On Non-Preemptive Scheduling of Periodic and
Sporadic Tasks

Kevin Jeffay Donald F. Stanat Charles U. Marter

University of North Carolina at Chapel H University of California at Davis
Department of Computer Science Computer Science Division

Abstract: This paper examines a fundamental problem in In practice, periodic tasks are commonly found in
the theory of real-time scheduling, that of scheduling a setgpplications such as avionics and process control when
of periodic or sporadic tasks on a uniprocessor without 53ccurate control requires continual sampling and
preemption and without inserted idle time. We exhibit @, ocessing of data. Sporadic tasks are associated with
necessary and sufﬁuent set of conditidhsor a set O.f event-driven processing such as responding to user inputs
periodic or sporadic tasks to be schedulable for arbitrary r non-periodic device interrupts; these events occur

release times of the tasks. We then show that any set o ; . :
periodic or sporadic tasks that satisfies conditionsan ~ epeatedly, but the time interval between consecutive
be scheduled with aearliest deadline first(EDF) occurrences varies and can be arbitrarily large. Periodic and
scheduling algorithm. sporadic tasks were used, for example, to represent the
timing constraints in an interactive 3-dimensional graphics
We also address the question of schedulability of a set ofdisplay system used for researctvirtual worlds[Chung
tasks wij[h specif_it_ad release times. For sets of sporadicet al. 89, Jeffay 91]. The graphics system uses a head-
tasks with specified release times, we show that the nounted display system consisting of a helmet with

corr:d(ijticlmsls alze again fnecestsar)f/ and dS.UfIiCiim f%z miniature television monitors embedded in it, and hardware
schedulabiiity. HOWEVer, Tor SEts of periodic 1asks with ¢, tracking the position of the helmet and a hand-held
specified release times, the conditi@swhile sufficient, i .)

pointing device. A computer generated image of a 3-

are not necessary. In fact, we show that determining "’ onal “virtual Id” is displ he televisi
whether a set of periodic tasks with specified release timesdimensional “virtual world” is displayed on the television

is schedulable is intractableg, NP-hard in the strong Monitors in the helmet. The goal of the system is to track
sense). Moreover, we show that the existence of athe user's head and the pointing device in real-time and to
universal algorithm for scheduling periodic tasks with update the image displayed in the helmet so as to maintain
specified release times would imply that P = NP. the illusion that the user is immersed in an artificial

world. There are two separate real-time concerns in this
application. First, the system must provide an image to
update the display approximately every 30 milliseconds.

The concept of a task that is invoked repeatedly is centralG€N€rating a new image is naturally represented as a
to both the design and analysis of real-time systems. InP€riodic process. Second, as the user's head or the pointing
particular, formal studies of real-time systems frequently device is moved, the motions must be tracked and the

represent the time-constrained processing requirements of°NSequences incorporated into’the generation of the next
the system as a set periodic or sporadic tasks with image. Because both the user’'s head and the pointing

deadlines [Liu & Layland 73, Leung & Merrill 80, Mok ~ device may remain stationary for some time, the process
83]. A periodic task is invoked at regular intervals, while a @ssociated with tracking them is invoked sporadically.
sporadic task is invoked at arbitrary times but with a
specified minimum time interval between invocations.

1. Introduction

Given a real-time system, the goal is to schedule the
system’s tasks on a processor, or processors, so that each
task completes execution before a specified deadline. In
this paper we consider a fundamental real-time scheduling
* Supported in parts by grants from the National Science problem, that of non-preemptive scheduling of a set of
Foundation (number CCR-9110938), and from Digital periodic or sporadic tasks on a uniprocessor. Non-

Eq;ijpme”t ngrporation.f he National Sci Foundati preemptive scheduling on a uniprocessor is important for a
pporte y a grant from the National Science Foundation Variety of reasons:

(number CCR-9023727).

In: Proceedings of the Twelfth IEEE Real-Time Systems Symposiumj San
Antonio, Texas, December 1991, IEEE Computer Society Press, pp. 12$9-139.

* In many practical real-time scheduling problems such Formally, atask T is a pair ¢, p) where
as 1/0O scheduling, properties of device hardware and
software either make preemption impossible or <« cisthecomputational costthe maximum amount of
prohibitively expensive. processor time required to execute (the sequential
program of) taskl to completion on a dedicated

« Non-preemptive scheduling algorithms are easier to X
uniprocessor, and

implement than preemptive algorithms, and can exhibit
dramatically lower overhead at run-time. e p is theperiod: the minimal interval between

* The overhead of preemptive algorithms is more invocations of task.

difficult to characterize and predict than that of non- Throuahout this paper we assume time is discrete and
preemptive algorithms. Since scheduling overhead is 9 pap

often ignored in scheduling models (including ours), an €0Ck ticks are indexed by the natural numbers. Task
implementation of a non-preemptive scheduler will be invocations occur and task executions begin at clock ticks;

closer to the formal model than an implementation of a €ach of the parametersndp is expressed as a multiple of
preemptive scheduler. (the interval between) clock ticks. If a task with cost

* Non-preemptive scheduling on a uni-processor _begms (_axecut|on at_tlme and is executed W'th.OUt.
naturally guarantees exclusive access to sharediNterruption on a uniprocessor, then the execution is
resources and data, thus eliminating both the need forcompleted at time + c.

synchronization and its associated overhead.)))) o
We consider two paradigms of task invocation: periodic

preemption forms the theoretical basis for more general and sporadic. I is periodic, the periodp specifies a

; . constantinterval between invocations. Tfis sporadic, p
tasking models that include shared resources [Jeffay e - . . .
89b, 90]. specifies aninimuminterval between invocations.

 The problem of scheduling all tasks without

The definition of the behavior of a task depends on
whether it is periodic or sporadic. Theehavior of a
periodic task T = (c, p) is given by the following rules
for the invocation and execution ®f If t, is the time of
the k" invocation of taskr, then

Many others have looked at variations of this problem;
most describe sufficient conditions for scheduling tasks.
We give necessary and sufficient conditions. Furthermore,
we show that a particular algorithm can always be used for
scheduling a large class of sets of tasks. (We will review

related work in more detail in Section 3.) i) The &+1)h invocation of taskT will occur at time

The remainder of this paper is composed of five major tea =L+ P

sections. The following section presents our schedulingii) Thek™ execution of task must begin no earlier than
model. Section 3 briefly reviews the literature in real-time tand be completed no later than treadlineof t, + p.
scheduling. Section 4 proves the non-preemptive EDF This requires_that ur_1its of processor time be allocated
algorithm is universal for sets of tasks, whether they be (O the execution of in the interval , t + p].

periodic or sporadic. Section 5 demonstrates the absence
a universal algorithm for periodic tasks with specified
release times and proves that the problem of deciding
schedulability of a set of concrete periodic tasks is
intractable. Section 6 discusses these results.

O{'he behavior of a sporadic task is slightly less constrained
than that of a periodic task. Theehavior of a
sporadic task T = (c, p) is given by the following rules
for the invocation and execution of If t, is the time of

the k" invocation of taskr, then

2 The Model i) The k+1)hinvocation ofT will occur no earlier than
time t, + p; thus,t.1 =t + p.

A task is a sequential program thatinwokedby each i) Thekth execution of task” must begin no earlier than

occurrence of a particulavent An event is a stimulus t, and be completed no later than treadlineof t, + p.

generated by a process that is either external to the system

(e.g, interrupts from a device) or internal to the system Thus the behaviors of periodic and sporadic tasks differ
(e.g, clock ticks). We assume that events are generatedonly in the first rule. We assume invocations of sporadic
repeatedly with some maximum frequency; thus, the time tasks are independent in the sense that the time a sporadic
interval between successive invocations of a task will be task is invoked depends only upon the time of its last
of some minimal length. Each invocation of a task results invocation and not upon the invocation times of any other
in a single execution of the task at a time specified by atask.

scheduling algorithm.

Note that the worst case behavior of a sporadic Task ourselves to scheduling on a uniprocessitinout inserted

(c, p) (“worst” in the sense of requiring the most processor idle time which means that the scheduling algorithm does
time), occurs wheil behaves like a periodic task, that is, not permit the processor to be idle if there is a task that
T is invoked every time steps. has been invoked but has not completed execution. To

save space and avoid tedium, we will not mention these
We wish to investigate the scheduling of sets of tasks thatrestrictions in the remainder of the paper.

compete for processing resources. The difficulty of
scheduling tasks can be affected by the times that tasks ar&lote that a task set is schedulable if and only if the tasks

first invoked. Aconcretetask is a pair T, R), whereT can be scheduled fany set of release times. In contrast,
is a task, andR is a non-negative integer that is the time each member of a concrete task set has a specified release
of the first invocation, or theeleasetime, of T. The time, and showing that a concrete task set is schedulable

behavior of (T, R) is the behavior off constrained only establishes that its specified release times can be
further by the rule that the first invocation Dfoccurs at accommodated. For example, under the restrictions of no
time R. Once released, tasks are invoked repeatedly preemption and no inserted idle time, a periodic task set

forever. that isnot schedulable may generate sets of concrete tasks
that are schedulable as well as sets which are not. For

A set of periodic (sporadic) tasks 7 = {Ty, Ty, ..., example, the set of two periodic tasks {(3, 5), (4, 10)}

Tp} is a set of tasks indexed from 1ripwhere for each, generates both schedulable and unschedulable concrete task

1<is<n, Ti=(c pi) A concretesetof periodic sets: the set consisting af = {((3,5), 0), ((4,10), 0)} is
(sporadic) tasks w = {(T1,Rq), (T2,Rz) ..., (TnR)}is @ schedulable but the set consisting @f= {((3,5), 1),

set of concrete tasks indexed from IntavhereR; is the ((4,10), 0)} is not.

release time of task;.! There is a natural many-to-one

relation between concrete tasks and tasks. We say the tasi scheduling algorithm is said to heniversal for

T generates a concrete taskl(R) and a concrete taski,(concrete periodic (sporadic) tasks if the algorithm

R) is generated from the taskT. This relation extends schedules every schedulable set of concrete periodic
naturally to a relation between concrete task sets and tasksporadic) tasks. A scheduling algorithm is said to be

sets. Letr = {Tq, Ty, ..., T} be a task set and leb = universal for periodic (sporadic) tasks if the

{(TLR), (T2Ry) ..., (Tn,R.)} be a concrete task set. Then algorithm schedules any concrete periodic (sporadic) task

the task set generates the concrete task setandwis set generated from a set of schedulable tasks. We will

generated from . show that a deadline-driven scheduling algorithm that is a
non-preemptive version of tlearliest deadline firs(EDF)

If an execution of a task has a deadline of tigyeand algorithm [Liu & Layland 73], is universal for either

execution is not complete at timyg then we say the task periodic or sporadic tasks as well as for concrete sporadic
has missed a deadline. A scheduling algorithm tasks. For concrete periodic tasks, however, things are
specifies, at each time which task if any shall begin, more complex. If a set of concrete periodic taskis
continue, or resume execution.odncrete task seb is generated from a periodic task sethat is schedulable,
schedulable if it is possible to schedule the executions thenwis schedulable (and indeed can be scheduled by the
of tasks ofw so that no task ever misses a deadline when gpg algorithm). But ifr is not schedulable, then may
tasks are released at their specified release timeskiset or not be schedulable. In the general case, we show that
t is schedulable if every concrete task seb generated determining whethew is schedulable is NP-hard in the

from 7 is schedulable. A scheduling algorittechedules strong sense. Moreover, we establish that if there exists a
a concrete task setif no task ofw ever misses a deadline universal scheduling algorithm for concrete periodic tasks
when the algorithm is applied. that takes only a polynomial amount of time to make each
scheduling decision, then P = NP. Thus it is unlikely that
In this paper, we restrict ourselves to the caseaf- there exists a universal algorithm for scheduling concrete

preemptivescheduling on a uniprocessor; that is, we perjodic tasks.
assume a scheduling algorithm that does not interrupt the

execution of any task once it has begun. We also restrict i
3. Previous Work

1 More properly,t andw are multisets since there can exist Previous work in the area of real-time scheduling has
more than one task in with the same cost and period and mainly focused on the analysis of preemptive scheduling

:E?ergséhﬁr':]eone task 1w with the same cost, period, and 104 ithms. A well-known result is that the preemptive

EDF algorithm is universal for all sets of concrete periodic Theorem 4.1: Let 1p = {Ty, Ty, ..., To}, Where T; = (c;,

tasks for which the release times are all O [Liu & Layland p;), be a set of periodic tasks sorted in non-decreasing order
73]. This result generalizes to all periodic task se¢s, (by period {.e., for any pair of taskg; andT;, if i >],

for concrete periodic tasks with arbitrary release times) thenp; 2). If 7, is schedulable then

[Jeffay 89a]. The extension of the preemptive problem to "¢

multiprocessors was considered in [Dhall & Liu 78] and D ;ﬁ <1

[Bertossi & Bonuccelli 83]. 2) Oi, 1<i<n OL, p; <L <p;:
. . . . i-1
Work with non-preemptive scheduling algorithms has L > ' |j -1
;) . . =>c + -
typically been confined to consideration of models where ! jzl Bj E

processes are invoked only once, there is a precedence order
between the processes, and each process requires only laformally, condition (1) can be thought of as a
single unit of computation time and must be completed requirement that the processor not be overloaded. If a
before a deadline [Garey al. 81, Frederickson 83]. periodic taskT has a cost and periodp, thenc/p is the
fraction of processor time consumedbgver the lifetime
A more general characterization of periodic tasks has beenof the systemife., the utilization of the processor By.
considered in [Leung & Merrill 80], [Lawler & Martel 81], The first condition simply stipulates that the cumulative
[Leung & Whitehead 82], and [Mok 83]. In these works, processor utilization cannot exceed unity; reflecting our
when a task is invoked, it may have a deadline nearer tharyestriction to a uniprocessor.
the time of the next task invocation. For this more general
model, Mok has shown that the problem of deciding Condition (2) reflects our restriction to non-preemptive
schedulability of a set of periodic tasks which use scheduling without inserted idle time. The right hand side
semaphores to enforce mutual exclusion constraints is NP-of the inequality in condition (2) is a least upper bound on
hard [Mok 83]. Our paper demonstrates the intractability the processor demand that can be realized in an interval of
of deciding schedulability for an even simpler characteriza- length L starting at the time an invocation of a tasks
tion of periodic tasks and additionally provides strong scheduled, and ending sometime before the deadline for the
evidence that there may not exist a universal non-invocation. For a set of tasks to be schedulable, the
preemptive scheduling algorithm for periodic tasks with demand in the interval must always be less than or equal
specified release times. to the length of the interval. Although this is semantically
similar to the requirement that the processor not be over-
utilized, it can easily be shown that conditions (1) and (2)
are in fact not related. It is possible to conceive of both
schedulablgask sets that have a processor utilization of
1.0, andunschedulabl¢ask sets that have arbitrarily small
processor utilization.

4. Non-Preemptive Scheduling of
Periodic and Sporadic Tasks

We first consider the problem of scheduling a set of
periodic or sporadic tasks non-preemptively on a single

processor. We begin by developing a set of relations onpyquf: \we prove the contrapositive of the Theorem: if a

the costs and periods of tasks that must hold if a task sefg; o periodic tasks, does not satisfy condition (1) or
is to be schedulable. If the elements of a task set do not

tisfy th lationshins th heduli lqorith condition (2) then there exists a concrete set of periodic
satisly these Teiationships then no scheduling aigortnm 4, o generated frorg that is not schedulable.
can schedule the tasks. We show that periodic and sporadic

task sets have the same requirements for schedulability. 5. 5 concrete set of tasks define theprocessor demand
Having identified necessary conditions for schedulability, ;4 the time interval 4, b], written d, ,, as the maximum
il y a,nr

we _the_n exhibit an a_llgonthm which sc_hedules any set _of amount of processing time required &yin the interval
periodic or sporadic tasks that satisfy the necessity . . :
[a, b] to complete execution of all invocations of tasks

Condltlons. This esta_bllshes directly that the algorithm is with deadlines in the interva{b]. The processor demand
universal for scheduling sets of tasks and proves that the

necessary conditions are also sufficient.

The following theorem establishes necessary conditions® In [Liu & Layland 73] it was shown that a concrete set of
for schedulability for a periodic task set. Our development perfd'c taskswp = {(T1.R1), (T2:R), ..., Tn,Ry), } where
of these conditions is motivated by the early work of Ri =0 foralli (i.e., all tasks are released at time 0), is

schedulable on a uniprocessor when preemption is allowed at
Sorenson [Sorenson 74, Sorenson & Hamacher 75]. arbitrary points in time if and only if condition (1) alone is

satisfied.

in the interval &, b] will be a function of costs and periods LB | | | |
of the tasks inw, the length of the interval, the invocation T, | | | |
times of tasks prior to or at timeg and the amount of :
computation time required to complete execution of task : |
invocations that occurred prior to timewith deadlines at i-1
or before timeb that have not completed execution by Ti — L.
time a. w is schedulable if and only if for all intervals Tf” |

[a,b], dyp<sb-a.

Consider the concrete set of periodic tasks {(T1,R,),

(T2,Ry), ..., MRy}, generated fromr, whereR; = 0 for Time '1 c +

alli, 1<i <n (i.e, the concrete set of tasks wherein all - b
Figure 4.1

tasks are released at time 0). ltet p;p,...p,. In the

interval [0,t], taski must receiveL C; units of processor o .
Pi schedulable theng satisfies conditions (1) and (2) from

time to ensure it does not miss a deadline in the interval Theorem 4.1.
[0, t]. Therefore, in the interval [@]
n

4. = t Proof: This can be proved independently of Theorem 4.1,
ot~ ;pi G however, it follows from Theorem 4.1 using the fact that
and hence one of the behaviors of a concrete set of sporadic tasks is
do, as a concrete set of periodic tasks. 0

n
-4
t izlpi '
If condition (1) does not hold thefy ; >t, and hencey, is
not schedulable.

The constructions used in the proof of Theorem 4.1, in
fact, precisely characterize the worst case pattern of task
invocations for any set of tasks. We will show that if a set
of tasks can be scheduled (without preemption) when
invoked as shown in Figure 4.1, then the tasks are indeed
schedulable. Specifically, we demonstrate the existence of
a non-preemptive scheduling algorithm which is
guaranteed to schedule any periodic or sporadic task set
that satisfies the necessity conditions.

For condition (2), consider the concrete set of periodic
tasksa, = {(T1,R1), (T2,Ry), .., (Th,Ry)} generated from

1,, Where for some value of 1 <i<n,R =0, andR; =
1for1<j<n,j#i. This gives rise to the pattern of task
invocations shown in Figure 4.1. Since neither
preemption nor inserted idle time are allowed, fhskust

execute in the interval [G]. For allL, p; <L <p;, in The basic scheduling algorithm we consider isetriest
the interval [0L], the processor demand,, is given by deadline first(EDF) algorithm [Liu & Layland 73]. When
do. = ¢ + Jil _lEJ _ selecting a task for execution, an EDF scheduling
‘ < b algorithm chooses the task with an uncompleted

The demand consists of the cost of executing the initial invocation with the earliest deadline. Ties between tasks
invocation of taskT; plus the processor demand due to with identical deadlines are broken arbitrarily. With a non-
tasks 1 through-1 in the interval [1L]. (Note that tasks preemptive formulation of the EDF algorithm, once a task
with periods greater than or equal t§ have no is selected, the task is immediately executed to
invocations with deadlines in the interval [Q,and hence completion. Unless the processor is idle, such a scheduler
do not contribute to the processor demand in the intervalwill make dispatching decisions only when a task

[0, L].) terminates an execution. If the processor is idle then the
first task to be invoked is scheduled. If multiple tasks are

If condition (2) does not hold thefy, >L, and hencey, invoked simultaneously then the one with the nearest

is not schedulable. 0 deadline is scheduled. We assume that both the task

selection process and the process of dispatching a task take
Conditions (1) and (2) from Theorem 4.1 are also no time in our discrete time system.
necessary for scheduling a set of sporadic tasks non-

preemptively. We next demonstrate the universality of the EDF
algorithm for scheduling sporadic tasks without
Corollary 4.2: If a set of sporadic tasks = {T,, T, preemption. This means if any non-preemptive algorithm

..., Tn}, sorted in non-decreasing order by period, is schedules a set of sporadic tasks, then the EDF algorithm

will as well. To prove universality, it suffices to show Therefore

that conditions (1) and (2) are sufficient to ensure that the A S "ty — 1o
) . ty—ty < [d<> g,

EDF algorithm schedules any concrete set of sporadic e P P

tasks generated from a set of schedulable sporadic tasks. and hence

n
Theorem 4.3: Let 15 be a set of sporadic task<{(p4), 1< Zl% .
(¢, P2), ..y €y Pn)} SOrted in non-decreasing order by)
period. If g satisfies conditions (1) and (2) from Theorem
4.1 then the non-preemptive EDF scheduling algorithm
will schedule any concrete set of sporadic tasks generatedcase 2 Some of the invocations of tasksSa occurring
from 7. at timesb,, by, ..., b, are scheduled prior tg.

However, this contradicts condition (1) and establishes the
theorem for Case 1.

Proof: By contradiction. Assume the contrarng., that Let T, be the last task i, scheduled prior to timg. Let
75 satisfies conditions (1) and (2) from Theorem 4.1 and t; < t, be the point in time at which the invocationTf
yet there exists a concrete set of sporadic tasks occurring immediately prior tty commences execution.
generated fromy, such that a task i misses a deadline Note that if the processor is ever idle in the intertal [
at some point in time whea is scheduled by the EDF tg], then the analysis of Case 1 can be applied directly to
algorithm. The proof proceeds by deriving upper bounds the interval {,, tg], wheret; <ty <ty is the end of the last
on the processor demand for an interval ending at the timeidle period prior to timety, to reach a contradiction of
at which a task misses a deadline. condition (1). Therefore, assume the processor is fully
utilized during the intervattj t4].
Let ty be the earliest point in time at which a deadline is
missed.c can be partitioned into three disjoint subsets: ~ Let Ty be a task that misses a deadline at inBecause
of our choice of tasK; and our use of EDF scheduling, it
S, = the set of tasks that have an invocation with a follows thatt; <ty —py. That is, the invocation of the
deadline at time;, taskT, that does not complete execution by tipheccurs
within the interval {;, t;]. We now show that if the

S, = the set of tasks that have an invocation occurring . tion i " fi) heduled orior to fi
prior to timety with deadline aftet,, and invocation in question o asR is scheduled prior to time
. tg, then there must have existed enough processor time in
S; = the set of tasks not i, or S,. [t;, tg] to schedule all invocations of tasks occurring after

time t; with deadlines at or before tintig To begin, we
derive an upper bound ah ;, the processor demand for
the interval {;, ty].

Tasks inS; either have a release time greater thamr
they have not been invoked immediately prior to time

As will shortly become apparent, to bound the processor
demand prior tdy, it suffices to concentrate on the tasks e following facts hold for Case 2:

in S,. Let by, by, ..., by be the invocation times
immediately prior toty of the tasks irs,. There are two i) Other than tasK;, no task with period greater than
cases to consider. or equal tay —t; executes in the intervat [ty].

Case 1 None of the invocations of tasks 8 occurring Since the invocation of task scheduled at timg has a
at timesby, by, ...,b, are scheduled prior tg. deadline after timdy and is the last such invocation
scheduled prior to tty, every other task executed i {4]

Lett, be the end of the last period priortjan which the myst have a deadline at or befégeoecause of the EDF
processor was idle. If the processor has never been idle legjiscipline.
to = 0. In the intervalt}, t4], the processor demand is the

total processing requirement of the tasks that are invoked ii) Other than tasKk;, no task which is scheduled in

at or after timey, with deadlines at or before timg This [t;, tg could have been invoked at tihe
gives
N . _
?d — 1 Again, as a consequence of the definition of thskther
Ay, ty le p E : thanT;, every task scheduled i, t] has a deadline at or

(Equality holds if all tasks are invoked at tigg Since Peforéts. Therefore, if a task;, that is scheduled i
there is no idle period in the intervah,[t,] and since a tdl had been invoked a the EDF algorithm would have

task misses a deadline tat it follows thatd, ; >ty —t. scheduled task; instead of tasK; at time;.

Sincep; >ty —t;, fact () above indicates that only tasks sufficient to guarantee the non-preemptive EDF algorithm
T, ... Ti need be considered in computidg, . Since the will schedule a concrete set of sporadic tasks, then the
invocation of taskT; that is scheduled at timg has a conditions are also sufficient to guarantee the algorithm

deadline after timé;, all task invocations occurring prior ~ will schedule a concrete set of periodic tasks. O
to timet; with deadlines at or befoitg must have been
satisfied byt; and hence do not contribute tt?»,td- Since the non-preemptive EDF algorithm is universal for

Similarly, sinceT,; has the last invocation with deadline both periodic and sporadic tasks, in order to decide if a set
afterty that executes prior tt, all invocations of tasks ~ Of tasks is schedulable, one need only consider if

T, - T4 occurring prior to timey with deadlines aftet, conditions (1) and (2) from Theorem 4.1 hold. Deciding if
need not be considered. Lastly, since none of the ¢ondition (1) holds is straightforward and can be performed

invocations of taskd, - Ti_; that are scheduled in the intimeO(n). A set of tasks can be tested against condition
interval [, tg occurred at time;, the demand due to tasks (2) in pseudo-polynomial tim®(p,) by using a dynamic
T, - Ti_; in the interval {, ty] is the same as in the Programming technique [Jeffay 89a]. (Recall fhais the
interval [; + 1, tg]. These observations, plus the fact the period of the “largest” task.)

invocation of taskT; scheduled at timd; must be
completed before timey, indicate that the processor
demand int, t4] is bounded by

-+ 1)
dt,,td < G +J;|de|] (4.1)

5. Non-Preemptive Scheduling of
Concrete Tasks

The non-preemptive EDF algorithm is universal for both

Let L =ty —t;. SubstitutingL into the (4.1) yields periodic and sporadic tasks. In this section we examine the
-1 . . .
|j -1 problem of scheduling a concrete set of periodic or
< .+ n . .
Aty < G ; 9} Eﬂ ' (4.2) sporadic tasks. Recall that a concrete task set consists of a
Since there is no idle time ir;[ty], and since a task task set together with release times of the tasks. For
missed a deadline 4, it follows thatd, ; >t4 —t; or concrete sporadic tasks we show that the non-preemptive
simply d, ,, > L. Combining this with (4.2')’ (;/ields EDF scheduling_ algorithm is ag.ain yniv_ersal. However,
' i-1 1 for concrete periodic tasks the situation is more complex.
L <dyy, ¢ + le H’TE , (4.3) We show that the problem of deciding if a concrete set of
= i

periodic tasks is schedulable for any non-preemptive
scheduling algorithm (including those that allow inserted
idle time) is intractablei.g., NP-hard in the strong sense).

Sincep; >ty —t;, we havep; > L. Sincet; <ty —py (recall
thatk is the index of a task that missed a deadline at time

ty) we havety —t; > pc 2 py, and hence. > p,. Therefore Moreover, we show that if a universal algorithm exists for

(4.3) contradicts condition (2) and establishes the theoremscheduling concrete periodic tasks without preemption
for Case 2. then P = NP.

We have shown that in either case, if an element of a1q pegin, we consider scheduling concrete sporadic tasks.
concrete set of sporadic tasks generated fromisses a gy the definition of schedulability, if a set of sporadic

deadline when scheduled by the non-preemptive EDF tasksy, is schedulable then any set of concrete sporadic
algorithm, then either condition (1) or condition (2) from 55k, generated front is schedulable. The following
Theorem 4.1 must have been violated. This proves thetheorem demonstrates that the schedulability of a concrete
theorem. : ; X .

set of sporadic tasks is not a function of the assignment of

The following corollaryshows that the EDF scheduling release times 1o tasks.

algorithm is universal for scheduling periodic tasks. Theorem 5.1: Let w, = {(T1,Ry), (T2Ro), -, TRy}
. - be a concrete set of sporadic tasks generated from the set of
Corollary 4.4: Let 1, be a set of periodic tasks . .
y i P cit sporadic taskstg = {T4, Ty, ..., To}. Then ws is

p1), (€2, P2), ---, €n» Pn)} Sorted in non-decreasing order
by period. If r, satisfies conditions (1) and (2) from
Theorem 4.1 then the non-preemptive EDF scheduling

algorithm will schedule any concrete set of periodic tasks
generated frong,.

schedulable if and only if is schedulable.

Proof: () This follows immediately from the definition

of schedulability. [I) We must show that if the tasks of

Tg can be scheduled so as to not miss any deadlines when
the task release times are givenRyy..R,, then the same

Proof: Recall that one of the behaviors of a sporadic task . . .
is true for any other set of release times. Suppose this is

is as a periodic task. Therefore, if conditions (1) and (2) are

not the case, that is, for some set of release timesidle time) is NP-hard in the strong sense. This means that
R’;..R’, there exists some pattern of task invocations for unless P = NP, a pseudo-polynomial time algorithm does
which some task offs must miss a deadline. By the not exist for deciding this question [Garey & Johnson 79].

definition of the behavior of a sporadic task, an arbitrary This provides strong evidence that the problem is

time interval may elapse between a task's deadline and itsntractable. This decision problem can be formally stated

next invocation. LeD be the maximum value &; + p;, as follows.

where pj is the period of tasK;. Note that all initial

invocations of tasks with release tim&s...R, are NON-PREEMPTIVE SCHEDULING OF CONCRETE

completed at or prior tB. We can now map the pattern of
task invocations with release times Bf;...R’, to a

similar pattern of task invocations that begins at tibpe
in effect, startingrg over again with a set of “release
times” R, + D unrelated to the original release times.

Clearly if some pattern of task invocations could force

PERIODIC TASKS (SCPT): Letr, = {(cy, p1), (C2, P2)s -+
(Cn, Pn)} be a set of periodic tasks and t8f = (1, p) be a
set of concrete periodic tasks generated frymis it
possible to schedulg, non-preemptively?

Theorem 5.2: NON-PREEMPTIVE SCHEDULING OF

some task to miss a deadline for release tiR¢s.R’,,

the same pattern of invocations shifted in timeDowill
cause some task of the concrete taskuseto miss a
deadline sometime afteD. But this contradicts the
hypotheses thatug is schedulable and establishes the
theorem. n

CONCRETE PERIODIC TASKS is NP-hard in the strong
sense.

Proof: We will give a polynomial time transformation
from the 3-RRTITION problem [Garey & Johnson 79] to
SCPT.

Theorem 5.1 shows that the problem of scheduling An instance of the 3ARTITION problem consists of a

; ; ; . finite setA of 3m elements, a bourB 0 Z*, and a “size”
sporadic tasks is equivalent to the problem of scheduling i d ' >
concrete sporadic tasks. It follows that conditions (1) and S(&) O Z* for eacha Dgﬁ, such that each(a) satisfies
(2) from Theorem 4.1 are necessary and sufficient for B/4 <s(a@) <B/2, and}j=1 5(a) = Bm. The problem is to
schedulability of concrete sporadic task sets. Moreover, thedetermine ifA can be partitioned intm disjoint setsS,,
non-preemptive EDF scheduling algorithm is universal for S,, ..., S, such that, for ki <m, } ans s(a) = B. (With
these task sets. the above constraints on the element sizes, note that every

]) - § will contain exactly three elements from fe}
Unlike concrete sporadic tasks, schedulability of concrete

periodic taskds a function of the assignment of release The transformation is performed as follows. Let {ay,
times. A periodic task set that it schedulable may g, a,, ...,a3,, BOZ*, ands(a,), S(a,), S(as), ..., S(asm)
generate sets of concrete tasks ératschedulable as well 77+ constitute an arbitrary instance of the &RRITION

as sets which are not (an example was given in Section 2)proplem. We create an instance of the SCPT problem by
In order to properly study the problem of scheduling constructing a sets, of n = 3m + 2 concrete periodic
concrete periodic tasks, the definition of universality (;oks [etr. = (T1, Toy s Tameo), Where (recallT =
presented in Section 2 must be refined to include Some(cost periooD§

notion of efficiency. It has been assumed that a scheduling T, =((8B, 208),

algorithm can select a task to execute in zero time. T, =((238, 40B), and

Therefore, a scheduler that enumerated all possible —; : T = |

schedules would be a universal, albeit uninteresting, 3y 3mezs 1) = (-, 408m),
scheduler. In addition to scheduling all schedulable sets ofbe a set of sporadic tasks, anddgt= {(T1,Ry), (T2,Rz),
tasks, a reasonable requirement for a universal scheduling--» (Tam+2,Ram+2)} where

algorithm is that each scheduling decision be made in time Ry =0,

polynomial in the number of tasks. For this refined notion R, =9B, and

of universality, we will show that if there exists a Uj,3<j<3m+2: R =0,

universal non-preemptive scheduling discipline for e g get of concrete sporadic tasks. The construction of the
scheduling concrete periodic tasks then P = NP. seta, can clearly be done in polynomial time with the
largest number created in the new problem instance being
40Bm. In this instance of SCPT, note that the processor
utilization is

The following theorem shows that the complexity of
deciding if a set of concrete periodic tasks is schedulable
when one is allowed to consider any non-preemptive
scheduling discipline (including those that allow inserted

— - - - - " -
=N A . |
L B B |
nL _ |
RS . B |
nL _ L |
WL _ 3 |
nLa _ _ |
[i il |
T % B |
Tl " B |
Tme, 4 . L .

0 8B 9B 40Bk 40B(k+1) 40B(k+2) 40Bm
9B+40Bk 9B+40B(k+1) 9B+40Bm
Figure 5.1
SRR YL C IO WP o gl o v

By our choice of release times fo§ andT,, w, can be
scheduled by a non-preemptive scheduling algorithm only
if T, is scheduled at points in timéB9 4Bk, for all

k = 0, and all the invocations df; occurring at time
20B + 4Bk, are scheduled at time B+1) — 8, for all

k= 0. (See Figure 5.1.) This must be the case since if the
execution of thet" invocation ofT, is scheduled at some
time other than B + 40B(i—1), then the invocation df;
occurring at time 2B + 40B(i—1) will miss its deadline.
Similarly, if the execution of an invocation of,
occurring at time 2B + 4Bk, for somek, k = 0, is
scheduled at some time other than @#891) — 8, then

the invocation ofT, occurring at time B + 4Bk will

miss its deadline.

Note that with these scheduling constraints, if we consider
only tasks T, and T, then for allk, k > 0, in each
interval [4B(k-1), 4@BKk], the processor will be idle for
exactly B time units. It follows that in the interval [0,
40Bm), there will bel disjoint idle periodsm<1 < 2m,
whose total duration is exactlBm time units For
example, Figure 5.1 depicts a simulation of the scheduling
of a, by the non-preemptive EDF algorithm. When EDF

case,w, Will be schedulable if and only if the EDF
algorithm can schedule tasks - T3 in thesem idle
periods.

In the general casey, will be schedulable by a non-
preemptive scheduling algorithm if and only if there exists
a partition of taskg; - Tay2 iNto m disjoint setsS,, S,,

.oo» Sy, SUCh that for each s&;, ZT,-DS. ¢; = B. Therefore,

a solution to SCPT can be used to solve an arbitrary
instance of the 34#RTITION problem by simply
constructing the set of concrete periodic tagksand then
presenting these tasks to a decision procedure for SCPT.
The answer from the SCPT decision procedure is the
answer to the 3ARTITION question for this problem
instance. Since 3ARTITION is known to be NP-complete

in the strong sense [Garey & Johnson 79], SCPT is NP-
hard in the strong sense. N

Note that the proof did not assume anything about the use
of inserted idle time.

Although one cannot efficiently decide schedulability for
concrete periodic tasks, recall that conditions (1) and (2)
are sufficient for the EDF algorithm to schedule such

Sets of Concrete

Sets of Tasks

Sets of Concrete

Sets of Tasks

strong sense.

Tasks Tasks
Sporadic Non-preemptive Non-preemptive ED Sporadic Pseudo_—polynomlal Pseudo_—polynomlal
EDF time time
If a polynomial . .
o) . . . NP-hard in the Pseudo-polynomial
Periodic time algorithm Non-preemptive ED Periodic tira ey

exists, then P = NF

Table 6.1: Universal scheduling algorithms. Table 6.2: Complexity of deciding schedulability.

and since we have given a pseudo-polynomial time
algorithm for deciding 3-RRTITION, P = NP. M

tasks. (These conditions are, however, not necessary.)

The construction otv, in Theorem 5.2 can be used to
show that if a universal non-preemptive scheduling Unless P = NP, Corollary 5.3 shows that we will not be
algorithm existed for scheduling concrete periodic tasks, able to develop a universal non-preemptive scheduling
and this algorithm took only a polynomial amount of algorithm for scheduling concrete periodic tasks.

time (in the length of the input) to make each scheduling
decision, then P = NP. That is, if there exists a universal
non-preemptive scheduling algorithm for concrete periodic
tasks (possibly using inserted idle time), then we can give
a pseudo-polynomial time algorithm for deciding 3-
PARTITION. The key observation is that if a 24RTITION
problem instance is embedded in SCPT as described abov
then only a pseudo-polynomial length portion of the
schedule generated by a universal non-preemptive
algorithm when schedulingy,, needs to be checked in
order to decide the embedded BRTITION problem
instance.

6. Summary

Non-preemptive scheduling problems arise in many forms
in concurrent and real-time systems. Moreover, as non-
epreemptive schedulers are easier to implement and analyze
(e.g, assess the overhead of scheduling), it is important to
understand the requirements of scheduling tasks non-
preemptively. In this paper we have examined the problem
of scheduling a set of periodic or sporadic tasks without
preemption on a uniprocessor. The following fundamental
results have been demonstrated. &adiest deadline first
algorithm is universal for sets of sporadic and periodic
tasks and for sets of concrete sporadic tasks. The
universality is with respect to the class of scheduling
algorithms that do not use inserted idle time. Unless P =
Proof: Assume there exists such a universal scheduling NP, there does not exist a universal non-preemptive
algorithm. From an instance of the 3RTITION scheduling algorithm for concrete periodic tasks.

problem, construct a set, of concrete periodic tasks as
described in the proof of Theorem 5.2. Note thab,iis

not schedulable, then some taskgywill miss a deadline

in the interval [0, 8+40Bm)]. Therefore we can simulate
the universal scheduling algorithm ap over the interval

[0, 9B+40Bm] and simply check to see if any tasks miss a
deadline in this interval. The simulation and the checking These results demonstrate that a fundamental distinction
of the schedule produced by the universal algorithm canexists between periodic and sporadic tasking models.
clearly be performed in time proportional Bon. By the Specifically, the schedulability of a set of concrete
reasoning employed in the proof of Theorem 5.2, if some sporadic tasks is not a function of their release times.

task missed a deadline then there is a negative answer to

the 3-RARTITION problem instance. If no task missed a Our results are further summarized in the Tables 6.1 and
deadline then there is an affirmative answer. Therefore, 6.2.

since 3-RRTITION is NP-complete in the strong sense

Corollary 5.3: If there exists an universal, non-
preemptive, uniprocessor scheduling algorithm for
scheduling concrete periodic tasks then P = NP.

Given a set of sporadic, periodic, or concrete sporadic
tasks, one can efficiently determine if the tasks will be

schedulable. The problem of deciding schedulability for a
set of concrete periodic tasks is intractable (NP-hard in the
strong sense).

10

Computer Science, Technical Report TR90-038,
7. Acknowledgements August 1990. (Submitted for publication.)

We are indebted to Richard Anderson for suggesting theJeffay, K. (1991).The Real-Time Producer/Consumer

construction used in the proof of Theorem 5.2. Paradigm: A paradigm for the construction of
efficient, predictable real-time systeniniversity of
North Carolina at Chapel Hill, Department of

8. References Computer Science, April 1991. (Submitted for
publication.)

Bertossi, A.A., Bonuccelli, M.A. (1983)Preemptive

Scheduling of Periodic Jobs in Uniform Lawler, E.L., Martel, C.U. (1981).Scheduling

Multiprocessor Systemdnformation Periodically Occurring Tasks on Multiple Processors
Processing Letters, Vol. 16, No. 1, (January Information Processing Letters, Vol. 12, No.
1983), pp. 3-6. 1, (February 1981), pp.9-12.

Chung, J.C., Haris, M.R., Brooks, F.P., Fuchs, H., Leung, J.Y.-T., Merrill, M.L. (1980).A Note on
Kelley, M.T., Hughes, J., Ouh-young, M., Cheung, Preemptive Scheduling of Periodic, Real-Time Tasks
C., Holloway, R.L., Pique, M. (1989Exploring Information Processing Letters, Vol. 11, No.
Virtual Worlds with Head-Mounted Displayslon- 3, (November 1980), pp.115-118.

Holographic True 3-Dimensional Display
Technologies, SPIE Proceedings, Vol. 1083, Los Leung, J.Y.-T., Whitehead, J. (1982)n the Complexity

Angeles, CA, January 1989. of Fixed Priority Scheduling of Periodic, Real-Time
Tasks Performance Evaluation, Vol. 2, No. 4,
Dhall, S.K., Liu, C.L. (1978).0On a Real-Time (1982), pp.237-250.
Scheduling ProblemOperations Research, Vol.
26, No. 1, (January 1978), pp. 127-140. Liu, C.L., Layland, J.W. (1973)Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time
Frederickson, G.N. (1983%cheduling Unit-Time Tasks EnvironmentJournal of the ACM, Vol. 20, No.
with Integer Release Times and Deadlines 1, (January 1973), pp. 46-61.
Information Processing Letters, Vol. 16, No.
4, (May 1983), pp. 171-173. Mok, A.K.-L. (1983).Fundamental Design Problems of
Distributed Systems for the Hard Real-Time
Garey, M.R., Johnson, D.S. (1979omputing and Environment Ph.D. Thesis, MIT, Department of EE
Intractability, A Guide to the Theory of and CS, MIT/LCS/TR-297, May 1983.
NP-Completeness, W.H. Freeman and Company,
New York, 1979. Sorenson, P.G. (19747A Methodology for Real-Time

System DevelopmenPh.D. Thesis, University of
Garey, M.R., Johnson, D.S., Simons, B.B., and Tarjan, Toronto, June 1974.
R.E. (1981).Scheduling Unit-Time Tasks with

Arbitrary Release Times and Deadlin&AM J. Sorenson, P.G., Hamacher, V.C. (197A8).Real-Time
Computing, Vol. 10, No. 2, (May 1981), pp. 256- Design Methodologyl NFOR, Vol. 13, No. 1,
269. (February 1975), pp. 1-18.

Jeffay, K. (1989).The Real-Time Producer/Consumer
Paradigm: Towards Verifiable Real-Time
Computations Ph.D. Thesis, University of
Washington, Department of Computer Science,
Technical Report #89-09-15, September 1989.

Jeffay, K. (1989).Analysis of a Synchronization and
Scheduling Discipline for Real-Time Tasks with
Preemption Constraint$roc. Tenth IEEE Real-Time
Systems Symp., Santa Monica, CA, December 1989,
pp. 295-305.

Jeffay, K. (1990)Scheduling Sporadic Tasks With Shared

Resources in Hard-Real-Time Systebhsiversity of
North Carolina at Chapel Hill, Department of

11

