
1

Dynamic Value-Density
For Scheduling Real-Time Systems

Saud A. Aldarmi and Alan Burns

Real-Time Systems Group

Department of Computer Science

The University of York

York, YO10 5DD, U.K.

November 1998

Abstract

Scheduling decisions in time-critical systems are very difficult, due to the vast num-

ber of systems’ parameters and tasks’ attributes involved in such decisions. Due to the in-

tractability of the problem, time-critical systems often have to resort to heuristic tech-

niques. Value-based scheduling heuristics have been found in the literature to experience

a more graceful degradation under overload situations than various other heuristics. How-

ever, value-based scheduling heuristics found in the literature combine the tasks’ signifi-

cance with some of the tasks’ static attributes, and therefore, they derive fixed scheduling

priorities. In this study, we propose value-based scheduling heuristics that combine the

tasks’ significance with some of the tasks’ dynamic attributes to derive dynamic schedul-

ing priorities, in order to enhance the overall system’s performance under normal operat-

ing loads and to reduce any performance degradation due to overload situations.

1. Introduction

In order to resolve contention and conflicts over the various resources of a time-critical system;

i.e., the CPU, the scheduler needs to sequence the execution of the tasks within the system, which

may be achieved by establishing a priority ordering among the collection of tasks within the system.

Existing scheduling policies establish such ordering by relying on various heuristics, many of which

are based on the tasks’ deadlines, execution time, the significance of the tasks, and/or a combination

of such attributes. Tasks within a time-critical system are designed to accomplish certain service(s)

upon execution, and thus, each task has a particular significance (importance) to the overall function-

ality of the system. Therefore, each and every task within a time critical-system is augmented with an

2

artificial entity known as the task’s value1 to the system, which reflects the task’s significance to the

system. Such an entity instigated what is known as value-based scheduling heuristics. Value-based

scheduling heuristics found in the literature combine the tasks’ values with some of the tasks’ static

attributes, and therefore, they derive fixed scheduling priorities. For example, the Value-Density (VD)

[7, 9] is a value-based scheduling scheme that derives a fixed scheduling priority relying on the corre-

sponding task’s value and expected worst-case execution time.

Generally, many time-critical CPU scheduling schemes perform acceptably well under normal

operating conditions. However, such an acceptable performance may not pertain under overload

situations. An overload could occur in many practical real-time systems due to normal system activi-

ties in addition to unanticipated emergency conditions and exceptional situations [3, 4, 7]. The pres-

ence of an overload requires an amount of processing that can exceed the capacity of the system,

thereby it is unable to fulfill its primary objectives; i.e., meeting timing constraints. However, if the

underlying scheduling scheme utilizes the CPU more efficiently, in particular under overload situa-

tions, then the CPU will have surplus capacity, which can be redirected towards executing more tasks;

hence, enhancing the overall system’s performance.

Our goal in this study is not to detect and deal with overload situations, via load management

schemes. Rather, it is to investigate, and consequently construct, value-based scheduling heuristics

that combine the tasks’ values with some of the tasks’ dynamic attributes; i.e., the tasks’ remaining

execution time, in order to derive dynamic scheduling priorities. Consequently, the scheduler will be

able to better utilize the CPU; hence, spare some of the wasted CPU capacity and redirect it towards

executing tasks that otherwise would have been lost.

This research focuses on “Soft-Deadline”2 task scheduling in a uniprocessor environment. Thus,

the tasks that complete their execution before their deadlines are considered successful and impart a

full value to the system. Whereas tasks that complete after their deadlines are still considered success-

ful, but only impart a portion of their net value that is proportional to their tardiness3. The rest of this

study is based on the following assumptions:

• All tasks are aperiodic.

• Tasks are independent of each other, excluding contention for CPU access.

• Scheduling is preemptive.

• The system’s scheduler learns of the following set of attributes only at a task’s arrival time.

1 The interested reader may find valuable discussion(s) on values and the manner, in which they are derived, assigned, and manipulated in

[1, 2, 5, 7, 9].
2 Full discussion of real-time models may be found in [1, 7, 9].
3 Tardiness is the amount of time that a task executes beyond its prescribed deadline.

3

- C – the total expected execution/computation time. While C represents a task’s execution

time,C represents a task’s remaining execution time.

- D – the task’s deadline.

- I – an Importance level, reflecting the tasks’ significance to the overall functionality of the

system. Note that Importance is sometimes known as Criticalness in the literature; however,

we will use the term importance in the rest of this study in order to differentiate between im-

portance (significance) of a task to the overall functionality of the system and criticalness in

safety-critical systems.

Previous researchers [1, 7, 9] have defined what is called value-functions in order to account for

the task’s importance as well as the task’s deadline into the scheduling decision(s). Thus, a value-

function allows the static importance level of a given task to be made time-variant, thereby deadline-

cognizant. As shown in figure (1), a task’s value, V, may correspond directly to the task’s level of im-

portance prior to its deadline, and may decrease linearly after the task’s deadline. A more detailed dis-

cussion of value-functions will follow in a subsequent section.

Value

Abort τ
Time

Arrival

τ

Deadline

Figure (1)

The remainder of this study is organized as follows: Section 2 introduces a dynamic approach to

Value Density; i.e., Dynamic Value Density (DVD) and Dynamic Timeliness Density (DTD). Section 3

presents our simulation model along with the performance metrics being used in this study. Section 4

presents a comparative study contrasting the performance of the newly introduced CPU scheduling

policies with the traditional Value Density (VD). Section 5 presents our conclusions.

2. Dynamic Value-Density (DVD)

When two tasks are competing for the CPU, the scheduler must be sensitive to the tasks’ signifi-

cance; thus, sensitive to their individual values to the system. Value-Density (VD) [7, 9] is a value-

based scheduling scheme, that is known to perform better than many other scheduling algorithms un-

der overload situations [6, 7, 9], in addition to having very low overhead. VD is described in function

(2.1).

4

Priority (Pt) C

V

timenComputatio
)t(timeatValue t≡= (2.1)

When a task is submitted to the system, its value is scaled by its expected worst-case computa-

tion/execution time in order to derive the task’s scheduling priority. Once the scheduling priority is

derived, it remains fixed until the task’s deadline, after which it decreases for tardy tasks4. That is, re-

gardless of whether the task remains waiting in the system, or executes for some time period, its

scheduling priority remains fixed at its initial merit until its deadline.

The manner, in which VD scales the task’s value by its execution time, causes all units of execu-

tion of a given task to have an equivalent static weight, regardless of whether the individual unit(s)

have already been processed or remain to be processed. Therefore, VD is insensitive to the dynamic

status of the task’s execution units; hence, function (2.1) represents a Static Value Density (SVD).

 Recall that the system does not collect the value of an executing task until the task is completely

finished. That is, if a task executes but never finishes its last execution unit, it does not offer the sys-

tem any benefit, although it has consumed the system’s resources. In order to lower the amount of

CPU time spent on partially executed tasks, the scheduling priority of an executing task should not

only rise before the deadline, but rather, it should also rise even if the task is tardy. Such behavior

would counteract any diminishment in the task’s value after the deadline and allows an executing

tardy task to remain executing. Thus, the priority of a waiting tardy-task decreases after its deadline,

but the priority of an executing tardy-task should not decrease; rather, it should increase in order to

avoid aborting partially executed tasks; hence, better utilization of CPU time. Therefore, we propose

altering VD as given in function (2.1) such that the task’s remaining execution unit(s) inherit the

weight of the execution units that have already been processed. Consequently, the scheduling priority

is not derived statically on the task level; rather, it is derived dynamically for the individual execution

unit(s). Thus, we propose replacing function (2.1) by function (2.2), which represents Dynamic Value

Density (DVD).

Pt
t

t

C

V

timenComputatiomainingRe
)t(timeatValue ≡= (2.2)

WhereC is the remaining execution time of the corresponding task.

2.1. Static vs. Dynamic Value-Density

The main difference between the static approach and the dynamic approach of VD is in the sched-

ulable unit. The static approach as mentioned above attempts to derive the scheduling priority on the

5

task level, whereas the dynamic approach attempts to derive the scheduling priority on the level of the

individual execution units. Thus, all of the execution units of a given task have the same scheduling

priority under the static approach; that is, all of the execution units of a given task have the same

weight. On the other hand, the execution units of a given task in the dynamic approach have different

scheduling priorities. When an execution unit is finished in the dynamic approach, its weight is dis-

tributed over the remaining execution units. The priority of a given task corresponds exactly to the

priority (weight) of the first remaining execution unit. Since each subsequent execution unit has a

higher weight than the previous one, then as a task executes, its scheduling priority increases propor-

tionally with the amount of time that the task has executed. The difference in the task’s scheduling

priority between the two approaches is best described by figure (2), for a task with V=10 and C=10.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

Computation Units

S
ch

ed
ul

in
g

P
rio

rit
y

SVD

DVD

Figure (2)

The consequences of the two approaches affect the overall system’s performance in various ways,

a matter that will be explained in details in the rest of this section. In general, when a task is pre-

empted by a new arrival, the preempted task has to wait in the system until the completion of the pre-

empting task. However, as the load increases, new tasks arrive into the system at a faster rate, a rate

that corresponds to the operating load. Thus, as the load increases, more tasks with higher scheduling

priority than the preempted task are more likely to arrive into the system. Consequently, the pre-

empted task is more likely to wait longer in the system before it resumes execution. As the load in-

creases and the preempted task waits longer within the system, it is more likely that the task will be-

come tardy and starts losing its value to the system. Therefore, it is more likely that the preempted

task will be aborted under such conditions, after it had already consumed some amount of the sys-

tem’s resources.

Furthermore, if the priority of an executing task does not increase, more tasks with higher sched-

uling priority than the currently executing task are more likely to arrive into the system as the load in-

creases. Thus, many new arrivals are more likely to preempt the currently executing task. Conse-

4 A tardy task is a task whose execution extends to beyond its prescribed deadline.

6

quently, an executing task is easily preempted by new arrivals. Therefore, SVD is more likely to expe-

rience a relatively high preemption rate, along with the inherited degradation due to context switching

overhead and increasing the percentage of partially executed tasks in the system, many of which

might be aborted. Thus, it would be a wiser decision to delay the execution of the newly arriving

task(s) in order to complete the currently executing task if it had consumed a substantial amount of re-

sources. Such delay should, in theory, reduce the amount of preemption along with its negative con-

sequences. The system’s scheduler can impose such delay by increasing the scheduling priority of the

currently executing task, which is depicted by the behavior of DVD, as shown in figure (2).

2.2. Intensifying the Role of Execution in DVD

The benefits that DVD offer over SVD are mainly due to the fact that a task starts with a small

priority, which rises to the task’s level of significance in correspondence with the amount of system‘s

resources; i.e., CPU time, that the task has consumed. Thus, there is a gap between the starting prior-

ity and its upper bound. To further intensify the enhancement of DVD as mentioned in the previous

section, we have to widen the gap between the initial scheduling priority of a given task and its final

priority. That is, when a task arrives into the system, its initial scheduling priority needs to be ex-

tremely small, in order to prohibit the relatively low significance tasks from competing with the cur-

rently executing task. When a task starts executing, its priority starts rising at a rate that allows its fi-

nal scheduling priority to correspond to the task’s level of importance. Thus, when a task starts exe-

cuting, its scheduling priority not only rises, but it needs to rise at a rate faster than the one depicted

by C/V . Such behavior gives even higher preference, than DVD as described in function (2.2), to the

tasks that have executed over the newly arriving tasks. Thus, preemption should be further lowered

and resumption becomes more likely to happen before a task is aborted. In addition, an executing

tardy-task is more likely to continue executing in order to minimize wasting the system’s resources.

Based on this observation, we map function (2.2); i.e., DVD-1, into function (2.3); i.e., DVD-2.

Pt
2

t
C

V
t= (2.3)

For a task with V=20, C=10, and D=10, figure (3) shows the scheduling priority of six schemes;

i.e., SVD-w, SVD-e, DVD-1-w, DVD-1-e, DVD-2-w, and DVD-2-e, where ‘w’ stands for a waiting

state and ‘e’ stands for an executing state. The figure shows four major points:

• Whether a task waits or executes under SVD; i.e., SVD-w and SVD-e, its scheduling priority does

not change prior to its deadline. In addition, even if the task starts executing after its deadline, its

scheduling priority decreases due to the diminishment of its value. Thus, SVD is more likely to

7

suffer a high preemption rate, have a relatively low resumption, and subjecting many partially

executed tasks to being aborted.

• If a task waits under DVD-1; i.e., DVD-1-w, its scheduling priority does not change prior to its

deadline. If it continues waiting after its deadline, its priority starts decreasing. If the task starts

executing; i.e., DVD-1-e, its priority starts rising, whether it starts executing before or after its

deadline. However, the task’s priority rises at a faster rate before the deadline. Thus, DVD-1 is

more likely to have a relatively low preemption rate, in addition to having high resumption, and

avoiding aborting partially executed tasks.

• DVD-2 mimics the behavior of DVD-1, but it starts with a lower initial priority and causes the

priority of an executing task to rise at a faster rate than that of DVD-1. Thus, DVD-2 intensifies

the behavior of DVD-1, which should enhance the behavior of DVD-1.

• IfC increases at a faster rate than that depicted in function (2.3), the performance is even further

enhanced due to increasing the gap between the initial priority and its upper bound; i.e., V. How-

ever, since the starting priority of function (2.3) is very small, then any enhancements achieved by

such an increase would be insignificant and might not justify the extra multiplication overhead.

0.1

1

10

100

1 3 5 7 9

11 13 15 17 19

Execution Unit

P
rio

rit
y

SVD-w

SVD-e

DVD-1-w

DVD-1-e

DVD-2-w

DVD-2-e

 Figure (3)

Note that the rate at which priority rises after the deadline for DVD-1 and DVD-2 depends on the

rate at which value diminishes after the deadline. Figure (3) is plotted with diminishing speed = 1,

which corresponds to the speed at whichC decreases. Furthermore, the plotted functions after the

deadline correspond to waiting before the deadline and starting to execute at the deadline. Finally, for

clarity purposes, figure (3) is plotted under logarithmic scale.

Deadline

20 12

8

2.3. Dynamic Timeliness-Density

The final issue that we need to address in this section is that, if a waiting task is subject to be-

coming tardy due to having an infeasible deadline, then it should not receive a relatively high sched-

uling priority. A task may not be aware of any future interruptions from higher-priority tasks, but (at

least) it should be aware, at the scheduling instant, of the relationship between its remaining execution

time and its own deadline. Function (2.2) above cannot determine whether a task is subject to be-

coming tardy due to having an infeasible deadline. Recent studies [2] proposed replacing value-

functions with timeliness-functions for time-critical systems.

The notion of value allows a task to hold its level of importance until the task’s deadline, after

which it starts diminishing according to some monotonically decreasing function. On the other hand,

the notion of timeliness calls for decreasing the task’s significance at (D –C); both behaviors (no-

tions) are depicted in figure (4) below. Timeliness of a given task starts equivalent to the level of im-

portance. However, timeliness starts decreasing when the task’s laxity = 0, in order to reflect the

amount of reduction that the task’s significance may experience at the finishing moment. That is,

timeliness tells us at the moment that we schedule a task, whether the task is to become tardy and the

expected amount of value-reduction at the finishing moment. The reader may refer to [2] for a de-

tailed discussion of timeliness-functions.

Value = I

Laxity=0 Deadline Abort

Time

Arrival

Abort

ValueTimeliness

Level of
Importance (I)

C

Figure (4)

Combining timeliness,T, as proposed in [2] with DVD results in function (2.4), which may be

called Dynamic Timeliness Density (DTD).

Pt
2

t
C

T
t= (2.4)

DTD is not only sensitive to the remaining execution time,C, of a given task such as DVD, but

also sensitive to the relationship between such an attribute and the task’s own deadline. Consequently,

waiting tasks that are more likely to become tardy are given lower scheduling priorities; therefore,

they are not allowed to delay other tasks that have a better chance of meeting their deadlines.

9

Note that since the scheduling priority of DVD as given in functions (2.2) and (2.3), depends on V

as well asC of a given task, then a smallC for a tardy task could counteract the reduction in V.

Therefore, although V of a tardy task has diminished to a lower value, the task might still receive a

relatively high scheduling priority due to its smallC. Consequently, a tardy task could delay the

scheduling of a non-tardy task under DVD. However, employing timeliness as described above causes

the value of a given task to start diminishing at an earlier point in time. Therefore, timeliness does not

allow a task to become too tardy in the first place, and hence, the system will not allow a task that is

subject to becoming too tardy to delay the scheduling of another task that has a better chance of

meeting its deadline. Since tasks get aborted at an earlier point in time when employing timeliness,

then the system should be able to save even more CPU time. Furthermore, timeliness enables the

scheduler to finish executing tasks at an earlier point in time, which enables the scheduler to collect

higher values from the set of completed tardy tasks.

In the next section, we describe our simulation model along with its parameters and assumptions,

and in the next subsequent section we present a comparative study contrasting the behavior of the

three scheduling schemes described above; i.e., SVD, DVD-1, DVD-2, and DTD.

3. Simulation Model

The simulator we use in this paper is based on CSIM; a C-based process oriented language [10],

and has the following parameters and assumptions.

• The levels of importance are randomly assigned to tasks from a uniform distribution from (1.0,

5.0), which may be viewed as {low, mid-low, mid, mid-high, high}.

• Execution times are randomly assigned to tasks from a uniform distribution from (1.0, 100.0).

• When a task is submitted to the scheduler, it is assigned a feasible deadline (D), such that:

 D = A + C + uniform (3.0, 5.0) × C, where (A) is a task’s arrival time.

• All tasks have a soft-deadline, and when a task’s (value) V ≤ I/100, the task is assumed to have

lost its validity and therefore is aborted; similarly for (timeliness),T.

Let: Î : The maximum importance level within the entire system.

Ĉ : The maximum execution within the entire system.

S: The diminishing speed of a task’s value.

ψt: Tardiness at time t.

10

In our simulator S = Ĉ/Î . Therefore, S is a linear decay function that diminishes at the same

speed for all tasks regardless of the tasks’ remaining attributes. Both V andT of a given task are

computed at time t as follows:

 ψt = max (0, t – D).

 Vt = I – ψt × S,

Tt = I – ψ (t +C) × S,

The reader may refer to [2] for further discussion of the above functions.

• All tasks are aperiodic, and scheduling is preemptive. Preemption may only occur at the bounda-

ries of single time units. This does not mean that the computation time of any task is a multiple of

a single time-unit. Rather, it is possible to haveC ≤ 1, but preemption may not occur under such

condition. Such restriction on preemption is necessary due to the fact that the limit of functions

(2.2) and (2.3) goes to infinity without this restriction. However, placing and insuring this restric-

tion on preemption, limits the two functions to ‘I’ (the level of importance) associated with each

task within the system. Furthermore, when a task is preempted an artificial delay equivalent to

100/Ĉ is introduced in order to simulate the overhead of context switching.

• The load simulated is 80% to 200% controlled by an exponential distribution for the tasks’ arrival,

which in turn is controlled by the average execution time (Ca) divided by the desired load (σ).

Thus, the submission rate, λ, is computed as follows:

λ =
σ

aC

Note that an exponential distribution allows for bursty arrivals. That is, an exponential distribu-

tion may cause a number of tasks to arrive into the system within a very small period of time; i.e.,

very close to one another. Consequently, even under normal operating load, the system may expe-

rience a burst of tasks arriving very close to one another, which results in some tasks missing their

deadlines.

• The results of the simulation are collected from one hundred runs, where each run consists of one

hundred tasks.

The performance of the simulated techniques is measured according to the following metrics; the

interested reader may refer to [2] for a detailed discussion of these metrics.

11

• Value-sum %, is the percentage of value that the system was able to collect, relative to the total

value of all tasks submitted to the system, those that were completed and those that were aborted.

Thus,

Value-Sum % =
 systemthe to submittedtasks all of value total

100 collected value total ×

• Success %, which is the percentage of tasks that are able to complete, whether tardy or on time,

relative to the total number of tasks submitted to the system. Thus,

 systemthe to submittedtasks total

100completed tasks total
 % Success

×
=

• Tardy %, which is the percentage of tasks that are tardy, relative to the total number of tasks that

are completed. Thus,

completed tasksofnumber total

100taskstardy of number total
 %Tardy

×
=

• Tardiness which is the average lateness of tardy tasks within the system. Thus,

taskstardy of number total

taskstardy all of tardiness total
 Tardiness =

• Preemption, which reflects the total number of preemption(s), normalized with respect to the total

number of tasks submitted to the system. Note that some of the preempted tasks may be pre-

empted more than once.

Preemption =
systemthetosubmittedtasksofnumbertotal

100 preemption of number total ×

• CPU Wastage %, which is the percentage of time that was spent (wasted) on tasks that end up

being aborted relative to the total amount of time that was spent on all tasks submitted to the sys-

tem, plus the time spent on all preemption. Thus,

tasks all on spenttime total

100) preemption on spenttime total tasks aborted on spenttime (total
 % Waste CPU

×+=

4. Comparative Study

In this section, we simulate the performance of four scheduling schemes; namely:

• SVD as given in function (2.1),

12

• DVD-1 as given in function (2.2),

• DVD-2 as given in function (2.3),

• DTD as given in function (2.4), and

• Earliest Deadline-First by using Timeliness (EDF-T) [2], which is the traditional EDF [8],

but incorporating timeliness in order to control the instants at which tasks may be aborted.

Note that EDF-T was shown in [2] to outperform the traditional EDF.

New tasks arrive into the system at a rate that corresponds to the operating load. Thus, if the

scheduling priority remains fixed, then more tasks with higher scheduling priorities than the pre-

empted tasks are more likely to arrive into the system. Consequently, the preempted tasks are

more likely to wait longer in the system before they resume execution. As the load increases and

the preempted tasks wait longer within the system, it is more likely that the tasks become tardy

and start losing their values to the system. Therefore, it is more likely that the preempted tasks

will be aborted under such conditions, after they had already consumed some amount of the sys-

tem’s resources, which will increase the amount of wasted CPU time. Such behavior can be

clearly seen in figure (5), which shows that SVD wastes 5-14% of the CPU time to partially exe-

cuted tasks and preemption as the load increases from 80-200%. Meanwhile, DTD wastes as little

as 1-2% of the CPU capacity as the load increases from 80-200%. The extra 12% that DTD is able

to re-salvage from the aborted tasks (and preemption) at a load of 200% is actually an extra CPU

capacity that is redirected towards conducting useful work as will be seen in the rest of this sec-

tion.

0

2

4

6

8

10

12

14

16

80 90 100 110 120 150 200

Load %

C
P

U
 W

as
ta

ge
 %

SVD

DVD-1

DVD-2

DTD

T-EDF

 Figure (5)

Figures 6 to 11 show the overall system’s performance. Figure (6) shows the total amount of

value that the system is able to collect from the completed set of tasks. The figure shows that an en-

hancement of about 4.5% may be achieved by employing DTD instead of SVD, due to the following

reasons:

• Completing more tasks; i.e., figure (8),

13

• Lowering preemption; i.e., figure (9).

• Reducing the percentage of tardy tasks; i.e., figure (10),

• Reducing the amount of tardiness; i.e., figure (11),

For clarity purposes, the outlines section in figure (6) is enlarged in figure (7). An important ob-

servation that should be noted from figure (7) is that DTD does not only outperform the standard VD

scheme, but also competes with EDF for operating load ≤ 80%, and significantly outperforms EDF for

all loads > 80%. Hence, DTD solves the dilemma of employing EDF for normal operating loads and

switching to VD for overload situations. Rather, a single CPU scheduler; i.e., DTD, can be employed

for all operating loads.

50

55

60
65

70

75

80

85
90

95

100

80 90 10
0

11
0

12
0

15
0

20
0

Load %

V
al

ue
 S

um
 %

SVD

DVD-1

DVD-2

DTD

EDF-T

90

91

92

93

94

95

96

97

98

80 90 100

Load %

V
al

ue
 S

um
 %

Figure (6) Figure (7)

60

65

70

75

80

85

90

95

100

80 90 100 110 120 150 200

Load %

S
uc

ce
ss

 %

0

10

20

30

40

50

80 90 100 110 120 150 200

Load %

P
re

em
pt

io
n

Figure (8) Figure (9)

Figure 9 supports the intuition behind function (2.2) and all subsequent functions given in this

study; i.e., usingC instead of C. Earlier in the study we stated that since the priority of an executing

task does not increase under SVD, more tasks with higher scheduling priority than the currently exe-

cuting task are more likely to arrive into the system. Therefore, many new arrivals are more likely to

14

preempt the currently executing task. Thus, SVD is more likely to experience a relatively high pre-

emption rate, along with the inherited degradation due to context switching overhead and subjecting

partially executed tasks to being aborted.

Figures 10 and 11 support our earlier observation, which stated that since the scheduling priority

of DVD depends on V as well asC of a given task, then a smallC for a tardy task could counteract

the reduction in V. Therefore, although V of a tardy is diminished, the task might still receive a rela-

tively high scheduling priority due to the smallC. Consequently, a tardy task could delay the sched-

uling of a non-tardy task under DVD. However, employing timeliness to DVD does not allow a task to

become too tardy, and hence, the system will not allow a task that is subject to becoming too tardy to

delay the scheduling of another task that has a better chance of meeting its deadline. Consequently,

the percentage of tardy tasks as well as the amount of tardiness should be reduced when employing

timeliness as defined in [2] and stated in this study.

0
5

10
15
20
25
30
35
40
45
50
55

80 90 100 110 120 150 200
Load %

T
ar

dy
 %

SVD

DVD-1

DVD-2

DTD

EDF-T
5

10

15

20

25

30

35

40

80 90 100 110 120 150 200

Load %

T
ar

di
ne

ss

Figure (10) Figure (11)

Note that the performance of DVD-2 and DTD as depicted in figures 5 to 11 is comparable with

respect to total number of tasks completed and the total amount of value collected from such set.

However, DTD utilizes the CPU better as reflected in figure (5), subjects less percentage of the tasks

within the system to be tardy, and significantly lowers the total amount of tardiness experiences by

tardy tasks.

Overhead

From a practical standpoint, DTD may be implemented as follows. Let ∆ = the time period elaps-

ing from the instant of accessing the CPU to the instant at which preemption occurs. When a task is

scheduled for the first time, its C =C. If the task is preempted, then itsC =C - ∆. We can compute

∆ in two ways:

15

• Record the instant at which a task accesses the CPU and the instant of preempting the task. Thus,

the system’s timer needs to be read twice.

• When a task accesses the CPU, the scheduler sets a special timer, and when the task is preempted,

the timer is stopped and its value reflects ∆. Thus, the timer acts as a stopwatch.

Each approach requires a certain amount of overhead that depends on the underlying operating

system and architecture. The implementation of DTD in time-critical systems would be more practical

in systems where the underlying operating system supports special and budget timers; i.e., the new

proposed extensions for POSIX [11].

Recall that the cost of context switching in all of the above simulations = .100/Ĉ In order to find

the amount of overhead that might render DTD to be ineffective, we simulated the system’s perform-

ance under various overheads. We found that in order for DTD to be ineffective, the cost of context

switching must increase to .100/Ĉ15 It is true that DTD requires a certain amount of overhead;

however, assuming that the overhead of DTD is as much as 1500% of the context switching of SVD is

unrealistically overestimated.

Stochastic Execution Time

In many environments, worst-case estimates of execution time may be far from accurate. Thus, in

this section we look at the system’s behavior if the execution time can be as much as 50% inaccurate.

That is, the actual execution time is probabilistic and can be between 50-99% of the worst-case exe-

cution time; thus,C is always less than C.

70

75

80

85

90

95

100

80 90 10
0

11
0

12
0

15
0

20
0

Load %

V
al

ue
-S

um
 %

SVD

DVD-1

DVD-2

DTD

EDF-T
95

96

97

98

99

100

80 90 100 110 120

Load %

V
al

ue
-S

um
 %

Figure (12-a) Figure (12-b)

Figure (12) shows the total amount of value earned by the system when 0.5C ≤C ≤ 0.99C. The

figure shows that the performance superiority of the schemes being simulated in this study is not as

16

significant as that shown in figure (6). On the other hand, we found that if the deadlines become tight;

i.e., the initial laxity becomes small, then the performance becomes more significant than that shown

in figure (6).

5. Conclusion

In this study, we constructed a value-based scheduling scheme that combines the tasks’ values

with some of the tasks’ dynamic attributes; i.e., the tasks’ remaining execution time. Therefore, in-

stead of deriving the scheduling priority on the task level, we were able to derive it on the level of the

individual computation units. The consequences of such a technique is that the scheduling priority be-

comes dynamic and not only accounts for the tasks’ significance to the system, but also the amount of

system’s resources that the tasks have already consumed in addition to the amount of resources that

they still require until completion.

The dynamic priority forces the newly arriving tasks to wait longer in the system in order to allow

the currently partially executed task to finish execution. Consequently, preemption along with its as-

sociated degradation is reduced. Therefore, the system can spare an extra CPU capacity and redirect it

towards executing tasks that otherwise would have been lost. Such an extra capacity was shown in

this study to make the performance degradation of the system to be more graceful when operating un-

der overload conditions.

Based on the performance presented in this study, we conclude that Dynamic Timeliness Density

(DTD) it is an effective scheme and it is more suitable to operate under all operating loads than the

traditional Static Value Density and/or Earliest Deadline First.

References

1. R. Abbott, and H. Garcia-Molina, "Scheduling Real-time Transactions: A Performance Evalua-
tion", Proceedings of the 14th International Conference on Very Large DataBases, Los Angeles -
California (August 1988).

2. S. A. Aldarmi and A. Burns, “Time-Cognizant Value Functions for Dynamic Real-Time Sched-
uling”, Technical Report YCS-306, Real-Time Research Group, Department of Computer Science,
The University of York, U.K., 1998.

3. S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha, and F. Wang,
"On the Competitiveness of On-Line Real-time Task Scheduling", Proceedings of the 12th Real-
time Systems Symposium, 1991.

4. S. Baruah, J. Haritsa, and N. Sharma, "On-Line Scheduling to Maximize Task Completion", Pro-
ceedings of IEEE Real-time Systems Symposium, 1994.

17

5. A. Burns, D. Prasad, A. Bondavalli, F. Di Giandomenico, K. Ramamritham, J. Stankovic, L.
Strigini, "The Meaning and Role of Value in Scheduling Flexible Real-Time Systems”, To appear
in Journal of Systems Architecture, 1998.

6. G. Buttazzo, M. Spuri, and F. Sensini, "Value vs. Deadline Scheduling in Overload Conditions",
Proceedings of IEEE Real-time Systems Symposium, 1995.

7. E. D. Jensen, C. D. Locke, H. Tokuda, "A Time-Driven Scheduling Model for Real-time Operat-
ing Systems", Proceedings of IEEE Real-time Systems Symposium, 1985.

8. C. L. Liu, and J. W. Layland, "Scheduling Algorithms for Multiprogramming in Hard-Real Time
Environments", Journal of the ACM, Vol. 20, No. 1, January 1973.

9. C. D. Locke, “Best-effort Decision Making for Real-time Scheduling”, Ph.D. thesis, Computer
Science Department, Carnegie Mellon University, 1986.

10. H. Schwetman, CSIM Reference Manual, info@mesquite.com, 1994.

11. IEEE draft standard P1003.1d - Draft Standard for Information Technology - Portable Operating
System Interface (POSIX) - Part 1: System Application Program Interface (API) - Amendment d:
Additional Realtime - Extensions [C Language].

