AADL : about scheduling
analysis

Scheduling analysis, what 1s it ?

0 Embedded real-time critical systems have
temporal constraints to meet (e.g. deadline).

a Many systems are built with operating systems
ﬁrowding multitasking facilities ... Tasks may
ave deadline.

0 But, tasks make temporal constraints
analysis difficult to do :

0 We must take the task scheduling into
account in order to check task temporal
constraints.

0 Scheduling (or schedulability) analysis.
page 2

Real-Time scheduling theory

1. A set of simplified tasks models (to model functions of
the system)

2. A set of analytical methods (called feasibility tests)
= Example:

R, < Deadline R =C + Z % -C;

jep(@D)| * j

3. A set of scheduling algorithms: build the full
scheduling/GANTT diagram

Task name=T1 Feriod= 5; Capacity= 1; Desdline= 5; Start time= 0, Priority= 1; Cou=cpus

[— - — - —
Task name=T2 Period= 10, Capscity= 2; Deadline= 10; Start time= 0; Priorily= 1; Cpu=cous
I—l—l—“ """"" 1

Task name=T3 FPericd= 30; Capacily= 12; Deadling= 30; Start lime= 0, Priority= 1, Cpu=cpus

page 3

Real-Time scheduling theory 1s hard to apply

O Real-Time scheduling theory

= Theoretical results defined from 1974 to 1994
feasibility tests exist for uniprocessor architectures

0 Now supported at a decent level by POSIX 1003
real-time operating systems, ARINCG653, ...

O Industry demanding
» Yet, hard to use

page 4

Real-Time scheduling theory 1s hard to apply

O Requires strong theoretical knowledge/skills
= Numerous theoretical results: how to choose the right one ?
= Numerous assumptions for each resuilt.
= How to abstract/model a system to verify deadlines?

O How to integrate scheduling analysis in the engineering
process ?
= When to apply it ? What about tools ?

It is the role of an ADL to hide those details

page 5

Uniprocessor fixed priority scheduling

O Fixed priority scheduling :
= Scheduling based on fixed priority => priorities do not
change during execution time.
= Priorities are assigned at design time (off-line).
= Efficient and simple feasibility tests.
= Scheduler easy to implement into real-time operating
systems.
0 Rate Monotonic priority assignment :

= Optimal assignment in the case of fixed priority
scheduling and uniprocessor.

= Periodic tasks only.
page 6

Uniprocessor fixed priority scheduling

O Two steps:

1. Rate monotonic priority assignment: the
highest priority tasks have the smallest periods.
Priorities are assigned off-line (e.g. at design time,
before execution).

2. Fixed priority scheduling: at any time, run the
ready task which has the highest priority level.

page 7

Uniprocessor fixed priority scheduling

O Rate Monotonic assignment and preemptive

fixed priority scheduling: Tolisiprestiptad
Deadline
of T2
T2 LT EEEET L P [[]
Deadline Deadline Deadline
of T1 of T1 of T1
T1 I [[[PR | [| PR [O]
0 6 10 16 20 26 27 30

= Assuming VxWorks priority levels (high=0 ; low=255)
= T1:C1=6, P1=10, Prio1=0
= T2:C2=9, P2=30, Prio2=1 Page 8

Uniprocessor fixed priority scheduling

O Feasibility/Schedulability tests to predict at
design-time if deadline will be met:

1. Run simulations on hyperperiod = [0,LCM(Pi)]. Sufficient
and necessary condition.

2. Processor utilization factor test:

1
U=)>-,Ci/Pi <n.(2n-1) (about69%)
Rate Monotonic assignment and preemptive scheduling.
Sufficient but not necessary condition.

3. Task worst case response time, noted Ri : delay between
task release time and task completion time. Any priority

assignment but preemptive scheduling.
page 9

Uniprocessor fixed priority scheduling

0 Compute Ri, task i worst case response time:

m Task i response time = task i capacity + delay the task i
has to wait for higher priority task j. Or:

R =C + Zwaitingtimeduetoj or R =C, + Z % -G,
j

jehp(i) Jjehp(i)

= hp(i) is the set of tasks which have a higher priority than
task I.

= [x] returns the smallest integer not smaller than x.

page 10

Uniprocessor fixed priority scheduling

O To compute task response time: compute wi* with:

wi = Ci+ Y jenpy|Wi™ 1 /Pj|. Cj

o Start with wi®=Ci.

o Compute wil, wi?, wi3, ... wi* upto:

= If wi* >Pi. No task response time can be computed for
task i. Deadlines will be missed !

w If wi* = wi*=1. wik is the task i response time. Deadlines
will be met.

page 11

Uniprocessor fixed priority scheduling

Response times = 20

display panel T T T T T T T T I T T I T T ETTIITTI T T T T I T T I T T eI T I TIT]
0 100 200 220 300 400 500
receiver | P [[P LI PP P s [[Tl
0 70\ 250 3;0\ Response time =50 200
Response time = 70 P
analyzer | T T 111 [[mim | [y [e [[[[[[T T TTTITTTITITT]
0 Response time = 330 /3'30 500

page 12

Fixed priority and shared resources

O Previous tasks were independent ... does not
really exist in true life.

0 Task dependencies :

m Shared resources.

E.g. with AADL: threads may wait for AADL protected data
component access.

m Precedencies between tasks.

E.g with AADL.: threads exchange data by data port
connections.

page 13

Fixed priority and shared resources

O Shared resources are modeled by semaphores for scheduling analysis.
O We use specific semaphores implementing inheritance protocols:

To take care of priority inversion.

To compute worst case task waiting time for the access to a shared
resource. Blocking time Bi.

O Inheritance protocols:

page

PIP (Priority inheritance protocol), can not be used with more than
one shared resource due to deadlock.

PCP (Priority Ceiling Protocol) , implemented in most of real-time
operating systems (e.g. VxWorks).

Several implementations of PCP exists: OPCP, ICPP, ...

Fixed priority and shared resources

0 What is Priority inversion: a low priority task blocks a
high priority task

Task is preempted

|OCk(mutex)' « unlock (m UteX)
T1 (low) - | 1 } >
0 1
h lock(mutex) unlock(mutex)
T3 (high) — ... i -
| 4 2 3 Task is blocked
T2 (medium) .
O A > 4

O B; = worst case on the shared resource waiting time.
page 15

Fixed priority and shared resources

Priority of T1= ceiling priority of « mutex » = high
Priority of T1= initial priority of T1 = low

Iock(mutegg‘)“f

» unlock(mutex) .
T1 (Iow) i i i‘ >
OL 1 2
lock(mutex) unlock(mutex)
T3 (high) y ; i ,: >
T2 (medium) } ——
Y >

O ICPP (Immediate Ceiling Priority Protocol):

= Ceiling priority of a resource = maximum fixed priority of the tasks
which use it.

= Dynamic task priority = maximum of its own fixed priority and the
ceiling priorities of any resources it has locked.

= B;=longest critical section ; prevent deadlocks page 16

Fixed priority and shared resources

0 How to take into account the waiting time Bi:

m Processor utilization factor test :

. . . 1
i—1 Ck Ci+Bi < i (Z_i . 1)

Vl,]. Sisn:2k=1ﬁ Pi —_

= Worst case response time :

R
R =B +C + Z Fl .C,
j

jehp(i)

page 17

AADL to the rescue ?

O Issues when we try to apply scheduling analysis:
= Many scheduling feasibility tests, many assumptions

= Ensure model elements are compliant with analysis/feasibility test
requirements/assumptions

= Ensure all required model elements are given for the analysis

O AADL helps for the first issue:

= AADL as a pivot language between tools. International standard.

= Close to the real-time scheduling theory: real-time scheduling
analysis concepts can be found. Ex:

Component categories: thread, data, processor

Property: Deadline, Fixed Priority, ICPP, Ceiling
Priority,

page 18

Property sets for scheduling analysis

O Properties related to processor component:

Preemptive Scheduler : aadlboolean applies to (processor);

Scheduling Protocol:

inherit list of Supported Scheduling Protocols
applies to (virtual processor, processor);

-— RATE MONOTONIC PROTOCOL,

-— POSIX 1003 HIGHEST PRIORITY FIRST PROTOCOL,

page 19

Property sets for scheduling analysis

O Properties related to the threads/data
components:

Compute Execution Time: Time Range
applies to (thread, subprogram, ..);

Deadline: inherit Time => Period applies to (thread, ..);
Period: inherit Time applies to (thread, ..);

Dispatch Protocol: Supported Dispatch Protocols
applies to (thread);

-- Periodic, Sporadic, Timed, Hybrid, Aperiodic, Background,

Priority: inherit aadlinteger applies to (thread, .., data);

Concurrency Control Protocol:

Supported Concurrency Control Protocols applies t8ag®iaZ@) ;
-— None, PCP, ICPP,

Property sets for scheduling analysis

0 Example:

thread implementation receiver.impl
properties
Dispatch_Protocol => Periodic;
Compute Execution Time => 31 ms .. 50 ms;
Deadline => 250 ms;
Period => 250 ms;
Priority => 5;

end receiver.impl;

data implementation target_position.impl
properties
Concurrency_Control_Protocol
=> PRIORITY_CEILING_PROTOCOL;
end target_position.impl,;

page 21

process implementation processing.others
subcomponents
receiver : thread receiver.impl;
analyzer : thread analyzer.impl;
target : data target position.impl;

processor implementation leon?2
properties

Scheduling_Protocol =>
RATE MONOTONIC PROTOCOL;
Preemptive Scheduler => true;

end leon2;

system implementation radar.simple
subcomponents
main : process processing.others;
cpu : processor leon2;

