
Can we increase the usability of real time

scheduling theory ?

The Cheddar project

Frank Singhoff*, Alain Plantec*, Pierre Dissaux+

* LISyC/University of Brest, 20, av Le Gorgeu, 29238 Brest Cedex 3, France
+ Ellidiss Technologies, 24 quai de la douane, 29200 Brest, France

{singhoff,plantec}@univ-brest.fr, pierre.dissaux@ellidiss.com

Abstract. The Cheddar project deals with real time scheduling theory.
Many industrial projects do not perform performance analysis with real
time scheduling theory even if the demand for the use of this theory is
large. The Cheddar project investigates why real time scheduling theory
is not used and how its usability can be increased. The Cheddar project
was launched at the University of Brest in 2002. This article presents a
summary of its contributions and ongoing works.

1 Introduction

Real time scheduling theory provides algebraic methods and algorithms in or-
der to predict the temporal behavior of real time systems. The foundations of
real time scheduling theory were proposed in 1970 [1] and it leads to exten-
sive researchs. Since 1990, it makes it possible the analysis of systems composed
of periodic tasks sharing resources and running on a single processor [2]. Nu-
merous operating systems provide features allowing the implementation of such
applications. Some standards and compilers also provide tools to enforce that
an application meets real time scheduling theory assumptions. The Ravenscar
profile defined in the Ada 2005 standard allows this assumption checking [3].

Real time scheduling theory was successfully used in many projects [4]. Nev-
ertheless, many practical cases also do not perform analysis with such a method
even if our experience shows that the demand for the use of this analysis method
is large.

Several reasons can explain why real time scheduling analysis is not applied
as much as it could be. Of course, there exists some architectures on which
real time scheduling analysis is difficult. For example, few analytical methods
were proposed for the analysis of distributed systems [5]. Sometimes, there is no
analytical method for architectures made of complex schedulers or task models.
In these cases, a real time scheduling toolset should at least provide means to
model the system and to run simulations.

Furthermore, we believe that this theory is not so easy to understand and to
be applied for many engineers. Many analytical methods and algorithms were
proposed during the last 30 years. Each analytical method allows to compute



2 Frank Singhoff*, Alain Plantec*, Pierre Dissaux+

different performance criteria. Each criterion requires that a set of assumptions
must be meet by the investigated system. Then, it may be difficult for a designer
to choose the relevant analytical method. Unfortunately, there is currently few
supports by design languages and CASE tools which can help him to automati-
cally apply real time scheduling theory.

This article presents three possible ways investigated by the Cheddar project
in order to increase the usability of real time scheduling theory. Section 2 presents
a set of tools which aims at helping the designer to automatically apply real time
scheduling theory on an architecture model. Section 3 depicts how the use of an
architecture design language can help the designer to apply real time scheduling
theory. Section 4 presents a domain specific language and a set of tools that
the designer can use when no analytical method can be applied in order to
investigate performances of a specific architecture. Finally, section 5 is devoted
to a conclusion and presents Cheddar project ongoing works.

2 Increasing the usability of real time scheduling theory:

easing analysis with flexible tools

Real time scheduling theory provides scheduling algorithms and algebraic meth-
ods usually called feasibility tests which help the system designer to analyze the
timing behaviour of his architecture. With the Liu and Layland real time task
model [1], each task periodically performs a treatment. This ”periodic” task is
defined by three parameters: its deadline (Di), its period (Pi) and its capacity
(Ci). Pi is a fixed delay between two release times of the task i. Each time the
task i is released, it has to do a job whose execution time is bounded by Ci units
of time. This job has to be ended before Di units of time after the task wake
up time. From this task model, some feasibility tests can provide a proof that
an architecture will meet its periodic task performance requirements. Scheduling
algorithms allow the designer to compute scheduling simulations of the archi-
tecture to analyze. Usually, simulations can not lead to a proof. However with
deterministic schedulers and periodic tasks, scheduling simulation may lead to a
schedulability proof if the designer is able to compute the scheduling during the
base period [6]. Different kinds of feasibility tests exist such as tests based on
processor utilization factor or tests based on worst case task response time. The
worst case response time feasibility test consists in comparing the worst case
response time of each task with their deadline. Joseph, Pandia, Audsley et al.
[7] have proposed a way to compute the worst case response time of a task with
pre-emptive fixed priority scheduler by:

ri = Ci +
∑

∀j∈hp(i)

⌈

ri

Pj

⌉

Cj (1)

Where ri is the worst case response time of the task i and hp(i) is the set
of tasks which have a higher priority level than i. This feasibility test must be
extended to take into account task waiting time on shared resources, jitter on



Cheddar: investigating the usability of real time scheduling theory 3

task release time or task precedency relationships. To apply a feasibility test,
the designer must check that his design and his executive fulfill all the feasibility
test assumptions. As an example, with the feasibility test of the equation (1),
Di must be less or equal than Pi and all tasks must have the same first release
time. Then, for a designer who has not a deep knowledge of real time scheduling
theory, verifying an architecture with feasibility tests becomes a difficult task
because, for each part of the architecture to verify, he must (see figure 1):

1. Choose the performance criterion he would like to check.
2. Find the right model for each entity of his architecture. For example, should

he model a function of his architecture as a set of periodic tasks or as a set of
sporadic tasks ? The designer must select the right abstraction level which
decreases the model complexity but which takes into account properties re-
quired for analysis.

3. Select a feasibility test which is able to compute the criterion chosen in (1)
and which is compliant with the models chosen in (2). For such a purpose, he
must check that his model is compliant with the feasibility test assumptions.

Fig. 1. From the modelling to the analysis

But of course, in many cases, this work can be quite simple since the studied
architecture is simple too. A real time scheduling analysis toolset should actually
provide several using levels. Several real time scheduling tools exist such as
MAST [8], Rapid-RMA [9] or Cheddar. Cheddar is a toolset composed of an
editor and of a framework. The designer can specify his architecture model with
the Cheddar editor. However, it is expected that designers perform modelling
with dedicated CASE tools. The Cheddar framework consists in a set of Ada
packages which includes most current feasibility tests and most of the classical
real time scheduling algorithms. This framework also offers a domain specific



4 Frank Singhoff*, Alain Plantec*, Pierre Dissaux+

language together with an interpreter and a compiler, for the design and the
analysis of schedulers which are not already implemented into the framework.

Cheddar offers different using levels depending on the architecture to analyze,
on the CASE tool Cheddar is supposed to work with or on the knowledge of the
designer. Typical use cases are:

– Just load an architecture model into the Cheddar editor and simply push a
button to perform its analysis. In this case, Cheddar chooses the feasibility
test, checks if the feasibility test assumptions are met and displays the result.
It is assumed that the designer makes use of a design pattern handled by
Cheddar. For example, the designer can model his architecture with the
Ravenscar design pattern. Ravenscar is a part of the Ada 2005 standard
[3]. It is a set of Ada program restrictions usually enforced at compilation
time, which guaranties that the software architecture is real time scheduling
theory compliant. Ravenscar is an Ada subset from which one can write
applications composed of a set of tasks and shared data. Ravenscar assumes
that tasks are scheduled with a fixed priority scheduler and that shared data
are accessed with ICPP. This first way to use Cheddar is also the best suited
for students who have to understand real time scheduling foundations.

– A second way is to let the designer choose which performance criteria to
compute. The designer must handle the Cheddar editor menus to customized
which criteria the Cheddar framework has to compute. In this case, feasibility
test assumptions are always automatically checked by Cheddar.

– Third, if the scheduling algorithms or the feasibility tests implemented into
Cheddar can not be applied, then the designer must extend the Cheddar
framework. Two ways exist for such a purpose. The framework can be ex-
tended by the Cheddar domain specific language with the process explained
in section 4. Otherwise, the designer manually implements the performance
analysis tools. In this case, he must well understand the Cheddar framework
design.

There exists many other ways to use a toolset such as Cheddar. As an exam-
ple, Cheddar can be embedded into CASE tools such as Stood [10] or Ocarina
[11] in order to increase its usability. In this case, the designer does not use the
Cheddar editor anymore and the Cheddar framework is directly called by em-
bedding CASE tools. Cheddar exports analysis results as an XML data stream
which can be displayed back by the CASE tools. The next section presents how
an architecture language can be used to achieve CASE tool and analysis tool
interoperability.

3 Increasing the usability of real time scheduling theory:

from the engineering process to the performance

analysis

A possible way to help the designer to apply real time scheduling theory, is to
embed such a knowledge into the engineering process with the help of design
languages and design patterns.



Cheddar: investigating the usability of real time scheduling theory 5

Panunzio and Vardanega have proposed a metamodel which permits the ex-
ecution of timing analysis [12]. An UML profile called MARTE which allows
such a timing analysis is also currently investigated by Frédéric et al. [13]. The
SAE Architecture Analysis and Design Language (AADL) is a textual and a
graphical language support for model-based engineering of embedded real time
systems. AADL has been approved and published as SAE Standard AS-5506
[14]. AADL is used to design and analyze software and hardware architecture
of embedded real-time systems. In the context of the Cheddar project, AADL
was chosen to investigate how real time scheduling theory can be automatically
applied. As Cheddar provides the most known real time scheduling feasibility
tests and scheduling algorithms, it was primilary used in order to check that the
first AADL standard can be actually analyzed with real time scheduling theory
tools. Then, we have investigated how memory footprint analysis can be con-
ducted with AADL [15] and finally, some design patterns expressed in AADL
were proposed in order to ease interoperability between AADL tools [10].

3.1 Investigating AADL suitability for real time scheduling theory

An AADL model is a set of hardware and software components such as data,
threads, processes (the software side of a specification), processors, devices and
busses (the hardware side of a specification). A data component may represent
a data structure in the program source. An AADL data component can be
implemented by an Ada tagged record. A thread is a sequential flow of control
that executes a program. An AADL thread can be implemented by an Ada task.
AADL threads can be released according to several policies: a thread may be
periodic, sporadic or aperiodic. An AADL process models an address space. An
AADL operational system instantiates a set of process components encompassing
thread and data components that are bound to an execution platform composed
of processor, memory and bus components. Properties can be defined for most
of AADL components. A property is defined by a name, a value and a type.
Information provided by component properties can be related to the component
behavior, its state, the way it will be implemented in Ada or anything else that
makes it possible to perform analysis.

Figure 2 shows an AADL specification. This specification contains a shared
resource (called R1) accessed by two threads (threads TH1 and TH2). The
threads and the shared resource are defined into one address space (process
proc0). The process proc0 is bound to a processor called cpu0.

The first release of the AADL standard provides component properties re-
quired in order to apply the simplest real time scheduling analysis methods.
Nevertheless, some properties were missing to apply several usual real time
scheduling theory analysis methods. AADL provides a way to extend the AADL
standard property sets. We have proposed a set of property extensions [16] to
model:

– Usual properties of real time schedulers (eg. quantum, preemptivity, POSIX
1003.1b policies).



6 Frank Singhoff*, Alain Plantec*, Pierre Dissaux+

data shared resource type
end shared resource type;
data implementation shared resource type.Impl

properties
Concurrency Control Protocol => PRIORITY CEILING PROTOCOL;

end shared resource type.Impl;
thread task type

features
can access : requires data access shared resource type;

end task type;
thread implementation task type.Impl

properties
Dispatch Protocol => Periodic;
Period => 50;
Compute Execution time => 3 ms .. 3 ms;
Cheddar Properties::POSIX Scheduling Policy => SCHED FIFO;
Cheddar Properties::Fixed Priority => 5;
Cheddar Properties::Dispatch Jitter => 10;

end task type.Impl;
processor a cpu
end a cpu;
processor implementation a cpu.Impl

properties
Scheduling Protocol => RATE MONOTONIC;
Cheddar Properties::Scheduler Quantum => 1;
Cheddar Properties::Preemptive Scheduler => true;

end a cpu.Impl;
process a proc
end a proc;
process implementation a proc.Impl

subcomponents
TH1 : thread task type.Impl;
TH2 : thread task type.Impl;
R1 : data shared resource type.Impl;

connections
data access R1 − > TH1.can access;
data access R1 − > TH2.can access;

end a proc.Impl;
system a system
end a system;
system implementation a system.Impl

subcomponents
cpu0 : processor a cpu.Impl;
proc0 : process a proc.Impl;

properties
Actual Processor Binding => reference cpu0 applies to proc0;

end a system.Impl;

Fig. 2. Example of an AADL model



Cheddar: investigating the usability of real time scheduling theory 7

– Usual thread properties such as fixed priority, jitter, offset, shared resource
blocking time, ...

– Properties to define when shared resources are accessed by threads.
– And finally, the current AADL standard leading to some ambiguities, some

properties to express thread precedency relationships which can not be com-
puted from standard AADL connections.

Some of the lacks presented above will be fixed in the next AADL standard with
the Behavioral Annex [17] and with some of the Cheddar properties which will
be included in the standard AADL property set.

3.2 Memory footprint analysis with AADL

Fig. 3. Part of a distributed system

One of the most interesting part of an architecture design language as AADL,
is that it allows performance analysis on multiple resources. This is especially
mandatory with distributed real time systems which may be composed of several
processors, memory units and communication devices. The figure 3 shows a
distributed system composed of two processors exchanging messages througth
a TCP/IP socket. With such a system, performance analysis on processors and
memory units can not be performed independently:

– In one hand, if the periodic receiving/sending threads have a high priority
level, and then a short worst case response time, the required memory in the
socket to store messages may be low.

– In the other hand, when sending/receiving threads have a long worst case
response time, the memory requirement into the socket may be high if no
message have to be lost.

By defining all the parts of a system, AADL allows such an analysis. As an
example, in [18], Legrand et al. have proposed a set of feasibility tests based on
queueing system. These feasibility tests were adapted to AADL in [15]. It was
shown how to perform memory footprint analysis with AADL models containing
event data ports. Event data ports represent connection points for transfer of
messages that may be queued. For example, if both producers and consumers
are periodic AADL thread exchanging messages through an event data port, L,
the worst case number of messages in the event data port is equal to L = 2.n



8 Frank Singhoff*, Alain Plantec*, Pierre Dissaux+

if threads are harmonic, or L = 2.n + 1 otherwise. Where n is the number of
producers. As any feasibility test, this memory footprint feasibility test has to
meet several assumptions (eg. Kirchhoff’s law).

3.3 About interoperability between AADL tools

Coupling of modelling and analysis tools requires that both ends strictly comply
with the same semantic definition of the exchanged model. This is particularly
important for real-time systems and software architectures. Such a guaranty can
be brought by a standard use of the AADL all along the tool-chain. In the sequel,
we show how AADL can be used as a pivot language between Cheddar and a
modelling tool called Stood.

Stood is a software design tool that provides an extended support for AADL
in addition to its compliancy with the HOOD methodology. Stood makes it
possible to manage a complete software project by building libraries of reusable
components, reversing legacy code and specifying the real time application as
well as its execution platform. Most of the modelling activities can be performed
graphically and the corresponding AADL code is automatically generated by the
tool.

To ease interoperability between Stood and Cheddar, in [10], we have
proposed a set of AADL design patterns which models usual real time
synchronization/threads-communication paradigms (eg. ARINC 653 [19]):

1. Synchronous data-flows design pattern: this first design pattern is the
simplest one. The data sharing is achieved by a clock synchronization of
the threads as Meta-H [14] proposed it. In this synchronization schema,
thread dispatch is not affected by the inter-thread communications that are
expressed by pure data-flows. Each thread reads its input data ports at
dispatch time and writes its output data ports at complete time. This design
pattern does not require the use of a shared data component. In this simple
case, the execution platform consists in one processor running a scheduler
such as Rate Monotonic [1].

2. Ravenscar design pattern: main drawback of the previous pattern is its
lack of flexibility at run time. Each thread will always execute, read and
write data at pre-defined times, even if useless. In order to introduce more
flexibility, asynchronous inter-thread communications can be proposed. An
example of such a run-time environment is given by the Ravenscar profile. In
Ravenscar, threads access shared data components asynchronously according
to priority inheritance protocols.

3. Blackboard design pattern: Ravenscar allows a thread to allocate/release
several shared resources (eg. AADL data). Real time scheduling theory usu-
ally models such a shared resource as a semaphore, to represent, for example,
a critical section. In classical operating systems, there exists many synchro-
nization design patterns such as critical section, barrier, readers-writers, pri-
vate semaphore, and various producers-consummers. The blackboard design
pattern implements a readers-writers synchronization protocol. At a given



Cheddar: investigating the usability of real time scheduling theory 9

time, only one writer can get the access to the blackboard in order to up-
date the stored data, as opposed to the readers which are allowed to read
the data simultaneously. The usual implementation of this protocol implies
that readers and writers do not perform the same semaphore access, that
requires extra analysis.

4. Queued buffer design pattern: in the blackboard design pattern, at any
time, only the last written message is made available to the threads. Some
real time executives provide communication features which allow to store all
written messages in a memory unit. AADL also propose such a feature with
event data ports or shared data components.

For each pattern, an applicative test case was described under the form of an
AADL model which has been formatted in purpose to highlight some of the possi-
ble performance analysis that Cheddar is able to automatically compute (thread
worst case response time, bound on shared resource blocking time, memory foot-
print analysis, ...) [10].

4 Increasing the usability of real time scheduling theory:

when no feasibility test exists

Many practical cases can not be analyzed by real time scheduling theory feasi-
bility tests. Complex industrial real time architectures frequently make use of
specific task models or schedulers. In this case, no feasibility tests exists and
building new feasibility tests is a difficult and expensive work. Furthermore, in-
dustrial real time systems may be composed of a large number of entities (eg.
tasks, processors, memory units ...). These large scale systems can not be effi-
ciently analyzed with model-checking. The only way people can expect to verify
performances of such real time systems is to perform analysis with extensive
simulations.

Languages and models were proposed for such a purpose. CPN tools [20]
provides simulation features based on Petri Net for example. Unfortunately, the
use of these general purpose simulation tools usually implies that the designer
must model real time scheduling low level abstractions such as task preemption.
A second way is to develop ad-hoc simulation programs, but this solution im-
plies a very low reusability of the simulation programs. The Cheddar framework
proposes a third way by the use of a domain specific language and a set of tools
(compiler, interpreter, code generator ...). This domain specific language allows
the designer to build models of his schedulers and tasks.

We also propose an engineering process from which the designer can test
his models and automatically generate a simulation program. This model driven
engineering process is implemented with Platypus [21].



10 Frank Singhoff*, Alain Plantec*, Pierre Dissaux+

4.1 A language for the modelling of real time schedulers

Real time schedulers are composed of two different aspects:

1. Arithmetic and logical statements which allow to select a task amoung a set
of ready tasks or to compute task priorities.

2. Temporal constraints and synchronizations between entities (eg. tasks and
schedulers). These synchronizations describe how entities must work all to-
gether in order to share processors.

The Cheddar language is then defined by two parts : 1) a subset of Ada for
the modelling of arithmetic and logical statements of the schedulers and 2) a
timed automaton language for the synchronizations modelling scheduler and task
relationships. A detailed description of this language is given into the Cheddar
users’s guide [22].

An Ada subset language This part of the Cheddar language allows to express
the arithmetic and logical statements on simulation data. Simulation data are
associated to the entities composing the architecture to analyze (eg. task release
time, scheduler quantum, shared resource protocol, ...). This language allows
the designer to express sort rules as Earliest Deadline for example. A Cheddar
program is organized in sub-programs called sections. These sub-programs are
typed:

– Some sub-programs are devoted to data simulation declaration and initial-
ization. They are called start section.

– Some sub-programs allow to select a task amoung a set of ready tasks ac-
cording to simulation data (eg. priority). These sub-programs are called
election section.

– Finally, some sub-programs contain statements which have to be ran at each
unit of time before the task selection. They are called priority section.

The language defines usual operators and statements. Schedulers can be mod-
elled with loops, conditional tests or assignements. This domain specific language
also provides statements and operators that are specific to real time scheduling
theory. For example, the uniform/exponential statements customize the way
random values are generated during simulations. The lcm operator computes
last common multiplier of simulation data. The max to index operator looks for
the ready task which has the highest priority level.

The language is typed and provides usual types as integer, boolean or string.
Some types related to real time scheduling theory are also defined.

A timed automaton language The second part of a Cheddar scheduler model
is a network of timed automata. A scheduler model can contain timed automata
similar to those proposed by UPPAAL [23, 24]. UPPAAL is a toolbox for the
modelling and the verification of real time systems.



Cheddar: investigating the usability of real time scheduling theory 11

A network of timed automata models timing and synchronization between
schedulers and tasks. The Ada subset described above is enough to model sched-
ulers which have fixed synchronization relationships between tasks and sched-
ulers. By the past, we have shown that this language makes it possible the
modelling of simple schedulers like Earliest Deadline First, Rate Monotonic ou
Maximum Urgency First. However, some real time schedulers require the mod-
elling of complex synchronizations. This is the case of hierarchical schedulers.
An architecture based on hierarchical scheduling is an architecture in which sev-
eral entities work all together for the processor sharing. Hierarchical scheduling
has been initially proposed in the context of time sharing systems. In time shar-
ing systems, hierarchical schedulers were proposed in order to define user-level
scheduling policies (eg. fair process scheduling [25]). Today, hierarchical schedul-
ing also exists in several real time system standards such as ARINC 653, POSIX
1003 or Ada 2005 [26, 3, 19].

Every automaton may fire a transition separately or synchronize with an-
other automaton. Transitions may be guarded with time constraints. Delays can
express time consumption at transition firing. Finally, at transition firing, au-
tomata may run Ada subset sections in order to compute task priorities or to
choose the next task to run.

For further readings, a model of an ARINC 653 hierarchical scheduling mod-
elled with the Cheddar language is given in [27].

Fig. 4. A process to perform simulations from Cheddar scheduler models

4.2 Engineering process of a Cheddar scheduler model: from the

model to the scheduling simulation

Figure 4 depicts the process that a designer runs to perform scheduling simula-
tions with specific scheduler or task models:



12 Frank Singhoff*, Alain Plantec*, Pierre Dissaux+

1. With the Cheddar toolset the designer models a new scheduler. This model
can be directly interpreted using the Cheddar framework. This feature eases
the design step and allows the designer to perform small scheduling simula-
tions.

2. When his scheduler has been tested, the designer can generate Ada packages
implementing his scheduler into the Cheddar framework. The Ada pack-
age generator is implemented within Platypus. Platypus [21] is a meta-
environment suitable for model driven engineering activities.

3. The generated Ada packages can be integrated into the Cheddar framework.
The Cheddar framework is then compiled in order to enrich it with this new
scheduler.

4. The designer can actually run large scale simulations with this new Cheddar
framework embedding his scheduler. The designer makes use of his scheduler
through this enriched Cheddar framework in the same way he will make
use of standard schedulers manually implemented into Cheddar (eg. Rate
Monotonic).

5 Conclusion and ongoing works

This article presents three possible ways investigated by the Cheddar project in
order to increase the usability of real time scheduling theory. We have presented
a set of tools which help the designer to apply real time scheduling theory. This
toolset allows several levels of use and is able to perform analysis of models
written with design languages such as AADL. We also have presented a domain
specific language to investigate performances of architectures on which real time
scheduling theory does not propose analytical method.

At the time we are writing this article, it is difficult to state if Cheddar
has actually helped people to apply real time scheduling theory on practical
cases. The toolset has been used to build many real time scheduling courses. It
has been experimented in different research and development projects related
to avionic or robotic applications, with different design languages. Besides these
first encouraging results, the Cheddar project have raised several interesting
open research questions.

First, Ellidiss technologies will distribute Cheddar with its modelling tool
Stood. We expect to spread the use of real time scheduling theory on practition-
ers. For such a purpose, we have started to investigate how to apply Cheddar
to modelling design patterns that practitioners usually handle with Stood [10].
For this project, we have chosen AADL as a pivot language between Stood and
Cheddar.

Second, the Cheddar language we have defined to model schedulers was ex-
perienced in several projects. We know that this language is well suited for this
purpose. The language is based on an Ada subset, which allows static analysis
(eg. SPARK [28]) and on a timed automaton language which allows dynamic
analysis (eg. model-checking with UUPPAL). We plan to investigate how Ched-
dar scheduler model analysis can help designers to compare their models.



Cheddar: investigating the usability of real time scheduling theory 13

Finally, the complexity of real time systems has been growing quickly for
these 15 last years. In the past, the only resource requiring deep and accurate
analysis was the processor. But now, many real time systems are distributed
over several processors and several resources have to be managed all together:
processors, communication networks and memory units. In the next months, we
plan to focus on memory footprint analysis with queueing system models.

6 Acknowledgments

Cheddar is an open-source toolset and many people have helped the Ched-
dar team. The Cheddar team would like to thank all contributors (see
http://beru.univ-brest.fr/~singhoff/cheddar/). Cheddar AADL analysis features
rely on Ocarina [11]. We also would like to thank the Ocarina’s Team (B. Zalila,
J. Hugues, L. Pautet and F. Kordon).

References

1. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environnment. Journal of the Association for Computing Machinery
20(1) (1973) 46–61

2. Sha, L., Rajkumar, R., Lehoczky, J.: Priority Inheritance Protocols : An Approach
to real-time Synchronization. IEEE Transactions on computers 39(9) (1990) 1175–
1185

3. Taft, S.T., Duff, R.A., Brukardt, R.L., Ploedereder, E., Leroy, P.: Ada 2005 Refer-
ence Manual. Language and Standard Libraries. International Standard ISO/IEC
8652/1995(E) with Technical Corrigendum 1 and Amendment 1. LNCS Springer
Verlag, number XXII, volume 4348. (2006)

4. SEI: The Rate Monotonic Analysis. Technical report, In the Software Technology
Roadmap. http://www.sei.cmu.edu/str/descriptions/rma body.html (2003)

5. Tindell, K.W., Clark, J.: Holistic schedulability analysis for distributed hard real-
time systems. Microprocessing and Microprogramming 40(2-3) (1994) 117–134

6. Leung, J., Merril, M.: A note on preemptive scheduling of periodic real time tasks.
Information processing Letters 3(11) (1980) 115–118

7. George, L., Rivierre, N., Spuri, M.: Preemptive and Non-Preemptive Real-time
Uni-processor Scheduling, INRIA Technical report number 2966 (1996)

8. Harbour, M.G., Garca, J.G., Gutirrez, J.P., Moyano, J.D.: MAST: Modeling and
Analysis Suite for Real Time Applications, Proc. of the 13th Euromicro Conference
on Real-Time Systems, Delft, The Netherlands, (2001) 125–134

9. Tri-Pacific: Rapid-RMA : The Art of Modeling Real-Time Systems.
http://www.tripac.com/html/prod-fact-rrm.html (2003)

10. Dissaux, P., Singhoff, F.: Stood and Cheddar : AADL as a Pivot Language for
Analysing Performances of Real Time Architectures, Proceedings of the European
Real Time System conference. Toulouse, France (2008)

11. Hugues, J., Zalila, B., Pautet, L.: Rapid Prototyping of Distributed Real-Time
Embedded Systems Using the AADL and Ocarina, In 18th IEEE/IFIP Interna-
tional Workshop on Rapid System Prototyping (RSP’07), Porto Allegre, Brazil
(2007)



14 Frank Singhoff*, Alain Plantec*, Pierre Dissaux+

12. Panunzio, M., Vardanega, T.: A Metamodel-Driven Process Featuring Advanced
Model-Based Timing Analysis , Proceedings of the 12th International Conference
on Reliable Software Technologies, Ada-Europe. Geneva, LNCS springer-Verlag
(2007)

13. Frédéric, T., Gérard, S., Delatour, J.: Towards an UML 2.0 profile for real-time
execution platform modeling, Proceedings of the 18th Euromicro Conference on
Real-Time Systems (ECRTS 06) Work in progress session (2006)

14. Inc., S.: Architecture Analysis and Design Language (AADL) AS 5506. Technical
report, The Engineering Society For Advancing Mobility Land Sea Air and Space,
Aerospace Information Report, Version 1.0 (2004)

15. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Scheduling and Memory require-
ments analysis with AADL, ACM SIGAda Ada Letters, volume 25, number 4,
pages 1-10. Edited by ACM Press, New York, USA, ISSN:1094-3641 (2005)

16. Singhoff, F.: The Cheddar AADL property set (Release 2.x, LISyC
Technical report, number singhoff-03-2007, Available at http://beru.univ-
brest.fr/~singhoff/cheddar (2007)

17. Inc., S.: AADL Annex Behavior (draft V1.6), AS 5506. Technical report, The
Engineering Society For Advancing Mobility Land Sea Air and Space, Aerospace
Information Report (2007)

18. Legrand, J., Singhoff, F., Nana, L., Marcé, L.: Performance Analysis of Buffers
Shared by Independent Periodic Tasks, LISyC Technical report, number legrand-
02-2004, Available at http://beru.univ-brest.fr/~singhoff/cheddar (2004)

19. Arinc: Avionics Application Software Standard Interface. The Arinc Committee
(1997)

20. Wells., L.: Performance Analysis using CPN Tools, Proceedings of the First In-
ternational Conference on Performance Evaluation Methodologies and Tools 2006.
ACM Press, ValueTools’06 (2006)

21. : Platypus Technical Summary and download. http://cassoulet.univ-brest.fr/mme/
(2007)

22. Singhoff, F.: Cheddar Release 2.x User’s Guide, LISyC Technical report, number
singhoff-01-2007, Available at http://beru.univ-brest.fr/~singhoff/cheddar (2007)

23. Alur, R., Dill, D.L.: Automata for modeling real time systems, Proc. of Int. Col-
loquium on Algorithms, Languages and Programming, Vol 443 of LNCS (1990)
322–335 (1990)

24. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on UPPAAL, Technical Report
Updated the 17th November 2004, Department of Computer Science, Aalbord
University, Denmark (2004)

25. Kay, J., Lauder, P.: A Fair Share Scheduler. In: Communications of the ACM.
Volume 31. (1988) 44–45

26. Gallmeister, B.O.: POSIX 4 : Programming for the Real World . O’Reilly and
Associates (1995)

27. Singhoff, F., Plantec, A.: AADL Modeling and Analysis of a hierarchical schedulers,
ACM SIGAda Ada Letters, volume 27, number 3, pages 41-50. Edited by ACM
Press, New York, USA, ISSN:1094-3641 (2007)

28. Barnes, J.: High integrity software: The Spark approach to safety and security.
Addison-Wesley Publishing Company (2003)


