Cheddar : a Flexible Real Time Scheduling Framework

F. Singhoff, J. Legrand, L. Nana, L. Marcé
EA 2215, University of Brest
20, av Le Gorgeu
CS 93837, 29238 Brest Cedex 3

{singhoff,jlegrand,nana,marce}@univ-brest.fr

ABSTRACT

This paper describes an Ada framework called Cheddar which
provides tools to check if a real time application meets its
temporal constraints. The framework is based on the real
time scheduling theory and is mostly written for educational
purposes. With Cheddar, an application is defined by a set
of processors, tasks, buffers, shared resources and messages.
Cheddar provides feasibility tests in the cases of monopro-
cessor, multiprocessor and distributed systems. It also pro-
vides a flexible simulation engine which allows the designer
to describe and run simulations of specific systems. The
framework is open and has been designed to be easily con-
nected to CASE tools such as editors, design tools, simula-
tors, ...

Keywords

Real time scheduling, simulation tool.

1. INTRODUCTION

This paper presents a new Ada framework : Cheddar.
Cheddar provides services to study the temporal behavior of
real time applications. Most of the time, such kinds of appli-
cations have to meet temporal constraints such as response
time, execution rate or deadline.

To check temporal constraints of an application made of
concurrent tasks, system designers have to check if task tem-
poral constraints are met. Since 1980, many models, meth-
ods and tools were proposed to check if a real time system
fulfills its requirements (eg. Petri Net [20], Synchronous lan-
guages [11], ...). One of them, usually called “Rate Mono-
tonic Analysis” is part of a larger set of quantitative meth-
ods : the real time scheduling theory. This theory helps
the system designer to predict the timing behavior of a set
of real time tasks with scheduling simulation and feasibil-
ity tests. Scheduling simulation requires, first to compute
a scheduling on a given time interval and second, to look
for timing properties in this computed scheduling. On the

Copyright ACM (2004). Thisis theauthors versionof thework. It is posted
hereby permissionof ACM for your personaluse. Not for redistritution.
The definitive versionwas publishedin the ACM SIGADA2004 Interna-
tional conferenceProceedingsNovember14—18,2004, Atlanta, Geogia,
USA.

contrary, feasibility tests allow the designer to study a set
of real time tasks without computing scheduling.

The first real time scheduling theory contributions were
proposed 30 years ago [18]. The theory was strongly ex-
tended to cope with many application requirements [14] and
was successfully used in many projects [21]. Nevertheless,
only few tools were proposed to help system designers to
automatically apply these results.

Rapid-RMA [26] and Timewiz [24] seem to be the most
complete tools. These tools provide most of the classical
scheduling algorithms and feasibility tests. They can be
connected to different programs such as CASE tools (eg.
Rational Rose), middlewares, operating systems. Unfortu-
nately, they are not freely available.

From the academic community, a lot of tools were de-
veloped in the past but only few of them seem to be still
maintained. Most of the time, they do not provide both
simulation and feasibility tests.

TkRTS only focuses on task feasibility tests with various
real time schedulers [19]. No scheduling simulation services
are proposed and feasibility tests are limited to task response
time.

On the contrary, YASA [4] and the tool of the Université
Libre de Bruxelle [7] focus on scheduling simulation only.
They do not provide feasibility tests. The flexible tool of
the Université Libre de Bruxelle provides a language used
to describe task models and various schedulers, but the lan-
guage itself seems to be hard to use. By the way, all these
tools were not designed to work with other programs.

Finally, the MAST [12] Ada framework also provides some
basic feasibility tests and simulation services for fixed prior-
ity schedulers. The framework is portable enough and open
source. Unfortunately, if simulations with a new scheduler
or new task activation pattern must be done, the simula-
tor has to be modified. Defining specific schedulers may be
difficult to do for students.

The Cheddar project was motivated by the lack of free,
flexible and open scheduling tools. Then, the design and
the development of the Cheddar framework was conducted
to fulfill three main requirements.

First, we aim at providing a framework which implements
most of the classical real time scheduling theory methods
[10, 14]. Implemented feasibility tests can be applied to
monoprocessor and distributed systems with most of usual
real time schedulers and task activation patterns. Ched-
dar feasibility tests also focus on systems which are
less studied by the community such as systems with
buffers shared by tasks [15, 23] or task precedency

constraints [5, 3, 25]. The program is distributed with
publications which describe how to compute feasibility tests.
Each result computed by Cheddar is displayed with the ref-
erence of the equation used to compute it. Cheddar can then
be used by people or students to understand the foundations
of real time scheduling theory.

Second, we aim at providing an open, portable and easy
to use framework. The framework should remain easy to use
even for students or people who do not have a large back-
ground on real time scheduling theory. By open, we mean
a framework which is easy to connect with other programs
(simulators, CASE tools, monitoring services from operat-
ing systems, ...). Even if the framework is object oriented, it
exports a very simple interface. All data sent to the frame-
work or produced by the framework are XML formatted.
For portability and maintainability reasons, the framework
is written in Ada. It runs on Solaris, Linux and win32 boxes
but should run on every Gnat/GtkAda supported platform.
The framework is distributed under the GNU General Public
License (see http://beru.univ-brest.fr/~singhoff/cheddar).

Finally, we aim at providing a flexible framework. Since
feasibility tests are only available for a few well known sched-
ulers and task activation patterns, the Cheddar simulation
engine is flexible enough to simulate systems with specific
temporal behavior. We propose the use of an Ada-like lan-
guage to extend the framework. User extensions expressed
with this language are not compiled but interpreted by the
framework at simulation time. This makes it possible for the
designer to quickly write and test new scheduling features
without having a deep knowledge of the framework design
and of the Ada language.

This paper is organized as follows. In section 2, we give an
introduction to the real time scheduling theory and to the
main services provided by the framework. Section 3 gives
few details on the design of the scheduling simulation engine
and explains how to extend it. Finally, we conclude and give
future work in section 4.

2. FEASIBILITY TESTSAND SIMULA TION
SERVICES PROVIDED BY THE FRAME-
WORK

With Cheddar, an application is defined by a set of pro-
cessors, buffers, shared resources, messages and tasks (see
Figure 2). In the most simple task model, each task period-
ically performs a treatment. This “periodic” task is defined
by three parameters : its deadline (D;), its period (P;) and
its capacity (C;). P; is a fixed delay between two wake up
times of the task 7. Each time the task ¢ is woken up, it has
to do a job whose execution time is bounded by C; units of
time. This job has to be ended before D; units of time after
the task wake up time.

From a set of tasks, two kinds of analysis can be per-
formed : scheduling simulation and feasibility tests.

Scheduling simulation consists in predicting for each unit
of time, the task to which the processor should be allocated.
Checking if tasks meet their deadline can then be done by
analyzing the computed scheduling. Figure 1 shows a set of
3 periodic tasks (T1, T2 and T3) respectively defined by the
periods 10, 20 and 35, the capacities 3, 8, 7 and the dead-
lines 5, 20 and 30. In the top of the window, the schedul-
ing simulation of the task set is displayed. These tasks
are scheduled with a preemptive Rate Monotonic sched-

=l Cheddar : a free real time scheduling simulator ,r_|F|

File Edit View Tools Help

olelelslal elFel=

T r— f— — f— &)
Fe= 10, C= 3, D=5, 8= G; Fr= 10, Cou=cpud J
7 | :
FPe= 20, C= 8 D= 20, 3= 0; Pr=7; Gpu=cpud
73 L ef—
I —
Fe= 35 C= 7, D= 30, 3= 0, Fr= 4: Cou=cpuid 7
= T E

Scheduling simulation, Processor cpul :

- Munber of preemptio 3
- Mumber switch 8
- Tack re: e

TL =>

T2 =>
T# => 35 nissed its deadline (deadline - 30 ; completion time - 35)

Scheduling feasibkility, Processor cpul :

) page).
tilization facter with period is equal or less

)

- on_task response kine : (sce (2], page 3, equation 4)
T3 =» 35, missed its deadline (deadline = 30)

T2 =5 14

T = 3

Figure 1: The main window of the Cheddar Editor

uler!. The Cheddar framework provides most of usual real
time schedulers [6] such as Earliest Deadline First, Deadline
Monotonic, Least Laxity First and POSIX schedulers with
SCHED_FIFO, SCHED_RR, and SCHED_ OTHERS
queueing policies. After scheduling, information can be ex-
tracted from the simulation (worst/best/average case re-
sponse time, worst/best/average case blocking time, number
of preemptions, number of context switches, buffer utiliza-
tion factor, end to end message communication delay ...).

For a given task set, if a scheduling simulation is very
long to compute [17], feasibility tests can be applied instead
(see the bottom of the window, Figure 1). Different kinds
of feasibility tests exist. In the sequel, we present three
of them : tests based on processor utilization factor, task
response time designed to check task deadlines and tests
based on buffer utilization factor designed to check buffer
overflow.

The first feasibility test consists in comparing the utiliza-
tion factor of a processor to a given bound. With a set of
periodic tasks, the processor utilization factor can be com-
puted with the formula Y 7, %’, where n is the number of
tasks on the processor. For instance, with a preemptive Rate
Monotonic scheduler, Liu and Layland have shown that if
the processor utilization factor is less than n(2'/™ —1), task
temporal constraints are met [18].

The second feasibility test consists in comparing the worst
response time of each task with its deadline. The response
time is the maximum delay between the time the task be-
comes ready to run and the time the task ends its job. In
[13, 2, 25], Joseph, Pandia, Audsley et al have shown that
ri, the worst response time of a task ¢, can be computed as
follows :

Ti = max (JZ + B; + wl(q) — qPi) (1)

¢=0,1,2,...

'With such a scheduler, the task with the lowest period is
the task with the highest priority.

Processors
Buffers . Placed on
+ BUff i + Processor name : string
uffer name : string .
+ Buffer size : natural Run on : Iéup;ssjr:;p:u;/netéggrolean
+ Scheduler type : enumeration
*
*
Tasks

Placed on

Writé/ Read

+ Date : integer
+ Size : integer

+ Task name : string

+ Priority : integer

+ Period : natural

+ Capacity : natural

+ Deadline : natural *

+ Jitter : natural

+ Offset : natural

+ Start time : natural

+ Blocking time : natural

+ User—defined * *
parameters

Shared resources

+ Resource name : string
+ Initial state : integer
+ Protocol : enumeration

Send/Receive

+ Date : integer
+ Size : integer

Allocate/Release

+ Date : integer

Messages

+ Message name : string
+ Size : natural

+ Deadine : integer

+ Jitter : integer

+ Period : integer

+ User—defined
parameters

Figure 2: UML diagram of an application modeled with Cheddar

where

wi(g) = (¢g+1)C; + Z

Vj€hp(4)

[Jj +P1fi(q)-‘ c;

and

Vq:wi(q) > (g+1).P

where hp(i) is the set of tasks which have a priority greater
than ¢, B; is a bound on shared resource blocking times and
J; is a bound on the task wake up time jitter.

The last feasibility test consists in finding a bound on
buffer utilization factor in the case of a buffer shared by pe-
riodic tasks scheduled with a fixed priority scheduler. To
understand this last test, we study the case of voice trans-
mission service provided by the AAL2 layer of ATM net-
works. In AAL2/ATM, a producer sends audio packets at a
fixed rate d. This throughput is expressed in cells per sec-

ond, the protocol data unit of ATM networks. A bounded
variable delay is required by each cell to go from the sender
to the receiver. In an AAL2 communication service, the
consumer should receive the cell at the same rate the pro-
ducer sends it. Each received cell is then buffered during a
sufficient amount of time to hide this variable transmission
delay. In [8], it has been shown that the size of the buffer
used to hide variable transmission delay is bounded by :

-

Where § is the maximum delay a cell stays in the buffer.
We call this delay the maximum memorization delay. We
can apply equation (2) to find bound on buffers shared by
periodic tasks. For a buffer shared by N periodic producers
and 1 periodic consumer, the buffer bound is [15] :

schedulers or

XML description of Compute
an application scheduling
(files) y
Priority stage Queueing stage

Predefined and user—defins

task activation pattern

(C}iﬁ ‘be-imported/exported
from/to XML files) .

d

Predefined and user—defined

event analyzers

Do event table

analysis
Event table XML

results

Display
results

Election stage

3 .
: Ready tasks—= | | Compute priorities =
1 .

[T Min priority

[EEEEEREE]
Dﬁ] Max priority|

,,,

H‘H Running task§

,,,

Figure 3: Design of the simulator engine

mag| > [H%mm]y)

B = max I
prod€ PROD prod

Where PROD is the set of producers, Ppyoq the period of
the producer prod and Oproq the maximum delay between
the wake up time of the consumer and the wake up time of
the producer prod. This bound is based on the maximum
memorization delay which is equal to § = (y + 2).Peons for
a given message ¢ (y is the number of messages that may
already be in the buffer before the message ¢ is inserted,;
Peons is the period of the buffer consumer). From equation
(3) and for all possible values of y, it has been proven that
for a buffer shared by 1 periodic consumer and N periodic
producers, the buffer bound is [15]:

B=2.N
if tasks are harmonics? and
B=2.N+1

in the other cases.

The three feasibility tests presented above are valid for
preemptive fixed priority schedulers with periodic tasks. Of
course, a large number of results exists for other schedulers
(preemptive or not [10]) but also for more complex task sets
such as tasks with PIP and PCP shared resources [22], or

2A task set is said to be harmonic if and only if each task
period is a positive integer multiple of all smaller task peri-
ods.

tasks with precedency constraints [5, 3, 25]. Different kinds
of properties can also be checked with feasibility tests (eg.
determinist properties such as the ones presented above, but
also probabilist properties on task deadlines [16] or buffer
utilization factor [23]). The system designer will find some of
these extensions implemented in Cheddar. Since the number
of feasibility tests is large, each result displayed is presented
with the bibliography reference which describes the way to
compute it. Finally, Cheddar binaries are distributed with
papers introducing each feasibility test.

3. EXTENDING THE FRAMEW ORK

Usual feasibility tests are limited to only few task models
(mainly periodic tasks) and to only few schedulers. When
an application built with a particular task activation pattern
or scheduled with a particular scheduler has to be checked,
feasibility tests are not necessarily available. In this case,
the only solution consists in analyzing the scheduling simu-
lation. Cheddar allows the user to design and easily build
framework extensions to do simulation of user-defined sched-
ulers or task activation patterns. By easy, we mean quickly
write and test framework extensions without a deep under-
standing of the framework design and of the Ada language.
‘We propose the use of a simple language to describe frame-
work extensions. Framework extensions are interpreted at
simulation time. As a consequence, they can be changed
and tested without recompiling the framework itself.

Figure 3 gives an idea on the way the simulation engine is
implemented in the framework. Running a simulation with
Cheddar is a three-steps process.

The first step consists in computing the scheduling : we
have to decide for each unit of time which events occur.
Events can be allocating/releasing shared resources, writ-
ing/reading buffers, sending/receiving messages and of cour-
se running a task at a given time. At the end of this step,
a table is built which stores all the generated events. The
event table is built according to the XML description file of
the studied application and according to a set of task activa-
tion patterns and schedulers. Usual task activation patterns
and schedulers are predefined in the Cheddar framework but
users can add their own schedulers and task activation pat-
terns.

In the second step, the analysis of the event table is per-
formed. The table is scanned by “event analyzers” to find
properties on the studied system. At this step, some stan-
dard information can be extracted by predefined event ana-
lyzers (worst/best/average blocking time, missed deadlines
..) but users can also define their own event analyzers to
look for ad-hoc properties (ex : synchronization constraints
between two tasks, shared resources access order, ...). The
results produced during this step are XML formatted and
can be exported towards other programs.

Finally, the last step consists in displaying XML results
in the Cheddar main window (see Figure 1).

3.1 Defining newschedulersor task activation
patterns

Now, let’s see how user-defined schedulers or task activa-
tion patterns can be added into the framework. Basically,
all tasks are stored in a simple array called the “TCB ar-
ray”. A scheduler has to find a ready task to run from this
array. To achieve this, schedulers are built like a three stages
pipe-line with :

e A priority stage. For each ready task, a priority is
computed.

e A queueing stage. Ready tasks are inserted into
different queues. There is one queue per priority level.
Each queue contains all the ready tasks with the same
priority value. Queues are managed like POSIX sche-
duling queues : if a quantum is associated to the sched-
uler, queues work like the SCHED_RR scheduling
queueing policy [9]. Otherwise, the SCHED_FIFO
queueing policy is applied.

e An election stage. The scheduler looks for the non
empty queue with the highest priority level and al-
locates the processor to the task at the head of this
queue. The elected task keeps the processor during
one unit of time if the designed scheduler is preemp-
tive or during all its capacity if the scheduler is not
preemptive.

Defining a new scheduler is simply overloading some of
the pipe-line stages. Schedulers defined by users are stored
together with XML application description files and are or-
ganized in “sections”. Each section gives the statements
that the simulator engine should run during simulation. A
scheduler can be composed of a start section, a priority
section, an election section and a task activation section.

In the start section, the designer can declare variables
that he needs and can put the initialization code. Two vari-
able families exist : static and dynamic variables. Static

variables describe the studied application and are defined
by XML tags of application description files (see Figure 2).
Values of static variables never change during simulation
and are read from the XML application description files.
Dynamic variables are data collected by the framework at
simulation time. They show the state of tasks, processors
and the other elements of the studied application during the
simulation.

All variables used in a scheduler should have a type. The
framework provides two type families : scalar types (double,
integer, boolean, ...) and arrays. An array is a type which
stores one scalar data per task, message, buffer or shared
resource. Vectorial operations can be done on this kind of
variable.

The priority section contains the code necessary to com-
pute task priorities. The code given here is called each time
a scheduling decision has to be taken (at each unit of time
for preemptive schedulers and when a task stops running in
the non preemptive case).

The election section. In this section, the scheduling
simulator engine decides which ready task should receive
the processor for the next units of time.

Finally, the task activation section describes how tasks
will be activated during a simulation. In Cheddar, 3 kinds
of predefined task activation patterns exist : aperiodic, pe-
riodic and “Poisson process”. Aperiodic tasks are activated
only once and periodic or “Poisson process” tasks can be
activated several times. In the case of periodic tasks, two
successive task activations are delayed by a fixed amount of
time called a period. In the case of Poisson process tasks,
two successive task activations are delayed by an exponen-
tial random delay. If necessary, the designer can define more
complex task activation patterns in this section (ex : spo-
radic task, randomly activated task, burst of activations,

Now, let’s see some scheduler examples. The most simple
scheduler can be defined as below :

election_section:
return min_to_index(period);

Figure 4: A simple Rate Monotonic scheduler

This first scheduler allocates the processor to the task
with the smallest period : it’s a Rate monotonic scheduler
[6]. period is a predefined static variable initialized from
the XML application description files modeling the stud-
ied application. To implement a Rate Monotonic scheduler,
no priorities are computed and no variables are necessary.
Then, the scheduler designer does not have to redefine the
start and the priority sections.

The election section contains a return statement to inform
the framework which task should run during the next units
of time. The return statement uses a min_to_index function.
This function performs a vectorial operation : it scans the
TCB array to find the ready task with the minimum value
for the static variable period.

The second example is an ARINC 653% scheduler. It
shows a complete scheduler example. An ARINC 653 sys-
tem is composed of several partitions. A partition is a unit
of program and is itself composed of processes and memory

3ARINC 653 is a standard interface for avionic applications.

spaces. A processor can host several partitions. Two lev-
els of scheduling exist in an ARINC 653 system : partition
scheduling and process scheduling.

1. Process scheduling. In one partition, processes are
scheduled according to their fixed priority. The sched-
uler is preemptive and always gives the processor to
the highest fixed priority ready task of the partition.
When several tasks of a partition have the same prior-
ity level, the oldest one is elected.

2. Partition scheduling. Partitions share the processor
in a predefined way. On each processor, partitions are
activated according to an activation table. This table
is built at design time and defines a cycle of parti-
tion scheduling. The table describes for each partition
when it has to be activated and how much time it has
to run.

= Cheddar : a free real time scheduling simulator e

File Edit View Tools Help

olelolslal @lFe=l

TI_Fo
Fe= 10, G= 5, 0= 10, 5= 0, Pr= 1, Gpu=aricce53

Z_FPr L | E— [l
I f— 1
Fe= 10, G= 5, 0= 10, 5= 0, Pr= 5, Gpu=aricces3

T3P

L
Pe= 20, C= 76; D= 26, 3= G; Fr= 4, Couw=arinesss

|50 T =

Scheduling simulation, Processor arinchh3

- Munber of preemption : 16
- Mmber of context switch : 21
- Task resp ine

3I/yorst missed its deadline (deadline - 10 ; conpletion time - 13) nissed its deadline {deadline
ion time = 26) missed its deadline (deadline = 30 ; completi 43)

Scheduling simulation, Event analyzers

- Event analyzer nane : arinc_svent_snalyzer. sc

- Line 52, min_jitter= 4
- Line 53, max jitter- 16 H
- Line 54, jitEer bound= 12

Figure 5: An example of ARINC 653 scheduling

Figure 5 displays an example of ARINC 653 scheduling.
The system is made of 3 tasks hosted by one processor. The
processor owns 2 partitions : partitions PO and P1. The
task T'1_P0 runs on the partition P0 and the two others run
on the partition P1. Tasks have a fixed priority : T2_P1 is
the highest priority level task and T'1_PO is the lowest one.
The cyclic partition scheduling has to be done so that P0
runs before P1. In each cycle, PO should run during two
units of time and P1 should run during four units of time.
To achieve this scheduling, a possible user-defined scheduler
is the one given in Figure 6.

In Figure 6, task_partition is a static variable defined by
the user and taken from XML application description files.
For each task, task_partition stores the partition on which
it should run. The variable partition_duration stores the
partition cyclic activation table. Finally, dynamic_priority
is computed according to the partition scheduling and to the
task fixed priority.

start_section:
partition_duration : array (tasks_range) of integer;
dynamic_priority : array (tasks_range) of integer;
number_of_partition : integer :=2;
current : integer :=0;
time_partition : integer :=0;

— The partition scheduling table

partition_duration(0):=2;
partition_duration(1):=4;
time_partition:=partition_duration(current);
priority_section:

if time_partition=0

then current:=(current+1)

mod number_of_partition;

time_partition:=partition_duration(current);
end if;
— Choose the task with the highest priority
— owned by the active partition

for i in tasks_range loop
if tasks.task_partition(i)=current
then dynamic_priority(i):=tasks.priority(i);
else dynamic_priority(i):=0;
tasks.ready(i):=false;
end if;
end loop;
time_partition:=time_partition-1;
election_section:
return max to_index(dynamic_priority);

Figure 6: Process and partition scheduling in an
ARINC 653 system

3.2 Looking for ad-hocproperties

In the same way that users can define new schedulers,
Cheddar makes it possible to create user-defined event ana-
lyzers. These event analyzers are also written with an Ada-
like language and interpreted at simulation time.

The event table produced by the simulator records events
related to task execution and related to objects that tasks
access. Event examples stored in this table can be :

e Events produced when a task becomes ready to run
(event task_activation), when a task starts or ends
running its capacity (events start_of-task_capacity and
end_of task_capacity),

e Events produced when a task reads or writes data
from/to a buffer (events write_to_buf fer and read_-
from_buf fer),

e Events produced when a task sends or receives a mes-
sage (events send_to-message and receive_from_mes-

sage),

start_section:
i: integer :=0;
number_T1_PO : integer :=0
number_T2_P1 : integer :=0
jitter_bound : integer;
max_jitter : integer := integer’first;
min_jitter : integer := integer’last;
jitter : integer;
T1.P0_end_time : array (time_units_range) of integer;
T2_P1_end_time : array (time_units_range) of integer;

gather_event_analyzer_section:
if (events.type = “end_of_task_capacity”)

then
if (events.task_-name = “T'1_P(”)
then
T1_P0_end_time(number_T1_P0):=
events.time;
number_T1_P0:=number_T1_P0+1;
end if;
if (events.task_name = “T2_P1”)
then
T2_P1_end_time(number T2 P1):=
events.time;
number_T2_P1l:=number_T2_P1+1;
end if;
end if;

display_event_analyzer_section:

while (i<number_T1_P0) and (i<number_T2_P1) loop
jitter:=abs(T1_P0_end_time(i)-T2_P1_end_time(i));
min _jitter:=integer’min (jitter, min_jitter);
max_jitter:=integer'max(jitter, max_jitter);
ir=i+1;

end loop;

jitter_bound:=abs(max_jitter-min_jitter);

put(min jitter);

put(max_jitter);

put(jitter_bound);

Figure 7: Example of user-defined event ana-
lyzer : computing task termination jitter bound

e Events produced when a task starts waiting for a busy
resource (event wait_for_a_resource), allocates or re-
leases a given resource (events allocate_resource and
release_resource).

Each of these events is stored with the time it occurs and
with information related to the event itself (eg. name of the
resource, of the buffer, of the message, of the task ...).

The event table is scanned sequentially by event analyz-
ers. User-defined event analyzers are composed of several
sections : a start section, a data gathering section and an
analyse and display section.

As user-defined schedulers, the start section is devoted to
variable declarations and initializations.

The gathering section contains code which is called for
each item of the event table. Most of the time, this sec-

tion contains statements which extract usefull data from the
event table, and store them for the event analyzer.

Finally, the display section performs analysis on data
previously saved by the gathering section and displays the
results in the main window of the Cheddar Editor.

Figure 7 gives an example of user-defined event analyzer.
From an ARINC 653 scheduling this event analyzer com-
putes the minimum, the maximum and the jitter on the
delay between end times of two tasks owned by different
partitions (tasks T1_P0 and T'2_P1 ; see Figure 5).

4. CONCLUSION AND FUTURE WORK

This paper presents an Ada framework designed to check
task temporal constraints. The framework implements most
usual parts of the real time scheduling theory and has been
mostly written for educational purposes. It provides two
kinds of features : feasibility tests and a scheduling simula-
tion engine. Feasibility tests allow the designer to predict
task temporal constraints without computing the scheduling
of the application. On the contrary, the simulation engine
first computes the scheduling of the application and then,
applies event analyzers to check/look for properties.

The framework has been designed to be open and flexible.
By open, we mean a framework easy to connect with other
CASE tools. Data sent to the framework or received from
the framework are XML formatted.

By flexible, we mean a framework which can be extented
to run specific schedulers, to do specific analysis or to sched-
ule tasks with particular activation patterns. We propose
the use of an Ada-like language. Schedulers, task activation
patterns and event analyzers expressed with this language
are not compiled but interpreted by the framework during
simulation. This solution makes it possible to quickly write
and test framework extensions without a deep knowledge of
the framework design and of the Ada language.

The framework provides predefined services for basic task
models and schedulers for both uniprocessor and multipro-
cessor architectures. Currently, the team is working on some
important missing features.

First, Cheddar aims at doing analysis of applications that
contain tasks sharing buffers. The current Cheddar release
provides tools to predict buffer utilization when buffer pro-
ducers and consumers are periodic tasks [15]. This feature
will be extended in the next Cheddar release in order to take
into account the case of randomly activated tasks [23].

Second, the simulator engine supports distributed schedul-
ing simulation but users have to give a worst case communi-
cation delay for each message. As in the case of user-defined
schedulers, a way to express specific message scheduling will
be given.

Finally, we are looking for a method to do model-checking
of user-defined framework extensions.

5. ACKNOWLEDGMENTS

We would like to thank the students who worked on this
project and the reviewers of this article for their english
advices.

6. REFERENCES

[1] Arinc. Awionics Application Software Standard
Interface. The Arinc Committee, January 1997.

(2]

[5

[

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

A. N. Audsley, A. Burns, M. Richardson, and

K. Tindell. Applying new scheduling theory to static
priority pre-emptive scheduling. Software Engineering
Journal, pages 284-292, 1993.

J. Blazewicz. Scheduling Dependant Tasks with
Different Arrival Times to Meet Deadlines. In.
Gelende. H. Beilner (eds), Modeling and Performance
Evaluation of Computer Systems, Amsterdam,
Noth-Holland, 1976.

J. Blumenthal, olatowski, J. Hildebrandt, and

D. Timmermann. Framework for validation and
Analysis of Real time Scheduling Algorithms and
scheduler implementations . University of Rostock,
Technical report available from
http://yasa.e-technik.uni-rostock.de/, 2003.

H. Chetto, M. Silly, and T. Bouchentouf. Dynamic
Scheduling of Real-time Tasks Under Precedence
Constraints . Real Time Systems, The International
Journal of Time-Critical Computing Systems,
2(3):181-194, September 1990.

F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri.
Scheduling in Real Time Systems. John Wiley and
Sons Ltd editors, 2002.

S. Devroey, J. Goossens, and C. Hernalsteen. A
generic simulator of real-time scheduling algorithms.
pages 242-249. Proceedings of the 29th Annual
Simulation Symposium, New Orleans, Louisiana, April
1996.

M. Gagnaire and D. Kofman. Réseaur Haut Débit :
réseaur ATM, réseaux locauz, réseaus tout-optiques.
Masson-Inter Editions, Collection ITA, 1996.

B. O. Gallmeister. POSIX 4 : Programming for the
Real World . O'Reilly and Associates, January 1995.
L. George, N. Rivierre, and M. Spuri. Preemptive and
Non-Preemptive Real-time Uni-processor Scheduling.
INRIA Technical report number 2966, 1996.

P. L. Guernic, T. Gautier, M. L. Borgne, and C. L.
Maire. Programming real time applications with
SIGNAL. INRIA-RENNES, Rapport numéro 1446,
1991.

M. G. Harbour, J. G. Garca, J. P. Gutirrez, and J. D.
Moyano. MAST: Modeling and Analysis Suite for Real
Time Applications. pages 125-134. Proc. of the 13th
Euromicro Conference on Real-Time Systems, Delft,
The Netherlands,, June 2001.

M. Joseph and P. Pandya. Finding Response Time in
a Real-Time System. Computer Journal,
29(5):390-395, 1986.

M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and

M. G. Harbour. A Practitioner’s Handbook for Real
Time Analysis. Kluwer Academic Publishers, 1994.

J. Legrand, F. Singhoff, L. Nana, L. Marcé,

F. Dupont, and H. Hafidi. About Bounds of Buffers
Shared by Periodic Tasks : the IRMA project. In the
15th Euromicro International Conference of Real
Time Systems (WIP Session), Porto, July 2003.

J. P. Lehocsky. Real Time Queueing Theory. pages
186-194. Proceedings of the 17th IEEE Real-Time
Systems Symposium (RTSS '96), Washington, DC,
USA, December 1996.

J. Leung and M. Merril. A note on preemptive
scheduling of periodic real time tasks. Information

(18]

[19]

[20]

[21]

[22]

(23]

[24]

25]

[26]

processing Letters, 3(11):115-118, 1980.

C. L. Liu and J. W. Layland. Scheduling Algorithms
for Multiprogramming in a Hard Real-Time
Environnment. Journal of the Association for
Computing Machinery, 20(1):46-61, January 1973.
J. Migge. Real-time scheduling: a trajectory based
model. PhD Thesis, University of Nice Sophia
Antipolis, November 1999.

J. L. Peterson. Petri Net theory and the Modelling of
Systems. Prentice Hall, 1981.

SEI. The Rate Monotonic Analysis. Technical report,
In the Software Technology Roadmap.
http://www.sei.cmu.edu/str/descriptions/rma_bo-
dy.html, September

2003.

L. Sha, R. Rajkumar, and J. Lehoczky. Priority
Inheritance Protocols : An Approach to real-time
Synchronization. IEEE Transactions on computers,
39(9):1175-1185, 1990.

F. Singhoff, J. Legrand, L. Nana, and L. Marcé.
Extending Rate Monotonic Analysis when Tasks
Share Buffers. In the DAta Systems in Aerospace
conference (DASIA 2004), Nice, July 2004.

TimeSys. Using TimeWiz to Understand System
Timing before you Build or Buy. White paper,
http://www.timesys.com/index.cfm?bdy=home_bdy-
library.cfm,

2002.

K. W. Tindell and J. Clark. Holistic schedulability
analysis for distributed hard real-time systems.
Microprocessing and Microprogramming,
40(2-3):117-134, April 1994.

Tri-Pacific. Rapid-RMA : The Art of Modeling
Real-Time Systems.
http://www.tripac.com/html/prod-fact-rrm.html,
2003.

