of complex applications. Section 5 shows ho(w ssical real-time systems research, e. g. the model of rate-

the overall analysis accuracy can be deliberately INCrease notonic scheduling with its periodic tasks and worst-case

when designers specify few additional correlation imcormaExecution times. A system-level analysis should be simple

tion. Automatic optimizations using evolutionary algorithm%lnd comprehensible, otherwise its acceptance is extremely
is explained in Section 6, while Section 7 introduces the id%%ubtful '

of sensitivity analysis. An experiment is carried out in sec-

tion 8. We interpret the experimental results, before we dra‘WT_he comp_osmonal idea is a good starting point for the fol-
our conclusions. owing considerations. It uses some event stream representa-

_ _ tion to allow component-wise local analysis. The local anal-
2. Formal Techniques in System Performance ysis results are, then, propagated through the system to reach
Analysis a global analysis result. We don'’t necessarily need to develop

w local analysis techniques if we can benefit from the host
Formal approaches to heterogeneous systems are rare. Eﬁﬁ

“holistic” approach [28, 6] systematically extends the classi- A irk n rea:l-tlmfe sche(.dullngsan?llﬁg. his th
cal scheduling theory to distributed systems. However, be- KEy nove ty of our unique Sym > approac 'S that we
cause of the very large number of dependencies, the colse intuitivestandard event mode(section 3.2) from real-

plexity of the equations underlying the analysis grows withe systems research rather than introducing new, complex

system size and heterogeneity. In practice, the holistic j;_ream representations. Periodic events or event streams with

proach is limited to those system configurations which si tter and bursts [31] are examples of standard models that

plify the equations, such as deterministic TDMA networks-a"n be fOU”G’ In Ilteratl_Jre. Our SymTA/S technology lets
extract this information from a given schedule and auto-

However, there is, up to now, no general procedure to set-Hp € : o
and solve the holistic equations for arbitrary systems. Thi atically interface or adapt the event stream to the specific

could explain, why such holistic approaches are largely i eeds within these standard' ”!Ode's' so that desigpers and
nored by the SoC community even though there are ma alysts can safely apply existing subsystem techniques of

proposals for multiprocessor analysis in real-time compu?— oice without compromising global analysis.
ing.

gGresser [7] and Thiele [27] established a different viewd. The SymTA/S approach
on scheduling analysis. The individual components or sub-
systems are seen as entities which interact, or communicate&SymTA/S [8] is a formal system-level performance and
via event streams. Mathematically speaking, the stream rejpning analysis tool for heterogeneous SoCs and distributed
resentations are used to capture the dependencies betw®etems. The application model of SymTA/S is described
the equations (or equations sets) that describe the individiralsection 3.1. The core of SymTA/S is our recently de-
components timing. The difference to the holistic approaacreloped technique to couple local scheduling analysis algo-
(that also captures the timing using system-level equatiorfhms using event streams [21, 24]. Event streams describe
is that the compositional models are well-structured with reéhe possible I/O timing of tasks. In our compositional per-
spect to the architecture. This is considered a key benefdrmance analysis methodology [22, 23], input and output
since the structuring significantly helps designers to undesvent streams are described by standard event models which
stand the complex dependencies in the system, and it enalaesintroduced in detail in section 3.2. The analysis composi-
a surprisingly simple solution. In the “compositional” aption using event streams is described in section 3.3. A second
proach, an output event stream of one component turns iltey property of our compositional approach is the ability to
an input event stream of a connected component. Schedwddapt the possible timing of events in an event stream. The
bility analysis, then, can be seen as a flow-analysis problevent stream adaptation concept is described in section 3.4.



3.1 SymTA/S application model figure additionally shows a sequence of events which satis-
A task is activated due to an activating event ActivatinSeS the event model, since exactly one event falls within each

events can be generated in a multitude of ways, includir#'&er interval box, and no events occur outside the boxes.
P=4

expiration of a timer, external or internal interrupt, and task =1
chaining. Our existing approach assumes that each task has

one input FIFO. A task reads its activating data from its input
FIFO and writes data into the input FIFO of a dependent task. ' .
A task may read its input data at any time during one execu-

tion. We therefore assume that the data needs to be available bW ez e
at the input during the whole execution of the task. We also _
assume that input data is removed from the input FIFO at the Figure 4. Example of an event stream that sat-
end of one execution. isfies the event model (P =4,7=1)
A task needs to be mapped orcamputationor commu-
nication resourcedo execute. When multiple tasks share the An event model can also be expressed using &went
same resource, then two or more tasks may request thef[ﬁrctionsr]”(At) andn'(At).
source at the same time. In order to arbitrate request ¢
flicts, a resource is associated witschedulemvhich selects

At=4 At=4

%]éfinitionl(Upper Event Function) The upper event

: a . :
a task to which it grants the resource out of the set of afunctlon n"(At) sp_ecmes thema_\xmum number of events
cur during any time interval of lenghh.

tive tasks according to some scheduling policy. Other acti\ﬁéat can oc
tasks have to waitScheduling analysisalculates worst-case pefinition 2 (Lower Event Function) The lower event
(sometimes also best-case) task response times, i.e. the tfmﬂ:tionnl (&) specifies theninimumnumber of events that
between task activation and task completion, for all taskfave to occur during any time interval of length

sharing a resource under the control of a scheduler. ScheduIEvent functions are piecewise constant step functions with

ing analysis guarantees that all observable response ti S%-hei :
. ; . -height steps, each step corresponding to the occurrence
will fall into the calculated [best-case, worst-case] mterva& g P P P g

. . ) one event. Figure 5 shows the event functions for the event
We therefore say that scheduling analysis is conservative. e del (P—4,7—1). Note that at the points where the

assume tha_t atask wn_tes _|ts output da_lta atthe e_nd of one fifictions step, the smaller value is valid for the upper event
ecution. This assumption is standard in scheduling analyslﬁmction, while the larger value is valid for the lower event

R1 R2 function (indicated by dark dots). For any time interval of
@ _ lengthAt, the actual number of events is bound by the upper
s s and lower event functions. Event functions resemble arrival
srel T T2 curves [3] which have been successfully used by Thiele et al.

for compositional performance analysis of network proces-

& sors [26]. In the following, the dependencyf andn' on
M| W | At is omitted for brevity.

events
P=4 n
Figure 3. System modeled with SymTA/S s ‘_:f_r P+;7'p J
Figure 3 shows an example of a system modeled with e 0._§_F
SymTA/S. The system consists of 2 resources each with 2 _§_
tasks mapped on iR1 andR2 are both assumed to be prior- H
ity scheduled.Srcl andSrc2 are the sources of the external T A

5 10 15

activating events at the system inputs. The possible timing
of activatir_1g events is captl_Jred by so-caliedent models Figure 5. Upper and lower event functions for
which are introduced in section 3.2. the event model (P =4, 7 =1)

3.2 SymTA/S standard event models

Event models can be described by sets of parameters. Foa periodic with jitter event model is described by the fol-
example, geriodic with jitterevent model has two parame-lowing event functionss]”q,H andnlg:ur] [23].
ters(, 7) and states that each event generally occurs period-
ically with period?, but that it can jitter around its exact po-
sition within a jitter intervaly. Consider an example where r]u?H _ {At +7-‘ 1)
(?,7) = (4,1). This event model is visualized in figure 4. P
Each gray box indicates a jitter interval of length= 1. The | At—7
jitter intervals repeat with the event model periBe= 4. The Neys = max<0, {TD @



To get a better feeling for event functions, imagine a slidhe modeling of possible timing of output events for propa-
ing window of lengthAt that is moved over the (infinite) gation to the next scheduling component. Our event models
length of an event stream. Considsr= 4 (gray vertical allow us to specify simple rules to obtain output event mod-
bar in figure 5). The upper event function indicates that &fs (section 3.3.1) that can be described with the same set of
most 2 events can be observed during any time interval pdrameters as the activating event models. Therefore, we do
lengthAt = 4. This corresponds e. g. to a window positiomot have to depart from our event models independent of size
betweertp 4 8.5 andtp + 12.5 in figure 4. The lower event and structure of the composed system (hence the term ‘stan-
function indicates that no events have to be observed duridgrd’). This makes our compositional performance analysis
At = 4. This corresponds e. g. to a window position betweeapproach very general.
to+12.5 andtp + 16.5 in figure 4.

Let us further introducelistancefunctions 3™"(N > 2)
and (N > 2), which return the minimum respectively In our compositional performance analysis methodol-
maximum distance betweéth > 2 consecutive events in anogy [22, 23], we alternate local scheduling analysis and event
event stream. model propagation, during system-level analysis. This re-
quires the modeling of possible timing of output events for
propagation to the next scheduling component. In the fol-
owing, first we explain the output event model calculation.

hen we present our compositional analysis approach.

3.3 Analysis composition

Definition 3 (Minimum Distance Function) The  mini-
mum distance functio®™"(N > 2) specifies theninimum
distance between I 2 consecutive events in an even
stream.

Definition 4 (Maximum Distance Function) The maxi- 331 Output event model calculation

mum distance functio®™®(N > 2) specifies thenaximum

distance between N+ 2 consecutive events in an evenfoUr €vent models allow us to specify simple rules to ob-
stream. - tain output event models that can be described with the same

e . set of parameters as the activating event models. The out-
For periodic with jitterevent models we obtain . : I
put event model period obviously equals the activation pe-
riod. The difference between maximum and minimum re-
SMNN>2) = max{0, (N-1)«P?— 7} (3) Sponse times (the response time jitter) is added to the activat-
Max: x| — _ _ ing event model jitter, yielding the output event model jitter
OPINZ22) = (N-D)xP+J “) (equation 5).

For example, the minimum distance between 2 events in a
periodic with jitterevent model wit{? = 4, 7 =1) is 3time
units, and the maximum distance between 2 events is 5 time

units. o L Note that if the calculated output event model has a larger
Ifin & periodic with jitter event models, the jitter is largeriyier than period, this information alone would indicate that
than the period, then two or more events can occur at téﬁ early output event could occur before a late previous out-
same time, leading to bursts. To describ@uasty event 1t event, which obviously cannot be correct. In reality, out-
model, theperiodic with jitter event model can be extende‘gut events cannot follow closer than the minimum response

with admin parameter that captures the minimum distance bime of the producer task. This is indicated by the value of
tween events within a burst. A more detailed discussion CA%e minimum distancearameter.

be found in [23].
Additionally, sporadicevents are also common [22]. We ) . )
model sporadic event streams with the same set of params-2 Analysis composition using standard event models
eters as periodic event streams. The difference is that forthe following, we explain our compositional analysis ap-
sporadic event streams, the lower event functjtiit) is al-  proach using the system example in figure 3. Initially, only
ways zero. The maximum distance funct@f*(N > 2) ap- event models at the external system inputs are known. Since
proaches infinity for all values dfl [23]. Note thafitter and an activating event model is available for each tasiRtna
dmin parameters are also meaningful in sporadic event mddeal scheduling analysis of this resource can be performed
els, since they allows to accurately capture sporadic transiemd output event models are calculatedTdrandT3 (sec-
load peaks. tion 3.3.1). In the second phase, all output event models are
Event models with this small set of parameters have sewropagated. The output event models become the activating
eral advantages. Firstly, they are easily understood by a dwent models folf 2 andT4. Now, a local scheduling analy-
signer, since period, jitter etc. are familiar event stream propis of R2 can be performed since all activating event models
erties. Secondly, the corresponding event functions and dare known.
tance functions can be evaluated quickly, which is importantHowever, it is sometimes impossible to perform system
for scheduling analysis to run fast. Thirdly, as we will see itevel scheduling analysis as explained above. This is shown
section 3.3.2, compositional performance analysis requiriesthe system example in figure 6.

Jout = .7act+(trespmax—trespmin) (5)



= = for the sole purpose dfaffic shaping[23]. Traffic shfaping
3 can be used e. g. to reduce transient load peaks, in order to
[ - 'j} '[?I‘” If,} obtain more regular system behavior. Practically, we distin-

= guish event modehdaptationfrom event modekhapingin
; SymTA/S [25]. Adaptation is required to satisfy an event

{i‘w w'j]‘ {] E]‘B_{i‘ ] model constraint, while shaping is voluntary to obtain more
= = regular system behavior. We have currently implemented two
types of event adaptation functions (EAF)pariodic EAF
Figure 6. Example of a system with cyclic produces periodic event stream fromexiodic with jitterin-
scheduling dependency put event stream. Anin-EAF enforces a minimum distance
between output events.

Figure 6 shows a system consisting of 2 resourRgsind 4. Complex embedded applications
R>, each with 2 tasks mapped on it. Initially, only the acti-

vating event models of 1 andT3 are known. At this point ~Compositional performance analysis as described so far is
the system cannot be analyzed, because on every resourcBgirapplicable to embedded applications with complex task
activating event model for one task is missing. l.e. we neégpendencies. This is because it uses a simple activation
to calculate response times & to be able to analyz®,. Model where the completion of one task directly leads to the
On the other hand, we cannot analy2ebefore analyzing activation of a dependent task. However, activation depen-
R,. We call this problentyclic scheduling dependency dencies in realistic embedded applications are usually more
One solution to this problem is to initially propagate alFomplex. A consumer task may require a different amount
external event models along all system paths until an initif data per execution than produced by a producer task, lead-
activating event model is available for each task [20]. Thi§g to multi-rate systems. Task activation may also be con-
approach is safe since on one hand scheduling cannot chafligi@nal, leading to execution-rate intervals. Furthermore,
an event model period. On the other hand, scheduling carfask may consume data from multiple task inputs. Task
onlyincreasean event model jitter [31]. Since a smaller jittewith multiple inputs also allow to form cyclic dependencies
interval is contained in a larger jitter interval, the minimun{€. g. in a control loop).
initial jitter assumption is safe. In this section, we focus on multiple inputs (both AND-
After propagating external event models, global systeand OR-activation) and functional cycles [11]. We skip
analysis can be performed. A global analysis step consigtsliti-rate systems and conditional communication, since
of two phases [23]. In the first phase local scheduling andhese features have not yet been incorporated into SymTA/S.
ysis is performed for each resource and output event modéle reader interested in their theoretical foundations is re-
are calculated (section 3.3.1). In the second phase, all oftred to [10].
p_ut event models are propagated. It is then che_cke_d ifthe; Basic thoughts
first phase has to be repeated because some activating event
models are no |onger up_to_date, meaning that a new|y prop_The activation function of a consumer taSkwith multi-
agated output event model is different from the output eveRlte inputs is a boolean function of input events at the dif-
models that was propagated in the previous global ana|y§qa§ent task inputs. A restriction we impose is that activa-
step. Analysis completes if either all event models are ufion must not be invalidated due to the arrival of additional
to-date after the propagation phase, or if an abort conditid@kens [34]. This means that negation is not allowed in

e. g. the violation of a timing constraint has been reached. the activation function. Consequently, the only acceptable
3.4 Event Stream Adaptation boolean operators afeND andOR  since an input is negated

in all other commonly used boolean operators (NOT, XOR,
A key property of our compositional performance analysiJAND, NOR).
approach is the ability to adapt the possible timing of eventsin order to perform scheduling analysis on the resource to
in an event stream (expressed through the adaptation of\@hich taskC is mapped, activating event functions for t&k
event model [23]). There are several reasons to do this. hive to be calculated from all input event functions. In the
may be that a scheduler or a scheduling analysis for a pégtiowing we demonstrate how to do this for AND- and OR-
ticular component requires certain event stream propertiegtivation using our standard event models (section 3.2). An
For example, rate-monotonic scheduling and analysis [16ktended discussion covering event models in general can be
require strictly periodic task activation. Alternatively, arfound in [10].
integrated IP component may require certain event stre
properties. External system outputs may also impose eve
model constraints, e.g. a minimum distance between outfor a consumer taslkC with multiple inputs, AND-
put events or a maximum acceptable jitter. Such a constraattivation implies tha€ is activated after an input event has
may be the result of a performance contract with an exterradcurred at each input An example of an AND-activated
subsystem [29]. Event stream adaptation can also be ddask with three inputs is shown in figure 7.

Src2?

AND-activation
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Note that AND-activation requires input data buffering, events T T Tyt
since at some inputs data may have to wait until data has o
arrived at all other inputs for one consumer activation. We
will refer to this source of buffering a&ND-buffering We
also use the terrtoken[14] to refer to a the amount of datathe input with the largest input event model jitter. Likewise,

input, events

Figure 7. Example of an AND-activated task C
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Figure 8. AND-activation timing example

required for one input event. the maximum distance between two AND-activations (acti-
vations 1 and 2 in figure 8) equals the maximum distance
4.2.1 AND-Activation Period between two input events at input 3. It is not possible to

To ensure bounded AND-buffer sizes, the period of all inpditnd a different sequence of input events leading to a smaller

event models must be the same. The period of the activatifgnimum or a larger maximum distance between two AND-
event model equals this period. activations. From this we can conclude that the input with

the largest input event jitter determines the activation jitter of
the AND-activated task. I.e.

B L op o ij=1k =
P, = % ; i=1k 6 .
AND i (6) Janp = max{%} ; i=1Kk (7)
422 AND-Activation Jitter This statement also remains true if the first set of input

_ o . events do not arrive at the same time (as is the case in fig-
In order to obtain the AND-activation jitter, let us considey, o 8). A proof is given in [10]. Calculation of the worst-

hovy often at_:tivat_ion of the AND_—activated _task can 0cCUase delay and backlog at each input due to AND-buffering
during any time intervalAt. Obviously, during any time .1 a1so be found in [10].

interval At, the port with the smallest minimum number of Ngte that in some cases it may be possible to calculate
available tokens determines the minimum number of ANDspases between the arrival of corresponding tokens in more
activations. Likewise, the port with the smallest maximurgeail, e.g. through the use of inter-event-stream contexts
number of available tokens determines the maximum NUkection 5.3). It may then be possible to calculate a tighter
ber of AND-activations. o o activating jitter if it can be shown that a certain input cannot
The number of available tokens at poduring atlr_ng mter-_ (fully) influence the activation timing of an AND-activated
val At depends on both the number of tokens arriving duringqy “hecause tokens at this input arrive relatively early. This

At, and on the number of tokens that arrived earlier, but did 15 ey 1arly important for the analysis of functional cycles
not yet lead to an activation because tokens at one or m?é%ction 4.4)

other ports are still missing. This is illustrated in the follow- o

ing example. Let us assume that our task in figure 7 receivés3 OR-activation

tokens at each with the followingeriodic with jitter input For a consumer tasg with multiple inputs, OR-activation
event models: implies thatC is activated each time an input event occurs
at any input ofC. Different to AND-activation, input event
models are not restricted, and no OR-buffering is required,

P=4 Hh=0 since a token at one input never has to wait for tokens to
Pr=4, J2=2 arrive at a different input in order to activae Of course,
=4, 9J5=3 activation buffering is still required.
OR
Figure 8 shows a possible sequence of input events that ad- .
here to these event models, and the resulting AND-activation ’

events. The numbering of events in the figure indicates which
events together lead to one activation of AND-activated
taskC.

As can be seen, the minimum distance between two AND-An example of an OR-activated task with two inputs is
activations (activations 3 and 4 in figure 8) equals the minghown in figure 9. Let us assume the followipgriodic with
mum distance between two input events at input 3, which jister event models at the two inputs of taSk

Figure 9. Example of an OR-activated task C



ter. Since the left and right sides of this inequation are only
=4 H=2 piecewise conti_nuous, the_ inequ_at_ion cap_not be simply tr_ans—
=3 f=2 formed to obtain the desired minimum jitter. The solution
2= 27 used here is to evaluate inequation 9 piecewise for each inter-

The corresponding upper and lower input event functiot@ 1A%}, Atj+1], during which the right side of the inequation
are shown in figure 10. Since each input event immediatejS @ constant valug € N. For each constant piece of the
leads to one activation of tagk the upper and lower activat- "'ght side, a condition for &cal jitter Jor j is obtained that
ing event functions are constructed by adding the respecti¥@fisfies the inequation for alt : Aty < At < Atjiq.
input event functions. The result is shown in figure 11(a). O each constant piece of the right side, inequation 9 be-

Recall a key requirement of compositional performance®™Mes
analysis, namely that event streams are described in a form
that can serve both as input for local scheduling analysis, and [ At + Jor j
can be produced as an output of local scheduling analysis for {%R
propagation to the next analysis component (section 3.3.2).

Due to the irregularly spaced steps (visible in figure 11(a)), Since the left side of this inequation is monotonically in-
the exactactivating event functions cannot be described bgreasing witht, it is sufficient to evaluate it for the smallest
a periodic with jitter event model, and thus cannot serve divalue ofAt, which approacheAt;. I. e.

rectly as input for local scheduling analysis. Furthermore,

-‘ > k]' ; Atj<At§Atj+1,kjEN

after local scheduling analysisperiodic with jitter output Ati + €+ Jor
event model has to be propagated to the next analysis compo- lim {JEPORJW > ki, keN
nent. We need an activation jitter in order to calculate an out- e t0 OR

put jitter (section 3.3.1). Therefore, we need to find conser- ., iy, 2tit+e+ Jor; k-1

vative approximations for the exact activating event functions e—+0 Por ~

that can be described byperiodic with jitter event model & lim (Jorj+¢€) > (kj—1)* Por—Afj
(Por, Jor)- The intended result is shown in figure 11(b) (the g0

exact curves appear as dotted lines). Jorj = (Kj—1)*Por—Atj(11)

o ] The global minimum jitter is then the smallest value which
4.3.1 OR-Activation Period satisfies all local jitter conditions. As already saidy, dis-
The period of OR-activation is the least common multiplelays a pattern of distances between steps which repeats pe-
LCM(R) of all input event model periods (ttmeacro period, riodically every macro period. Therefore, it is sufficient to
divided by the sum of input events during the macro periggerform above calculation for one macro period. An algo-
assuming zero jitter for all input event streams. rithm can be found in [9].

4.4 Cyclic Task Dependencies

Por = LCM(R) 1 (8  Taskswith multiple inputs allow to build cyclic dependen-
ZP—l% Stz cies. A typical application is a control loop, where one task

represents the controller and the other task a model of the
controlled system. A task graph with a cycle is shown in

4.3.2 OR-Activation Jitter figure 12.
A conservative approximation for the exact activating event

functions with aperiodic with jitter event model implies the
following inequations.

At+ﬂoﬂ d [AH”
9
’7 Por i; Ua ( )
At — n At — 7,
max(O, { jORD < Zmax(Q {j'J )(10) Figure 12. Example of a cyclic dependency
?OR i= TI

We assume that tasks with multiple inputs in cycles are
In order to be as accurate as possible, we are interesfdD-activated, and that they produce one token at each out-
in the minimum jitter that satisfies inequations 9 and 10. Hut per execution. This implies that at least one initial token
can be shown that the minimum jitter that satisfies inequaiust be present inside the cycle to avoid deadlock [14], and
tion 9 and the minimum jitter that satisfies inequation 1€hat the number of tokens inside the cycles remains constant.
are the same [10]. In the following, the upper approximaonsequently, the period of the cycle-external event model
tion (inequation 9) is used to calculate the OR-activation jidetermines the period of all cycle tasks. Finally, we assume
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Figure 10. Upper and lower input event functions in our OR-example
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Figure 11. Upper and lower activating event functions in our OR-example

exactly one cycle-task with one cycle-external and one cyclgtter appears unbounded if calculated this way.

internal input. All other cycle-tasks only have cycle-internal The problem boils down to the fact that event model prop-
inputs. These restrictions allow us to concisely discuss tlagation as presented so far captures neither correlations be-
main issues resulting from functional cycles. A much morveen the timing of events in different event streams, nor the
general discussion can be found in [10]. fact that the number of tokens in a cycle is fixed. Therefore,

In section 4.2 we established that the activation jitter dhe activation jitter for the AND-activated task is calculated

an AND-activated task is bounded by the largest input jit/eTy conservatively.
ter. As was the case for cyclic scheduling dependencies (sdc5 Analysis Idea
tion 3.3.2), we have to start system analysis with an initial as-

point is to initially assume zero internal jitter. We can now 't'require only minor modifications to the feed-forward system-

erate analysis and event model propagation around the cyglen analysis already supported by SymTA/S. The idea goes
hoping to find a fix-point. as follows:

However, if only one task along the cycle has a respongge initially assume that the cycle-internal input cannot in-
time which is an interval, then after the first round of anakrease the activation jitter of the AND-activated task. This
ysis and event model propagation the internal input jitter efllows us to ‘cut’ the cycle-internal edge, rendering a feed-
the AND-activated task will be larger than the external inpdbrward system which can be analyzed as explained in sec-
jitter. In our compositional performance analysis approaction 3.3.2. We then calculate the time it takes a token to travel
this larger jitter will be propagated around the cycle agaimround the cycle, and reason about the validity of the initial
resulting in an even larger jitter at the cycle-internal input acissumption.
the AND-activated task (section 3.3.2). It is obvious that the In the following, the idea is explained for cycles with one



initial tokens. Let us assume an exterpatiodic with jitter tion or communication requests as well as correlated load
event model with perioPey; and jitter Jex. Let us define?}i” distribution into account, in order to yield tighter analysis
andtf}®to be the minimum respectively maximum sum obounds. Cases where such correlations have a large impact
worst-case response times of all tasks belonging to a cyde system timing are especially difficult to simulate and,
(the ‘time around the cycle’) as obtained through analysis bence, are an ideal target for formal performance analysis.
the corresponding feed-forward system. Let us further adéfe call such correlationsystem contexts
sume that after analysis of the corresponding feed-forwardin Section 5.1, using an example of a hypothetical set-top
systemtaX < Py, box, we review the assumptions made by a typical perfor-
At system startup, the first token arriving at themance analysis, callemntext blindanalysis. Then, we show
cycle-external input will immediately activate the AND-the analysis improvements that can be obtained when consid-
concatenated task together with the initial token already waé#ring two different types of system contexts separately and
ing at the cycle-internal input. No further activation of thelso in combinationintra event stream contextahich con-
AND-activated task is possible until the next token becomessder correlations between successive computation or com-
available at the cycle-internal input of that task. If feedmunication requests (section 5.2), antér event stream con-
forward analysis was valid, then this will take betweé;ﬁ texts which consider possible phases between events in dif-
andt{}**time units. ferent event streams (section 5.3). The combination of both
The maximum distance between two consecutive externglstem contexts is explained in section 5.4.
tokens is8g(2) = Pexi+ Jeut (€QUAtion 4). Fromf® < 59 context blind analysis
Pex: follows that it is not possible that thend external token

arriving aslate as possible after thesiexternal token has to The SoC implementation of a hypothetical set-top box

wait for an internal token. s_hown in figure 13 is used as an example throug_hout this sec-
The 3d external token can arrive at mo&fa(3) = 2« tion. The set-top box can process MPEG-2 video streams

Pyt + Jext after the Btexternal token. Therefore, if both the@TVing from the RF-moduler{ videg and sent via the

2ndand the & external tokens arrive as late as possible, thd'S BUS fo the TV ¢v). In addition, a decryption unit
the 3d arrivesPuy after the 2d. FromtMa < &, follows (DECRY PTIONallows to decrypt encrypted video streams.

that the 3d external token arriving aate as possible after |N€ Set-top box can additionally process IP traffic and down-
the Ist external token cannot wait for an internal token, evel@ad web-content via the bupf to the hard-diskKd).

if the 2nd external token also arrived &ge as possible. This BUS

argument can be extended to all further tokens. We infer that —1

no external token arriving as late as possible has to wait for e C

an internal token. —
Activation of taskb also cannot happen earlier than the : .

arrival of an external token. Therefore, the activating event _ _ ) il

model of taskb is conservatively captured by the external

input event model (equation 12). We conclude that our ap-

proach is valid for a cycle witM = 1 initial token, for which ; ;

t?}ax < Pyt T = ..,,

Pact =Pext 7 Jact = Jext (12) Figure 13. hypothetical set-top-box system

In [10] it is shown that the approach presented in this We will focus on worst-case response time calculation for
section is also valid for a cycle withl > 1 initial tokens, the system bus. We assursiatic priority-based scheduling
for which (M — 1) % Pext < tff* < M* Pex. In [10] it is  on the bus. The priorities are assigned as follo@sc >
also shown how to extend the approach to nested cycles.dac> ip. MPEG-2 Video frames are assumed to arrive peri-
SymTA/S, the feed-forward analysis is performed for everydically from the RF-module. The arrival period is normal-
cycle, and the required number of initial tokens is calculategded to 100. The core execution and communication times of
fromtf}?* This number is then compared against the numbgte tasks are listed in table 1.

of cycle-tokens specified by the user in the same manner as
any other constraint is checked. enc [10,30]
dec [10,30]
ip [50,50]
5. System contexts Seerymton 30401

Performance analysis as described so far can be unnec-
essarily pessimistic, because it ignores certain correlations
between consecutive task activations or assumes a very ped-he worst-case response timeipf calculated by a con-
simistic worst-case load distribution over time. text blind analysis, is 170. As can be seen in figure 14, even

We have therefore added advanced performance analybisugh a data dependency exists betwaaranddeg which
techniques taking correlations between successive computay even out their simultaneous activation, a context blind

Table 1. Core execution times



analysis assumes that in the worst-case all communicaticertain type of events in a sequence of a certain length
tasks are activated at the same instant. Furthermore, eweder to capture partial information about an event stream.
though MPEG-2 frames may have different sizes dependiigjan arbitrary integer value. A single worst-case and a single
on their type, a context blind analysis assumes that every adtest-case sequence of events with lemgthn be determined
vation ofencanddecleads to a maximum transmission timefrom the available min- and max-conditions that can be used
of one MPEG-2 frame. to calculate the worst- and best-case load due to any number
of consecutive activations of the consumer task. In [12], we
G have extended static-priority preemptive response-time cal-
,,,,,,,,, ' i | culation to exploit this idea.
deg, L3 | [ 0] Let us apply this approach to our set-top box example.
- | | . Lo Suppose that the video stream sent from the RF to the
s I | bus, is encoded in one of several patterns of |-, P- and
e } ! ! b ! B-frames (IBBBBB, IBBPBB, IPBBBB...), or that several
L b bl 4 Vvideo streams are interleaved. Therefore, it is impossible
to provide a fixed sequence of successive frame types in the
Figure 14. Worst case response time calcula- video stream. However, it may be possible to determine min-
tion for ip withoutcontexts, using SymTA/S and max-conditions for the occurrence of each frame type.
The communication times of taskacanddecdepends on
the received frame type. I-frames have the largest size and
5.2 Intra Event Stream Context lead to the longest execution time, P-frames have the mid-
Context-blind ana|ysis assumes that in the worst-case, é{}e size and B-frames have the smallest size. Therefore, the
ery scheduled task executes with its worst case executig®de corresponding to the transmission of an I-frame has the
time for each activation. In reality, different events often adargest communication time and the mode corresponding to
tivate different behaviors of a computation task with differthe transmission of a B-frame has the lowest communication
ent WCET, or different bus loads for a communication taskime.
Therefore, a lower maximum load (and a higher minimum Having both intra event stream context information and
load) can be determined for a sequence of successive actides of the consumer tasks, we can determine a weight-
tions of a higher-priority task if the types of the activatingorted worst case sequence of frame types with lemgftne
events are considered. This in turn leads to a shorter cegader interested in knowing our algorithm to exploit min-
culated worst-case response time (and a longer best casefd max-conditions is referred to [12].
sponse time) of lower-priority tasks. We call the correlation Now we can determine fdrsuccessive activations enc
within a sequence of different activating eventsrira event anddecthe worst case load produced on the bus. This is
stream context performed, by iterating through the weight-sorted sequence
Mok, Chen and Baruah introduced this idea in [17] angtarting from the first event, adding up loads until the worst
showed promising results for MPEG-streams where the a&&se load fot activations has been calculated! i bigger
erage load for a sequence of |-, P- and B-frames is mu#tann, the sequence length, we go only throughod n
smaller than in a stream that consists only of large I-frame@vents and adds the resulting load to the load of the whole
which is assumed by a context-blind worst-case responsedquence multiplied blydiv n.
time analysis. However, the periodic sequence of types ofln figure 15, assuming that the worst case sequence of

activating events was supposed to be completely known. frame types with length 2 is: IP; and that the transmission
In reality, intra event stream contexts can be more corfime for an I-frame is 30 and for a P-frame is 20, we show
plicated. If no complete information is available about théhe calculated worst case response timgpivhen consider-
types of the activating events, it is no longer possible to afi*g the available intra event stream context information. As
ply Mok’s and Chen’s approach. Mok and Chen also do nean be seen, for both taskscanddeg the produced load
clearly distinguish between different types of events on or@ the bus due to a transmission of two successive MPEG-
hand, and different task behaviors, caltaddeq35], on the 2 frames is smaller than in the context-blind case (see fig-
other. However, this distinction is crucial for subsystem indre 14). This leads to a reduction of the calculated worst-case
tegration and compositional performance analysis. Differergsponse time dfp: 150 instead of 170.
types of events are a property of the sender, while modes
a property of the receiver. Both can be specified separat
from each other and later correlated. Furthermore, it mayContext-blind analysis assumes that all scheduled tasks
be possible to propagate intra event stream contexts alongh@ring a resource are independent and that in the worst-case
chain of tasks. It is then possible to also correlate the model tasks are activated simultaneously. In reality, activating
of consecutive tasks. events are often time-correlated, which rules out simultane-
We extended intra event stream contexts by allowingus activation of all tasks. This in turn may lead to a lower
minimum- and maximum-conditions for the occurrence of maximum number (and higher minimum number) of inter-

%’% Inter Event Stream Context
ely



time of decryption we can calculate the offset between the
activations ofencanddec

In order to show in isolation the analysis improvement due

feo e ‘ to inter event stream contexts, we will assume for now that
[ L S all video-frames are I-frames. Figure 16 shows for the inter
Wows O — E ———————— s— I! event stream context case the calculated worst case response
: } | ! ; ) ! time ofip due to interrupts bgncanddec As can be seen,
‘ * ° ° * a gap exists between successive executiorenobinddec

Sinceip executes during this gaps, one interrupt lessgpof
is calculated (in this case througmg. This leads to a re-
duction of the calculated worst-case response timp:af40
instead of 170.

rupts of a lower-priority task through higher-priority tasks | (metin Bpesi) = i08) oo Sl o) b))
resulting in a shorter worst-case response time (and lon¢ \

best-case response time) of the lower priority task. We ci
the correlation between time-correlated events in differe \
event streams ainter event stream context ”

Tindell introduced this idea for tasks scheduled by a stat= \\
priority preemptive scheduler [30]. His work was later gen ™ \
eralized by Palencia and Harbour [18]. Each set of timi
correlated tasks is grouped into a so catleghsaction Each \ R
transaction is activated by a periodic sequence of exter | " "~ 7 7 7 7
events. Each task belonging to a transaction is activated wt y—_—
a relative time, calledffset elapses after the arrival of the core execution time of the decryption unit
external event.

To calculate the worst-case response time of a task, afjgyre 17. Improved worst-case response time
worst-case scenario for its execution must be build. Tindell -5iculation due to  inter contexts
[30] showed that the worst-case interference of a transaction
on the response time of a task occurs atcdtitical instant , o I

. S . In figure 17, analysis improvements with inter event stream
which correspond to the most delayed activation of a higher- . I . )

S . . .. context information in relation to the context-blind case are
priority task belonging to the transaction. The activation timé

: o shown as a function of the offset betwesmcanddeg which

of the analyzed task and all higher-priority tasks have to hap- L . .
en as soon as possible after the critical instant S equal to the execution time of the decryption unit.

pen > POSSIDI . o Curvea shows the reduction of the calculated worst-case
Since all activation times of all higher-priority tasks be- . . .

: . . —— response time afilec Depending on the offsetlecis either
longing to a transaction are candidates for the critical instant ..

. . artially (offset value less than 30), completely (offset value

of the transaction, the worst-case response time of a lower- ;

more than 70) or not interrupted at all leyc (offset value

p_rlorlty task h.as to_ be calculated for all p_ossuble combm_ yetween 30 and 70). The latter case yields a maximum re-
tions of all critical instants of all transactions that contain

) . : duction of 50 %.
higher priority tasks, to find the absolute worst-case. Curvesb - g show the reduction in the calculated worst-

enc T T case response time @b for different IP traffic sizes. The

P _ :_ reduction is visible in the curves as dips. If no gaps exists
| ! | between two successive executiongontanddeg no worst-

! ' ! case response time reductionipfcan be obtained (offset
E 777777777777777777777777 Tlil value less than 30 or more than 70). If a gap exists, then

i
PRDHN 3. SErERnee
B+ (0) 43 )

Figure 15. Worst case response time calcula-
tion for ip considering intra contexts

' b I r sometimes one interrupt less igf can be calculated (either
1 . .
L Coesh w L Loy throughencor deg, or there is no gain at all (curvesand
f). Since the absolute gain that can be obtained equals the
Figure 16. Worst case response time calcula- smaller worst case execution timeasfcanddeg the relative
tion for ip considering inter contexts worst-case response time reduction is bigger for shorter I1P-
traffic.

Let us applv Tindell's aoproach to our set-ton box exam- An important observation is that inter event stream con-

PRy PP P Mext analysis reveals the dramatic influence that a small local

ple. Due to the data dependency betweeq decryption " : )
X change, in our example the speed of the decryption unit read-
anddeg these tasks are time-correlated. The offset between "
S . hg data from the bus and writing the results back to the bus,
the activations oéncanddecryptioncorresponds to the ex- .
can have on system-performance, in our example the worst-

ecution time ofenc Based on this offset and the execution e . . .
case transmission time of lower-priority IP traffic.




5.4 Combination of Contexts case response time of for different IP traffic sizes. When
&omparing curved andc (IP traffic sizes of 5 and 10) to

Inter event stream contexts allow to calculate a tight b andcin fi 17 i b h .
number of interrupts of a lower-priority task through higher¢!"Vesb andc in figure 17, it can be seen that no improve-

priority tasks. Intra event stream contexts allow to calcymentis obtained through the context combination. This is

late a tighter load for a number of successive activations gpe to the fact thaip is interrupted at most once igncand

a higher-priority task. The two types of contexts are ortho L most once bylec Therefore, as in cass the calculated

onal: the worst-case response time of a lower-priority ta
is reduced both because fewer high-priority task activatior, S .
formation is considered or not.

n interrupt its ex ion durin rtain time interval, arl . .
can interrupt its execution during a certain time interval, a 5'Curved shows that for an IP traffic size of 30, no improve-

because the time required to process a sequence of activa- ; T
. . L . ments are obtained through the context combination in com-
tions of each higher-priority task is reduced. Therefore, per-

formance analysis can be further improved if it is possibl oarrgif)gfft:et:\zﬁ?t_g lIﬂ?g?rie't;jh'eiscﬂuiiéhgi;;hat
to consider both types of contexts in combination. This is P P y

shown in figure 18 for the worst-case response time calcuf?affactIy once byjec_ and that the calculated Wors_t—ca_lse !oad
tion of ip: 130 instead of 170. produced by the video streams due to one activation is the

same no matter if intra event stream contexts are considered

or not.

Curvee andf show that for IP traffic sizes of 50 and 70

rst-case load produced by the video streams is the same
matter whether the available intra event stream context

1 | I |
dec E i E i improvements are obtained as a result of the context combi-
| Lot ; ! ; nation in comparison to both the intra and inter event stream
R, D TTTTm ] context analysis. Let us focus on curge Since intra and
- ! Lot ; ! o inter event stream contexts are orthogonal, the reduction of
L T aaamamae T a—— 'm b the calculated worst-case response timgpafue to the intra
event stream context is constant for all offset values. Since no
Figure 18. Worst-case response time calcula- reduction due to inter event stream context can be obtained
tion for ip with combinationof contexts for an offset value of 0 (equivalent to the inter event stream

context-blind case), we are sure that the reduction shown in
e curve for this offset value is only a result of the intra event
both inter and intra event stream contexts in relation to t rteam C?{ﬂte)(tf'f Otn thle ocheSr har;d%;h_e a%?'t.'ongl dredtictlt?]n
context-blind case as a function of the offset betweertand | (?[ween i eto S€ vatuef an IS obtained due fo the
dec Curvea shows the reduction of the calculated worst!"e' €VENt stream context. o
) . I Curveg shows that for an IP traffic size of 90, even though
case response time dec Sincedecis interrupted at most : .
the inter event stream context leads to an improvement (see
once byeng and the worst-case load produced due to one oo ; .
o . o curveg in figure 17), the improvement due to the intra event
activation ofencis the transmission time of one I-frame, no : : . L
) : . . ! “stream context dominates, since no dip exists in the curve.
improvement is obtained through the context combination jn . : .
. o e .€. no additional improvements are obtained due to the con-
comparison to curva in figure 17. T . .
text combination in comparison to the intra event stream con-
‘—O—dec:l=3D P=20 B=10(a) =#=—ip:5(b) ip:10(c) ip:30(d) =*=ip:50(e) =#=ip:70(f) —o—ip:QD(gj‘ text Case.

b alalaiakalal e e This example shows that considering the combination
. of system contexts can yield considerably tighter perfor-
‘ \ mance analysis bounds compared to a context-blind analy-
0 ‘ sis. Equally important, this example reveals the dramatic

\\ influence that a small local change can have on system-

performance. Systematically identifying such system-level

In figure 19, we show analysis improvements considerirl

t
'Res)
Pcomb 07

tReSPb]il‘)d

\ mﬂuences of local changes is espemally dlfflc_ult using simu-
o5 lation due to the large number of implementations that would
\ ! [ i N | have to be synthesized and executed. On the other hand,
e S formal performance analysis can systematically and quickly
identify such corner cases. All this results took a couple of
o milliseconds to compute using SymTA/S.
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core execution time of the decryption unit . . .

. 6. Design Space Exploration for System Opti-

Figure 19. Analysis improvement due to the mization

combination of intra and intecontexts In this section we will give a brief overview about the evo-
lutionary design space exploration and system optimization

Curvesb - g show the reduction of the calculated worsttechniques used in SymTA/S. We will first describe system



parameters which can be subject to optimization and how
they can be composed to define the search space. Then we
will give some examples of metrics expressing desired or
undesired system properties, forming so-called optimization

Parent 1

immutable
system parameter

objectives. Finally, we will explain the design space explo- Shizo; fidhmmay & oo, Offspring
ration loop performed in SymTA/S. 22
2 %)
6.1 Search Space i S
L L S+ .4 |35
The search space and the optimization objectives can be : G G ; 3 3
multidimensional, which means that several system parame- | . H &
ter can be explored simultaneously to optimize multiple ob- : -~ - E X
. . . . R o
jectives. Possible search parameter include: _| g s
e mapping of tasks onto different resources

e changing priorities on priority-scheduled resources - - -

immutable
system parameter

e changing time slot sizes and time slot order on TDMA
or round robin scheduled resources

Parent 2

e changing the scheduling policy on a resource

- Figure 20. Functionality of crossover operator
e modifying resource speed in SymTA/S

Since EAFsin SymTA/S allow to control the timing of
events and data between connected components (see sec- . . N
tion 3.4), additional exploration is possible using systematmpte that some metrics qnly make Sense in comblnatlon
traffic shaping. Therebylmn-EAFs allowing to extend the With constraints.  Each individual is associated with a
minimum distance between successive output events, aref'gfgs,s V?Ctor _con.talmng one entry for_ every c_:oncurrent
particular interest. We will see in section 8.2 that they can [pptimization objective. We use the following notation:
used to weaken the global impact of bursts, which can lead R
to interesting optimization results.

The compositional structure of SymTA/S allows a flexible
coding of the search space. Search parameter can be define®f -
very precisely. They can be limited locally to one or several -
components, or can be of global scope. The combination of ™~
a search parameter and its scope is calleiramosomeén
the context of evolutionary algorithms. Chromosomes form and define following example optimization objectives:
modular entities and can be combined arbitrarily to span the
search space. Amdividual, representing a specific system
configuration, consists of immutable system parameters and- Minimization of the (weighted) sum of completion
a set of chromosomes, which represent the variable system times ‘
parameters. This modular design supports the explicit com- o * R,
bination of local and global exploration techniques. For ex- i;
ample, the designer can optimize the TDMA slot sizes on a
single resource while allowing system-wide traffic shaping, 2. minimization of the maximum lateness
or optimize the priority assignments on all priority scheduled
resources in the system while varying the speed of a single max(R; — D1,...,R«—Dy)
resource.

Each chromosome carries the variation operators neces- o o )
sary for combination with other chromosomes of its type. In3- Maximization of the minimum earliness
SymTA/S we currently use the most popular operators: mu-
tation and crossover. The operators are applied chromosome-
wise. Figure 20 illustrates the functionality of the crossover

- maximum response time of a task or

maximum end-to-end latency along a path
deadline (task or end-to-end)

constant weight- 0

number of tasks or

number of constrained tasks/paths in the system

min(Dl— RL...,Dk—Rk)

operator. 4. minimization of the (weighted) average lateness
6.2 Optimization Objectives .

Optimization objectives can be any kind of metric defined Zooi * (R —Dy)
on desired or undesired properties of the considered system. i=



5. maximization of the (weighted) average earliness problem-specific part of the optimization problem is coded

inside the chromosomes and their variation operators.
K An example for a variation operatorasder crossovef4].
i;w‘ *(Di—R) It is applicable for priority assignments coded as lists, in

which each entry corresponds to the priority of a specific

task. The offspring inherits the priority assignments of the

tasks between two randomly chosen positions in the priority

7. minimization of jitters list from the first parent. The remaining priorities are inher-
ited from the second parent, beginning at the first position of

8. minimization of the sum of communication buffer sizegs priority list, starting from the second chosen position and

The choice of the metric for optimization of a specific sys?zkIIOIOIng over all priorities already assigned in the offspring.

6. minimization of end-to-end latencies

. ) . S xample:
tem is very important to obtain satisfying results. Example Parentl "1 2 3 4 5 &
metrics 4 and 5, for instance, express the average timing be- Parent2 :3 2 6 5 4 1
havior of a system with regard to its timing constraints. They Cross Pts - * %
might mislead an evolutionary algorithm and prevent it from Offspring: 6 1 3 4 5 2
finding system configurations fulfilling all timing constraints, . ..c «,semparameers
since met deadlines compensate linearly for missed deac
lines. For systems with hard real-time constraints, metrics : S
with higher penalties for missed deadline and less reward Smic ‘ %, & e
for met deadlines can be more appropriate, since they le % & st
to a more likely rejection of system configurations violating & &
hard deadline constraints. Following example metric penal %% 4
izes violated deadlines in an exponential way and can be use i\ T

(Variation)

to optimize the timing properties of a system with hard real-
time constraints:

1 1!
%CIRI* I7 CI > 1COnStant Objectives Individuals
i=

Performing a multi-objective optimization in SymTA/S Figure 21. Design space exploration loop
usually leads to the discovery of sevepaleto-optima Before the exploration loop is started, SymTA/S is initial-
Definition 5 (Pareto-optimal) Given a set V of k- ized with the immutable part of the system architecture. In

dimensional vectors \e RK. A vector ve V dominates a Order to analyze a design alternative represented by an in-
vector w € V iff for all element® < i < k we have y< w; dividual, its chromosomes are transformed into commands

A vector is called pareto-optimal iff it is not dominated byVhich can then be analyzed by SymTA/S. After analysis the
any other vector in'V. optimization controller requests the system parameters nec-

Pareto-optimal solutions represent a certain trade-off b@ssary to determine the fitness values according to the op-
tween two or more objectives, leaving it to the designer f@mization objectives. This procedure is performed for every
decide which solution to adopt_ In our case, individuals W|tmd|V|dua| Currently considered. The individuals and their fit-

pareto optimal fitness vectors represent the different systél@ss vectors are then sent to the evolutionary multi-objective
design trade-offs. optimizer. On the basis of the fitness values the optimizer

6.3 Desian S Exol ion L creates two sets. One set contains individuals selected for
) esign Space Exploration Loop elimination, the other contains individuals selected for varia-
Figure 21 shows the design space exploration loop pelen (mutation and crossover). These sets are communicated
formed in SymTA/S. Th®©ptimization Controllelis the cen- to the optimization controller, which deletes eliminated indi-
tral element. It is connected to SymTA/S, which performsiduals and performs the requested mutation and crossover
the analysis of the individuals, and to an evolutionary multisperations. The next iteration is then started with the surviv-
objective optimizer. The latter is responsible for the problening and newly created individuals.
independent part of the optimization problem, i.e. elimina- Note that the selection of individuals for elimination and
tion of individuals and selection of interesting individualsrariation depends on the used multi-objective optimizer. For
for variation. Currently, we use FEMO (Fair Evolutionaryinstance FEMO [13], eliminates all dominated individuals in
Multiobjective Optimizer) [13] and SPEA2 (Strength Paretevery iteration and pursuits a fair sampling strategy, i.e. each
Evolutionary Algorithm 2) [36] for this part. Both are cou-parent participates in the creation of the same number of off-
pled via PISA (Platform and Programming Language Indeprings. This leads to a uniform search in the neighborhood
pendent Interface for Search Algorithms) [2]. Note that thef elitist individuals.



The performance of the search procedure in SymTA/S isOur sensitivity analysis framework combines a binary
affected by the search strategy of the optimizer, the coding efarch technique and the hierarchical analysis model imple-
the chromosomes and their variation operations as well as thented in SymTA/S. As described in section 3, SymTA/S
choice of the optimization objectives. As far as the optimizerouples the local scheduling analysis algorithms into a global
is concerned, it is known that no general purpose optimizanalysis model.
tion algorithm exists that is able to optimize effectively all Since deadlines are the major constraints in real-time sys-

kinds of problems [33]. tems it makes sense to measure the sensitivity of paths laten-
e . cies. As the latency of a path is determined by the response
7. Sensitivity analysis times of all tasks along that path, and the response time of a

Most analysis techniques known from literature give a puf@sk directly depends of its core execution time, we consider
Yes/Noanswer regarding the timing behavior of a Speciﬁgqe foII.owmg issues as important metrics for the sensitivity
system with respect to a set of timing constraints defined fapalysis:

that system. Usually the analyses consider a predefined setqf 1ayimum permissible variation of the core execution
input parameters and determine the response times, and thus, time of a task without violating the system constraints

the schedula_\bility of Fhe} system. . o or the system schedulability.
However, in a realistic system design process it is impor-

tant to get more information with respect to the effects of 2. Minimum speed of a resource. The decrease of a re-
parameter variations on system performance, as such varia- source speed directly affects the core execution times of
tions are inevitable during implementation and integration. all tasks mapped on that resource but also reduces the
Capturing the bounds within which a parameter can be var- energy required by that resource.

ied without violating the timing constraints offers more flex-

ibility for the system designer and supports future changegariation of task execution/computation times The

These bounds shows haensitivethe system or system partssearch interval is determined by the current WCET value

are to system configuration changes. teoremax and the value corresponding to the maximum load
Liu and Layland [16] defined a maximum load bound oBound on the resource holding the task. If we denotbyg

a resource that guarantees the schedulability of that resoufigg current load on the resourBand byRioad max the maxi-

when applying a rate monotonic priority assignment schem@ym load bound on resouré then the search interval is:
The proposed algorithm is limited to specific system config-

urations: periodically activated tasks, tasks with deadlines at [tcoremax teoremax+ P X (Rioadmax— Rioad)]
the end of their period and tasks that do not share common re-
sources (like semaphores) or that do not inter-communicathere P represents the activation period in case of periodic

Later on, Lehoczky [15] extended this approach to systert&sks or the minimum inter-arrival period in case of sporadic
with arbitrary priority assignment. However, his approactasks. If, for the current system configuration, the constraints
does not go beyond the limitations mentioned above. Stesee violated or the system is not schedulable then the search
Vestal [32] proposed a fixed-priority sensitivity analysis fointerval is[0;tcore max:
tasks with linear computation times and linear blocking time The algorithm selects the middle interval value and veri-
models. His approach is still limited to tasks with periodidies if the constraints are satisfied for the configuration ob-
activation patterns and deadlines equal to the period. Pdained by replacing the task WCET value with the selected
nekkat [19] proposed an approach that uses a combinatiorvafue. Ifyes then the second half of the interval becomes the
a binary search algorithm and a slightly modified version dfew search interval, otherwise the first half of the interval is
the response time schedulability tests proposed by Audsl@@arched. The algorithm iterates until the size of the search
and Tindell [1][31]. interval becomes smaller than a specific predefined value.

In the following we give a brief overview about the sensi-
tivity analysis algorithm and the analysis models and metrisgriation of resource speed The same algorithm is ap-
used in SymTA/S. As already mentioned above, different aptlied to find the minimum resource speed. If, for the cur-
proaches were proposed for the sensitivity analysis of diffefent configuration, the constraints are satisfied and the sys-
ent system parameters. However, all can perform only singtem is schedulable then the search space is determined by
resource analysis as they are bounded by local constraifR§peednin; Rspeed Where Rspeeqis the current speed factor
(tasks deadlines). Due to a fast increase of system compl@xsually 1) andRspeedmin is the speed factor corresponding
ity and heterogeneity, the current distributed systems usuailythe maximum resource load bound. Otherwise, the search
have to satisfy global constraints rather than local one. Engbace i§Rspeed Rspeednad WhereRspeedmax is the speed fac-
to-end deadlines or global buffer limits are an example @br corresponding to the minimum resource load bound (be-
such constraints. Hence, the formal approaches used for ib& 1%).
sensitivity analysis at resource level can not be transformedThe ideal value for the maximum resource load bound is
and applied at the system level, as this implies huge effd00%. We performed experiments on different system mod-
and less flexibility. els and we observed that for load values above 98% the
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Figure 22. System on chip example 2?@”;3 ; Ggg 8 8
run-time of the sensitivity analysis algorithm drastically in- tmr p 70] 0 0

creases. This is due to an increase of the analyzed period

(busy period) in case of local analysis scheduling algorithms. Table 3. Event models at external system in-
However, a resource load above 98% is not realistic due to puts.

variations of the system clock frequency or other distorting

factors. : .
set of path latency constraints (Tab. 4). Constraints 1 and 3

8. System on chip example have been explicitly specified by the designer. Thd @n-
) ) ] _straint implicitly follows from the fact that the cycle contains
In this section, using SymTA/S, we apply the techniques initial tokens. Constraint 3 is defined for causally depen-
from the previous sections to analyze the performance ofyant tokens [34]. We shall also impose a maximum jitter

system on chip example shown in figure 22. constraint at outpuig out (Tab. 5).
The embedded system in figure 22 represents a hypothet-

ical SoC consisting of a micro-controllen), a digital sig-

nal processorSP and dedicated hardwarel\{V), all con- [ constraint # path | maximum latency
nected via an on-chip bus¢g. DSPanduC are equipped |- sens]sens2sens3— upd 70
with local memory. TheHW acts as an interface to a phys- 2 slgin — sig.out 60

3 cycle ctrl — ctrl) 140

ical system. It runs one tasky(sif) which issues actuator
commands to the physical system and collects routine sensor
readingssysif is controlled by tasktrl, which evaluates the Table 4. Path latency constraints
sensor data and calculates the necessary actuator commands.
ctrl is activated by a periodic timetrir) and by the arrival
of new sensor data (AND-activation in a cycle). We assumjeconstraint # output | event model period event model jitter
2 initial tokens in the cycle. [4 [ sigout]  Psigowt=60 [ Jsigoumax=18 |
The physical system is additionally monitored by 3 sensors
(sensk sens3, which produce data sporadically as a reaction . ]
to irregular system events. This data is registered by an OR- Table 5. Output jitter constraint
activated monitor tasknfor) on theuC, which decides how .
to update the control algorithm. This information is sent t§'1 Analysis
taskupd on theDSP, which updated parameters into shared We will use static priority scheduling both on tB&Pand
memory. the Bus The priorities on théBusrespectivelyDSP are as-
The DSP additionally executes a signal-processing taséigned as followscl > ¢2 > ¢3 > ¢4 > ¢5 andfltr > upd>
(fltr), which filters a stream of data arriving at ingitLin, ctrl.
and sends the processed data via ousubut All commu- Performance analysis results were obtained using
nication, except for shared-memory on tB&P, is carried SymTA/S [8]. In the first step, SymTA/S performs OR-
out by communication tasksl - ¢5 over the on-chiBBus concatenation of the output event modelssefisl- sens3
Core execution times for each task are shown in Tab. 2. and obtains the followingporadic activating event model
We assume the following event models at system inpufsr taskmon
(Tab. 3).
In order to function correctly, the system has to satisfy a Pact = Por = 250, Jact = Jor = 500




The large jitter is due to the fact that input events happenf # ] constraint [ inter context-blind] inter context-sensitive

ing at the same time lead to a burst of up to 3 activations (we; sens]sens2sens3— upd ;‘51 ;g
. . sig-in — sig-out

assume no correlations betwesensl- sens3. Since task 5 e o) 50 50

monis the only task mapped onteC, we can now perform [4 ] Jigouwmax= 18 i1 3

local scheduling analysis for this resource, in order to cal- ) .
culate the minimum and maximum response times, as well Table 8. Constraint values for context blind and
as the output event model of taghon The results of this ~ Sensitive analysis

analysis are shown in Tab. 6.

[ # [ Bustasks [ DSPtasks [ con. 1] con. 2] con. 3] con. 4]
- 1] c1c2c3 ¢4 c5 | upd fltr, ctrl 55 42 120 18
[task ][ s/p] ActivatingEM | 1 [[slp] Output EM | 2 [ c1,c2 c4, c3,c5 | upd fitr, ctrl | 59 2 112 18
[mon][ s [ 7 (250 7 (500)d(0) [ [10,36][[ s | P (250) J (526) d(10) | 3] c2clc4c5c3d | updfitr,ctrl | 63 42 96 18
4 | c1,c2 c3 c4,c5 | fltr, upd ctrl 70 27 120 3

Table 6. Scheduling analysis results on ~ uC Table 9. Pareto optimal solutions

The worst-case response time of tasknincreases com- 8.2 Optimizations
pared to its worst-case core execution time, since later activaj o+ s now try to optimize our example architecture. Op-

tions in a burst have to wait for the completion of the P'Vlimization objectives are the four defined constraints. We try

ous activations. The output jitter increases by the dlfferen?g minimize the latencies on paths 1-3 and the jitter at output

between maximum and minimum core execution times CO"Q[g out

pared to the activation jitter._ The minimum dista?nce_betweenln the first experiment our search space consists of the pri-
output events equals the minimum core execution ime. 4y, assignments on tH@USand theDSP. Table 9 shows the
Atthis point, the rest of the _sys'_[em cannot be analyzed, b Xisting pareto optimal solutions. In the first two columns,
cause on every resource activating event models for at le ks are ordered by priority, highest priority on the left. In
one task are missing. SymTA/S t_herefore generates a CONSRL |4t four columns, we give the actual value for all four
vative starting-point by propagating all output event mode nstrained values. The best reached values for each con-
along all paths until an initial activating event model is ava"étraint are emphasized
able for each task. SymTA/S then checks that the systeMyg e can observe there are several possible solutions,
cannot be overloa_ded in _the long term. This calculation '®ach with its own advantages and disadvantages. We also
quires only activation periods and worst-case core executigfserye that in each solution one constraint is only barely
times and thus can be done before response-time calculatigiisfied. A designer might want to find some alternative so-

, System-level a_naIyS|s can now be performed by 'ter,‘%tions where all constraints are fulfilled with a larger margin
ing local scheduling analysis and event model propagation iha respective maximum values

SymTA/S determines that taskl belongs to a cycle, checks v extend our search space by using a shaper at the output
thatAND-concatenat_lon is selected, and then proceeds t0 @Ri5skmon It is making sense to perform traffic shaping at
alyze the corresponding feed-forward system. SymTA/S eXgiis |ocation, because the OR-activationnoén can lead in
cutes until a fix-point for the whole system has been reachgfle \yorst-case scenario to bursts at its output. That is, if all
and then compares the calculated performance values agaﬂﬂﬁ-f-esensorstrigger at the same timenonwill send three
performance constraints. . &]ackets over thBUSwith a distance of 10 time units, which
Ta*?'e 7 shows the C_a'C‘ﬂ'ated response t|me§ of the COlits minimum core execution time. This transient load peak
putation and communication tasks with and without takinge .t the overall system performance in a negative way. A
into account inter contexts. We observe that the exploitap ;e 5 able to increase this minimum distance in order to
tion of context information leads to much tighter responsgaaken the global impact of the worst-case burst
time intervals in the given example. This in turn reduces the T5pie 10 shows pareto optimal solutions using a shaper at
calculated worst-case values for the constrained parametgys, output ofmonextending the minimum distance of suc-
Table 8 shows that, in contrast to the inter context blind anglassive events at the outputrabnto 12 time units, and thus
ysis, all system constraints are satisfied when performanggayening the global impact of the worst-case burst. The re-

analysis takes inter context into account. In other words, fyireq buffer for this shaper is minimal, because at most one
context blind analysis would have discarded a solution whigf}, - et needs to be buffered at any time.

is in reality valid. We observe that several new solutions are found. Not
[comp task] Resping [ ReSRens [[ comm. tasks] Respina | ReSRens | all best values for each constraint from the first attempt are
mon [10,36] | [10,36] || cl [8.8] [8.8] i i i i i
oyaf 1517 | (1515 || c2 412 | [44] reached, yet conﬂguraﬂon; 3and5are |r.1terest|ng since they
fltr [12,15] | [12,15] || c3 [4.16] | [812] are more balanced regarding the constraints.
upd [5,22] [5,22] c4 [4,28] [8,20] .. .
ctrl [20,53] | [20,53] || c5 4,32] | [8,32] 8.3 Sensitivity analysis

We applied the sensitivity analysis algorithms presented

Table 7. Context blind and sensitive analysis . X § ) ;
in Section 7 to the pareto optimal system configurations ob-



[ Bustasks [ DSPtasks [ con. 1] con. 2] con. 3] con. 4] the component integration style which is common practice

[

#

; Ci' C;’ Ci’ cg, cg Upg I:tf’ Crt: 22 33 ﬁg ig in MpSoC design due to heavy component reuse. The re-
cl,cZ c4,cs C up tr, ctrl - . .

3 cac2cLcd o5 | fir,updcl | 64 | 35 | 120 | 11 cently adopted.evg_nt stream view on component interactions

4 | c2,cl,c5,c4,c3 | upd fitr,ctrl | 67 42 96 18 represents a significant improvement for all kind of system

5 | c2 ¢3,¢cl,c5 c4 | fitr, upd ctrl 68 31 134 7 performance related issues

First, the stream model elegantly illustrates the conse-
guences of a) resource sharing, and b) component integra-
tion, two of the main sources of complexity. This helps
to identify previously unknown global performance depen-
tained in Section 8.2. Th& values show the maximum per-gencies, while tackling the scheduling problem itself locally
missible changes in tasks execution/computation times. Tghere it can be overseen.
ble 11 present the current task execution times andithe Secondly, the use of intuitive stream models such as pe-
obtained for the system configurations described in table jodic events, jitter, burst, and sporadic streams, allows to

Table 10. Pareto optimal solutions: shaper at
mon output

l [cI [c2 Jc3 Jc4 [c5 Jupd [fir ol [sysif [mon |  adopt existing local analysis and verification techniques. Es-
(WCET[8 1[4 [4 [4 [4 [5 [15 [28 [15 12 |  gentially, SymTA/S provides automatic interfacing and adap-
[# __ [Acl[Ac2| A3 [ A0 | A5 | Aupd]Afitr [ Acti [ Asysif[Amon]  tatinn among the most popular and practically used event
1 0 0 1.11|3.33|/10 |0 0 7 13 5 . .

5 o To 13666 118 [0 1o 7 121 366 stream models. In other words, SymTA/S is the enabling
3 0 |0 |233[25 250 [0 |7 |9 2.33 technology for the re-use of known local component design
4 10 J0 Jo [s33[135]0 Jo Jr 18 O and verification techniques without compromising global

analysis.

Table 11. Sensitivity analysis of tasks execu-

tion/computation times In this paper, we have surveyed the basic ideas underly-

ing the SymTA/S technology. We subsequently introduced a
variety of features that enable the analysis of complex em-
Yedded applications which can be found in practice. This in-
cludes multi-input tasks with complex activation functions,
cyclic functional dependencies between tasks, systems with
mutually exclusive execution modes, and correlated task ex-
ecution (intra and inter contexts). These powerful concepts
make SymTA/S a unique performance analysis tool that ver-
ifies end-to-end deadlines, buffer over-/underflows, and tran-
sient overloads. SymTA/S eliminates key performance pit-
falls and systematically guides the designer to likely sources
of constraint violations.

And the analysis with SymTA/S is extremely fast (10 sec-

Figure 23 shows the current task times and the slack val
corresponding to #2 in Table 11.

0,00 5,00 1000 1500 2000 2500 3000 3500

onds for the system in section 8, including optimization). The
Figure 23. The slack values corresponding to turn-around times are within seconds. This opens the door
task core times to all sorts of explorations, which is absolutely necessary

for system optimization. SymTA/S uses genetic algorithms

As future work we will implement the values obtained byi© automatically optimize systems with respect to multiple
the sensitivity analysis as optimization objectives in the e@0als such as end-to-end latencies, cycles, buffer memory,

ploration framework presented in Section 6. and others. Exploration is also useful for sensitivity analy-
. sis in order to determine slack and other popular measures of
9. Conclusion flexibility. This is specifically useful in systems which might

The component integration step is critical in MpSoC deexperience later changes or modifications, a design scenario
sign since it introduces complex component performance dgften found in industry. We have carried out a large set of ex-
pendencies, many of them can not be fully overseen by ameriments that demonstrate the application of SymTA/S and
one in a design team. Finding simulation patterns coveririge usefulness of the results.
all corner cases will soon become virtually impossible as Mp- We have already applied the technology in case studies
SoCs grow in size and complexity, and performance verificé cooperation with industry partners in telecommunications,
tion is increasingly unreliable. In industry, there is an urgemaultimedia, and automobile manufacturing. The cases had a
need for systematic performance verification support in Mpery different focus. In one telecommunications project, we
SoC design. resolved a severe transient-fault system integration problem

We have seen that the host of work in formal real-timghat not even prototyping could solve. In the multimedia case
analysis can be nicely applied to individual, local compaostudy, we modeled and analyzed a complex two-stage dy-
nents or subsystems. However, the well established vienamic memory scheduler to derive maximum response times
on scheduling analysis has shown to be incompatible witbr buffer sizing and priority assignment. In several auto-



motive studies, we showed how the technology enables[¥5] C. L. LiuandJ. W. Layland. Scheduling algorithm for multi-
formal software certification procedure. The case studies

have demonstrated the power and wide applicability of th

event flow interfacing approach. The approach scales well to
large, heterogeneous embedded systems including MpSoC.

And the modularity allows to customize SymTA/S libraried18l]

to specific needs of our partners.

We consider the SymTA/S approach a serious alternative or
supplement to performance simulation. The unique techndlt9]
ogy allows comprehensive system integration and provides
much more reliable performance analysis results at far Ie?so]

computation time
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