Presentation of the AADI.:
Architecture Analysis and
Design Language

Outline

1. AADL a quick overview

2. AADL key modeling constructs

1. AADL components
2. Properties

3. Component connection
4. Behavior annex

3. AADL: tool support

Introduction

O ADL, Architecture Description Language:

= Goal : modeling software and hardware architectures
to master complexity ... to perform analysis

= Concepts : components, connections, deployments.
= Many ADLs : formal/non formal, application domain,

O ADL for real-time critical embedded systems: AADL
(Architecture Analysis and Design Language).

Example: why ADL and MBSE?

Tasks Priorities(Periods/Deadlines Executime time
SCHED BUS|1 125 ms 25 ms
DATA 2 125 ms 25 ms
CONTROL |3 250 ms 25 ms
RADIO - 250 ms 25 ms
VIDEO 5 250 ms 25 ms
MESURE 6 5000 ms 50 ms
FORECAST |7 5000 ms Between 50 ms and 75 ms

0 Mars Pathfinder and its rover
Sojourner (1997)

= Periodic tasks +
synchronization

= VxWorks operating system
= Priority inversion bug

Why ADL & MBSE: various concerns in the
same real-time program

void SCHED BUS() {..}
void DATA() {..}

void VIDEO (..)
while (1

semGive ()

\ taskDelay (next periodic release)

}

{

°
14

Why ADIL & MBSE: various concerns/aspects
in the same real-time program

volid init () { i'

nb=semCCreate (SEM Q FIFO,NB CASES) ;
mutex=semMCreate (SEM Q FIFO);

taskSpawn (“"FORE T™,102,0,5000, (FUNCPTR) FORECAST,

taskSpawn (“VID PTR) FORECAST,

Example: why ADL and MBSE?

O Various concerns/aspects
= Functional aspects, but also:

= Timing aspects (periodic tasks)

= Concurrency and scheduling (several tasks)

= Synchronization and communication (between tasks)
= Resource or operating system configuration

O Having various concerns make verification,
implementation, design space exploration difficult =>
ADL & MBSE

AADIL: Architecture Analysis & Design LLanguage

O International standard promoted by SAE, AS-2C
committee, released as AS5506 family of standards

O Core language document:
= AADL 1.0 (AS 5506), 2005

= AADL 2.0 (AS 5506A), 2009 A ADI_

= Last release: AS 5506D in April 2022

O Annex documents to address specific concerns
= Annex A: ARINC 653 Interface (AS 5506/1A) 2015
= Annex B: Data Modelling (AS 5506/2) 2011
= Annex C: Code Generation Annex (AS 5506/1A) 2015
= Annex D: Behavior Annex v2 (AS 5506/3) 2017
= Annex E: Error Model Annex v2 (AS 5506/1A) 2015

AADL 1s tor Analysis

0 AADL objectives are “to model a system”
= With analysis in mind (different analysis)

= To ease transition from well-defined
requirements to the final system : code
production

O Require semantics => any AADL entity has
semantics (natural language or formal methods).

AADL: Architecture Analysis & Design Language

O Different representations :
= Textual (standardized representation),

= Graphical (declarative and instance views),
= XML/XMI (not part of the standard: tool specific)

O Graphical editors:
= OSATE (SEI):

declarative model editor
instance model viewer

= MASIW (ISPRAS)
= Scade Architect (Ansys): instance model editor
= Stood for AADL (Ellidiss) : instance model editor

10

AADL components

o0 AADL model : hierarchy/tree of components
= Composition hierarchy (subcomponents)
= Inheritance hierarchy (extends)
= Binding hierarchy (e.g. process->processor)

o AADL component:
= Model a software or a hardware entity
May be organized in packages : reusable
Has a typel/interface, zero, one or several implementations
May have subcomponents
May combine/extend/refine others

May have properties : valued typed attributes (source code file name, priority,
execution time, memory consumption, ...)

0 Component interactions :
= Modeled by component connections
= Binding properties express allocation of SW onto HW

11

AADL components

O How to declare a component:
= Component type: name, category, properties, features => interface

= Component implementation: internal structure (subcomponents),
properties

0 Component categories: model real-time abstractions,
close to the implementation space (ex : processor, task,
...). Each category has well-defined semantics/behavior,
refined through the property and annexes mechanisms

= Hardware components: execution platform
= Software components
= Systems : bounding box of a system. Model deployments.

12

Component type

O Specification of a component: interface
o All component type declarations follow the same

pattern:

Inherit features and

<category> foo [extends <bar>] <— |properties from parent

features

- llSt Offeatlxﬂ"eS Interface of the component:
. D — Exchange messages, access to
- Znte’/face data or call subprograms
properties
_ llSt Ofpraperl‘ies Some properties describing

non-functional aspect of the

-- e.4. priOI”il)/ — component
end foo; 3

Component type

0 Example:

-- model a sequential execution flow

subprogram Spg -- Spg represents a C function,
features - in file "foo.c", that takes one

in_param : in parameter foo data; -- parameter as input
properties

Source Language => C;

Source Text => ("fOO.C")’ < Standard properties, one can
end SpgT ’ define its own properties

b

-- model a schedulable flow of control
thread bar thread -- bar thread is a sporadic thread :

features -- dispatched whenever it
in_data : in event data port foo data; -- receives an event on its “in_data"
properties -- port

Dispatch Protocol => Sporadic;

14
end bar thread;

Component implementation

O Implementation of a component: body
= Think spec/body package (Ada), interface/class (Java)

<category> implementation f00.1 [extends <bar>.1]
subcomponents \

foo.1 implements foo

calls
-- subprogram subcomponents
-- called, only for threads or subprograms
connections
properties
-- list of properties, e.g. Deadline

end foo.1; s

Component implementation

O Exam ple: thread bar thread
features
subprogram Spg in_data : in event data port foo data;
features properties
n _param : in parameter foo_ data; Dispatch Protocol => Sporadic;
properties end bar thread,;

Source Language => C;
Source Text => ("foo.c");
end Spg;

Connect
data/parameter

thread implementation bar thread.impl
calls
C: {S :subprogram spg; };
connections
parameter in_data -> S.in_param;
end bar thread.impl;

-- in this implementation, at each
-- dispatch we execute the "C" call

-- sequence. We pass the dispatch

-- parameter to the call sequence

AADL concepts

O AADL introduces many other concepts:
= Related to embedded real-time critical systems :
AADL flows: capture high-level data+control flows

AADL modes: model operational modes in the form of an alternative set of
active components/connections/...

= To ease models design/management:
AADL packages (similar to Ada/Java, renames, private/public)
AADL abstract component, component extension

o AADL is arich language :
= Around 200 entities in the meta-model
= Around 200 syntax rules in the BNF (core)
= Around 250 legality rules and more than 500 semantics rules
|

355 pages core document + various annex documents
17

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components
2. Properties
3. Component connection
4. Behavior annex

3. AADL.: tool support

18

AADL worktlow

1. Declarative model (Packages) —_—

. . similar to
m HW I|brar|es/ bottom-up

UML classes
= SW libraries or SysML blocks
= Applicative composite systems — [~ jown
2. Instance model _
= Selection of the Root System epracemtation of
= Expanded HW hierarchy tgfeﬁg’fgﬁ;‘“
= Expanded SW hierarchy
3. Deployed model -
= SW instances binding onto HW instances required for many

advanced analysis:
-schedulability
-simulation

-safety
-security

A tull AADL system : a tree of component
instances

o Component types and
implementations only define a
library of entities (classifiers) System

o An AADL model is a set of | |

Component Instances (Of the Sub System Process Processor

classifiers)
O System must be instantiated
through a hierarchy of Thread Data
subcomponents, from root
(system) to the leafs Subprogram

(subprograms, ..)

O We must choose a system
implementation component as

the root system model !
20

Software components categories

O thread : schedulable execution flow, Ada or VxWorks task,
Java or POSIX thread. Execute programs

O data : data placeholder, e.g. C struct, C++ class, Ada record
O process : address space. It must hold at least one thread

O subprogram : a sequential execution flow. Associated to a
source code (C, Ada) or a model (SCADE, Simulink)

O thread group : hierarchy of threads
O subprogram group : library or hierarchy of subprograms

r
|
: Thread | data ‘ Threadgroup ,' / process /

21

Sottware components

0 Example of a process component : composed
of two threads

thread receiver process processing
end receiver; end processing;

thread implementation receiver.impl | process implementation processing.others

end receiver.impl; subcomponents
receive : thread receiver.impl;
thread analyser analyse : thread analyser.impl;

end analyser; -
end processing.others;
thread implementation analyser.impl
end analyser.impl;

22

Sottware components

0 Example of a thread component : a thread
may call different subprograms

subprogram Receiver Spg
end Receiver Spg;

subprogram ComputeCRC_ Spg
end ComputeCRC_Spg;

thread receiver
end receiver;

thread implementation receiver.impl

CS : calls {
calll : subprogram Receiver Spg;
call2 : subprogram ComputeCRC Spg;

}5

end receiver.impl;

23

Hardware components categories

O processor/virtual processor : scheduling component
(combined CPU and OS scheduler).

O memory : model data storage (memory, hard drive)

O device : component that interacts with the environment.
Internals (e.g. firmware) is not modeled.

O bus/virtual bus : data exchange mechanism between
components

| < bus > Processor

24

« System » category

O system:

1. Help structuring an architecture, with its own
hierarchy of subcomponents. A system can include
one or several subsystems.

2. Root system component.

3. Bindings : model the deployment of components
iInside the component hierarchy.

[System]

25

« System » Category

thread receiver ...

thread implementation receiver.impl
Properties
period => 10 ms;
dispatch_protocol => periodic;
deadline => 10 ms;
priority => 100;
compute execution time =>
10 ms .. 20 ms;
end receiver.impl;

process processing
end processing;

process implementation processing.otherg
subcomponents
receive : thread receiver.impl;

processor leon2
properties
scheduling protocol => rm;
end leon2;

analyse : thread analyser.impl;

end processing.others;

system radar
end radar;

system implementation radar.simple
subcomponents
main : process processing.others;
cpu : processor leon2;
properties
Actual Processor Binding =>
reference cpu applies to main;

end radar.simple;
26

About subcomponents

O Semantics: restrictions apply on subcomponents

= e.g. hardware cannot contain software, etc

category allowed subcomponent categories
system all but thread group and thread
processor virtual processor, memory, bus
memory memory, bus
process thread group, thread, subprogram, data

thread group

thread group, thread, subprogram, data

thread subprogram, data
subprogram data
data data, subprogram

27

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components
2. Properties
3. Component connection
4. Behavior annex

3. AADL: tool support

28

AADL properties

O Property:
= Typed attribute, associated to one or more entities
= Property definition = name + type + possible owners

= Property association to a component = property name
+ value
O Can be propagated to subcomponents: inherit
O Can override parent’s one, case of extends

O Allowed types in properties:

m aadlboolean, aadlinteger, aadlreal, aadlstring, range, list,
enumeration, record, user defined (Property type)

29

AADL properties

O Property sets :
= Group property definitions.
= Property sets part of the standard, e.g. Thread Properties.
= Or user-defined, e.g. for new analysis as power analysis

0 Example :
property set Thread Properties is

Priority : aadlinteger applies to (thread, device, ...);
Source Text : inherit list of aadlstring applies to (data, port, thread, ...);

end Thread Properties;

30

AADL properties

O Properties are typed with units to model physical
systems, related to embedded real-time critical

systems.
property set AADL Projects is property set Timing_Properties is
Time Units: type units (
ps, Time: type aadlinteger
ns =>ps * 1000, 0 ps .. Max_Time units Time Units;
us =>ns * 1000,
ms =>us * 1000, Time Range: type range of Time;
sec =>ms * 1000,
min => sec * 60, Compute Execution Time: Time Range
hr => min * 60); applies to (thread, device, subprogram,
- event port, event data port);

end AADL Projects;
end Timing Properties;

AADL properties

O Properties can apply to (with increasing priority)
a component type (1)

a component implementation (2)

a subcomponent (3)

|
|
|
= a contained element path (4)

thread receiver process implementation processing.others

properties -- (1) . subcomponents
Compute_Execution_Time =>3 ms .. 4ms; | receive0 : thread receiver.impl;
Deadline => 150 ms ;

: receivel : thread receiver.impl;
end receiver;

receive? : thread receiver.impl

thread implementation receiver.impl {De.adllne =>200 ms;}; - (3)
properties -- (2) propert}es -4) | |
Deadline => 160 ms; Deadline => 300 ms applies to receivel;

end receiver.impl; end processing.others;

32

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components
2. Properties
3. Component connection
4. Behavior annex

3. AADL: tool support

33

Component connection

O

Connection: model component interactions, control flow and/or
data flow. E.g. exchange of messages, access to shared data,
remote subprogram call (RPC), ...

features : connection point part of the interface. Each feature has a
name, a direction, and a category

Features category: specification of the type of interaction
event port. event exchange (e.g. alarm, interrupt)
data port. data exchange triggered by the scheduler
event data port. data exchange of data triggered with sender (message)
Subprogram parameter
data access : access to external data component, possibly shared
subprogram access : RPC or rendez-vous

Features direction for port and parameter:
input (in), output (out), both (in out). 34

Component connection

O Features of subcomponents are connected in
the “connections” subclause of the enclosing
component

O Ex: threads & thread connection on data port

thread analyser
features
analyser out : out data port
Target Position.Impl;
end analyser;

process implementation processing.others
subcomponents
display : thread display panel.impl;
analyse : thread analyser.impl;

connections
thread display panel port analyse.analyser out -> display.display_in;
features end processing.others;

display in : in data port Target Position.Impl;
end display panel;

35

Data connection policies

Allow predictable communications

Emit at completion time of emitter

Receive at starting time of receiver

Multiple policies exist to control production and consumption of data by threads:

O 0O o o

1. Sampling connection: takes the latest value
Problem: data consistency (lost or read twice) !

Periodic10Hz Periodic 20 Hz

- e e e e e e e e e e S ————

Thread 1

Thread 2 ‘-‘«i e Y
{ b r >
T|:: T Ti

Sampling Connection 36

Data connection policies

2. Immediate: receiver thread is immediately
awaken, and will read data when emitter finished

3. Delayed: actual transmission is delayed to the

next time frame

Periodic 10 Hz
"'-‘\

Thread 1

Thread 2 __M_ M "“

1
i

T
Immediaté Connection

Periodic 10 Hz
‘H"‘m._)

o e e - - e

Twesd Y oo o
Thread 2 NN
f t - >

.............

T P
Delaye1d Connection

37

Component connection

J Connection for shared data :

process implementation processing.others data implementation shared var.impl
subcomponents end shared var.impl;
analyse : thread analyser.impl;
display : thread display panel.impl; thread analyser
a_data : data shared var.impl; features
connections share : requires data access shared var.impl;

cxl : data access a_data -> display.share; | end analyser;
cx2 : data access a_data -> analyse.share;

end processing.others; thread display panel
features
data shared_var share : requires data access shared var.impl;
properties end display panel;
Concurrency Control Protocols
=> PCP;

end shared var;

38

Component connection

 Connection between thread and subprogram :

subprogram Receiver Spg

features
receiver _out : out parameter
thread implementation receiver.impl radar types::Target Distance;
calls { receiver In : in parameter
RS: subprogram Receiver Spg; radar types::Target Distance;
}s end Receiver Spg;
connections
parameter RS.receiver out -> receiver out; thread receiver
parameter receiver in -> RS.receiver in; features
end receiver.impl; receiver _out : out data port
radar types::Target Distance;
receiver in : in data port
radar types::Target Distance;
39 end receiver;

Outline

1. AADL a quick overview

2. AADL key modeling constructs

1. AADL components
2. Properties

3. Component connection
4. Behavior annex

3. AADL: tool support

40

AADI. Behavior Annex

O

O

Provides more details on the internal behavior of threads
and subprograms.

Complements, extends or replaces Modes, Calls and
some Properties defined in the core model.

Required for accurate timing analysis and virtual
execution of the AADL model.

State Transition Automata with an action language:
= dispatch conditions
= actions: event sending, subprogram call, critical sections, ...
= control structures: loops, tests, ...

41

AADL Behavior Annex example

thread transmitter
features

transmitter out : out data port radar types::Radar Pulse;
end transmitter;

. . e identifi
thread implementation transmlttemm/ annex identifier

annex Behavior_Specification {** state declaration
states

s : initial complete final state; transition condition
transisitons /

t: s -[on dispatch]-> s { transmitter out := "ping" };

s \

transition actions

end transmitter.impl;

42

Outline

1. AADL a quick overview

2. AADL key modeling constructs

1. AADL components
2. Properties

3. Component connection
4. Behavior annex

3. AADL: tool support

43

AADL & Tools

o OSATE (SEI/CMU,)
m Eclipse-based tools. Reference implementation.
m Textual and graphical editors + various analysis plug-ins
o STOOD (Ellidiss,)
= Graphical editor, code/documentation generation
= Guided modeling approach, requirements traceability
0 AADLInspector (Ellidiss,)
= Standalone framework to process AADL models and Behavior Annex
= Industrial version of Cheddar + Simulation Engine
O Ocarina (ISAE,)
= Command line tool, library to manipulate models.
= AADL parser + code generation + analysis (Petri Net, WCET, ...)
0 Cheddar (UBO/Lab-STICC,)
= Performance analysis

0 Others: RAMSES, PolyChrony, ASSIST, MASIW, MDCF, TASTE, Scade Architect,
Camet, Bless, ...

Tools used for the tutoria

AADLInspector, OSATE/Cheddar

Cheddar : a free real

RADLepecter LI DL epector/Al-1 2/examples/arincsimpleZandl) =B & D B GG W RC
File View Tools Cleledld ¢5Fe=
CESfBR Y B EE " pr— "
< I f— +
arincsimple2 - [Schedute Table [Consissency] Legaliny] Metrics | Naming] Teskname=T1 Perio= 15; Capscity- 5 Dsadline= 13 Star time=0; Proriy= 1; Cpu-arine
arincsimple? | ARINGES3 | I
1 [PACKASE arincsimple Pkg = R Taskname=T2 Periot= 151; Capacity=17; Desdline= 154, Starttime= 0 Prioriy= 1; Cpu=srinc
2 |PUBLIC I test entity i 1 i
3 [WITH ARINCES3; £ @Task response time computed from simulatio cpu Mo deadiine mis Taskrams=Ty Period= 30 Capacitye:3; Daadilinas 30; Sl e 0 Priori 15 Cou=arine
‘51 I Number of presmptions cpu 4
arincsimple
6 |END arinsimple; Nintergr conlens siitclies o n Teskname=Té Periog= & Capacity= 1: Deacline= 6; Start ime= 0; Priorty= 1; Cousrine
7 Task response time computed from simulatio cpu.partition]_pr.T worst= 5, best = Vi
8 |SYSTEM IMPLEMENTATION arincsimple.others = Task response time computed from simulatio cpu.partition]_pr.T worst = 15, best S — =
(| IEBEOMAGHERES . Task response time computed from simulatic cpu.partition2_pr.T worst = 15, best |
10| cpu : PROCESSOR powerpe.impl; _ L)]
11 partitionl pr : PROCESS partitionl process.impl; 5 IR o RPN L
12| partition2 pr : PROCESS partition2? process.impl; & Set priorities according to Deadline Monoteni cpu B Scheduling simulation, Processor arinc :
ii Pkgif:z:i‘ziruces:ur Binding => (REFERENCE (cpu.partl)) APPL i = ; L - Number of preemptions : 760
15| Actual Processor Binding => (REFERENCE (cpu.part2)) APBL | ¢ [m |» « [[- v - gggﬁeiezgoﬁggtiﬁ:ﬁ&ﬁ;ﬁ‘i;:frgiozimummon "
i i = M 40 & s 100 10 Mo 18 180 T —> 6/worst 6/best 6.00000/average
12 PROCESSOR powerpc cpu T2 => 56/worst 35/best 46.81667/average
15 END powerpe: % T3 => 10/worst 4/best 6.00000/average
20 i T4 => 1/worst 1/best 1.00000/average
21|PROCESSOR TMPLEMENTATION powsrpce.impl L] — NMn deadlina micead in the comnuted echedulina + tha taclk «at]
UBCOMPONENT it et 08 U 2 - 2 a - OSATE2 - O
23| partl : VIRTUAL PROCESSOR partitioni_rt.impl; il
24| parc2 : VIRTURL PROCESSOR partition2 rt.impl; SittionZ ot Edit Navigate Search Project Run OSATE Analyses Window
25 PROPERTIES A =
26/ Scheduling Protocol => ARINCES53; tutmnlpr.ﬁ“l - e V BEE BRI J‘H':E BEO: A Mo R NeEiQvig g il - v Ko e D
27| ARINC653::Partition Slots => (10ms, 10ms); =
28 ARING6S3::Slots Allocation => (reference(partl),reference | |giont orfi 4@ . =H * =1 |&= . &2 | e
58| ARINCES3::Module Major Frame —> 20ms; tionl_pr.T1 &5 AADL Navigator 22 [& AADL Diagrams raven.aadl &2 o= Quiline 2 = z| L
30[END powerpc.impl; partitioril_pr BEG|le v CpUls: [prosessorsch ~ 27 Thread Impl donne
21 4 properties .
32 VIRTUAL PROCESSOR partitionl rt - > 2 caches ar hce £ > Thread pilotage
% - i . Actual_Processor_Binding => (reference (cpul)) applies to processl;
| " L > Igg > Crazyflie [crazyflie master] Thread Impl pilotac
Simulator Stop 4 c3re > g a— s i
— ~ 12 ravenscar -- Few specific Cheddar properties to drive the analysis with OSATE2 + Thread radio
=4 Referenced Projects -- £7 Thread Impl rad|
=i Plug-in Contributions Cheddar_Transformation_Properties::Exported Attribute Time Units => MilliSecond; 7 Thread camera
« & instances & Chedda:jar'ametersil?mpertles: :Cheddar‘fwwklngTFolll:ller Thread Impl camer:
& raven mars_Impl_Instance.aax|? T o \\User‘s\\;};ﬂgl}{qff{’/Desktop/,"(.heddar“iBln/,’ 3 -7 Thread mesure
e & Cheddar_Parameters_Properties::Cheddar_Install Folder Thread Irmol
o => "C:\\Users\\singhoff//Desktop//Cheddar_Bin//"; g mesun
|2 raven.aad| -7 Thread meteo
Cheddar_Parameters_Properties::Scheduling Feasibility Interval => 400; » £7 Thread Impi meteo
Cheddar_Parameters_Properties::Response_Time_From Feasibility Test => true; T Process Applicatior
Cheddar_Parameters_Properties::Response_Time_From Scheduling Simulation => false; 7 Process Impl Applic
g o 3 Processor cpu
end mars.Impl;
PLs O System mars
% Instanciate Cheddar V3.x model X ST
45 $LPrablenis: L S Prope @ Cheddar XML V3 x model generated in the file :
0 errars, 2 warnings, 2 othe| C\Users\singhoff\osate2_2019-03-master\runtime-osate2\cheddar_output\mars_Impl_Inst
Description ancexmiv3 Resource Path
> Warnings (2 items)
i Infos (2 items) 1
i

Tools used for the tutorial

:“‘i UML+Variants

W/ RTE MARTE+Variants

Rk *I: SysML+Variants

o
O A OSATE
i Stood
-
— Capella
=
TASTE
S Gnzanus EEA

pivot
model

texdual
A/ D L

%ADL Inspector

Scheduling Analysis

Safety Analysis

Security Analysis

End to End Flow
Analysis

Power Consumption

Cost Analysis

Requirements
Coverage

imulation

Code Generation

~>Chedda

Marzhin

Ocarina

v

