
AADL : about scheduling
analysis

 Embedded real-time critical systems have
temporal constraints to meet (e.g. deadline).

 Many systems are built with operating systems
providing multitasking facilities … Tasks may
have deadline.

 But, tasks make temporal constraints
analysis difficult to do :
 We must take the task scheduling into

account in order to check task temporal
constraints.

 Scheduling (or schedulability) analysis.

Scheduling analysis, what is it ?

page 2

1. A set of simplified tasks models (to model functions of
the system)

2. A set of analytical methods (called feasibility tests)
 Example:

3. A set of scheduling algorithms: build the full
scheduling/GANTT diagram

Real-Time scheduling theory

page 3

DeadlineRi  j
ihpj j

i
ii C

P

R
CR 












 

)(

Real-Time scheduling theory is hard to apply

 Real-Time scheduling theory
 Theoretical results defined from 1974 to 1994:

feasibility tests exist for uniprocessor architectures

 Now supported at a decent level by POSIX 1003
real-time operating systems, ARINC653, …

 Industry demanding
 Yet, hard to use

page 4

Real-Time scheduling theory is hard to apply

 Requires strong theoretical knowledge/skills
 Numerous theoretical results: how to choose the right one ?

 Numerous assumptions for each result.

 How to abstract/model a system to verify deadlines?

 How to integrate scheduling analysis in the engineering
process ?
 When to apply it ? What about tools ?

It is the role of an ADL to hide those details

page 5

Uniprocessor fixed priority scheduling

 Fixed priority scheduling :
 Scheduling based on fixed priority => priorities do not

change during execution time.

 Priorities are assigned at design time (off-line).

 Efficient and simple feasibility tests.

 Scheduler easy to implement into real-time operating
systems.

 Rate Monotonic priority assignment :
 Optimal assignment in the case of fixed priority

scheduling and uniprocessor.

 Periodic tasks only.
page 6

Uniprocessor fixed priority scheduling

Two steps:
1. Rate monotonic priority assignment: the

highest priority tasks have the smallest periods.
Priorities are assigned off-line (e.g. at design time,
before execution).

2. Fixed priority scheduling: at any time, run the
ready task which has the highest priority level.

page 7

Uniprocessor fixed priority scheduling

 Rate Monotonic assignment and preemptive
fixed priority scheduling:

 Assuming VxWorks priority levels (high=0 ; low=255)

 T1 : C1=6, P1=10, Prio1=0

 T2 : C2=9, P2=30, Prio2=1 page 8

Uniprocessor fixed priority scheduling

page 9

 Feasibility/Schedulability tests to predict at
design-time if deadline will be met:

1. Run simulations on hyperperiod = [0,LCM(Pi)]. Sufficient
and necessary condition.

2. Processor utilization factor test:
௡
௜ୀଵ

భ

೙-1) (about 69%)
Rate Monotonic assignment and preemptive scheduling.
Sufficient but not necessary condition.

3. Task worst case response time, noted Ri : delay between
task release time and task completion time. Any priority
assignment but preemptive scheduling.

Uniprocessor fixed priority scheduling

page 10

 Compute Ri, task i worst case response time:

 Task i response time = task i capacity + delay the task i
has to wait for higher priority task j. Or:

 hp(i) is the set of tasks which have a higher priority than
task i.

 returns the smallest integer not smaller than x.

j
ihpj j

i
ii C

P

R
CRor 












 

)(

 



)(

ihpj

ii jtoduetimewaitingCR

Uniprocessor fixed priority scheduling



page 11

Uniprocessor fixed priority scheduling

page 12

Fixed priority and shared resources

 Previous tasks were independent … does not
really exist in true life.

 Task dependencies :
 Shared resources.

 E.g. with AADL: threads may wait for AADL protected data
component access.

 Precedencies between tasks.
 E.g with AADL: threads exchange data by data port

connections.

page 13

Fixed priority and shared resources

 Shared resources are modeled by semaphores for scheduling analysis.

 We use specific semaphores implementing inheritance protocols:

 To take care of priority inversion.

 To compute worst case task waiting time for the access to a shared
resource. Blocking time Bi.

 Inheritance protocols:

 PIP (Priority inheritance protocol), can not be used with more than
one shared resource due to deadlock.

 PCP (Priority Ceiling Protocol) , implemented in most of real-time
operating systems (e.g. VxWorks).

 Several implementations of PCP exists: OPCP, ICPP, …

page 14

Fixed priority and shared resources

 What is Priority inversion: a low priority task blocks a
high priority task

 = worst case on the shared resource waiting time.
page 15

Fixed priority and shared resources

 ICPP (Immediate Ceiling Priority Protocol):
 Ceiling priority of a resource = maximum fixed priority of the tasks

which use it.

 Dynamic task priority = maximum of its own fixed priority and the
ceiling priorities of any resources it has locked.

 ௜=longest critical section ; prevent deadlocks page 16

Fixed priority and shared resources

page 17

 How to take into account the waiting time Bi:

 Processor utilization factor test :
భ

೔

 Worst case response time :

j
ihpj j

i
iii C

P

R
CBR 












 

)(

AADL to the rescue ?

 Issues when we try to apply scheduling analysis:

 Many scheduling feasibility tests, many assumptions

 Ensure model elements are compliant with analysis/feasibility test
requirements/assumptions

 Ensure all required model elements are given for the analysis

 AADL helps for the first issue:

 AADL as a pivot language between tools. International standard.

 Close to the real-time scheduling theory: real-time scheduling
analysis concepts can be found. Ex:

 Component categories: thread, data, processor
 Property: Deadline, Fixed Priority, ICPP, Ceiling
Priority, …

page 18

Property sets for scheduling analysis

page 19

Preemptive_Scheduler : aadlboolean applies to (processor);

Scheduling_Protocol:
inherit list of Supported_Scheduling_Protocols
applies to (virtual processor, processor);

-- RATE_MONOTONIC_PROTOCOL,
-- POSIX_1003_HIGHEST_PRIORITY_FIRST_PROTOCOL, ..

 Properties related to processor component:

Property sets for scheduling analysis

page 20

Compute_Execution_Time: Time_Range
applies to (thread, subprogram, …);

Deadline: inherit Time => Period applies to (thread, …);

Period: inherit Time applies to (thread, …);

Dispatch_Protocol: Supported_Dispatch_Protocols
applies to (thread);

-- Periodic, Sporadic, Timed, Hybrid, Aperiodic, Background,
...

Priority: inherit aadlinteger applies to (thread, …, data);

Concurrency_Control_Protocol:
Supported_Concurrency_Control_Protocols applies to (data);

-- None, PCP, ICPP, …

 Properties related to the threads/data
components:

thread implementation receiver.impl

properties

Dispatch_Protocol => Periodic;

Compute_Execution_Time => 31 ms .. 50 ms;

Deadline => 250 ms;

Period => 250 ms;

Priority => 5;

end receiver.impl;

data implementation target_position.impl

properties

Concurrency_Control_Protocol

=> PRIORITY_CEILING_PROTOCOL;

end target_position.impl;

process implementation processing.others
subcomponents

receiver : thread receiver.impl;
analyzer : thread analyzer.impl;
target : data target_position.impl;
. . .

processor implementation leon2

properties

Scheduling_Protocol =>
RATE_MONOTONIC_PROTOCOL;

Preemptive_Scheduler => true;

end leon2;

system implementation radar.simple
subcomponents

main : process processing.others;
cpu : processor leon2;
. . .

Property sets for scheduling analysis

page 21

 Example:

