Limitation of the Hyper-Period in Real-Time Periodic Task
Set, Generation

Joél Goossens, Christophe Macq
Université Libre de Bruxelles, Département d’Informatique
Bld. du Triomphe ¢.p. 212, B-1050 Brussels, Belgium.
Joel.Goossens,Christophe.Macq@ulb.ac.be

Abstract: This paper presents a method used in order to generate arbitrary task systems,
compound of periodic and independent tasks. The originality of this methods relays on a
judicious choice of the periods of the tasks in order to reduce the lem of the periods (and
the simulation duration required in order to study such a system). The authors prove
that the lcm of n integers might be very high: they propose an upper bound of the lcm
of n integers, given by €™ where m is the least prime number greater than the greatest
integer in the set of the n integers. Then, they present a method in order to choose the
periods of the tasks which imply a bounded lcm of the periods. The method relies on the
decomposition of an integer in distinct prime factors. A second algorithm is proposed in
order to obtain the other temporal parameters of the task system to generate. Then, an
example is given in order to illustrate the method: several task systems are generated for
performance analysis of classical scheduling algorithms, in term of preemption.

Index Terms: real-time system, hard real-time scheduling, simulation, periodic task set,
hyper-period, preemption, deadline monotonic, earliest deadline first, least laxity first.

1 Introduction

Real-time systems are characterized by stringent timing constraints (generally ex-
pressed in the form of a deadline); hence, the correctness of a task computation
depends not only on its logical or computational results, but also on the instant
when the result is made available. The most important feature of real-time systems

is their predictability, i.e., the ability to determine whether the system is capable
(or not) to meet all the timing requirements of the tasks. Examples of such systems
include the control of engines, traffic, nuclear power plants, time-critical packet
communications, aircraft avionics and robotics. This leads to interesting problems,
and even in apparently simple cases, like systems composed of independent peri-
odic tasks on a single processor, the behavior of the schedules may be surprisingly
complex.

The algorithms used for the scheduling of periodic hard real-time tasks are gen-
erally priority-driven preemptive algorithms. These algorithms assign priorities to
tasks according to some policy. At each instant, the processor is assigned to the
highest priority task which is ready to run, preempting (if necessary) a lower priority
running task.

One generally distinguishes static schedulers, where each task receives a distinct
priority beforehand, and dynamic schedulers, where each request of each task re-
ceives some priority, which may even change with time. Interesting sub-cases are
synchronous systems, where all tasks are started at the same time (otherwise the
system is said to be asynchronous, or offset free if the offsets—i.e., the times at
which the first requests occur—are not fixed by the problem but may be chosen by
the scheduler [4, 3]); implicit deadline systems, where each deadline coincides with
the period (i.e., each request must simply be completed before the next request of
the same task occurs); constrained deadline systems, where the deadlines are not
greater than the periods and arbitrary deadline if no constraint exists between the
deadline and the period.

Synchronous implicit deadline systems with static schedulers are particularly
popular in the literature and among practitioners, not because of their generality or
efficiency, but simply because in this case, an easy-to-implement optimal scheduler
is known (the rate monotonic scheduler, RMs for short, which gives higher priorities
to lower periods [10]) and there is a very simple and fast sufficient feasibility test
based on the utilization factor [10]. A scheduler is optimal if there is a scheduling
rule without deadline miss, the system is also feasible with these scheduling rules.
If we want to be a bit more liberal and allow synchronous constrained deadline
systems, we still know an optimal scheduler (the deadline monotonic scheduler,
DMS for short, which gives higher priorities to lower deadline delays [9]) but we now
need to compute explicitly the first response time of each task instance, for instance
by Tindell’s iteration[1], to determine the feasibility of the system.

If we now turn to asynchronous or arbitrary deadline systems, the situation
is less favorable since DMS is not an optimal scheduling rule anymore; Audlsey
gives an optimal static priority assignment which considers O(n?) distinct priority
assignment (see [2]). A periodic real-time system repeats its task arrival pattern
after an interval called hyper-period (this notion shall be expressed with more details
in the next section). Moreover, to check the feasibility of the system, it is necessary
to determine all the response times on a period which may go up to slightly more
than a full hyper-period[4].

Better scheduling performances may be obtained with dynamic strategies (since

static ones may be considered as a special case anyway), and a first curious feature
is that one knows two simple optimal scheduling rules: the deadline driven scheduler
(DDs for short, also known in the literature as the earliest deadline scheduler or the
earliest deadline first) which attributes the CPU to the active request with the least
deadline [10], and the least laxity first scheduler (LLF for short) which attributes
the CPU to the active request with the least difference between the delay before the
deadline and the cPU time still needed to complete the request [11, 12, 7]. Both
are optimal, whatever the offsets and the deadline delays are. For implicit deadline
systems there is a very simple feasibility check: a system is feasible if and only if the
utilization factor is not greater than 1. Unfortunately, for constrained or arbitrary
deadline systems, being synchronous or not, their feasibility with dynamic schedulers
is generally intrinsically exponential in terms of the number of tasks. Again, it may
be necessary to determine all the response times on a period which may go up to
twice the hyper-period [8].

The problem that appears here is that the hyper-period grows exponentially (as
a function of the biggest period and with the number of tasks). It is why it is
important to try to limit the hyper-period of real-time systems.

The paper is structured as follows: section 2 presents our model of computation
and our assumptions; section 3 presents a pseudo-random algorithm which generates
a set of periodic real-time tasks with a “limited” hyper-period; section 4 proposes a
first application of our task set generator: a comparison of the number of preemp-
tions induced by the “popular” real-time scheduling rules. Section 5 summarizes
the situation.

2 Computational Model and Assumptions

We shall consider in this paper the problem of scheduling a set of periodic real-time
tasks. The set is composed of n periodic tasks 7,...,7,. Each periodic task 7;
is characterized by the quadruple (73, D;, C;, O;) with 0 < C; < D;, C; < T; and
O; > 0, i.e., by a period T;, a hard deadline delay D;, an execution time C}, and
an offset O;, giving the instant of the first request. The requests of 7; are separated
by 7; time units and occur at time O; + (k — 1)7; (k = 1,...). The execution time
required for each request is C; time units; C; can be considered as the worst-case
execution time for a request of 7;. The execution of the £*® request of task 7;, which
occurs at time O; + (k — 1)T;, must finish before or at time O; + (k — 1)T; + D;,
which is its deadline; the deadline failure is fatal for the system: the deadlines
are considered to be hard. All timing characteristics of the tasks in our model of
computation are assumed to be natural integers.

For instance consider the following task set: {7’1 ={C, =4,T, =10,D; =
8,01 =2}, 70 ={C35 =5,Ty, =15,Dy = 9,0, = 0}} Figure 1 gives the schedule
of the (static) deadline monotonic priority rule; Figure 2 gives the schedules of
the (dynamic) deadline driven scheduler and Figure 3 gives the schedules of the
(dynamic) least laxity first algorithm. In those figures, + represents a task request,

S — T: S e B

T: —) i . ‘

16 20

Figure 1: Deadline Monotonic Scheduling; the schedule repeats from time 30.

L s DA — '
T1
5 8 O 12 15 O 22 25 O
5 ¥ 5
. s SN .

0 4 16 20

-

Figure 2: Deadline Driven Scheduler; the schedule repeats from time 30.

O adeadline and 5 an execution of ¢ units between time units a and b, included;
in the special case where a = b we omit b in our representation.

From these schedules interesting and preliminary remarks follow. All the sched-
ules are feasible. Both deadline driven scheduler and the least laxity first algorithm
are optimal but the number of preemptions are rather different and this number is
considerably greater with the least laxity first rule; for instance at time ¢ = 2 the
laxities are identical and we observe a trashing situation until time ¢ = 8, when
T» ends its execution. It may be noticed that we shall in section 4 study in detail
the number of preemptions induced by various “popular” real-time scheduling rules.
The dynamic strategies are ambiguous in some circumstances, e.g., with the least
laxity first algorithm and at time ¢ = 2 the laxity of both the requests are identical;
we give first the CcPU to the request of 7. The same phenomenon exists for the
deadline driven scheduler since deadlines of active requests can coincide. In order
to avoid ambiguities, we shall give the CcPU to the task with the highest priority
and the smallest index. With the previous assumption, it is easy to see that all the
schedules repeat from time ¢ = 30. In addition we have assumed that the switching
times (including scheduling) may be neglected and that the tasks are independent.
In the following, P = lcm{T | 1=1,... n} denotes the hyper-period of the system
and U =Y 1 | % denotes the utlhzatlon factor or the periodic load of the system,
i.e., the (long term) fraction of the processor time spent in the execution of the task
set (1f feasible).

. Eé@@ofj I e B
Jﬁéé@o " ‘

Figure 3: Least laxity first scheduling; the schedule repeats from time 30.

3 Task Set Generation

Except for very special cases, the feasibility check of asynchronous systems consists
in simulating its evolution in some feasibility interval, i.e. a finite interval such that
it is sure that no deadline will ever be missed iff, when we only keep the requests
made in this interval, all deadlines for them in this interval are met. For instance,
a feasibility interval for an asynchronous constrained deadline system using a static
scheduler is [0,S, + P[, where S; = O, S; = max{0;,0; + [Z=% T} (i =
2,...,n); moreover the schedule is periodic from time S, with a period of P (see [4]
for details). A feasibility interval for an asynchronous constrained deadline system
using the deadline driven scheduler or the least laxity first algorithm is [O™*, O™+
2P[where O™* is the maximal offset (see Leung and Merill [8] for details); moreover
the schedule is periodic from O™ + P, with a period of P. This duration could be
laid only to t. + 1+ P with ¢, the date of the last acyclic idle slot, calculated on the
fly (with —1 < ¢, < O™ 4 P). Since for the most cases, t, = —1 the simulation
duration would be reduced in most cases to O™* 4+ P (see [5] for more details).
The very same interval remains a feasibility interval for arbitrary deadline systems
for any static schedulers, for the deadline driven scheduler and for the least laxity
first algorithm under the condition that U < 1 (see [3] for details). It follows that a
simulation of the periodic part of a schedule, or a feasibility interval is proportional
to P, the hyper-period of the system. Hence, statistical analyses of the schedules
of periodic tasks must consider an interval proportional to P. For this reason it
seems interesting to dispose of an algorithm to randomly choose the periodic tasks
in the more general way possible but with the restriction that the hyper-period
remains reasonable, in order to perform those statistical analyses in a reasonable
time. This is not too unrealistic, since the user may often slightly act on the periods
of the various tasks in order to get such a feature. The problem is of course that
P may grow exponentially with the number n of tasks. To see this element, we
will first demonstrate that the biggest hyper-period we can generate with task sets
characterized by periods less or equal to a given number (m) grows exponentially
with this number, as exhibited by the following lemma. Next, we will show that the
hyper-period grows exponentially with the task number n, up to reach very quickly
the limit defined by the biggest period m.

Lemma 1 Let uy,... ,u, be n natural integers such that 0 < u; < m (1 < i < n).
We have that

P < A(m) (1)

[log,,, m]

where A(m) = [, <icxm) Pi , p; denotes the ith

prime number and w(m) is the
prime counting function (i.e., #{i ‘ 118 prime N i < m}) Moreover, A(m) ~ e™.

Proof. According to the “fundamental theorem of arithmetic” [6], each positive
integer u can be expressed in the form

u=2"x3"® xh" x TV x...= H p"r
{p|pis prime}

where the exponents us, us, ... are uniquely determined non negative integers
and where all but a finite number of exponents are null. If we have 2 positive
integers v and v, and if both of them have been canonically factored into primes we

have
lem{u,v} = H prax{vp.v}
{p|pis prime}

and for n integers we have:

lem{uq, ug, ... ,u,} = H pma{ULp; U2 Unpi }
{p|pis prime}

(ui = [, p"»). Since 0 < u; < m, and from the definition of the function A it
follows that:

P=lem{uy,... usy = [protese e

i
1<i<n(m)

Each factor of the previous equation (say pfis less than m consequently z < log, m.
We can conclude that

P< I »“™ =Am).

1<i<n(i)

Next, we can show that

— log,,.
Vm<p ™ <m

We know an approximation for 7(n) (results demonstrated in 1896, indepen-
dently by J. Hadamard and C.-J. de la Valée Poussin):

n
m(n) ~ Inn
We have
m2inm < A\(m) < mhm
and
lim mim =™
m—0oQ
Thus
A(m) ~ e™

|

We have shown that A(m) grows exponentially with m, the biggest period we

have in our task set. Now, we will illustrate the growing of the hyper-period as a
function of n, the number of tasks.

To do this, we will generate an important number of random task sets with
periods chosen in [1,10]. We first generate random task sets (100,000) with 4 tasks,
then with 8, 16, 32, 64 and 128 tasks. The Table 1 shows the main characteristics
of the hyper-period for these task sets.

4 tasks | 8 tasks | 16 tasks | 32 tasks | 64 tasks | 128 tasks
Mean 142 682 1709 2397 2517 2520
Minimum 2 4 12 72 360 2520
Maximum 2520 2520 2520 2520 2520 2520
Number of times we
have the maximum 574 | 12955 55907 92848 99843 100000

Table 1: Characterization of the hyper-period for 100,000 random task sets.

Figure 4 shows the distribution of the hyper-period for task sets characterized
by (a) 4 tasks and (b) 8 tasks. We can easily see that the probability of apparition
of the biggest hyper-period (2520 when periods are in [1,10]) grows exponentially
with the number of tasks (see also the last row of the Table 1).

60000

60000

4tasks —— T l6tasks ——

50000 [50000 [

40000 40000
30000 [30000 [
20000 [

20000 [

10000

D(M

10000 -
L 1 J 1 ‘

L1 I

500 1000

L 0
2500 0 500

L L L L L L
1500 2000 1000 1500 2000 2500

(a) (b)
Figure 4: Distribution of the hyper-period for (a) 4 tasks and (b) 8 tasks for 100,000
task sets.

For a big n, the probability we reach A(m), the biggest possible hyper-period
with periods less or equal to m, becomes very important (93% when we have 64
tasks in the previous simulations).

Our main goal is to generate with a (pseudo-)random algorithm n periods
(T,..., T,) in such a way that their least common multiple remains bounded,
with the idea in mind that users can act slightly on periods (increase or decrease
them) to avoid this exponential phenomenon. For this reason we shall choose our
periods from a predetermined set of prime numbers ¢1, ... , ¢, and (pseudo-)random
exponents e1, ... , e, and choose T; as follows : T; = ¢f* X ¢5% X --- X ¢°".

Our algorithm uses a matrix (M) representing all the primes we have selected
and their respective exponents. We can notice that in fact, our algorithm can use a

set, of vectors, but we shall use a “matrix” in the following for simplicity. Each prime
number (say ¢;), corresponds to a line in the matrix (the i*") or the i*® sub-vector.
These numbers represent a probabilistic distribution for the powers of ¢;. In fact,
for each power found in this line, we have a probability of choice proportional to its
occurrence number in the list.

Now, we can generate an exponent for a prime number ¢; simply in choosing a
M, ;, where j is a pseudo-random number chosen uniformly in the interval [1, |[M,]],
where | M;| denotes the number of powers of the 7*® prime number (indices are here
assumed to start from 1). The following M represents the pattern we can find in

this matrix.
¢ g g aq 4d ad @ a g
Mo q? q% q% ({% QS G 0
Poa @ 4 g
The number of rows for M is equal to r, the number of primes and the number
of columns is equal to the granularity of the distribution.
We can see a simple practical example (Example 2) of such choices. In this
example, there are 5 prime numbers (2,3,5,7 and 11) and their greatest exponent

varies between 1 and 4.

Example 2
122 4 4 4 8 16 16
133 9 9 9 27
M=1]15 5 25 25 25
1 17 7 7 49
11 1 11 11

Algorithm 1 is thus used to generate periods such that the hyper-period is limited
(we shall show later how this hyper-period is limited). Notice that we use in this
algorithm the following functions: Rand(ay, an) which returns a pseudo-random real
number uniformly distributed in the interval [y, ae] and Round(x) which returns
the closest integer to x.

Algorithm 1 Method used to determine a period.
Parameters: the matrix M;
period <— 1;
for each line 7 of the matrix M do
p < Round(Rand(1, |M;|);
period < period x M, p;
end for

This algorithm generates periods between [[, ., min{M,;, 1 < j < [M;[}
and [[, ., max{M,;, 1 < j < |M;|}. With the Example 2, periods are in
the interval [1,5821200]. It may be noticed that with this algorithm the up-
per bound for the hyper-period is also equal to the upper bound for the periods
(IT i<, max{M,;;, 1 < j < |M;|}); this can be shown with a similar reasoning
than the one used in the proof of Lemma 1.

We can control the size of the greatest hyper-period (which may be equal to the
size of the biggest period we generate), with an adequate choice of prime numbers
with their respective powers.

We shall now consider the second algorithm (Algorithm 2) which determines the
other task characteristics (i.e., C;’s, O;’s, D;’s).

Algorithm 2 Method used to generate task sets.
Parameters: wuq, ug, di, da, 01, 09, M, V, U and n;
current_load < 0;
task_set « ¢;

1 < 0;
while current_load < U and i <n do
141+ 1;
Generate a period 7; according to the Algorithm 1, using M and V;
C; < max(1, Round(Rand(uy, ug) x T;));
O; < Round(Rand (o1, 02) x T});
D; < Round((T; — C;) x Rand(dy,ds)) + C;
if current_load + C" <1 then

current_load = current _load —I—
task_set = task_set U {(T;, D;, C,,O %
end if
end while
n < 1

Notice that the parameters uy, us, di, ds, 0; and oy are real numbers.

uy1 and us are such that 0 < u; < us < 1 and are used to choose a computational
time less than 7; but proportional to 7;.

The parameters o; and 0, control the asynchronous aspect of the system and
are such that 0 < 0; < 0,. It may be noticed that o = 0o = 0 corresponds to
synchronous case and from [4] we know that without loss of generality (with respect
to the feasibility of asynchronous systems) we can restrict to o; > = L and 0, < 1 for
asynchronous cases. This algorithm constructs a task set composed of n tasks with
a periodic load near U. The exact periodic load this algorithm generates is equal
to current_load. We can also notice than n is adjusted at the end of the algorithm
if we reach the periodic load before we generate the desired number of tasks.

The parameters d; and dy control the laxity of the tasks and are such that
0 < d; < ds. Notice that d; = dy = 1 corresponds to implicit deadlines systems,

dy = 1 corresponds to constrained deadline systems, otherwise we have arbitrary
deadline systems.

It may be noticed that with our algorithm, all the values in the interval [1, [],«,,
max{M, ;, 1 < j < |M;|}] for the periods cannot be generated. In fact, we can only
generate [[, ., #{M;|1 < j < |M;|} different periods, out of []; ., M)
possible values (notice that the # operator gives the number of different elements
of a given set). This number of periods we can generate represents only all the
different possibilities our algorithm can choose with a matrix M. In Example 2, for
instance, only 360 periods are possible among the 5,821,200 numbers in the range.

Here are some guidelines to choose adequately the primes and their powers. If we
need many different periods, we should choose primes as little as possible (2, 3,5, - -)
and take powers as function as the biggest hyper-period we can tolerate. If we will
less different periods, but periods that are really far one to the others, primes should
be choosen bigger. The powers are equally choosen such that we do not exceed the
biggest hyper-period we can tolerate. We can easily choose the minimum for the
periods with the choice of the least powers for each primes. Finally, we can also
influence the average for the periods with the distribution of powers: if we need
a system with a little average for periods, we should construct M such that little
powers have a great frequency facing the frequency of the big powers.

4 Application

In this section we shall see a first application of our algorithm. Our goal is to
compare the actual number of preemptions induced by some popular scheduling
algorithms for hard real-time periodic tasks. First, we shall consider the periodic
task sets generated by our algorithm.

Task Characteristics

In our simulations we used the following parameters:

(111 1 4448
13 3 3 99 27 27
15

M=|177 7
11 13
11 1 17 17
\11 1 1 19)

The deadlines are taken in the interval [C; +1,T;], with d; = 0 and dy =1 (i.e.,
we study constrained deadline systems). We have also chosen 0 = 1/T; and 0, =1
(i.e., we study asynchronous system). Regarding the computation times we have

chosen u; = 0 and uy = 5.

According to Algorithm 1 we have that P <[], .., M s, = 31,744,440 and
that the periods are included in the interval [1,31744440]. Figure 5 (a) shows
the actual distribution of the hyper-period we got for 103 task sets generated by
Algorithm 1. We can observe that the greatest hyper-period (the last impulse)
appears really often (more than 710 times on 1,000 task sets). The other value are
mainly distributed in the first interval (between 1 and slightly more than 1.6 x 10°).

And it is why it is important to choose judiciously M to avoid to generate
task set we can not simulate in a reasonable time. The average hyper-period is
in fact equal to 24,382,211, showing the absorbing power of higher values in such
distributions.

Figure 5 (b) shows the actual distribution of the task periods (notice that the
X-axis is in logarithmic scale); the average is ~ 10°; we observe that few periods
are very frequent, and when the periods grow, there are less and less observations
and these observations are less and less frequent.

Figure 6 (a) presents the distribution of the number of tasks in a task set,
which varies between 1 and 55, with an average around 19. Figure 6 (b) shows the
distribution of the number of tasks in a task set in function of the utilization factor;
according to Algorithm 2 we expected this phenomenon, where the number of tasks
is proportional to the utilization factor.

Number of preemptions

We shall now present our study about the number of preemptions. Preemption
means in our context the fact that the system temporarily stops a task (before its
completion) to switch to another task (with a higher priority). Scheduling theory
generally assumes that the preemption time may be neglected. In fact, a preemption
implies an additional context switching for the operating system and such operations
are relatively heavy for the processor. For this reason it seems interesting to have
a good idea of the actual number of preemptions induced by popular scheduling
algorithms.

800 T T T T T T 2500

700 |-

2000 -
600 |-

500 |-
1500

400 -

Observations

Observations

1000
300 |-

200

100

500
!

oL . \

0 5e+06 1e+07 15e+07 2e+07 2.5e+07 3e+07 3.50+07 1 10 100 1000 10000 100000 1e+06 1e+07
Hyper-periods Periods

(a) (b)

Figure 5: Distribution of Hyper-periods (a) and distribution of periods (b).

350 T T T T T 40

35 - —

30 -

Observations
Number of tasks

60 0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
Periodic Load

(b)

Figure 6: The distribution of number of tasks (a) and the number of tasks as a
function of the periodic load (b).

As we have already seen in Figures 1, 2 and 3, the algorithm used to schedule real-
time tasks has a definite impact on the number of preemptions. On these examples,
LLF generates 6 preemptions, while EDF does not generate any preemption and bMS
generates only one preemption.

Our study will confirm this phenomenon on a large number of randomly chosen
task sets (the task sets introduced in the previous section).

Since we consider asynchronous constrained deadline systems, we simulate each
task set in the interval [0, O™ + 2P[for the DMs, EDF and the LLF scheduling
rules. Moreover we have only considered task sets which are schedulable with the
3 algorithms (i.e., the sets that do not miss any deadline using the bms during all
the time of the simulation; about 74% of all task sets).

Figure 7 shows the number of preemptions for 2 algorithms in function of the
periodic load: DMS and LLF. It is not useful to represent EDF because results
obtained for EDF and DMS are really imperceptible.

1.4e+07

1.2e+07

1e+07 |

Preemption number

VR . L L L L L
0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Periodic Load

Figure 7: The preemption number vs the periodic load for bms and LLF.

The trends observed during the first examples of scheduling (Figure 1, 2 and 3)

seems to be the real trends of theses scheduling algorithms: LLF generates about
6 times more preemptions on average than the two other algorithms (in fact, this
policy generated between between 3 times and 9 times more preemptions than the
two others policies for our task sets). We can observe this phenomenon on the
Figure 8.

by EDF

by LLF /
@

0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Periodic Load

Figure 8: The preemptions generated by LLF divided by the preemptions generated
by EDF, as a function of the periodic load.

The second important observation leads to the conclusion that EDF and DMS are
really close to each other according to the number of preemptions (we cannot dis-
tinguish these algorithms on the Figure 7); the results are similar when we consider
the number of preemptions as a function of the number of tasks, and it is relatively
easy to understand why: the task number is proportional to the periodic load for
all the task set we generate with our algorithm. The average preemption number of
DMS and EDF are equal to 386,969 and 385,806 respectively. The standard deviation
are also really near one to the other : 5,055,478 for bMs and 5,042, 753 for EDF.
The maximum of these two distributions are equal to 5,222,925 and 5,222,761
respectively for DMS and EDF.

When we consider the case where DMS generates less preemptions than EDF, we
found 98 cases. Although, there are 192 cases where EDF generates less preemptions
(on 649 cases). Figure 9 presents for each considered periodic load the difference
between the preemption number of DMs and the preemption number of EDF. This
Figure presents also the absolute value of this difference.

All these elements leads to the conclusion that EDF generates less preemptions
than DMs. When the load becomes important (> 0.95), this trend seems to be
inverted.

Although, the difference between the two distributions is nearly insignificant.

In the next part of this section, we will study the influence of the granularity
for the task sets on the preemption number. The granularity of a task set can be
defined as the ged(ged (11, D1, C1, 01), - -+, ged(Ty,, Dy, Cr, Oy,)) and can be adapted
by real-time designer in function of the delay between clock ticks. Two of the
three algorithms studied have an interesting property : the preemption number is

4000

3000

2000

1000

-1000

Difference of the preemption number between DMS and EDF

1 1 1 1 1 1 1 1
0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.9 1
Periodic Load

-2000
0

Figure 9: Difference between the preemption number of DMS and EDF vs the periodic
load.

independent of the granularity of the system; this is the case for bMS and EDF. But
granularity has an influence on the preemption number for LLF. We can observe
this phenomenon on the Figure 10.

T T T
preemptions for DMS —+—
preemptions for LLF ---x---

////////////

Preemptions per time unit
o
°
R

.
1 2 3 4 5 6 7 8 9 10
Granularity used for task sets

Figure 10: Influence of the granularity for pMS and LLF.

We see that the preemption number is directly proportional to the granularity
of the tasks for LLF. This can lead to important system degradations when the
frequency of the internal clock is very small or when the implementer has no other
choice than to choose an important granularity.

5 Conclusion

In this paper, we have shown that the hyper-period of a real-time system grows
exponentially with the greatest possible period, if care is not taken to control this
phenomenon. This leads to the conclusion that it is relatively difficult to generate
task sets with large periods which can be simulated during its whole periodic part.
A part of the contribution of this paper is the presentation of an algorithm that

generates task sets with a limited hyper-period (we can control the maximum hyper-
period of all the task sets we generate) and such that it generates big periods (periods
can be as great as the hyper-period).

Next we have presented the characteristics of 1,000 task sets used (so generated)
to study the behavior — facing the number of preemptions — of the most popular
scheduling algorithms described in the literature : Deadline Monotonic Scheduling,
Earliest Deadline First and Least Laxity First.

It appeared that the LLF algorithm generates much more preemptions that the
other two algorithms (about 6 times more, on the average). A second useful ob-
servation was that the preemption numbers of the DMS and EDF algorithms are
very similar. A finer study allowed however to conclude that EDF generates on the
average slightly less preemptions than DMS.

We have also shown that the granularity of the system has an influence on
the preemption number for LLF; the preemption number for this policy is directly
proportional to the granularity.

Acknowledgment

The authors gratefully acknowledge the significant contributions of R. Devillers.

References

[1] AupsLEY, A. N., BUrNs, A., RICHARDSON, M., AND TINDELL, K. Apply-
ing new scheduling theory to static priority pre-emptive scheduling. Software
Engineering Journal (1993), 284-292.

[2] AupsLEY, N. C. Optimal priority assignment and feasibility of static priority
tasks with arbitrary start times. Tech. rep., University of York, England, 1991.

[3] GOOssENS, J. Scheduling of Hard Real-Time Periodic Systems with Various
Kinds of Deadline and Offset Constraints. PhD thesis, Université Libre de
Bruxelles, Belgium, 1999.

[4] Goossens, J., AND DEVILLERS, R. The non-optimality of the monotonic
priority assignments for hard real-time offset free systems. Real-Time Systems
13, 2 (September 1997), 107-126.

[6] GROLLEAU, E., AND CHOQUET-GENIET, A. Cyclicité des ordonnancements
de téaches périodiques différées. In Conférence RTS’2001 (Paris, 2000), pp. 216
229.

[6] KnuTH, D. E. The Art of Computer Programming, Vol 2, Seminumerical
Algorithms, 3 ed. Addison-Wesley, Reading, USA, 1998.

[7]

8]

[9]

[10]

[11]

[12]

LEUNG, J. Y.-T. An new algorithm for scheduling periodic, real-time tasks.
Algorithmica 4 (1989), 209-219.

LeuNG, J. Y.-T., AND MERRILL, M. A note on preemptive scheduling of
periodic, real-time tasks. Information processing letters 11, 3 (November 1980),
115-118.

LEUNG, J. Y.-T., AND WHITEHEAD, J. On the complexity of fixed-priority
scheduling of periodic, real-time tasks. Performance Fvaluation 2 (1982), 237
250.

Liu, C. L., AND LAYLAND, J. W. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. Journal of the Association for Comput-
ing Machinery 20, 1 (January 1973), 46-61.

Mok, A., AND DERTOUZOS, M. Multiprocessor scheduling in a hard real-time
environment. In Proceedings of the Seventh Texas Conference on Computing
Systems (1978).

Mok, A. K.-L. Fundamental Design Problems of Distributed Systems for The
Hard-Real-Time Environment. PhD thesis, Massachusetts Institute of Technol-
ogy, 1983.

