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ABSTRACT

A system based on a hierarchical scheduler is a system in
which the processor is shared between several collaborative
schedulers. Such schedulers exist since 1960 and they are
becoming more and more investigated and proposed in real-
life applications. For example, the ARINC 653 international
standard which defines an Ada interface for avionic real
time operating systems provides such a kind of collabora-
tive schedulers. This article focuses on the modeling and the
performance analysis of hierarchical schedulers. We inves-
tigate the modeling of hierarchical schedulers with AADL.
Hierarchical scheduler timing and synchronization relation-
ships are expressed with a domain specific language based
on timed automata: the Cheddar language. With the meta
CASE tool Platypus, we generate Ada packages implement-
ing the Cheddar language. These Ada packages are part of
Cheddar, a real time scheduling simulator. With these Ada
packages, Cheddar is able to perform analysis by schedul-
ing simulation of AADL systems composed of hierarchical
schedulers. An AADL model of the ARINC 653 hierarchical
scheduling is described as an illustration.

Keywords

AADL, Cheddar, Platypus, Ada framework, Real time
scheduling analysis, Timed Automaton.

General Terms

Performance, Reliability, Verification.

Categories and Subject Descriptors

SOFTWARE ENGINEERING [Software/Program Ver-
ification]: Validation

1. INTRODUCTION

In [32], we presented Cheddar, a set of Ada packages which
aims at performing analysis of real time applications. This
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set of packages includes analytical scheduling tools and most
of classical scheduling simulation algorithms. It also pro-
vides a domain specific language called the Cheddar lan-
guage. The Cheddar language allows the designer to define
new schedulers which are not already implemented into the
Cheddar framework. The Cheddar framework offers a set of
tools (eg. interpreters) for such user-defined schedulers.

Cheddar is able to perform analysis on AADL specifica-
tions. The SAE Architecture Analysis and Design Language
(AADL) is a textual and graphical language support for
model-based engineering of embedded real time systems that
has been approved and published as SAE Standard AS-5506
[14]. AADL is used to design and analyze the software and
the hardware architecture of embedded real-time systems.

In [33], we explained how performance analysis can be per-
formed with Cheddar on AADL specifications when threads
are scheduled with usual schedulers such as Rate Monotonic
or Earliest Deadline First. This article presents the support
of hierarchical schedulers with AADL and Cheddar. A sys-
tem based on a hierarchical scheduler is a system in which
the processor is shared between several collaborative sched-
ulers. With the current AADL standard and with the cur-
rent Cheddar implementation, such a scheduler is difficult
to model and analyze.

Hierarchical scheduling has been initially proposed in the
context of time sharing systems. In time sharing systems,
hierarchical schedulers were proposed in order to define user-
level scheduling policies (eg. fair process scheduling [20] or
user-level and kernel-level threads scheduling into Solaris
[36]). If user-level scheduling capability stays a motiva-
tion for the use of hierarchical schedulers, system designers
mostly focus on hierarchical scheduling in order to reduce
system design cost and to increase the sharing resource effi-
ciency. Today, it is usual to share a processor by several ap-
plications. This allows old applications to run efficiently on
newer processors without beeing re-designed (eg. re-design
of the scheduling). Applications sharing a processor can
have different resource requirements. For example, in a real
time multimedia application, a given scheduler may support
critical tasks for audio and video presentation while uncriti-
cal tasks can be managed by a different scheduler which does
not provide deterministic task response time. The queueing
based hierarchical scheduling features proposed by POSIX
1003 or Ada 2005 allow such a differentiated class resource
allocation [28, 26, 29, 7, 16]

Unfortunately, real time hierarchical schedulers also raise
two difficult challenges.

1) The first challenge is related to the large number of hier-



archical schedulers which were proposed. These hierarchical
schedulers have complex and different ways to perform com-
munication and synchronization relationships between the
schedulers and the tasks [4]. It is also difficult to express
scheduler requirements and behaviors in order to combine
themself for example [21, 27]. In contrary to the usual sched-
ulers such as Earliest Deadline First or Rate Monotonic, it
is difficult to implement into the Cheddar framework a set
of hierarchical schedulers satisfying most of system designer
needs. In the context of hierarchical schedulers, the ap-
proach proposed by Cheddar is to provide a programming
language which eases the design and the implementation of
hierarchical schedulers.

2) The second challenge is related to the availability of
analytical methods for hierarchical schedulers: there is cur-
rently few feasibility tests in the context of real time hier-
archical scheduling [1, 12, 30, 10]. A feasibility test is an
analytical method which is able to predict before task ex-
ecution if a given system will meet its task timing require-
ments. Building feasibility tests is usually a difficult work
and it is more complex for hierarchical schedulers. When
no feasibility test exists for a given hierarchical scheduler,
Cheddar can be used to perform scheduling simulation. In
this case, the scheduling simulation tool has to be efficient
(low memory footprint and high response time) in order to
run large simulations.

The Cheddar language was formerly introduced in [32].
This language made it possible the design of user-defined
schedulers with fixed timing and synchronization relation-
ships between tasks and schedulers. A program written with
the Cheddar language is organized in sections. A section is
a kind of Ada sub-program. The former Cheddar scheduling
simulation engine assumed a fixed order for the execution of
such sections: this fixed order was modeling the fixed tim-
ing/synchronization relationships between tasks and sched-
ulers.

In this article, we propose to extend the Cheddar language
and its tools (editor, interpreter and compiler) in order to de-
sign hierarchical schedulers with AADL. This new Cheddar
language allows the designer to model any synchronization
and timing relationships between the tasks and the sched-
ulers. Tasks and schedulers relationships are modeled with
timed automata [13, 3]. The abstract semantic of the Ched-
dar language is modeled with the meta CASE tool Platypus.
From this Cheddar language model, Platypus is able to gen-
erate Ada packages which implement tools such as Cheddar
program compiler or interpreter.

Timed automata are frequently used to express timing and
synchronization requirements of real time systems. There is
some experiments to model and verify real time schedulers
with timed automata [2, 35, 19]. Numerous tools exist (ed-
itors, simulators and model-checkers such as UPPAAL [5]
or Esterel Studio [6]) and some standards are also based on
such a formal model (eg. UML Statecharts [11]).

Timed automaton is also the formal model chosen by the
SAE AADL standard committee to express AADL behav-
ioral properties in the next release of the AADL standard
[15] and first experiments on the verification of AADL spec-
ifications with timed automata were presented recently [8].
By extending the Cheddar language with a timed automa-
ton model similar to the one investigated by the SAE AADL
committee, the work presented in this article is then a first
contribution to the scheduling analysis of AADL specifica-

thread T1
end TI;

thread implementation TI1.Impl
properties

Dispatch_Protocol => Periodic;
Compute_Execution_-Time => 3 ms .. 3 ms;
Cheddar_Properties: : Fixed _Priority => 2;
Deadline => 10 ms;
Period => 10 ms;

end TI1. Impl;

process implementation partitionl. Impl
subcomponents
T3 : thread T3.Impl;
T4 : thread T4.Impl;
properties
Cheddar_Properties: : Scheduling_Protocol
=> Automaton_User_Defined_Protocol;
Cheddar_Properties: : Source_Text
=> "arinc_partitionl.sc";
Cheddar_Properties: : Automaton_Name
=> "partitionl_scheduler";
end partitionl. Impl;

process implementation partition2. Impl
subcomponents
T1 : thread TI1.Impl;
T2 : thread T2. Impl;
properties
Cheddar_Properties: : Scheduling_Protocol
=> Automaton_User_Defined_Protocol;
Cheddar_Properties: : Source_Text
=> "arinc_partition2.sc";
Cheddar_Properties: : Automaton_Name
=> "partition2_scheduler";
end partition2. Impl;

processor implementation arinc. Impl
properties
Scheduling_Protocol
=> Automaton_User_Defined_Protocol;
Cheddar_Properties: : Source_Text
=> "arinc_processor.sc";
Cheddar_Properties: : Automaton_Name
=> "processor_scheduler";
end arinc. Impl;

system auto_arinc
end auto_arinc;

system implementation auto_arinc. Impl
subcomponents
arinc : processor arinc.Impl;
partitionl process partitionl. Impl;
partition2 : process partition2. Impl;
properties
Actual_Processor_Binding => reference
arinc applies to partitionl;
Actual_Processor_Binding => reference
arinc applies to partition2;
end auto_arinc. Impl;

Figure 1: A part of an AADL specification modeling
an ARINC 653 avionic system



tions using AADL behavioral features [15].

This article is organized as follows. The sections 2 and
3 are devoted to the AADL modeling of hierarchical sched-
uler based systems. The section 2 focuses on the architec-
ture point of view while the section 3 focuses on the timing
and the synchronization point of view. In section 4, we de-
scribe what kind of analysis the AADL designer can expect
with Cheddar on such AADL specifications. We also explain
how Ada packages implementing analysis tools are generated
from an AADL specification. Finally, we conclude and give
future works in section 5.

2. MODELING HIERARCHICAL SCHED-
ULERS WITH AADL

An AADL specification describes both the hardware part
and the software part of a real time system [14]. An AADL
specification is a set of components such as shared data,
threads, processes (the software side of a specification), pro-
cessors, devices and busses (the hardware side of a specifi-
cation).

In the sequel, we focus on thread, process and processor
components. A thread is a sequential flow of control that
executes a program. An AADL thread may be implemented
by an Ada task. AADL threads can be woken up according
to several policies: a thread may be periodic, sporadic or
aperiodic. An AADL periodic thread is woken up at a reg-
ular time interval. This time interval is called a “period”.
In the case of a sporadic thread, a minimum inter-woken
up time interval is considered. An aperiodic thread may be
woken up at any time. An AADL process models a virtual
address space. In the most simple case, a process simply
owns threads and shared data. Finally, a processor is the
execution platform component which is capable of schedul-
ing and executing threads.

An AADL specification also contains component connec-
tions and component properties. Component connections
model component relationhips such as thread precedency
constraints, message exchanges or shared data access. Com-
ponent properties store component information which is re-
lated to the component behavior or the way the component
will be implemented in the target system. A property is de-
fined by a name, a value and a type. For example, a thread
component property may store the Ada package file name in
which the Ada task implementing the AADL thread will be
defined. The designer can define properties with most of the
AADL components. If AADL defines standard properties,
AADL also allows the designer to define its own properties.

Figure 1 shows a part of an AADL specification modeling
a simple ARINC 653 avionic system. ARINC 653 provides
space and time partitioning when several applications share
the same processor and the same memory unit. An ARINC
653 system is then a set of applications called partitions.
Each partition is composed of tasks. The processor sharing
is made according to a two-levels hierarchical scheduling:

1. The partitions are cyclically activated. This first level
of scheduling is fixed at design time: it is usually stat-
ically computed.

2. The second scheduling level is related to the task
scheduling: tasks of a given partition are scheduled all
together with a fixed priority scheduler. This thread
scheduling is an online scheduling.

The ARINC 653 model of the figure 1 specifies a set
of AADL periodic threads (threads T'1.Impl, T2.Impl, ..)
modeling ARINC 653 tasks. The timing behavior of each
thread is defined by a set of properties such as Period,
Deadline or Cheddar_Properties ::Fized_Priority. Period
and Deadline are AADL standard properties. The Period
property stores the fixed delay between each thread wake
up time. The Deadline expresses the timing constraint
the thread has to meet. Finally, Cheddar_Properties ::
Fixed_Priority is an example of AADL property proposed
by Cheddar in order to apply real time scheduling analy-
sis tools. This Cheddar property assigns a fixed priority for
each thread of the modeled system. Such a priority attribute
is used by fixed schedulers such as Rate Monotonic [23].

The AADL specification of figure 1 also defines two
AADL processes which model two ARINC 653 par-
titions (partitionl.Impl and partition2.Impl). The
Actual_Processor_Binding property is a usual AADL
way to express that the two processes are run on the
same processor: the arinc.Impl processor. With AADL,
each processor owns a scheduler. The standard AADL
Scheduling_Protocol property stores the name of the
scheduling protocol describing how the processor time is
shared between threads. With AADL/Cheddar, when a
hierarchical scheduler is modeled, the designer has to pro-
vide a Scheduling_Protocol property for both processes
and processors. Since this feature is not AADL V1.0
compliant, a Cheddar specific property is then defined.
In this example, for the arinc processor and for the
partitionl.Impl process, the Scheduling_Protocol property
contains Automaton_User_De fined_Protocol which indi-
cates that the scheduler is a user-defined scheduler mod-
eled by a Cheddar program (eg. a timed automaton). Fi-
nally, each timed automaton has a name which is specified
by the Cheddar_Properties::Automaton_Name. In the AR-
INC example, partitionl_scheduler is the name of the timed
automaton modeling the timing/synchronization behavior of
the thread scheduler of partition 1 and processor_scheduler
is the automaton name of the scheduler modeling the sharing
of the processor time between the two ARINC partitions.

In the next section, we give some details about the timing
and the synchronization specification of these schedulers.

partition1_duration:=0

wakeupl!

Pended

Wait_Priority

partition1_duration <
partition1_capacity

partition1_duration=partition1_capacity partition1_priority!

partition1_election!

Ready

Figure 2: Automaton modeling the thread scheduler
of the partition 1



wakeup2!

Pended partition2_duration=0

Ready
partition2_duration=partition2_capacity

partition2_election!

partition2_duration<partition2_capacity

Figure 3: Automaton modeling the thread scheduler
of the partition 2

Schedule_Partition2

wakeup2?

Schedule_Partition1
partition_clock = 10

partition_clock:=0

wakeupl?

partition_clock = 6
Restart

Figure 4: Automaton modeling the ARINC 653 par-
tition scheduler

3. MODELING HIERARCHICAL SCHED-
ULER BEHAVIOR WITH CHEDDAR

In this section, we give an overview of the Cheddar lan-
guage. A complete description of the language can be found
in [31]. The use of the Cheddar language is then illustrated
by the example of the ARINC 653 model of the section 2.

3.1 Outline of the Cheddar language

The Cheddar language is defined by two parts : a small
Adar-like language and a timed automaton language.

3.1.1 A small Ada-like language

This small Ada-like language is used to express computa-
tions on simulation data. Simulation data are constants or
variables used by the scheduling simulator engine of Ched-
dar in order to run scheduling simulations. Examples of such
simulation data are task wake up times or task priorities. A
Cheddar program is organized in sections. A section is a
kind of Ada sub-program composed of several statements.
Most of the time, a Cheddar program is composed of the fol-
lowing sections [32]: a start_section which contains variable
declarations and initializations ; a priority_section which
contains the code to compute simulation data on each unit
of time during simulation; and an election_section which

Initialize engine_clock=0

processor_start?

start1?
partition2_election?

engine_clock<=
scheduling_period

start2?

engine_clock<=
scheduling_period

engine_clock > partition1_election?

scheduling_period

engine_clock<=
scheduling_period

partition1_priority?
Display_Schedulng

Figure 5: Automaton modeling the Cheddar
scheduling simulation engine

looks for the task to run during simulation time. The Ada-
like language provides usual types, operators or statements.
It also provides statements, types and operators which are
more specific to the design and the debug of scheduling algo-
rithms. For example, the uniform/exponential statements
customize the way random values are generated during simu-
lation time ; the lem operator computes last common multi-
plier of simulation data ; finally, the max _to_index operator
looks for the ready task which has the highest value for a
given array of simulation data. The detailed Backus-Naur
Form syntax of this language is given in [31].

3.1.2 Atimed automaton language

A Cheddar program can contains a set of timed automata
similar to those proposed by UPPAAL [13, 3, 5]. UPPAAL is
a toolbox for the verification of real time systems. A system
is then modeled as a network of several timed automata ex-
tended with variables. A state of the system is defined by the
locations of all automata, the clock constraints, and the val-
ues of the variables. Every automaton may fire a transition
separately or synchronize with another automaton, which
leads to a new state. Transition may be guarded with time
constraint. Finally, delays can express time consumption at
transition firing. In Cheddar, these timed automata allow to
model timing and synchronization behaviors of schedulers.
Automata may run Ada-like sections, read or write simula-
tor data.

3.2 Cheddar program examples: an illustra
ti?n with the hierarchical ARINC sched-
uler

In section 2, we described with AADL the architectural
point of view of an ARINC model made with a set of collab-
orative schedulers (process schedulers and processor sched-
ulers). This section shows how the Cheddar language can
be used to express timing and synchronization relationships
between such ARINC partition schedulers and ARINC task
schedulers.

The ARINC 653 hierarchical scheduler is modeled by a set
of Cheddar programs. A textual representation of those pro-
grams is given in the sections 8.1, 8.2 and 8.3. A graphical
representation is also given in figures 2, 3, 4.
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Figure 6: The user-defined scheduler design process with Cheddar

For each AADL process and AADL processor compo-
nent which has a scheduler, the AADL specification binds a
Cheddar program to the component. This binding is made
with the Cheddar_Properties::Source_Text Cheddar prop-
erty. The property contains the file name storing the cor-
responding Cheddar program. For example, in the AADL
specification of the figure 1, the automaton in the figure 4 is
saved in a file called arinc_processor.sc and the automaton
of the figure 2 is saved in a file called arinc_partitionl.sc.

Let see now the modeling of the ARINC 653 thread and
partition scheduling. The automaton of the figure 4 specifies
when each partition has to be active or not. This automa-
ton models the first level of an ARINC 653 scheduling: the
partition scheduling. The automata of the figures 2 and 3
model the schedulers of each partition. Such schedulers are
responsible for the scheduling of the threads of the modeled
ARINC partition. These automata model the second level
of an ARINC 653 scheduling: the task scheduling.

The automata modeling the thread scheduling of each par-
tition have three types of location:

1. the Pended locations. From these locations, the par-
titions can not get access to the processor in order to
run one of their thread.

2. the Wait_Priority and the Ready locations. If a par-
tition is in one of these locations, it is allowed to run
one of its thread. Wait_Priority is an intermediate
location from which the scheduler computes thread
priorities. AADL thread priorities are computed by
the partitionl_priority section during the firing of the
W ait_Priority outgoing transition (see the Cheddar
program of section 8.1). The Ready location chose the
AADL thread to run during the next unit of time. To
find the next thread to run, the Cheddar program in-
terpreter calls the partitionl_election section during
the firing of the Ready outgoing transition.

The partition scheduler automaton (see figure 4) models
the cyclic partition activation: in this example, the parti-
tion scheduling is made on a 10 units of time cycle. Each
cycle, the partition 2 is activated during the 6th first units

of time and the partition 1 is activated during the 4th last
units of time. The partition 2 schedules critical periodic
tasks according to Rate Monotonic whereas the partition 1
schedules a set of uncritical tasks according to a round-robin
scheduler. The partition scheduler enforces timing isolation
between the two partitions which have different processor
resource requirements.

The last automaton (see figure 5) models the scheduling
engine of Cheddar: this Cheddar program is a part of the
Cheddar program interpreter which drives scheduling simu-
lations.

Besides the sections which store timed automaton model-
ing timing and synchronization behavior, a Cheddar pro-
gram also contains sections to perform arithmetic/logic
statements (eg. to compute task priorities), to do initial-
izations and to select the task to run at the next unit of
time.

In the case of our ARINC 653 model, the section startl
of the program depicted in section 8.1 does some initial-
izations ; the partitionl_priority of the section 8.1 com-
putes task priorities according to a round robin schedul-
ing with a 2 units of time quantum ; finally, the section
partition2_election of the section 8.2 shows how to select
the next highest priority task to run.

4. PERFORMANCE ANALYSIS OF A
CHEDDAR PROGRAM MODELING HI-
ERARCHICAL SCHEDULERS

Scheduling simulation consists in predicting for each unit
of time, the thread to which the processor should be allo-
cated. Checking if threads meet their deadlines can then be
performed by analysis of the computed scheduling. When
AADL specifications only contain periodic AADL threads
and for some real time schedulers such as Rate Monotonic,
scheduling simulations can prove that AADL threads will
meet their deadline. For such a proof, the designer has to
run the scheduling simulation during a time interval called
the scheduling period (sometimes called schedule length,
base period, major cycle or hyper period). If the AADL



specification is composed of periodic AADL threads which
arrive in the system at the same time, this scheduling period
can be computed by [22, 9]:

[k, + 2% LCM (Vi : P))) (1)

where k is the time when all AADL threads request the
processor for the first time (eg. thread arrival time), P; is
the period of the thread ¢ and LCM is the last common
multiplier of all AADL thread periods of the system. If the
system designer run a scheduling simulation from the time k
to the time k+2+ LCM (Vi : P;) and if no thread deadline are
missed during such a scheduling period, then, no deadline
will be missed during all the thread scheduling.

From a Cheddar program which models a hierarchical
scheduler, we generate Ada packages which are part of the
Cheddar framework and that allow the designer to run
scheduling simulation. Let see now how such Ada packages
are generated.

4.1 From Cheddar programs to scheduling
simulations

As depicted by figure 6, a new scheduler described by a
Cheddar program can be designed and directly interpreted
using the Cheddar environment. This feature eases the de-
sign step and allows the user to perform small scheduling
simulation. But scheduling simulation tools have to be ef-
ficient in order to run large simulations. They must have a
low memory footprint and a high response time. When the
design step is over, the Cheddar program specifying a new
scheduler can be handled by a code generator that produces
a set of Ada packages. Then, a new Cheddar version that
integrates the new scheduler as a builtin one can be com-
piled. The new Cheddar environment can then run efficient
scheduling simulations with the new user-defined scheduler.

The Ada package generator is implemented within Platy-
pus. Platypus [25] is a meta-environment suitable for model
driven engineering activities. It allows meta-model specifi-
cation describing meta-data hierarchies, integrity and trans-
formation rules definition and also allows conforming data
models specification. Meta-models as well as conforming
models are specified with the EXPRESS modeling language
[18]. The STEP technology [17] is used in order to automati-
cally instanciate meta-models from their conforming models.
Then, transformation rules associated to meta-entities can
be interpreted in order to generate some target realization
such as an Ada package for example.

From a Cheddar program, Platypus generates two differ-
ent Ada packages: the Ada packages implementing the mod-
eled scheduler and the Ada packages which are part of the
Cheddar data access interface (CDAI) [24, 34].

4.2 The Cheddar data access interface

As shown by figure 7, the CDAI is a central component of
Cheddar. It implements a repository that all other compo-
nents are using in order to read and write data or meta-data.
Mainly, Cheddar user interface and builtin scheduler compo-
nents are using it in order to get or put simulation data such
as processor or task attributes. The Cheddar language com-
piler and interpreter are using it in order to store Cheddar
programs meta-data and to manage computation results.

4.3 The Cheddar program interpreter

Builtin scheduler

oAl
User interface ; !

I
= meta—data = <!
I

repository | I
Interpreter |4 t ) ;
start_section : [\
Compiler

dynamic_prior
genl: random;
A —® B BreadfromA

User-defined schedul
(Cheddar program)

Figure 7: The Cheddar data acces interface

The Cheddar program interpreter allows the designer to
test Cheddar program. During a scheduling simulation, the
Cheddar program interpreter is called at each unit of time
in order to evaluate automaton transitions which can be
fired. Transition firing may lead to run priority or election
sections. Start sections are always run by the simulation
engine at simulation start time.

During scheduling simulation, the interpreter maintains a
status for each transition of the Cheddar programs. These
status can be:

e Guarded: the transition can not be fired due to a tran-
sition guard which is not satisfied.

e Pended: the transition is executing a time consum-
ming statement and then, can not be fired until the
delay is not elapsed.

e Unreachable: the transition is not allowed to be fired
according to the current location of the automaton.

e RendezVous: the transition can not be fired because
the automaton is waiting for synchronization with an-
other automaton.

e Ready: the transition is ready to be fired.

For a given nth unit of time, the Cheddar program inter-
preter works as follows:

1. It checks and updates the status of each transition:

e A transition which is ”pended” stays ”pended”
if the delay is not exhausted. If its delay is ex-
hausted, the automaton status becomes "ready”.

e For all others transitions, their status is set to
"ready” immediately.

2. It checks reachability of all "ready” transitions. The
transition status is set to "unreachable” if the transi-
tion is not an outgoing transition of the current loca-
tion of the corresponding automaton.

3. It checks guard (eg. timed constraints) for all tran-
sitions which have a "ready” status. A transition
blocked due to a guard constraint sees its status be-
coming "guarded”.



Instances of the
cheddar language meta schema

| Platypus interpreter

Y
(I
The new builtin schedule
CDAI Ada packages

New scheduler
meta-data

D
(@)

A

start_section :

. dynamic_prior
{ Compiler J<7 genl : random;

User—defined schedule

(Cheddar program)
A —® B BreadfromA

A ----BB AgeneratesB
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4. Tt checks synchronization constraints for all transitions
which have a "ready” status. A transition blocked due
to a synchronization constraint sees its status becom-
ing ”"rendezvous”.

5. Finally, it fires all transitions which have a "ready”
transition status. Firing a transition means:

5.1 To run delay/clock statement. This may lead to
compute the next wakeup automaton date and to
change its status to ”"pended”.

5.2 To run sections. Section run there can be priority
or election sections. If an election section is run,
then, the interperter has ended its work for the
current unit of time and must switch to the n+1th
unit of time.

5.3 And then, to update the current location (tran-
sition outgoing location) for all fired transitions
except for those which became ”pended” at step
5.1.

6. The interpreter restarts at step 1 if at least one transi-
tion was fired at step 5. Otherwise, the interperter has
ended its work for the current unit of time and must
switch to the n + 1th unit of time.

4.4 Process to generate Ada packages from a

Cheddar program

After a Cheddar program was tested by the interpreter,
one can use an Ada code generator in order to compile and
integrate the new scheduler into the Cheddar framework.
This new compiled Cheddar framework makes it possible to

efficiently run time consumming simulations (eg. simulation
on large model).

This Ada package generation process is depicted by figure
8.

The Cheddar program Ada package generator is made of a
meta-model named cheddar_language_meta_schema specify-
ing the Cheddar language abstract semantic. It also contains
translation rules specifying how to generate Ada packages
implementing a scheduler modeled by a Cheddar program.

From the Cheddar language meta-model, the CDAI
has been enriched with a dedicated component automat-
ically generated and aiming at Cheddar program meta-
data handling. Within the repository, Cheddar programs
are stored as cheddar_language_meta_schema instances pro-
duced by the Cheddar program compiler. In order to gen-
erate a user-defined scheduler, Platypus is able to read
cheddar_language_meta_schema instances generated by the
CDAI and stored as a STEP exchange file and finally, to
generate a new scheduler as a dedicated Ada package.

5. CONCLUSION AND FUTURE WORKS

In this article, we have investigated the modeling and
the analysis of AADL specifications containing hierarchical
schedulers. We have proposed an extension of the Cheddar
language and its tools (editor, interpreter and compiler) in
order to support hierarchical schedulers. This new Cheddar
language makes use of timed automata [13, 3] and allows the
designer to model synchronization and timing relationships
between the AADL threads, the schedulers of AADL proces-
sors and the schedulers of AADL processes. With the meta
CASE tool Platypus, we have designed a meta-model of Ada
95 for Cheddar and a model of the Cheddar language [24,
34]. From these models, we generate Ada packages which
are part of the Cheddar scheduling simulation engine. These
Ada packages implement a Cheddar program compiler and
interpreter. Scheduling simulation analysis can then be per-
formed on AADL specifications with hierarchical schedulers.

An AADL model of the ARINC 653 hierarchical scheduler
is described as an illustration.

The SAE AADL committee is currently preparing the
next AADL standard release (AADL release V2.0). Such
a new release should propose new features related to AR-
INC 653. The next AADL release should also propose a
timed automaton language in order to express behavioral
properties of AADL systems [15]. By extending the Ched-
dar language with a timed automaton model similar to the
one investigated by the SAE AADL committee, the work
presented in this article is then a first contribution to the
scheduling analysis of AADL specifications using AADL be-
havioral features [15]. In the next months, we will have to
check that a Cheddar program can be actually transformed
towards an AADL V2.0 behavioral specification.
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8. ANNEX

8.1 Cheddar program modeling the partition
1 scheduler

start_section startl
partitionl_capacity integer :

= 4;
partitionl_duration : clock := O;

quantum : integer :=2;
my_prio : array (tasks_range) of integer;
my_prio:=0;

end section;

priority_section partitionl_priority
quantum:=quantum-1;
if quantum = 0

then quantum:=2;
my_prio(previously_elected):=
my_prio(previously_elected)+1;

end if;

end section;

election_section partitionl_election :
return min_to_index(my_prio) ;
end section;

automaton_section partitionl_scheduler
Pended : initial_state;
Ready : state;
Wait_Priority : state;
transition Pended ==
[ , partitionl_duration:=0;,wakeupl!]
==> Wait_Priority;

transition Wait_Priority ==
[partitionl_duration<partitionl_capacity,
, partitionl_priority!]
==> Ready;

transition Ready ==
[ ,, partitionl_election!]
==> Wait_Priority;

transition Wait_Priority ==
[partitionl_duration=partitionl_capacity , , ]

==> Pended;
end section;

8.2 Cheddar program modeling the partition
2 scheduler

start_section start2 :
partition2_capacity : integer :=
partition2_duration : clock := 0;
end section;

6;

election_section partition2_election
return min_to_index(tasks.priority);
end section;

automaton_section partition2_scheduler
Ready : state;
Pended : initial_state;

transition Pended ==
[ , partition2_duration:=0; ,wakeup2!]
==> Ready;

transition Ready ==
[ partition2_duration < partition2_capacity,
, partition2_election!]
==> Ready;

transition Ready ==
[partition2_duration=partition2_capacity, , ]
==> Pended;
end section;

8.3 Cheddar program modeling the partition
scheduler

start_section start_processor :
partition_clock clock:=0;
end section;

automaton_section processor_scheduler
Schedule_Partition2 initial_state;
Schedule_Partitionil state;
Restart state;

transition Schedule_Partition2 ==
[, , wakeup2?]
==> Schedule_Partitioni;

transition Schedule_Partitionl ==
[partition_clock = 6 , , wakeupl?]
==> Restart;

transition Restart ==
[partition_clock = 10 , partition_clock:=0; ,]
==> Schedule_Partition2;
end section;



