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Abstract: The timing of sensdvased contsl systems is crucial. A dynamically econfigurable systewan change in time without
Critical servo-level periodic tasks that fail to meet their deadlines the need to halt the system. Such systems may have many sensors
result in losing data or missing coatrcycles. This can lead to a  or actuators, only a subset of which are used at any time. Alternate-
loss in performance in the best case, and can cause serious danly the same hardware is used in detént configuration, as in the

age to equipment or human injury in the worst case. It iefber example above with a tactile sendorsuch a system it is crucial
critical that the timing of these systems isdictable and conti- that critical tasks do not fail, even if the tasks in the system or the
lable. A dynamically econfigurable system can change in time frequency of the tasks change. For such a system, a dynamic sched-
without the need to halt the system. Such systems may have mauler is required.

sensors or actuators, only a subset of whiaghwsed at any time.
Alternately the same hdware is used in a diffent configuration.

In this paper we mpose the maximumgency-first algorithm,
which can be used to gulictably schedule dynamically changing
systems. @/show that it is a significant ingprement over the rate
monotonic algorithm, which can only be used to schedule static
systems. The maximungency-first scheduler has been imple- This paper proposes a new real-time scheduling algorithm, called

The most popular dynamic scheduling algorithms eadiest-
deadline-first(EDF) andminimum-laxity-first(MLF) [3]. These
schedulers have a schedulable bound of 100%; however a transient
overload in the system may cause a critical task to fail, which is un-
desirable for a predictable send@sed control system.

mented as the default scheduler of CHIMERA Iea-time oper- maximum-ugency-firstMUF). It combines the advantages of the
ating system being used to cahtsensoibased contl systems RM, EDF, and MLF algorithms. Like EDF and MLMUF has a
both at Carnegie Mellon University and elsewher schedulable bound of 100% for the critical set. And like RM, a crit-

ical set can be defined that is guaranteed to meet all its deadlines.
The MUF algorithm also allows the scheduler to detect three types
of timing failures, and call failure handler routines for tasks which
fail to meet their deadlines.

Keywords: real-time dynamic schedulingggonfigurable senser
based contl systems, maximumgency-first algorithm, rate
monotonic, CHIMERA |l Realiffie Operating System.

1 Introduction This paper is granized as follows: Sectighbriefly describes the

The timing of senselbased control systems is crucial. Critical ser- RM, MLF, and EDF algorithms, and Sectidriescribes our new
vo-level %riodic tasks that fail to m()a/et their deadlinés resultin Ios-MUF scheduling algorithm. Section 4 describes our implementa-
P > tion of the MUF scheduler as the default scheduler of the

e e e e 1, s gn CHIMERA Il Real Tme Operatng Systenl7) s being used l
P ’ 9€ control several senstiased robotic systems at Carnegie Mellon

equipme_nt or human injury in the worst case. Itis therefore CritiCaIUniversity and elsewhere. The flexibility of the MUF algorithm
that the timing of these systems is predictable and controllable. Foprovides many new possibilities in real-time scheduling of dynam-

static systems, theate monotonic algorithnfRM) can be used to ically reconfigurable senstiased control systems. Sect®pro-
guarantee that critical tasks always meet their deadlines, even du'vides a discussion on using MUF for scheduling dynamically

ing a transient overload within the systf8h reconfigurable and modular systems.
Unfortunately RM can only be used with statically defined sys-

tems, because it does not support tasks with dynamically changin@ Related Work

periods. For example consider the case of a tactile senrstine Liu and Layland presented the rate monotonic algorithm as an op-
end of a robotic manipulatahat is used to explore an object. As- timal fixed priority scheduling algorithm, and the earliest-dead-
sume the tactile sensor has a resolutior'dfy2?™ taxels, where line-first and minimum-laxity-first algorithms as optimal dynamic
andm can vary dynamically between 1 and 4. When exploring un- priority scheduling algorithms[3].Wo disjoint scheduling philos-
interesting parts of an object, such as the straightedge of a table, ophies emeayed: static priority scheduling and dynamic priority

is desirable to use the lowest resolution, so that computation timescheduling. The former consists of using RM, while the latter uses
is minimized and sample frequency is fastest, and the robot can foleither EDF or MLF as the baseline scheduling algorithm.

low the edge quicklyAs the object becomes more interesting, such ) .

as the rounded corner of the table, it is desirable to increase the re2:1 Rate Monotonic Algorithm (RM)

olution of the tactile sensdn doing so, the computational time re- Therate monotonic algorithnis a fixed priority scheduling algo-
quired to process the data increases, and the frequency of darithm which consists of assigning the highest priority to the highest
samples must be decreased (and not necessarily linearly). frequency tasks in the system, and lowest priority to the lowest fre-
quency tasks. At any time, the scheduler chooses to execute the
task with the highest prioritBy specifying the period and compu-
tational time required by the task, the behavior of the system can
be categorizedpriori.

The RM algorithm cannot be used to schedule tasks in such a sys
tem because of its static priority assignment. RM also has anothe
disadvantage in that ischedulable bouni$ less than 100%.The
schedulable boundf a task set is defined as the maximum CPU
utilization for which a set of tasks can be guaranteed to meet alOne problem with the rate monotonic algorithm is that the schedu-
their deadlines. lable bound is less than 100%. The CPU utilization of task P
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The main diference between MLF and EDF is that MLF takes into
consideration the execution time of a task, which EDF does not do.
Like EDF, MLF has a 100% schedulable bound and there is no way
to control which tasks are guaranteed to execute during a transient
overload. In the next section, we present the MUF algorithm,
which allows the control of task failures during transient overload,
while maintaining the flexibility of a dynamic schedukend 100%
schedulable bound for the critical set.

computed as the ratio of worst-case computing @ite the peri-
odT;. The total utilizatiord,, for ntasks is calculated as follows|[3]:

@

For the RM algorithm, the worst-case schedulable bontbr n
tasks is

W, = n(2/n-1) @)

From (2),W; = 100%,W, = 83%,W;5 = 78%, and in the limii\,,
=69% (n 2). Thus a set of tasks for which total CPU utilization is
less than 69% will always meet all deadlines. All tasks will be
guaranteed to meet their deadlingd ji< W,,. If U, >W,,, then the
subset of highest-priority tasksuch thatl;< Wy will be guaran-  combination of two fixed priorities, and a dynamic prior@ye of
teed to meet all deadlines, and will thus formdhiical set Note the fixed priorities, called theriticality, has precedence over the
that the worst case values are pessimistic, and it has been shovwdynamic priority Meanwhile, the dynamic priority has precen-
that for the average ca®e, = 88%[2]. dence over the other fixed priotityhich we calliser priority The

Another problem with RM is that it does not support dynamically dynamic priority is inversely proportional to the laxity of a task.

changing periods, a feature required by dynamically reconfig-The MUF algorithm consists of two parts. The first part is the as-
urable systems. For example, a task set with three tasRs Bnd signment of the criticality and user priotityhich is donepriori.

P, of periods T = 30ms, § = 50ms, and J= 100ms would have  The second part involves the actions ofHeF scheduleduring
the following fixed priority assignment (from highest to lowest): ryn-time

Py, Po, Ps. If the period of P changes to 7= 75ms. Under the RM ) o o o
aigorithm, we would require that the priorities of each task be re- 1€ Steps in assigning the criticality and user priority are the fol-
assigned to the ordering,AP;, Ps, which violates the condition ~ 1OWing:

that priorities are static. 1.

The problems with RM have encouraged the use of dynamic prior-

3 Maximum-Urgency-First Algorithm (MUF)

The maximum-ugency-firstscheduling algorithm which we have
developed is a combination of fixed and dynamic priority schedul-
ing, also calledmixed priority scheduling. Wh this algorithm,
each task is given ammgency The ugency of a task is defined as a

As with RM, order the tasks from shortest period to long-
est period.

ity algorithms. Although many such algorithms exist, we restrict 2. Define the critical set as the fitdtasks such that the to-

our attention in this paper to EDF and MLF tal worst-case CPU utilization does not exceed 100%.
. . . . These will be the tasks that do not fail, even during a

2.2 Earliest-Deadline-First Algorithm (EDF) transient overload of the system. If a critical task does

As the name implies, trearliest-deadline-firsalgorithm uses the not fall within the critical set, theperiod transforma-

deadline of a task as its priorifjhe task with the earliest deadline tion, as used with RNB], can be used.

has the highest priorityvhile the task with the latest deadline has 3. Assignhigh criticality to all tasks in the critical set, and

the lowest priorityOne major advantage of this algorithm is the a
schedulable bound of 100% for any task set. Also because priori:
ties are dynamic, the periods of tasks can be changed at any time 4.

A major problem with the EDF algorithm is that there is no way to
guarantee which tasks will fail duringteansient overlod. In The static priorities are defined once, and do not change during ex-
many systems, although the average case CPU utilization is lesecution. The dynamic priority of each task is assigned at run-time,
than 100%, it is possible that the worst-case utilization is aboveinversely proportional to the laxity of the task. Before its cycle,
100%, leaving the possibility of one or more tasks failing. In such each task must specify its desired start time, deadline time, and
cases, it is desirable to control which tasks fail and which succeeworst-case execution time.

during a transient overload. In the RM algorithm, low priority tasks

low criticality to all other tasks.

Optionally assign a unique user priority to every task in
the system.

Whenever a task becomes ready to run, a reschedule operation is

will always be the first to fail. Howeveno such fixed priority as-
signment exists with EQFand thus there is no control of which
tasks fail during a transient overload. Consequgatiery critical
task may fail at the expense of a lesser important task.

2.3 Minimum-Laxity-First Algorithm (MLF)

Our purpose in describing theinimum-laxity-firstalgorithm in

this section is not to compare it to RM or EDEt rather to intro-
duce it as a basis for theaximum-ugency-firstalgorithm pro-
posed in this papelhe minimum-laxity-first algorithm assigns a
laxity to each task in a system, then selects the task with the mini
mum laxity to execute next. Laxity is defined as follows:

laxity = deadline_time— current_time — CPU_time needed (3)

Laxity is a measure of the flexibility available for scheduling a
task. A laxity oft; means that even if the task is delayedi iyne
units, it will still meet its deadline. A laxity of zero means that the
task must begin to executew or it will risk failing to meet its
deadline.
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performed. The MUF scheduler is used to determine which task is
to be selected for execution, using the following algorithm:

1. Select the task with the highest criticalness.

2. If two or more tasks share highest criticalness, then se-
lect the task with the highest dynamic priority (i.e. min-
imum laxity). Only tasks with pending deadlines have a
non-zero dynamic priorityfasks with no deadlines have

a dynamic priority of zero.

3. If two or more tasks share highest criticalness, and have
equal dynamic prioritythen the task among them with

the highest user priority is selected.

If there are still two or more tasks that share highest crit-
icalness, dynamic priorifyand user prioritythen they
are serviced in éirst-come-first-servenanner

The optional assignment of unique user priorities for each task en-
sures that the scheduler never reaches4stepus providing a de-



terministic scheduling algorithm. &have yet to investigate the 1. A task has not completed its cycle when the deadline
best method for assigning the user priorities. time has been reached;

. . Atask was given as much CPU time as was requested in
To demonstrate the advantage of MUF over RM and, EBfsider the Wo;/;t-cag;\é yet it SltJi” did not Imeet itgvdeadlciIrl:e' !
the task set shown in Figure le\Wssume that the deadline of each o i ) o

task is the beginning of the next cycle. Four tasks are defined, witt 3. The task will not meet its deadline because the minimum

a total worst-case CPU utilization of over 100%, thus in the worst- CPU time requested cannot be granted. This case also re-
case, missed deadlines are inevitable. Figure 1(a) shows the sche quires that the minimum amount of CPU time required
ule produced by a static priority scheduler when priorities are as- by a task is specified.

signed using the RM algorithm. In this case, onlyaRd Bare in  The first case is the standard notion of a missed deadline. The sec-
the critical set, and are guaranteed not to miss deadlines. Expecong case will detect bad worst-case estimates of execution time.
ably, both B and B miss their deadlines. When using the EDF al- The third case allows the MUF scheduler to make the most of its
gorithm, as in Figure 1(b), task fails. Howeveyany task may  cpuy time, and it will not start executing a task if that task has no
have failed, since with EDF there is no way to predict the failure of possipility to finish before its deadline, thus providing the early de-
tasks during a transient overload of the system. tection of missed deadlines. Instead, the CPU time can be re-

) . ) i claimed for ensuring that other tasks do not miss deadlines, or to
With the MUF algorithm, all tasks in the critical set are guaranteed ¢4 alternate. shorter threads of execution.

not to miss deadlines. In our example, the combined worst-case
utilization of R, P,, and R is less than 100%, and thus they form 4 Implementation
the critical set. Only task,Ran miss deadlines, because it is notin
the critical set. Figure 1(c) shows the schedule produced by the
MUF schedulerNote the improvement over RM: because of a
higher schedulable bound for the critical set, taglsRlso in the
critical set and thus does not miss any deadlines. Also, unlike EDF
we are able to control that the only task that may failis P

One concern of the MUF scheduler is the overhead required during
each reschedule operation. The overhead of the MUF scheduler
can be kept low by encoding the algorithm into a singigency
value, hence the name of the algorithm. Figusbows am-bit ur-

Bit (n-1) BitO
The choice of using MLF to calculate the dynamic priority instead | crtcalty | dynamicpriority | userpriority |
of EDF enables the scheduler to detect missed deadlines. There a I i oo
three failures which the MUF scheduler can detect: ¢ bits d bits u bits

— - Figure 2: Encodedn-bit urgency value
Task RM priority MUF criticality T, G U; Legend

% M:dlgl-Tigh ::gﬂ 160 i Zgzﬁ a gency value, \(vhich was enco@ed usinigjts for critipality d bits
Py Med Low High 2 3 25% N for the dy_namlc priorityandu _b_|ts f_o_r the user prlor_ltw_\/_lth such
) Low Low 15 4 27% [ ] an encoding, the range of criticalities, dynamic priorities, and user
priorities are 0 to 21, 0 to #-1, and 0 to 2-1 respectivelyThe
[CPU time requested by each task (deadline is beginning of next cycle): MUF scheduler must then only calculate a single dynamic priority
1 2 3 4 for each task, then select the task with the maximganay This
BN [ T [ e T 7T e T [ e ] efficient encoding scheme can be used to implement the MUF al-
1 2 3 gorithm as long as, d, andu are all greater than or equalog(-
NN T T T T T T NN\ T[] We have implemented the MUF scheduler as the default scheduler
1 2 of the CHIMERAII Real-Time Operating Systefi7]. CHIM-
I ERA Il is being used both at Carnegie Mellon University and else-
(a) Schedule generated when using  rate monotonic _ algorithm:* where, on a variety of sensbased control systems, including the

7 7 v _ CMU Direct Drive Armll [1] and the CMU Reconfigurable Mod-
Zﬂ saﬂ?z Z"ﬂﬂ ﬂ ular Manipulator Systerj#].

0 6 8 10 14 ,16 18 20 . . .
b missts Ffmisses On an Ironics V3220 Single Board C_ompt,:_temth a 20MHz
firstdeadine  first deadline M68020 processoia reschedule operation with four ready tasks
(excluding context switch time) takes @8croseconds. The con-
(b) Schedule generated when using ~ earliest-deadline-first ~algorithm:* text switch takes another @®Gicroseconds for a total of

94 microseconds. Wth a 1 millisecond clock, we maintain over
90% CPU utilization, while with a Ifillisecond clock we main-

P, misses tain over 98% utilization. This performance allows the scheduler to
first deadline be used with senstrased control applications that have tasks with
frequencies as high as 1068@.

ZZNNNN L EIEIEE

6 8 10 1

27
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16

c) Schedule generated when usin maximum-urgency-first — algorithm:* . . . . .
© g 9 gency 9 Our implementation also fefrs deadline failure handling. When-

?Eﬂzﬂﬁ{iﬁ Z Zﬂ!ﬁi !’3 ever a task fails to meet its deadline, an optional failure handler is
6 8

0 2 4 10 12 14 Als 18 20 called on behalf of the failing task. The failure handler can be pro-
ﬁr';{tdn;;sgﬁse gramm.ed.to execute e[ther at the same cﬁer@iht qritipality anq .
user priority than the failing task. Such functionality is essential in
* number inside squares represent which cycle task is executing predictable and fault-tolerant systems. Much emphasis in hard
) ] ) real-time systems has gone into ensuring that critical tasks always
Figure 1: Example comparing RM, EDF and MUF algorithms meet their deadlines. Howeygery little has been said about what
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to do about those tasks which fail to meet their deadlines during ¢5.3 Using MUF with Static Systems

transient overload. Possible actions include the following: aborting,, . I
the task and preparing to restart it the next period; sending a me<Without any modification, the MUF scheduler can also be used to

sage to some other part of the system to handle the error; modifyin«SChechIe task sets using the rate monotoni_c algorithm, and thl.JS can
the priority of the task and continuing its execution; performing &S0 b€ used for scheduling systems which are not dynamically
emegency handling, such as a graceful shutdown of part of thechangmg. Instgad o.f.asglgmng C”t'c"’.‘“t'es according to the. MUF
system or sounding an alarm; maintaining statistics on failure fre_algorlth_m, assign criticalities to te.‘SI(S in the same way as priorities
guency to aid in analyzing the system; and in the case of iterativegﬁ grsitsilc%rlli(?d:r?(ljnlg/lbhlf &maﬂggrggrgéfa\;;rﬁfaslé;{'uﬁoﬁﬁﬁagci'; 4-
algorithms, returning the current approximate value regardless of ' h . ghest priority
precision. Any of these actions and other fined actions can uler MUF's advantage over a typical fixed-priority-first is that

be implemented using the deadline failure handling available withdeaOIIine and execu;ion times can ?ti” be specif_ied to the_ scheduler
our implementation of the MUF scheduler even though they will not be used in the selection of which task to

execute. This allows the MUF scheduler to still detect deadline
failures, even though static priority assignments are used. Most

Estimating the worst-case execution time of tasks is oftéoudif : = >
fixed priority schedulers do not have such capabilities.

For example, most commercially-available hardware is geared to-
wards increasing average performance via the use of caches ar
pipelines. Such hardware is often used to implement real-time sys
tems. As a result, the execution time cannot necessarily be prediciThe research reported in this paper is supported, in part, by U.S.
ed accuratelyUnderestimating worst-case execution times can Army AMCOM and DARR under contract DAAA-2189-C-0001,

create serious problems, as it is possible that a task in the criticeby the Department of Electrical and Computer Engineering, and by
set also fails. The use of deadline failure handlers is thus recomThe Robotics Institute at Carnegie Mellon Univerdigrtial sup-

mended for all tasks in a system, and not only those tasks which arport for David B. Stewart is provided by the Natural Sciences and
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