
Model Based Software Engineering for Real-
Time Embedded Systems with AADLv2

Frank Singhoff+
+University of Brest, Lab-STICC/CNRS UMR 6285, France

Acknowledgments

 Some of these slides were written with or by Jérôme
Hugues (SEI/Carnegie Mellon University) for:
 AADLv2, An Architecture Description Language for the Analysis and Generation of

Embedded Systems. J. Hugues, F. Singhoff. Half day tutorial presented in the
ACM HILT conference, Portland, USA, October 2014.

 AADLv2, a Domain Specific Language for the Modeling, the Analysis and the
Generation of Real-Time Embedded Systems. F. Singhoff, J. Hugues. Half day
tutorial presented in the International MODELS conferences, Valencia, Spain,
September 2014.

 AADLv2, an Architecture Description Language for the Analysis and Generation of
Embedded Systems. J. Hugues F. Singhoff. Half day tutorial presented in the
International EMSOFT/ESWEEK conferences, Montreal, Canada, September
2013.

 Développement de systèmes à l'aide d'AADL - Ocarina/Cheddar. J. Hugues, F.
Singhoff. Tutoriel présenté à l’école d'été temps réel (ETR'2009). Septembre
2009. Pages 25-34. Paris.

 Thank you Jérôme :-)
2

Safety critical systems

 "A safety-critical system is a system whose
failure or malfunction may result in death or
serious injury to people, loss or severe
damage to equipment/property, ... “

 Examples: railway, aircraft, automotive, underground.

 Software contributes to the safety of the system.

 How to be sure that a software is safe? Bug free?

 Required by regulation (e.g. avionic systems).

 Today software embedded in critical systems is complex,
large. 3

We focus on Real-Time, Critical,
Embedded Systems

 « The correctness of the system depends not only on the
logical result of computation, but also on the time at
which the results are produced » Stankovic, 1988.

 Properties we look for:
 Functions must be predictable: the same data input will produce

the same data output.

 Timing behavior must be predictable: must meet temporal
constraints (e.g. deadline).

 Predictable means ... we can compute the program
temporal behavior before execution time.

4

We focus on Real-Time, Critical, Embedded
Systems

 Critical real-time systems: temporal constraints MUST
be met, otherwise defects could have a dramatic impact
on human life, on the environment, on the system,

 Embedded systems: computing system designed for
specific control functions within a larger system.
 Often with temporal constraints.

 Part of a complete device, often including hardware and
mechanical parts

 Limited amount of resources.

5

We focus on Real-Time, Critical, Embedded
Systems

 Real-time control and command software:
computing system/programs which reacts in a
given time 1) from sensor inputs 2) to send
commands to actuators.

6

Control/command system

Why MBSE?

 Mellor et al.* “... is simply the notion that we
can construct a model of a system that we
can transform into the real thing.” *S. Mellor, A.
Clark, and T. Futagami, “Model driven development,” IEEE Softw., vol. 20,
no. 5, pp. 14–18, Sep./Oct. 2003.

 Model Based Software Engineering: focus effort on
models instead of software programs

 Working on a higher abstraction level to

 Make verifications

 Automatically produce a part of the software artifacts

 Increase quality and reduce cost 7

Why MBSE?

 Increasing complexity of systems to implement

 Concurrent applications: scheduling & communications &
synchronization of threads/tasks

 Limited resources: operating system configuration

 Standards (e.g. DO-178)

 Design space exploration: uniprocessor or distributed?

 Verification of timing constraints

 Early verification

8

Why MBSE?

 Software engineering methods/models/tools to
master quality and cost

 Early verification: multiple verifications, including
expected performances, i.e deadlines can be met?

9

 From NIST 2002:
 70% of fault are introduced during the design step ;

Only 3% are found/solved. Cost : x1

 Unit test step: 20% of fault are introduced ; 16% are
found/solved. Cost : x5

 Integration test step: 10% of fault are introduced ;
50% are found/solved. Cost : x16

 Objective: increase the number of faults found
at design step!

10

Why MBSE?

Avionic software

 From SAVI program (US research
program) who investigated about
software in avionic (Peter Feiler)

 SLOC, for Source Line of Code.

 F35 has approximately 175 times
the number of SLOC as the F16.

 But, it is estimated to have
required 300 times the
development effort.

 Software size doubles every 4
years.

11

Airbus data

12

A310 A320 A340 A380

Design 1982 1987 1991 2000

Software size (in Mo) 4 10 20 Several
hundreds

Number of computers 77 102 115 8

Number of buses 136 253 368 500 environ

Size (in liter) of electronic devices 745 760 830

Size (in liter) for the autopilot 134 63 31

MIPS 60 160 250 Several
thousands

DO-178 standard

13

 Criticality level, Design Assurance Level (DAL)
 DO-178 proposes rules to ensure the reliability of the software

(functions, kernel, integration, etc.)

 A function is assigned a criticality level according to the severity of its
failure

 Examples: code coverage from the high system requirements,
use of formal methods, use model of based engineering (DO-
178C)

Objectives of this tutorial

One solution among others: use an
architecture description language

to model the system,

to run various verification,

and to automatically produce the
system

Focus on the AADL 2.x SAE standard

14

Example: from a master student lab

 As a usual business: design, write programs, and test … and change the
architecture (.e.g several processors => review scheduling/communication

=> There is no solution with our example with all constraints 
 MBSE: design, early verification. If OK move to prototyping (generate glue

code and write applicative code), test, … Change the architecture? =>

change the model and regenerate  15

Architecture is feasible? Deadline
constraints? Communication constraints?

How to design its scheduling? Its
communication? How many processors?

Tas
k

Period
and
deadline

Executi
on time

Priorit
y

T1 1000 ms 200 ms 10

T2 1000 ms 200 ms 20

T3 1000 ms 200 ms 30

T4 1000 ms 100 ms 40

T5 … … …

Example: PLATO

 PLATO: mission of the ESA (launch for 2026) aiming to characterize exoplanetary

systems. CNES & Observatoire de Paris.

 Payload: 26 cameras, applications on a multicore platform.

 Space design process: SRR (system requirement review), PDR, CDR (critical
design review), TRR (test readiness review), ...

 Produced model for the CDR:

 2500 lines of AADL model

 2 processors (LEON), 34 threads, 28 data types

 562 property associations

 257 AADL component types of implementations (entities) 16

Objectives of this tutorial

 Goal: to model a simple radar system

 Let us suppose we have the following
requirements

1. System implementation is composed by physical devices (Hardware entity):
antenna + processor + memory + bus

2. and software entities : running processes and threads + operating system
functionalities (scheduling) implemented in the processor that represent a
part of execution platform and physical devices in the same time.

3. The main process is responsible for signals processing : general pattern:
transmitter -> antenna -> receiver -> analyzer -> display

4. Analyzer is a periodic thread that compares transmitted and received
signals to perform detection, localization and identification.

5. [..]
17

Outline
Goal: introduce model-based analysis of embedded real-time critical

systems using the AADLv2 Architecture Description Language

 Part 0: tutorial outline

 Part 1: introduction to AADLv2 core

 Syntax, semantics of the language

 Part 2: introducing a case study

 A radar illustrative case study

 Part 3: scheduling analysis with AADL

 Introducing real-time scheduling and its use with AADL

 Part 4: code generation

 Embedding functions automatically

 Part 5: conclusion
18

