
Real-time systems

Practical session on Cheddar and Marte OS

Master SE

September 2009

1 Case study

We consider the simplified Flight Control System of Fig. 1. This system controls the attitude, the trajectory
and the speed of an airplane. It consists of 7 tasks which execute repeatedly at a periodic rate. The fastest
sub-system executes at 10ms, it acquires the state of the system (angles, position, acceleration) and computes
the feedback law of the system. The order is then sent to the flight control surfaces. The intermediate sub-system
is the piloting loop, it executes at 40ms and determines the acceleration to apply.. The slowest sub-system is the
navigation loop, it executes at 120ms and determines the position to reach. The required position of the airplane
is acquired at the slow rate.

Navigation Law
(NL)

Navigation Filter
(NF)

Piloting Law
(PL)

Piloting Filter
(PF)

Feedback
Law
(FL)

Feedback
filter
(FF)

Acceleration
position
acquisition
(AP)

Observed
Position
(pos o)

Required
Position

(pos c)

Observed
Acceleration
(acc o)

Required
Acceleration

(acc c)

Observed
Angle (angle o)

(acc i)

(pos i)

Required
Angle

(angle c)

order

angle

acceleration

(acc)

position

120 ms 40 ms 10 ms

Fig. 1 – Flight control system

2 Cheddar

Cheddar is a free real-time scheduling tool which checks temporal properties on real-time systems. The tool
provides a simulation engine and feasibility tests. All documents and binaries can be found in the url :
http://beru.univ-brest.fr/~singhoff/cheddar/
ant the tutorial is :
http://beru.univ-brest.fr/~singhoff/cheddar/ug/cheddar-r2.html

enseeiht 1/6

Cheddar and Marte OS Practical session on Cheddar and Marte OS

2.1 Monoprocessor scheduling analysis

Launch Cheddar : write cheddar in your terminal. The graphical interface appears. Follow the tutorial
recommendation for programming the case study.

1. add a processor in the Edit/Update processors. For this, give a name, a scheduler policy and precise if it is
preemptive or not.

2. add a memory address in the Edit/Update address spaces. Simply give a name.

3. add all the tasks in the Edit/Update tasks.

The real-time features of the set of tasks are given below :

Task Period WCET release date deadline
NL 120 20 0 120
NF 120 10 0 120
PL 40 5 0 40
PF 40 5 0 40
FL 10 2 0 10
FF 10 1 0 10
AP 10 1 0 10

enseeiht 2/6

Cheddar and Marte OS Practical session on Cheddar and Marte OS

Make a first scheduling analysis with RM and a second using EDF. For each one, try the simulator and the
feasibility tests. Click on scheduling simulation. The result appears : a Gantt diagram illustrates an worst case
execution. Click on scheduling feasibility. The tool check if the scheduling never misses any deadline. It computes
the processor utilization factor and the response time for each task.

2.2 Distributed modelling

We assume in this section that there are 2 processors that host the functions. These processors use the rate
monotonic policy.

Task Processor Period WCET release date deadline
NL 1 120 20 0 120
NF 2 120 10 0 120
PL 1 40 5 0 40
PF 2 40 5 0 40
FL 2 10 2 0 10
FF 2 10 1 0 10
AP 1 10 1 0 10

We want to compute the response time taking into account the exchange of messages between task. There
are 3 messages to consider : angle_o, acc_o and pos_o. We assume that the latency for each message is equal
to 1.

For modelling this in Cheddar, add a third processor that will model the messages. Add for each message
a task on this processor, the period of which is the period of the sender and the capacity is equal to 1. Add also
a precedence for each message. For instance, we have drawn the precedence between FF and angle_o, since FF

produces the message ; and the precedence between angle_o and AP .

Make a simulation and verify that the precedences imposed by the messages are respected. To compute the
response time, use the menu : Tools → precedencies → end-to-en response time → compute and update tasks :
one step. Apply this computing several times, until you find a fixed point. The underlying algorithm is the
holistic method [TC94]. How do you interpret the results ?

3 Programming with Marte OS

Marte OS is a hard real-time operating system for embedded applications. It provides a framework for
developing multi-thread real-time applications. It can be used as a native kernel or as an emulator. Today, we
will use Marte OS as an emulator. You can find the documents relative to Marte OS on the web page :
http://marte.unican.es/

enseeiht 3/6

Cheddar and Marte OS Practical session on Cheddar and Marte OS

You must connect on a virtual machine. For this, open a terminal and

command ssh etu1@c104-01 or etu2, . . ., etu8
pwd etu1 or etu2, . . ., etu8
modify the PATH export PATH=/usr/gnat/bin:$PATH

export PATH=/usr/marte/utils:$PATH
create a directory mkdir myname
enter the directory cd myname
Copy the examples cp -R /usr/marte/examples/appsched .

Enter in the folder cd appsched and open the files concerning the edf scheduler : edf_sched.c and edf_threads.c.
The user scheduler is programed in the file edf_sched.c. The tasks are described in the file edf_threads.c.
We will modify these two files in order to program the case study with Marte OS and the policy EDF. For
compiling, modify the Makefile by removing ../../misc/load.o in the edf compilation. Then, after saving,
write the command make edf. It produces an executable a.out. Launch this executable ./a.out. The example
supplied by Marte OS contains two tasks t1 and t2.

3.1 Programming the tasks

We will first code the example using the edf scheduler defined by the original file edf_sched.c. For this,
modify the file edf_threads.c.

In the proposed example edf_threads.c, there are two tasks t1 and t2 : t1 has period 2s and wcet 0.5, while
t2 has period 3s and wcet 1.5. At execution, the RQ (ready queue) is depicted. At first we have RQ: EMPTY, then
all the tasks are created. In the example, the two tasks are created and inserted in the RQ :

Event: POSIX_APPSCHED_NEW at 0.0s

Add new thread (id:1, period:2.0s)

RQ: (id:1, deadline:2.0s) Activate:1

Event: POSIX_APPSCHED_NEW at 0.0s

Add new thread (id:2, period:3.0s)

RQ: (id:1, deadline:2.0s) (id:2, deadline:3.0s)

Once the tasks are created, the nominal scheduling is running and is showed in the shell :

Event: POSIX_APPSCHED_EXPLICIT_CALL at 0.5s

RQ: (id:2, deadline:3.0s) Activate:2 Suspend:1

Event: POSIX_APPSCHED_SIGNAL at 2.0s

RQ: (id:2, deadline:3.0s) (id:1, deadline:4.0s)

Event: POSIX_APPSCHED_EXPLICIT_CALL at 2.0s

RQ: (id:1, deadline:4.0s) Activate:1 Suspend:2

Event: POSIX_APPSCHED_EXPLICIT_CALL at 2.5s

RQ: EMPTY Suspend:1

Event: POSIX_APPSCHED_SIGNAL at 3.0s

RQ: (id:2, deadline:6.0s) Activate:2

We notice that at time 0.5s, the task 1 ends its execution (and becomes suspend). Thus the second task
executes. At date 2s, the task 1 is awaken and task 2 ends its execution (indeed 0.5 + 1.5 = 2). And so on.

The start routine is the same for both tasks and is called periodic. The code is the following :

void * periodic (void * arg)

{

float amount_of_work = *(float *) arg;

while (1) {

/* do useful work */

eat (amount_of_work);

enseeiht 4/6

Cheddar and Marte OS Practical session on Cheddar and Marte OS

posix_appsched_invoke_scheduler (0);

}

}

The creation of a thread in the main process is realised by the instruction (for t1) :

/* Creation of one scheduled thread */

pthread_attr_init (&attr);

pthread_attr_setschedpolicy (&attr, SCHED_APP);

CHK(pthread_attr_setappscheduler (&attr, sched));

user_param.period.tv_sec = 2;

user_param.period.tv_nsec = 0;

load1 = 0.5;

CHK(pthread_attr_setappschedparam (&attr, &user_param,

sizeof(user_param)));

param.sched_priority = MAIN_PRIO - 1;

CHK(pthread_attr_setschedparam (&attr, ¶m));

CHK(pthread_create (&t2, &attr, periodic, &load2));

Exercise 1 Modify the main function in order to create 7 threads (NL, NF, PL, PF, FF, AP, FL) for modelling
the case study.

Exercise 2 Modify the start routine periodic such that each activated thread prints its name.

3.2 Modification of the scheduler

The implemented scheduler does not provide the management of the deadline (they assume deadline =
period). We want to modify edf_sched.c to allow the management of deadlines. For testing your new scheduler,
choose for AP a deadline of 9 and for PF a deadline of 39.

In the edf_sched.h, you must change the struct

struct edf_sched_param {
struct timespec period;
struct timespec relative_deadline;

};

In the edf_sched.c, you must change the struct

/* Thread-specific data */
typedef struct thread_data {
struct thread_data * next;
th_state_t th_state;
struct timespec period;
struct timespec next_deadline; /* absolute time */
int id;
timer_t timer_id;
pthread_t thread_id;

//add the fields
struct timespec next_period; /* absolute time of the next activation*/
struct timespec relative_deadline;

} thread_data_t;

You must modify the functions :

enseeiht 5/6

Cheddar and Marte OS Practical session on Cheddar and Marte OS

1. add_to_list_of_threads : for this, you must

(a) read the relative deadline in the t data (adapt the period treatment),

(b) compute the next absolute deadline and the next absolute activation of the task

(c) modify the iterators in this way

timer_prog.it_value = t_data->next_period;

(d) print the deadline when adding the task ;

2. make_ready : for this, you must

(a) compute the next absolute deadline and the next absolute activation of the task

(b) modify the iterator timer_prog.it_value = t_data->next_period;

3. reached_activation_time :

void reached_activation_time (thread_data_t *t_data)
{
switch (t_data->th_state) {
case TIMED:
t_data->th_state = ACTIVE;
add_timespec (&t_data->next_deadline, &t_data->next_period, &t_data->relative_deadline);
incr_timespec (&t_data->next_period, &t_data->period);
enqueue_in_order (t_data, &RQ, more_urgent_than);
break;

case BLOCKED:
break;

case ACTIVE:
// Deadline missed
printf (" Deadline missed in thread:%d !!", t_data->id);
add_timespec (&t_data->next_deadline, &t_data->next_period, &t_data->relative_deadline);
incr_timespec (&t_data->next_period, &t_data->period);
break;

default:
printf (" Invalid state:%d in thread:%d !!", t_data->th_state, t_data->id);

}
}

You must then modify edf_thread.c to add the relative deadlines.

Références

[TC94] Ken Tindell and John Clark. Holistic schedulability for distributed hard real-time systems. Micropro-
cessing & Microprogramming, 40 :117–134, 1994.

enseeiht 6/6

