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Abstract

The problem of scheduling a set of periodic tasks on a number of pro-
cessors using a fixed-priority assignment scheme was first studied by Dhall
and Liu in their paper entitled “On a real-time scheduling problem”. Two
scheduling heuristics Rate-Monotonic-Next-Fit (RMNF) and Rate-Mono-
tonic-First-Fit (RMFF) were proposed, and their worst-case performance was
proven to have an upper bound of 2.67 and 2.2, and a lower bound of 2.4 and
2.0, respectively. In this paper, we first tighten up the worst-case bounds for
both RMNF and RMFF, and at the same time, correct some errors existing in
the original proof of the upper bound for RMFF. The tight worst-cast bounds
of RMNF and RMFF are proven to be 2.67 and 2.33, respectively. Then, in an
effort to find a more efficient algorithm, we propose a new scheduling heuristic
 Rate-Monotonic-Best-Fit (RMBF), and study its worst-case performance.
Surprisingly, RMBF also has a tight worst case bound of 2.33.

I. Introduction

The problem of preemptively scheduling a set of periodic tasks with hard deadlines equal to

the task periods on a single processor was first solved by Liu and Layland [12], and Serlin[17]. In

the case of fixed priority assignment, the rate-monotonic algorithm [12] [17] was proven to be

optimal. In the case of dynamic priority assignment, the earliest deadline first (EDF) algorithm

[12] was proven to be optimal. The rate-monotonic algorithm assigns priorities to tasks according

to their periods, where the priority of a task is in inverse relationship to its period. The rate-mono-

tonic algorithm has recently gained a lot of recognition since it can be used as a backbone algo-

rithm for designing predictable real-time systems. Many significant results have been obtained
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within the framework of rate-monotonic scheduling, for example, the scheduling of tasks which

need to be synchronized [20], the scheduling of tasks which are “imprecise” [13] [14] [21], the

scheduling of aperiodic and sporadic tasks [9] [22], and the scheduling of support to overcome

transient overload [16].

In this paper, we consider the problem of scheduling a set of periodic tasks on a multipro-

cessor system using a fixed priority assignment scheme. The study of scheduling periodic tasks on

a multiprocessor system is justified for various reasons. In some cases, due to heavy computing

demands, multiprocessor support can be the best, perhaps the only, means of providing sufficient

processing power to meet critical real-time deadlines. In other cases, multiprocessor support for a

hard real-time system is a much better choice for reliability than a uniprocessor system, since a

multiprocessor system is generally more reliable than a uniprocessor system. However, the prob-

lem of scheduling a set of periodic tasks, using either fixed priority or dynamic priority assign-

ment, on a number of processors, is aNP-hard problem [11]. For practical purpose, simple

scheduling heuristics which can obtain fast results need to be devised.

There are potentially numerous scheduling heuristics to solve this scheduling problem. A

particular class of scheduling heuristics, which use the rate-monotonic algorithm to schedule the

set of tasks assigned on each individual processor, is especially favored for a number of reasons.

First, the rate-monotonic algorithm is optimal for fixed priority assignment of periodic tasks on a

processor. The reason the fixed priority assignment is used is for practical purposes, such as ease

of implementation and the minimal scheduling overhead involved. Secondly, simple and efficient

bin-packing heuristics can be used to assign tasks onto processors so that the least number of pro-

cessors is used. Finally, since rate-monotonic scheduling is used to schedule tasks on a processor,

many extant results concerning rate-monotonic scheduling of real-time tasks on a single processor

can be readily adapted to accommodate more practical needs of real-time systems, such as, the

scheduling of soft-deadline tasks [10], the scheduling of tasks which need to be synchronized

[20], and the mode change protocols [19] [23].

Dhall and Liu [5] were the first to propose heuristic algorithms to solve this problem. They

proposed two scheduling algorithms, which were called the Rate-Monotonic-Next-Fit (RMNF)

and Rate-Monotonic-First-Fit (RMFF), and analyzed their performance. The worst-case perfor-

mance ofRMNF andRMFF was proven to have a upper bound of 2.67 and 2.23, and a lower

bound of 2.4 and 2.0, respectively. Unfortunately, the bounds were not tight, with gaps existing

between the upper bounds and lower uppers of both algorithms. This posed a nagging problem,

since the lower bounds may in fact be the real lower bounds, and the upper bounds may in fact be

the real upper bounds, or neither the lower bounds nor the upper bounds have anything to do with

the real bounds. This problem may be aggravated in actual implementation when multiple proces-

sors are needed to execute a number of periodic tasks in some hard real-time applications. On the

one hand, a sufficient number of processors should be provided to execute the tasks so that their
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hard deadlines are guaranteed even in the worst case. On the other hand, the least number of pro-

cessors should be used so that processor resources are not wasted. In this paper, we tighten up the

worst-case performance bounds for bothRMNF andRMFF. In the process, we found that there

were some errors in the original proof of the upper bound forRMFF. The errors were corrected,

and the tight bound ofRMFF was shown to be 2.33 rather than 2.23.

In an attempt to find more efficient algorithms, we then propose a new scheduling algorithm

 Rate-Monotonic-Best-Fit (RMBF), and study its performance. This new algorithm, based on

the bin-packing heuristic, Best-Fit, assigns tasks on processors in such a manner as to maximize

the utilization of a processor.RMBF is intrinsically more complex thanRMFF, and is expected to

have better performance in assigning tasks to processors. However, the worst-case performance

of RMBF is, to our surprise, no better than that ofRMFF.

Bin-packing heuristics are chosen because assigning tasks on processors bears many simi-

larity to packing items into bins. Many of the bin-packing heuristics are quite simple, and yet

deliver very good performance. The key difference in this case, however, is that bins in bin-pack-

ing have unitary size, while the “size” or utilization of a processor in scheduling tasks on a multi-

processor changes dynamically according to some pre-defined functions. This difference makes

the analysis of the worst-case performance of the scheduling heuristics considerably more com-

plicated than that of bin-packing heuristics.

Other related work in this area includes the two scheduling heuristics studied by Davari and

Dhall [3] [4]. They are the First-Fit-Decreasing-Utilization-Factor (FFDUF) andNEXT-FIT-M

algorithms.FFDUF sorts the tasks in non-increasing order of utilization factor and assigns them

to processors in that order.NEXT-FIT-M classifies tasks intoM classes with respect to their utili-

zations. Processors are also classified intoM groups, so that a processor ink-group executes tasks

in k-class exclusively. The worst-case performance ofFFDUF is tightly bounded by 2, while the

performance ofNEXT-FIT-M is upper bounded by a numberSM, which is a decreasing function

of the pre-selected numberM, e.g.,SM = 2.34 forM = 4, andSM = 2.28 for M → ∞.

This paper is organized as follows. In the next section, the scheduling problem is formally

defined. The performance ofRMNF is proven to be tightly bounded by2.67 in Section III. The

RMFF algorithm is presented, and its performance analyzed in Section IV, while the performance

of RMBF is given in Section V. Finally, we conclude in Section VI and indicate the remaining

problems.

II. Problem Definition

In order to present any scheduling results, it is necessary to state the assumptions before-

hand. The presentation of these assumptions follows the format used by Liu and Layland [12].
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(A) The requests of all tasks for which hard deadlines exist are periodic, with constant

interval between request.

(B) Each task must be completed before the next request for it arrives i.e., all its ver-

sions must be completed by the end of each request period.

(C) The tasks are independent in that the requests of a task do not depend on the initiation

or the completion of requests for other tasks.

(D) The computation time for each task is constant for that task and does not vary with

time. Computation time here refers to the time which is taken by a processor to exe-

cute the task without interruption.

(E) Any non-periodic tasks in the system are special, and do not have hard deadlines.

Assumptions (A), (B), and (D) have been argued to have close resemblance to many indus-

trial real-time systems [12], and have thus been used by many in studying and building real-time

systems. Though Assumption (C) does exclude the situation where certain tasks have precedence

of execution before others, it nevertheless is a good model for many real-time systems. Assump-

tion (E) may appear to be overly restrictive in the first glance. However, with the rapid advance of

real-time scheduling techniques, Assumption (E) can be totally omitted. It is put in here so that we

can focus ourselves on periodic tasks at the moment. The various ways to efficiently schedule

non-periodic, hard deadline tasks along with periodic tasks can be found in real-time scheduling

literature [9] [22].

It follows that a taskτi is completely characterized by two numbers, the computation time

Ci and the periodTi. The ratioCi / Ti is called the utilization factor of the taskτi. The problem of

scheduling a set of periodic tasks on a multiprocessor can be defined as follows: Given a set ofn

tasks Σ = {τ1, τ2, …, τn}, where each taskτi is characterized by its computation timeCi and its

periodTi, i.e.,τi = (Ci, Ti), what is the minimum number of processors needed to execute the task

set such that alln tasks can be guaranteed to meet their deadlines? The preemptive scheduling dis-

cipline and the fixed priority assignment scheme are assumed.

To solve this problem, a heuristic approach which consists of two steps is usually adopted:

(1) A heuristic algorithm is employed to assign tasks to processors; (2) The rate-monotonic algo-

rithm is used to schedule tasks on each individual processor. The problem of assigning tasks onto

a minimal number of processors very closely resembles the bin-packing problem, in which items

of variable sizes are packed into as few bins as possible. Therefore, many of the bin-packing heu-

ristics can be used to assign tasks onto processors. However, there is a key difference between

bin-packing and the scheduling of periodic tasks on a multiprocessor: the “size” of a bin, which

corresponds to the utilization of a processor, is not always unitary, but rather it is a variable whose

values are determined by some pre-defined functions. These functions are referred to asschedula-

bility conditions.
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When a task is assigned to a processor, the scheduler must make sure that the addition of the

task to the processor should not jeopardize the schedulability of those tasks that have already been

assigned to it. To accomplish this goal, the following schedulability condition can be used.

Condition WC:  If a set of  tasks is scheduled according to the rate-monotonic scheduling algo-

rithm, then the minimum achievable utilization factor is . As m

approaches infinity, the minimum utilization factor approaches ln2.

This schedulability condition was first given by Liu and Layland [12]. It implies that a task

set can be scheduled to meet their deadlines if the total utilization factor of the tasks is less than a

threshold number, which is given by , where m is the number of tasks to be sched-

uled. This condition is a worst-case condition, and therefore it is referred to as Condition WC
(Worst Case). The function f (m) =  is a strictly decreasing function with regards to

m, the number of tasks on a processor. In studying the performance of RMNF and RMFF, Dhall

and Liu [5] used a different schedulability condition, which is stated as follows:

Condition IP: Let  be a set of  tasks with periods . Let

. If Cm / Tm ≤ 2(1 + u / (m-1))-(m-

1) - 1, then the set can be feasibly scheduled by the rate-monotonic scheduling

algorithm. As m approaches infinity, the minimum utilization factor of

approaches 2e-u - 1.

This schedulability condition requires that the tasks be sorted in the order of non-decreasing

period, thus implying that the task set should be known beforehand. Some of the task sets that can

not be scheduled by using Condition WC can be scheduled by using this condition, since this con-

dition takes advantage of the fact that tasks are ordered against non-decreasing periods. This con-

dition is referred to as Condition IP (Increasing Period). The function f (u, m) = 2(1 + u/(m-1))-

(m-1) - 1 is a strictly decreasing function with regards to both u and m. Both Condition WC and

Condition IP can be easily used to test the schedulability of a task set, since the only parameters

involved are the total utilization of tasks and the number of tasks. A sufficient and necessary con-

dition, which takes into account both the computation time and the period of a task when a task is

scheduled, was recently given by Lehoczky et al [8]. Because of its complexity, the performance

of the scheduling heuristics using this condition is not studied here. In the following, we focus our

studies on the scheduling heuristics using Condition IP as schedulability condition. Note that the

scheduling heuristics  RMNF and RMFF studied by Dhall and Liu used the same schedulability

condition.

Notations: Let N0 and N(A) be the number of processors used by an optimal algorithm and

the number of processors used by a heuristic algorithm A, respectively. Then, the guaranteed per-

formance bound of the algorithm A, denoted as ℜ(A), is defined as

ℜ(A) =

m

m 21 m⁄ 1−( )

m 21 m⁄ 1−( )

m 21 m⁄ 1−( )

τ1 τ2 … τm, , , m T1 T2 … Tm≤ ≤ ≤
u Ci Ti⁄i 1=

m 1−∑ m 1−( )≤= 21 m 1−( )⁄ 1−( )

τm

N A( )
N0N0 ∞→

lim
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Processors are numbered in the order consistent with that of allocating them. P and Q are

used to denote processors.  denotes the lth task that is assigned on the xth processor.

denotes the utilization of task .  is used to denote the ith task where there is no confusion.

denotes the utilization of the ith task on a processor or in a task set. τ = (x, y) characterizes a task

τ, where x and y are the computation time and the period of task τ.

III. Tight Bound for Rate-Monotonic-Next-Fit

The Rate-Monotonic-Next-Fit algorithm is given as follows:

Algorithm RMNF:

1. Tasks are sorted in the non-decreasing order of their periods.

2. Set i = j = 1. /* i denotes the ith task, j the number of processors allocated */

3. Assign task  to processor  if this task together with the tasks that have been
assigned to  can be feasibly scheduled on  according to Condition IP. If not,
assign task  to  and set j = j + 1.

4. If i < n, then set i = i + 1 and go to step 3 else stop.

When the algorithm finishes, the value in j is the number of processors required to execute a
given set of tasks. In order to obtain the tight bound of its worst-case performance, we prove that
the upper bound given by Dhall and Liu is indeed the real upper bound by showing that for a
given number of processors in the optimal schedule, a task set which can achieve the worst-case
upper bound under Algorithm RMNF can always be constructed. The upper bound was stated in
Theorem 3.1, the proof of which can be found in [12]. The low bound, as given in Theorem 3.2,
requires surprisingly a much involved proof.

Theorem 3.1: For all sets of tasks, ≤ 2.67, where N0 is the minimum number of
processors required to feasibly schedule the same set of tasks, and N is the num-
ber of processors obtained by Algorithm RMNF.

Theorem 3.2: Let  be the number of processors required to feasibly schedule a set of tasks by
Algorithm RMNF, and  the minimum number of processors required to feasi-
bly schedule the same set of tasks. Then . Together with The-
orem 3.1, it is concluded that  = 2.67.

Proof: In order to find the worst-case situations, where the biggest ratio between N and N0 is

achieved, it is necessary to find those sets of tasks, which, when scheduled by Algorithm RMNF,

use as many processors as possible. In other words, for a given set of tasks, where the total utiliza-

tion is fixed, the worst case is achieved by appropriately allocating the utilization for each task

and ordering the tasks in a certain way such that the number of processors required to execute the

τx l, ux l,
τx l, τi ui

τi Pj
Pj Pj

τi Pj 1+

N N0⁄
N0 ∞→

lim

N
N0

N N0⁄
N0 ∞→

lim 2.67≥
ℜ RMNF( )
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task set is maximized according to the RMNF Algorithm.

The function f (u, m) = 2(1 + u/(m-1))-(m-1) - 1 is a strictly decreasing function with regards

to m, and it approaches the minimum utilization factor given by 2e-u - 1 when m approaches infin-

ity. In fact, for a sufficiently large number m, 2(1 + u / (m-1))-(m-1) - 1 approaches 2e-u - 1 very

quickly. Therefore, we claim that the following set of N*(m + 1) tasks requires N processors for

sufficiently large m and small ε, when scheduled by Algorithm RMNF:

(α, 1), , ……, (α, 1),

m m

where the value of α is obtained by solving the equation α = 2e-α - 1. α ≈ 0.3745. That N

processors are used by Algorithm RMNF to schedule the N*(m + 1) tasks is because α > 2e-(α+mε)

- 1. The total utilization of this set of tasks is therefore equal to Nα + Nmε. If this task set can be

perfectly scheduled on N0 = Nα + Nmε in the optimal schedule, then ℜ =  = N / (Nα + Nmε)

≈ 1 / α ≈ 2.67, for very small ε such that mε is small. Unfortunately, since α ≈ 0.3745, the above

task set can not be perfectly scheduled in the optimal schedule using only Nα + Nmε processors,

unless the execution of a task can be interrupted (not because of the rate-monotonic property), and

its execution be resumed on another processor immediately. This later requirement is often

referred to as processor migration. This implies that rate-monotonic algorithm is not honored in

the optimal schedule.

Though the above example does not suit our purpose, there are a number of things that we

can adopt from the above example in finding the worst-case examples. First, the last tasks

assigned to each processor in the completed RMNF schedule is a very large number m of tasks

each with a very small utilization ε such that mε is small. Then the equation f(u) = 2e-u - 1 is used

as the schedulability test condition. Second, on each processor in the completed RMNF schedule,

it is always assigned, as the first task, a task with a large utilization (compared to ε), followed by,

with few exceptions, m tasks each with a very small utilization ε subsequently. From now on, we

only concern ourselves with the utilization of the first task on each of processors in the completed

RMNF schedule. The following set of the tasks (tasks with ε utilization excluded) gives the

worst-case performance of Algorithm RMNF:

(0.402764, 1), (0.336940, 1), (0.427903, 1), (0.303749, 1),

(0.476093, 1), (0.242412, 1), (0.569466, 1), (0.131655, 1), (0.223080, 1)

(0.402764, 1), (0.336940, 1), (0.427903, 1), (0.303749, 1),

(0.476093, 1), (0.242412, 1), (0.569466, 1), (0.131655, 1).

The utilization of  is given by  for 1 ≤ i ≤ 7 and 9 ≤ i ≤ 16. According to the

reasons given above, the first 8 tasks (tasks with ε utilization excluded) occupy 8 processors in

the completed RMNF schedule, the 9th task is scheduled on the 8th processor, and the rest of the

ε 1,( ) ……, ε 1,( ),

        

ε 1,( ) ……, ε 1,( ),

        

N
N0

ui 1+ 2e
ui−

1−
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8 tasks are scheduled on 8 processors, for the same reasons. Therefore the total number of proces-

sors used in the completed RMNF schedule is 16. Excluding the 9th task, these 16 tasks can be

optimally scheduled on 6 processors, as shown below:

Processor 1: tasks 1 and 5. Processor 2: tasks 2 and 6. Processor 3: tasks 3 and 4. Processor

4: tasks 7, 8, and 16. Processor 5: tasks 10, 11, and 12. Processor 6: tasks 13, 14, 15, and 17. The

total utilizations of these processors are 0.997369, 0.997369, 0.952186, 0.937183, 0.977629, and

0.920228, respectively. Obviously task 9 can not be scheduled into any of these 6 processors,

though the total available processor utilization on the 6 processors is larger than the utilization of

the 9th task. If the 9th task is replaced by a number of tasks each with a small utilization, yet their

total utilizations add up to 0.223080, then the number of processors required to execute this new

set of tasks is still 6 in the optimal schedule, since those newly replacing tasks can be now sched-

uled on the 6 processors. The replacement of the 9th task does not change the number of proces-

sors used in the RMNF schedule either. Therefore, ℜ =  = 16 / 6 ≈ 2.67.

Yet, in order to prove the theorem, we need to show that for any given number , a task set

can be constructed such that the ratio 2.67 is achieved. Even though we only give one task set

above as the example where this worst-case ratio is indeed achieved, we claim that the 2.67 ratio

is indeed achievable for different numbers of . For any given number , the task set that can

achieve the worst-case ratio can be constructed. However, the construction has to be done in a

case by case manner, similar to the above example. The claim lies in the fact that, if the utilization

of a task (tasks with ε utilization excluded) is given by  =  for 1 ≤ i ≤ N-1, and u1 >

α, then the total utilization of the N tasks is given by Nα + Nmε. The ratio is then given by ℜ =

 < N / (Nα + Nmε) ≈ 2.67. The key, of course, is to find many sequences of s such that they

can be perfectly scheduled in the optimal scheduled without requiring process migration. Note

that with u1 > α ≈ 0.3745, and  =  for 1 ≤ i ≤ N - 1,  +  < 2α for 1 ≤ i ≤
, as shown in Figure 1. ≤ Nα if N is even. ≥ Nα if N is odd, since

+  > 2α for 1 ≤ i ≤ .

N
N0

N0

N0 N0

ui 1+ 2e
ui−

1−

N
N0

ui

ui 1+ 2e
ui−

1− u2i 1− u2i

N 2⁄ uii 1=
N∑ uii 1=

N∑ u2i

u2i 1+ N 1−( ) 2⁄

Figure 1: Properties of Condition IP
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From Theorem 3.1, it is concluded that ℜ =  = 2.67. Q.E.D.

IV. Tight Bound for Rate-Monotonic-First-Fit

In assigning tasks to processors, Algorithm RMNF only checks the current processor to see

whether a task together with those tasks that have already been assigned to that processor can be

feasibly scheduled or not. If not, the task has to be scheduled on an idle processor, even though

the task may be scheduled on those processors used earlier. To overcome this waste of processor

utilization, the RMFF Algorithm always starts to check the schedulability of a task on processors

with lower indexes, i.e., those processors on which some tasks have been assigned. This algorithm

is given as follows:

Algorithm RMFF: Let the processors be indexed as P1, P2, …, with each initially in the

idle state, i.e., with zero utilization. The tasks τ1, τ2, …, τn, which are ordered according to non-

decreasing periods, will be scheduled in that order. To schedule τi, find the least j such that task

τi, together with all the tasks that have been assigned to processor Pj can be feasibly scheduled

according to Condition IP for a single processor, and assign task τi to Pj.

Algorithm RMFF can be described in a more algorithmic format as follows:

Algorithm RMFF (Input: task set ∑; Output: m)

1. Tasks are sorted in the non-decreasing order of their periods.

2. Set i = 1 and m = 1. /* i denotes the ith task, m the number of processors allocated*/

3. (a) Set j = 1. /* j denotes the jth processor */

(b)  If ≤ , assign task τi to Pj, i.e., increment  =  + 1 and

=  + , and set m = j if j < m, where  and  denote the number of tasks

already assigned to processor Pj and the total utilization of the  tasks, respec-

tively, and  denotes the utilization of task τi. Otherwise, increment j = j + 1 and

go to step 3(b).

4. If i > n, i.e., all tasks have been assigned, then return m. Otherwise increment i = i + 1

and go to step 3(a).

When the algorithm terminates, m is the number of processors required for scheduling the

given set of tasks according to the RMFF Algorithm. Since an idle processor will not be used

until all the processors with some utilizations can not execute an incoming task, it is therefore

expected that Algorithm RMFF would have better performance than that of Algorithm RMNF,

which was shown to be the case, to some extent, by Dhall and Liu [5]. The following results were

N
N0m ∞→

lim

ui 2 1 Uj kj⁄+( ) kj− 1− kj kj Uj

Uj ui kj Uj

kj

ui
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obtained in [5].

Lemma 1: If  tasks can not be feasibly scheduled on  processors according to the RMFF
Algorithm, then the utilization factor of the set of tasks is greater than .

Lemma 2: If tasks are assigned to the processors according to the RMFF Algorithm, among all
processors to each of which two tasks are assigned, there is at most one processor for
which the utilization factor of the set of the two tasks is less than 1/2.

Theorem 1: Let  be the number of processors required to feasibly schedule a set of tasks by the
RMFF Algorithm, and  the minimum number of processors required to feasibly
schedule the same set of tasks. Then as  approaches infinity, 2 ≤ N/N0 ≤ 4 × 21/3 /
(1 + 21/3) (≈ 2.23).

Unfortunately, Lemma 1 is incorrect, as shown by the following counter example. Lemma 2
gives a weak result for RMFF Algorithm. These two errors led the authors to arrive at the wrong
upper bound. In the following, we first show the incorrectness of Lemma 1, and present its correct
version. We then give a strong version of Lemma 2. A new upper bound is proven finally.
Example: Consider the case where m = 2 and the two tasks are given as follows:

τ1 = (21/2 - 1, 1)
τ2 = (2 - 21/2 + ε, 21/2), where ε is a small number and ε > 0.
According to the RMFF Algorithm, τ1 is first assigned to a processor. Since u1 = 21/2 - 1

and 2 (1 + u1)-1 -1 = 21/2 - 1 < 21/2 - 1 + ε / 21/2 = u2, τ2 can not be scheduled together with task
τ1 on one processor, according to Condition IP. Since τ1 and τ2 can not be scheduled on one pro-
cessor, u1 + u2 must be greater than 2/(1 + 21/3) ≅ 0.88 according to Lemma 1. But u1 + u2 = 2(21/

2 - 1) + ε / 21/2 = 0.8284 + ε / 21/2, which is less than 0.88 for small ε.
When m > 2, similar examples can be constructed to show the incorrectness of Lemma 1.

Henceforth, a new version of Lemma 1 is given as follows:
Lemma 4.1: If m tasks can not be feasibly scheduled on m - 1 processors according to the RMFF

Algorithm, then the utilization factor of the set of tasks is greater than m / (1 + 21/2)
= .

Proof: The proof is by induction.

(1) m = 2. Suppose u1 and u2 are the utilizations of two tasks which can not be scheduled on
a processor according to Condition IP, i.e., u2 > 2(1 + u1)-1 - 1. u1 + u2 = u1 + 2(1 + u1)-1 - 1. To
find the minimum of f(u1) = u1 + 2(1 + u1)-1 - 1, we take the derivative of function f(u1), and solve
for u1. The minimum of f(u1) is achieved when u1 = (21/2 - 1). Therefore u1 + u2 > 2(21/2 - 1).

(2) Suppose the Lemma is true for , i.e.,

 > (E.Q.1)

where ui is the utilization of task i.

When , the (k + 1)th task can not be scheduled on any of the k processors, i.e.,
, where . Summing up the k equations yields

 +  > (E.Q.2)

m m 1−
m 1 21 3⁄+( )⁄

N
N0

N0

m 21 2⁄ 1−( )

m k=

uii 1=
k∑ k 21 2⁄ 1−( )

m k 1+=
ui uk 1+ 2 21 2⁄ 1−( )>+ 1 i k≤ ≤

uii 1=
k∑ kuk 1+ 2k 21 2⁄ 1−( )
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Multiplying k -1 on both sides of equation (E.Q.1) yields

(k -1)  > (k - 1) (E.Q.3)

Adding up equations (E.Q.2) and (E.Q.3) and dividing the new equation on both sides byk
yields  > . Therefore Lemma 4.1 is proven. Q.E.D.

A strong version of the original lemma Lemma 2 by Dhall and Liu is given as follows:

Lemma 4.2: If tasks are assigned to the processors according to theRMFF Algorithm, among all
processors to each of which two tasks are assigned, there is at most one processor for
which the total utilization factor of the two tasks is less than or equal to2(21/3-1) ≈
0.52.

Proof: This lemma is proven by contradiction. Suppose that the contrary is true. Let and
be the two tasks assigned to processorPj, and  and  be the two tasks assigned to processor
Pk with j < k, such that

 + ≤ 2(21/3-1)
and

 + ≤ 2(21/3-1), (E.Q.4)

where  is the utilization of task .
There are three cases to consider. Note that the testing condition used isCondition IP, i.e.,

if a task’s utilizationC / T ≤  - 1, then this task together with them - 1
tasks which have already been assigned to a processor can be feasibly scheduled by the rate-
monotonic scheduling algorithm, where . The
function f(u, m) =  - 1 is a strictly decreasing function with regards to
u andm.

Case 1: Tasks  and  were assigned to processorPk after task  had been
assigned to processorPj. According toRMFF, we must have

 > 2(1 + (  + ) / 2)-2 - 1
and

 > 2(1 + (  + ) / 2)-2 - 1
Summing up these two inequalities, we have

 +  > 4(1 +  (  + ) / 2)-2 - 2 > 4(1 + 21/3-1)-2 - 2 = 2(21/3-1)
which is a contradiction to (E.Q.4).
Case 2: Tasks  and  were assigned to processorPk after task  had been

assigned to processorPj, but before task . According toRMFF, we must have
 > 2(1 + )-1 - 1

and
 > 2(1 + )-1 - 1

Summing up these two inequalities yields
 +  > 4(1 + )-1 - 2 > 4(1 + 2(21/3-1))-1 - 2) > 2(21/3-1)

since ≤ 2(21/3-1) and2(1 + 2(21/3-1))-1 > 21/3. However, this is again a contradiction
to (E.Q.4).

Case 3: Task  was assigned to processorPk after task  had been assigned to pro-

uii 1=
k∑ k 21 2⁄ 1−( )

uii 1=
k 1+∑ k 1+( ) 21 2⁄ 1−( )

τj 1, τj 2,
τk 1, τk 2,
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ux l, τx l,

2 1 u m 1−( )⁄+( ) m 1−( )−

u Ci Ti⁄i 1=
m 1−∑ m 1−( )≤= 21 m 1−( )⁄ 1−( )

2 1 u m 1−( )⁄+( ) m 1−( )−

τk 1, τk 2, τj 2,

uk 1, uj 1, uj 2,

uk 2, uj 1, uj 2,

uk 1, uk 2, uj 1, uj 2,

τk 1, τk 2, τj 1,
τj 2,

uk 1, uj 1,

uk 2, uj 1,

uk 1, uk 2, uj 1,
uj 1,

τk 1, τj 1,



-  11 -

cessor Pj, and task  was assigned to Pk after task  had been assigned to Pj. According to
RMFF, we must have

 > 2(1 + )-1 - 1
and

 > 2(1 + (  + ) / 2)-2 - 1 > 2(1 + 21/3-1)-2 - 1 = (21/3-1)
Summing up these two inequalities yields

 +  > 2(1 + )-1 - 1 + (21/3-1) > 2(1 + 2(21/3-1))-1 - 1 + (21/3-1) > 21/3-
- 1 + (21/3-1) = 2(21/3-1)

which is again a contradiction to (E.Q.4). Q.E.D.
Actually, a more generalized result is obtained for the case where the number of tasks

assigned to a processor is arbitrary. The proof of the following lemma is given in the appendix.

Lemma 4.3: If tasks are assigned to the processors according to the RMFF Algorithm, among all
processors to each of which n ≥ 1 tasks are assigned, there is at most one processor
for which the utilization factor of the n tasks is less than or equal to n(21/(n+1)-1).

Theorem 4.1: Let  be the number of processors required to feasibly schedule a set of tasks by
the Algorithm RMFF, and  the minimum number of processors required to
feasibly schedule the same set of tasks. Then ≤  /

 ≈ 2.33.
In order to prove the above bound, we define a function that maps the utilizations of tasks

into the real interval [0, 1] as follows:

or

τk 2, τj 2,

uk 1, uj 1,

uk 2, uj 1, uj 2,

uk 1, uk 2, uj 1,

n 21 n 1+( )⁄ 1−( )
n ∞→
lim ln2=

N
N0

N N0⁄
N0 ∞→

lim 2 3 23 2⁄−( )+
2 21 3⁄ 1−( )( )

f u( )
u 2 21 3⁄ 1−( )( )⁄ 0 u 2 21 3⁄ 1−( )<≤

1 2 21 3⁄ 1−( ) u 1≤ ≤
{=

u

f(u)

1.0

1/2

0
1

Figure 2: Mapping Function for RMFF and RMBF

a=0.52
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, where a = .

Let  be kj tasks assigned to processor Pj, and let . The

deficiency δj of processor Pj is defined as

The coarseness αj of processor Pj is defined as

Lemma 4.4: For Algorithm RMFF, the following properties hold:
(1) No task is assigned to an idle processor unless it can not be assigned in any non-

idle processor.

(2) If a processor P has a coarseness of α, then the utilization of each task that was

assigned to P exceeds α.

Proof: For Algorithm RMFF, properties (1) and (2) hold according to its definition. Q.E.D.

Lemma 4.5: If a processor is assigned a number of tasks , with utilizations
, then , where a = .

Proof: Without lose of generality, it is assumed that u1 ≥ u2 ≥ … ≥ um. If u1 ≥ a, then u2 < a.

 = f(u1) +  = 1 + ( ) / a ≤ 1 + (1 - a) / a = 1 / a. Otherwise (u1 <

a), then  =  / a ≤ 1 / a. Q.E.D.

Lemma 4.6: Suppose tasks are assigned to processors according to RMFF Algorithm. If a proces-
sor with coarseness α ≥ a / 3 is assigned m ≥ 3 tasks, then , where

 are utilizations of the m tasks  that are assigned to the
processor.

Proof: According to Lemma 4.4,  > α ≥ a / 3 for . If one of the tasks has a utilization

greater than a, then . Otherwise,  =  / a ≥  / a ≥ 1,

since m ≥ 3. Q.E.D.

Lemma 4.7: Suppose tasks are assigned to processors according to RMFF Algorithm. If a proces-
sor with coarseness α < a / 3 is assigned m ≥ 3 tasks  with utilizations

, and ≥ ln2 - α, then .
Proof: If one of the tasks  has a utilization greater than a, then .

Otherwise,  =  / a ≥ (ln2 - α) / a ≥ (ln2 - a /3) / a ≥ 1. Q.E.D.

Lemma 4.8: Suppose tasks are assigned to processors according to RMFF Algorithm. If a proces-
sor with coarseness α is assigned m ≥ 1 tasks  with utilizations

, and = 1 − β where β > 0, then
(1) m = 1 and < a or

f u( )
u a⁄ 0 u a<≤
1 a u 1≤ ≤

{= 2 21 3⁄ 1−( )
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(2) m = 2 and  + < a or

(3) m ≥ 3 and ≤ ln2 - α - aβ.
Proof: (1) If m = 1 and ≥ a, then ≥ 1, which is a contradiction.

(2) If m = 2 and  + ≥ a, then ≥ 1, which is again a contradiction.

(3) If properties (1) and (2) do not hold, then m ≥ 3. Since  < 1, α must be less

than a / 3 and < ln2 - α according to Lemma 4.6 and Lemma 4.7. Let  = ln2 -

α - γ, where γ > 0. To find out the relationship between γ and β, let us replace the first three tasks

, and  by three new tasks with utilizations υ1, υ2, and υ3, such that υ1 + υ2 + υ3 = u1 +
u2 + u3 + γ, υ1 ≥ u1, υ2 ≥ u2, υ3 ≥ u3, and υ1 < a, υ2 < a, υ3 < a. According to Lemma 4.7,

f(υ1) + f(υ2) + f(υ3) + ≥ 1. Since f(υ1) + f(υ2) + f(υ3) = f(u1) + f(u2) + f(u3) + f(γ)

= f(u1) + f(u2) + f(u3) + γ / a, γ / a + 1 - β ≥ 1. γ ≥ aβ. Therefore, ≤ ln2 - α - aβ.

Q.E.D.

Proof of Theorem 4.1: Let Σ = { } be a set of m tasks, with their utilizations

 respectively, and ϖ = . By Lemma 4.5, ϖ ≤ N0 / a, where a =

.

Suppose that among the N number of processors used by RMFF Algorithm to schedule a

given set Σ of tasks, L of them has  with βi > 0, where j ranges over all tasks in

processor i among the L processors. Let us divide these processors into three different classes:

(1) Processors that only one task is assigned. Let n1 denote the number of processors in this

class.

(2) Processors that two tasks are assigned. Let n2 denote the number of processors in this

class. According to Lemma 4.2, there is at most one processor whose utilization in the

RMFF schedule is less than or equal to a = . Therefore n2 = 0 or 1.

(3) Processors that at least three tasks are assigned. Let n3 denote the number of processors

in this class.

Obviously, L = n1 + n2 + n3. For each of the rest N - L processors, ≥ 1, where j

ranges over all tasks in a processor.

For the processors in class (1),  > n1 (21/2 - 1) according to Lemma 4.1. Since

 < 1,  < a, and therefore  > n1 (21/2 - 1) / a. Moreover, according to

Lemma 4.9, there is at most one task whose utilization is less than or equal to (21/2 - 1). In the

optimal assignment of these tasks, the optimal number N0 of processors used can not be less than

n1 /2, i.e., N0 ≥ n1 /2, since possibly with one exception, any three tasks among these tasks can not

be scheduled on one processor.

u1 u2

uii 1=
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u1 f ui( )i 1=
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u1 u2 f ui( )i 1=
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f ui( )i 1=
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For the processors in class (3), let Q1, Q2, ……,  denote the n3 processors in this class,

and  be the coarseness of processor , and  = 1 - βi with βi > 0, for 1 ≤ i ≤ n3. For

processor i, ≤ ln2 -  - aβi according to Lemma 4.8.

According to the definition of coarseness, ≥ ≥ ln2 - , since  = 2

- 1 > 2  - 1 > ln2 - Ui. Therefore ≥  + aβi, for 1 ≤ i < n3. Summing up these (n3 - 1)

equations yields

≤  -  < a / 3, i.e.,  < 1 / 3.

≥ n3 - 1 -  > n3 - 4 / 3.

Now we are ready to find out the relationship between N and N0.

ϖ = ≥ (N - L) + n1 (21/2 - 1) / a + n3 - 4 / 3

= N - n1 - n2 - n3 + n1 (21/2 - 1) / a + n3 - 4 / 3

= N - n1(1 - (21/2 - 1) / a) - n2 - 4 / 3

≥ N - 2N0(1 - (21/2 - 1) / a) - n2 - 4 / 3, where a = .

Since ϖ ≤ N0 / a by Lemma 4.5,

N0 / a ≥ N - 2N0(1 - (21/2 - 1) / a) - n2 - 4 / 3 ≥ N - 2N0(1 - (21/2 - 1) / a) - 7 / 3.

Therefore, N / N0 ≤ (2a + 1 - 2(21/2 - 1)) / a + 7/(3N0).

≤ (2a + 1 - 2(21/2 - 1)) / a ≈ 2.33. Q.E.D.

Theorem 4.2: Let  be the number of processors required to feasibly schedule a set of tasks by
RMFF Algorithm, and  the minimum number of processors required to feasi-
bly schedule the same set of tasks. Then .

Proof: In order to find the bound ℜ = , we proceed by finding the maximum number

of processors needed to schedule a certain set of tasks using RMFF Algorithm, given that the

optimal number of processors required to schedule the same set of tasks is known. In the process,

the desired set of tasks is constructed. Note that this process is exactly opposite to how a set of

tasks is scheduled.

Let  = m, where m is a natural number. A set of tasks, which uses exactly  number of

processors in the optimal schedule, is to be specified in the following. Without generality, all

tasks are assumed to have a period of 1. This set of tasks consists of a theoretically infinite

regions, given that  is sufficiently large. The regions of tasks are given as follows. Note that the

regions specified first are scheduled last in the RMFF Algorithm, in other words, they appear last

in the task set.

Region 1: There are 2  number of tasks each with a utilization of u1 = (21/2 - 1) + ε, where

Qn3

αi Qi f ul( )l 1=
ki∑
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ε is a arbitrary small number. These 2  tasks will utilize 2  number of processors in the

RMFF schedule, while requires only  number of processors in the processors in the optimal

schedule. If ≤ 2, then we have found ℜ = 2.

Region 2: If 3 ≤ ≤ 5, there are  tasks, each of which has a utilization of u2 = (21/5 - 1).

These  tasks utilize one processors in the RMFF schedule, while requires no extra processor in

the optimal schedule, only to fill part of the utilization left by tasks in region 1, i.e., (21/5 - 1) < 1 -

2*((21/2 - 1) + ε). Note that tasks in region 1 can not be scheduled on this processor, since u1 >

2(1 + 3u2 / 3)-3 - 1. N = 2  + 1. The bound is given by ℜ = 2  /  + 1 / .

Region 3: If 6 ≤ ≤ 9, the tasks in regions 1 and 2 are included. Furthermore, there are

three more tasks each having a utilization of (21/5 - 1) and six tasks each with a utilization of u3 =

1 - 2*((21/2 - 1) + ε) - (21/5 - 1) - ε. These nine tasks use one processor in the RMFF schedule,

while requires no extra processor in the optimal schedule, only to fill part or all of the utilization

left by tasks in regions 1 and 2. Note that since u2 > 2(1 + (3u2 + 6u3) / 10)-10 - 1. The tasks in

region 2 can not be scheduled on the processor occupied by tasks in this region. N = 2  + 2, and

the bound is therefore given by ℜ = 2  /  + 2 / .

Region 4: If 10 ≤ ≤ 12, the tasks in regions 1, 2, and 3 are included. Furthermore, there

are four more tasks each having a utilization of (21/5 - 1), except the last one with a utilization of

(21/5 - 1) + ε, where ε is an arbitrary small number. These four tasks are placed in one processor

in the RMFF schedule, while requires no extra processor in the optimal schedule, only to fill part

of the utilization left by tasks in regions 1, 2, and 3. Note that these tasks do not appear first in the

task, rather they follow after the nine tasks in region 3, but before the three tasks each having a

utilization of (21/5 - 1). Since 5(21/5 - 1) - 4u2 < u2. The last three tasks in region 3 can not be

scheduled on the processor occupied by tasks in this region. N = 2  + 3, and the bound is there-

fore given by ℜ = 2  /  + 2 / .

This process continues until the largest value of N is found for a given , as illustrated by

Figure 3. Note that the value ui is determined by finding the smallest k such that ui = (21/k - 1) and

ui ≤ 1 - , for i ≥ 2.

For a given , N = 2  + 1 +  + 1 +  + …… The bound

is given by

ℜ =  = ≈ 2.30. (E.Q.5)

For example, given  = 27, we construct a set of tasks which, according to RMFF Algo-
rithm, requires N = 62 number of processors.

There are 2  = 54 number of tasks with utilization u1 = (21/2 - 1) + ε, where ε is a arbitrary

small number. There is one processor occupied by three tasks each with a utilization of u2 = (21/5

- 1). There are  = 6 number of processors occupied by 6*4 tasks each with a utili-

zation of (21/5 - 1). There is finally a processor occupied by 25 tasks each with a utilization of u3
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= 1 - 2*((21/2 - 1) + ε) - (21/5 - 1) - ε. The set of tasks is given as follows. Note that the total num-

ber of tasks is 106.

 = (u3, 1), for 1 ≤ i ≤ 25.

 = (u2, 1) for 26 ≤ i ≤ 52 except i = 29, 33, 37, 41, 45, 49, where  = (u2 + ε, 1).

 = (u1, 1) for 53 ≤ i ≤ 106.

According to RMFF Algorithm, The first 25 tasks are scheduled on the first processor.

Since u2 > 2(1 + 25u3 / 25)-25 - 1, the 26th task is scheduled on the second processor. The 29th

task can not be scheduled on the second processor, since u2 + ε > 2(1 + 4u3 / 4)-4 - 1. Proceeding

in this fashion, the 23 successive tasks occupy 6 processors. The 53th task have to be scheduled

on the 8th processor, since u1 + ε > 2(1 + 3u3 / 34)-3 - 1. The rest of the 53 tasks occupies 53 pro-

cessors, one task for a processor, since (21/2 - 1) + ε > 2(1 + u1)-1 - 1 = 2 / (21/2 + ε) - 1. The total

number of processors required is thus N = 62. The bound is given by ℜ = ≈ 2.30.

Table 1: Performance of RMFF (and also RMBF)

N0 ℜ(RMFF) N0 ℜ(RMFF)

2 2 10 2.30

3 2.33 11 2.29

4 2.25 12 2.25

5 2.20 13 2.31

6 2.33 17 2.29

7 2.29 20 2.30

8 2.25 27 2.30

9 2.22 48 2.29

0.41413x0.1487
=0.4461

4x0.1487
=0.5948

25x0.56527
=0.565275

30x0.0226
=0.678343

ε+υ ε+υε+υ

2551x0.00263
=0.67088

ε+υ

30x0.00263
=0..693238

ε+υ

0.4141

0.4141

N02N01N0 3−( ) 4⁄1N0 25−( ) 30⁄1

Figure 3: RMFF vs Optimal

(a) RMFF Schedule (b) Optimal Schedule

Direction of
allocating processors

τi

τi τi

τi

N
N0
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The exact performance bounds for several given optimal number of processors are given in

Table 1. We conjecture that the above formula (E.Q.5) gives the EXACT tight bound for RMFF
Algorithm. Q.E.D.

V. Tight Bound for Rate-Monotonic-Best-Fit

When Algorithm RMFF schedules a task, it always assigns it to the lowest indexed proces-

sor on which the task can be scheduled. This strategy may not be optimal in some cases. For

example, the lowest indexed processor on which a task is scheduled may be the one with the larg-

est available utilization among all those busy (non-idle) processors. This processor could have

been used to execute a future task with large enough utilization so that it could not be scheduled

on any busy processors, had it not been assigned a task with a small utilization earlier on. In order

to overcome these likely disadvantages, a new algorithm is designed as follows, which is based on

the Best-Fit bin-packing algorithm.

Algorithm RMBF: Let the processors be indexed as P1, P2, …, with each initially in the

idle state, i.e., with zero utilization. The tasks τ1, τ2, …, τn, which are ordered according to their

non-decreasing periods, will be scheduled in that order. To schedule τi, find the least j such that

task τi, together with all the tasks that have been assigned to processor Pj can be feasibly sched-

uled according to Condition IP for a single processor, and 2  - 1 be as small as pos-

sible, and assign task τi to Pj, where  and  are the number of tasks already assigned to

processor Pj and the total utilization of the  tasks, respectively, and  is the utilization of task

τi.

Surprisingly, even with this modification in assigning tasks to processors, the RMBF

Algorithm does not outperform Algorithm RMFF in the worst-case, as shown by Theorem 5.1

and Theorem 5.2. Before we prove the tight bound for RMBF, the following definition is needed,

which is key to the proof of Theorem 5.1.

Definition 1: For all the processors required to schedule a given set of tasks by the RMBF Algo-
rithm, they are divided into two types of processors:

Type (I): For all the tasks  with utilizations  that were

assigned to a processor Px in the completed RMBF schedule, there exists at least

one task  with i ≥ 2 that was assigned to Px, not because it could not be assigned

on any processor Py with lower index, i.e., y < x, but because

2  - 1 < 2  - 1, where

is the number of tasks assigned to processor Py. Processor Px is called a Type (I)

processor. Such a task  is, for convenience, referred to as a task with Type (I)
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property.

Type (II): They consist of all the processors that do not belong to Type (I).

Lemma 5.1: For Algorithm RMBF, the following properties hold:
(1) No task is assigned to an idle processor unless it can not be assigned in any non-

idle processor.

Proof: For Algorithm RMBF, properties (1) is true according to its definition. Q.E.D.

Lemma 5.2: If  tasks can not be feasibly scheduled on  processors according to the
RMBF Algorithm, then the utilization factor of the set of tasks is greater than

.
Proof: The proof of this lemma is similar to that of Lemma 4.1. Q.E.D.

The two lemmas given below follow directly from Lemma 4.2 and Lemma 4.3.

Lemma 5.3: In the completed RMBF schedule, among all processors of Type (II), to each of
which two tasks are assigned, there is at most one processor for which the total utili-
zation factor of the set of the two tasks is less than or equal to 2(21/3-1).

Lemma 5.4: In the completed RMBF schedule, among all processors of Type (II), to each of
which n tasks are assigned, there is at most one processor for which the total utiliza-
tion factor of the set of the n tasks is less than or equal to n(21/(n+1)-1).

.
Lemma 5.5: In the completed RMBF schedule, if the second task on any of the Type (I) proces-

sors has Type (I) property, then the first task on that processor has a utilization
greater than (21/2-1).

Proof: Let  and  be the first and second tasks assigned to processor Pk of Type (I), and Py,
with y < k, is one of the processors on which  could have been scheduled, but 2(1 + )-1 - 1
< 2  - 1, where  is the number of tasks assigned to processor Py, and
where  is the utilization of task .

Since  > 2  - 1 (note that this is true even though  is
assigned to processor Pk before some of tasks among the  tasks are assigned to processor Py),

 > 2  - 1 > 2(1 + )-1 - 1. Therefore  > (21/2-1). Q.E.D.

Lemma 5.6: In the completed RMBF schedule, if the mth task on any of the Type (I) processors
has Type (I) property, where m ≥ 3, then the total utilization of the first (m-1) tasks
on that processor is greater than (m-1)(21/m-1).

The proof of this lemma is given in the appendix.

The following lemma is key to the proof of Theorem 5.1.

Lemma 5.7: In the completed RMBF schedule, among the processors of Type (I) on which the
second task has Type (I) property, there are at most three of them, each of which has
a total utilization less than 2(21/3-1).

Proof: This lemma is proven by contradiction. Let Pi, Pj, Pk, and Pl be the four processors, each

m m 1−
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of which has a total utilization less than 2(21/3-1) with i < j < k < l, i.e.,

 < 2(21/3-1)

 < 2(21/3-1)

 < 2(21/3-1)

 < 2(21/3-1)

whereni ≥ 2, nj ≥ 2, nk ≥ 2, andnl ≥ 2 are the number of tasks assigned to processorsPi,

Pj, Pk, andPl, respectively.

Let’s define  and  to be the utilizations of the first task  and second tasks

assigned to processorPi,  and  to be the utilizations of the first task  and second tasks

 assigned to processorPj.  and ,  and  are similarly defined. We further

assume that  is the number of tasks which have been assigned to processorPi, when the second

task on processorPj is assigned. Note thati < j and 1 ≤ ≤ nj.

There are three cases to consider.

Case 1: Tasks  and  are assigned to processorPj after task  is assigned to proces-

sorPi. Since task  is a Type (I) task, the following inequality must hold

2(1 + )-1 - 1 < 2  - 1

Note that ≥ 2, i.e., other tasks may have been assigned to processorPi after task  but

before  is assigned to processorPj.

Since 2  - 1 ≤ 2(1 + (  + ) / 2)-2 - 1 < 2(1 +  / 2)-2 - 1,

2(1 + )-1 - 1 < 2(1 +  / 2)-2 - 1, i.e.,1 +  > (1 +  / 2)2.

Case 2: Tasks  and  are assigned to processorPj after task  is assigned to proces-

sorPi but before task  is assigned to processorPi.

This case is impossible withRMBF scheduling. Since  < 2(21/3-1) and  >

(21/2-1) according to Lemma 5.5,  < 2(21/3-1) - (21/2-1) ≈ 0.1056. Since task  is assigned

to processorPj before task  is assigned to processorPi, and task  is a Type (I) task, 2(1 +

)-1 - 1 > 2(1 + )-1 - 1, i.e.,

 < . (E.Q.6)

Since task  is also a Type (I) task, it must be true according to the definition that

2(1 + )-1 - 1 < 2  - 1, where  is the number of tasks that

have been assigned to processorPj after task , but before task  is assigned to processorPi.

Note that it is conceivable that other tasks may have been assigned to processorPj after task

but before task  is assigned to processorPi.

Since 2(1 + )-1 - 1 < 2  - 1 < 2(1 + )-1 - 1,  > .
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This is a contradiction to equation (E.Q.6).

Case 3: Task  is assigned to processor Pj after task  is assigned to processor Pi, and

task  is assigned to processor Pj after task  is assigned to processor Pi. Since task  is a

Type (I) task, the following inequality must hold

2(1 + )-1 - 1 < 2  - 1

Note that ≥ 2, i.e., other tasks may have been assigned to processor Pi after task  but

before  is assigned to processor Pj.

Since 2  - 1 ≤ 2(1 + (  + ) / 2)-2 - 1 < 2(1 +  / 2)-2 - 1,

2(1 + )-1 - 1 < 2(1 +  / 2)-2 - 1, i.e., 1 +  > (1 +  / 2)2.

Therefore for processors Pi and Pj, we have

1 +  > (1 +  / 2)2. (E.Q.7)

For the tasks assigned on processors Pj and Pk, and Pk and Pl, it can be similarly proven that

1 +  > (1 +  / 2)2 (E.Q.8)

1 +  > (1 +  / 2)2 (E.Q.9)

Summing up equations (E.Q.7), (E.Q.8), and (E.Q.9) yields  > ( 2+ 2 + 2) / 4

+ . Since  > (21/2-1),  > (21/2-1), and  > (21/2-1) according to Lemma 5.5,  >

3(21/2-1)2 / 4 + (21/2-1) = 0.5429 > 2(21/3-1). This results in a contradiction to the assumption that

 < 2(21/3-1). Q.E.D.

Theorem 5.1: Let  be the number of processors required to feasibly schedule a set of tasks by
the RMBF Algorithm, and  the minimum number of processors required to
feasibly schedule the same set of tasks. Then ≤
≈ 2.33, where a = .

In order to prove the above bound, we define a function that maps the utilization of tasks

into the real interval [0, 1] as it is done in the previous section. The function is the same as the one

used for RMFF Algorithm.

For a processor Pj, its deficiency δj and its coarseness αj are similarly defined as those for

RMFF Algorithm. Also note that Lemma 4.6, Lemma 4.7, and Lemma 4.8 also hold for those

processors of Type (II) in the RMBF schedule. The following lemma is also true.

Lemma 5.8: If a processor is assigned a number of tasks , with utilizations
, then , where a = .

Proof of Theorem 5.1: Let Σ = { } be a set of m tasks, with their utilizations

 respectively, and ϖ = . By Lemma 5.8, ϖ ≤ N0 / a, where a =

.
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Suppose that among the N number of processors used by RMBF Algorithm to schedule a

given set Σ of tasks, M1 of them belongs to processors of Type (I). Since all processors of Type

(I) must be assigned at least two tasks, there exists for each processor at least an number m with m

≥ 2 such that the mth task is a Type (I) task. For all the processors of Type (I) on each of which

the mth task is a Type (I) task with m ≥ 3,  > 1 since  > 2(21/3 - 1) according to

Lemma 5.6.

When m = 2, there are at most three of them, each of which has a total utilization less than

2(21/3 - 1). Therefore, for all the processors of Type (I), there are at most three processors whose

 is less than 1 in the RMBF schedule.

Now let L = n1 + n2 + n3 be defined similarly as in Section IV, except that they are for pro-

cessors of Type (II). All the results derived in Section IV are applicable to the set of Type (II) pro-

cessors in the RMBF schedule

Now we are ready to find out the relationship between N and N0.

ϖ = ≥ (N - L - 3) + n1 (21/2 - 1) / a + n3 - 4 / 3

= N - n1 - n2 - n3 + n1 (21/2 - 1) / a + n3 - 13 / 3

≥ N - 2N0(1 - (21/2 - 1) / a) - n2 - 13 / 3, where a = .

Since ϖ ≤ N0 / a, N0 / a ≥ N - 2N0(1 - (21/2 - 1) / a) - n2 - 13 / 3

Therefore, N / N0 ≤ (2a + 1 - 2(21/2 - 1)) / a + 16/(3N0).

≤ (2a + 1 - 2(21/2 - 1)) / a ≈ 2.33. Q.E.D.

Theorem 5.2: Let  be the number of processors required to feasibly schedule a set of tasks by
RMBF Algorithm, and  the minimum number of processors required to feasi-
bly schedule the same set of tasks. Then .

Proof: The proof of Theorem 4.2 is applicable to the proof of this theorem. Q.E.D.

VI. Concluding Remarks

In this paper, we are motivated by the increasingly important role played by the rate-mono-

tonic algorithm in designing predictable real-time systems. The problem of scheduling a set of

periodic tasks on a multiprocessor using a fixed priority assignment scheme is studied, and the

performance of the first two scheduling heuristics used to solve the problem is revisited. The

worst-case performance of these algorithms is studied since task deadlines in a hard real-time sys-

tem have to be guaranteed even in the worst cases. The worst-case performance bounds are tight-

ened up to be 2.33 for RMFF and 2.67 for RMNF. A new scheduling algorithm  RMBF was

f uj( )j∑ ujj∑

f uj( )j∑

f ui( )i 1=
m∑

2 21 3⁄ 1−( )

N N0⁄
N0 ∞→

lim

N
N0

N N0⁄
N0 ∞→

lim 2.3≥
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proposed as an alternative to RMFF, and it also has a tight worst-case bound of 2.33. The analytic

results presented here are the few ones on scheduling periodic tasks on multiprocessors.

Since these three algorithms require that tasks are ordered according to their non-decreasing

periods, they are static algorithms. These algorithms obviously are not applicable in situations

where the scheduling decisions have to be made dynamically, since the period of an incoming

task may be shorter than some of the tasks already assigned to some processors. Therefore,

dynamic algorithms need to be developed. We are currently investigating the performance of sev-

eral dynamic algorithms.

Appendix

Before we prove Lemma 4.3, we need to prove the following lemma.

Lemma 4.9: If tasks are assigned to the processors according to the RMFF Algorithm, among all
processors to each of which one task is assigned, there is at most one processor for
which the utilization factor of the task is less than or equal to (21/2-1).

Proof: This lemma is proven by contradiction. The contrary is supposed to be true, i.e., there are
at least two processors, each of which has utilization less than or equal to (21/2-1). Let  be the
task with utilization equal to , that is assigned to processor Pj, and  be the task with utilization
equal to , that is assigned to processor Pk with j < k, such that

≤ (21/2-1) and  ≤ (21/2-1)
Summing up these two inequalities yields

 +  ≤ 2(21/2-1)
This implies that tasks  and  are assigned on a single processor, which is a contradic-

tion to the assumption. Q.E.D.

Lemma 4.3: If tasks are assigned to the processors according to the RMFF Algorithm, among all
processors to each of which n ≥ 1 tasks are assigned, there is at most one processor
for which the utilization factor of the set of the n tasks is less than n(21/(n+1)-1).

Proof: This lemma holds when n is equal to 1or 2 according to Lemma 4.9 and Lemma 4.2. Now
suppose that the lemma holds for n ≤ k. The lemma is proven to be true for n = k + 1 by contradic-
tion. Let n = k + 1, and Pi and Pj with i < j be the two processors on each of which exactly n tasks
are assigned, such that the total utilization of the n tasks on each processor satisfies

 < (k + 1)(21/(k+2)-1) (E.Q.10)

and

τj
uj τk

uk
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uk uk
τj τk
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ui m,m 1=
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 < (k + 1)(21/(k+2)-1). (E.Q.11)

respectively, where ui,m denotes the utilization of the mth task assigned on processor i.
Since processors Pi and Pj are each assigned n = k + 1 tasks, we must have

ui,k+1 ≤ 2(1 + /k)-k - 1
and

uj,k+1 ≤ 2(1 + /k)-k - 1

Assume that ∆i =  and ∆j = . Among the n tasks which are
assigned to processor Pj, task τj, x is the first task that is assigned to processor Pj immediately
after task τi, k+1 was assigned to processor Pi, 1 ≤ x ≤ k+1. We will consider the boundary condi-
tion where task τj, k+1 is assigned to processor Pj before task τi, k+1 is assigned to processor Pi.

Case 1: 1 ≤ x ≤ k+1.
For x ≤ z ≤ k+1, since τj, z can not be scheduled on processor Pi even after τi, k+1 has been

scheduled on Pi, we must have
uj, z > 2(1 + ∆i/(k+1))-(k+1) - 1
Since ∆i =  < (k + 1)(21/(k+2)-1) from equation (E.Q.10),
uj, z > 2(1 + 21/(k+2)-1)-(k+1) - 1 = 21/(k+2)- 1.
For 1 ≤ z < x, since τj, z can not be scheduled on processor Pi before τi, k+1 is scheduled

on Pi, we must have
uj, z > 2(1 + ∆i

y/y)-y - 1, for some y ≤ k and ∆i
y = .

Since 2(1 + ∆i
y/y)-y - 1 ≥ 2(1 + ∆i

k+1/(k+1))-(k+1) - 1, and ∆i =  < (k + 1)(21/

(k+2)-1) from equation (E.Q.10),
uj, z > 21/(k+2)- 1
∆j =  +  > (k+1)(21/(k+2)-1),
which is a contradiction to equation (E.Q.11).
Case 2: The boundary condition where task τj, k+1 is assigned to processor Pj before task

τi, k+1 is assigned to processor Pi.
For 1 ≤ z ≤ k+1, since τj, z can not be scheduled on processor Pi before τi, k+1 is sched-

uled on Pi, we must have
uj, z > 2(1 + ∆i

y/y)-y - 1, for some y ≤ k and ∆i
y = .

Since 2(1 + ∆i
y/y)-y - 1 ≥ 2(1 + ∆i

k+1/(k+1))-(k+1) - 1, and ∆i =  < (k + 1)(21/

(k+2)-1) from equation (E.Q.10),
uj, z > 21/(k+2)- 1
∆j =  > (k+1)(21/(k+2)-1),
which is a contradiction to equation (E.Q.11). Q.E.D.

Lemma 5.6: In the completed RMBF schedule, if the mth task on any of the Type (I) processors

has Type (I) property, where m ≥ 3, then the total utilization of the first (m-1) tasks

on that processor is greater than (m-1)(21/m-1).

Proof: Let  be the tasks that were assigned a processor Pk of Type (I), and

uj m,m 1=
k 1+∑

ui m,m 1=
k∑
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Py, with y < k, is one of the processors on which  could have been scheduled, but
2  - 1 < 2  - 1, where  is the
number of tasks assigned to processorPy, and where  is the utilization of task  on proces-
sorPx.

Since  > 2  - 1 (note that this is true even though  is
assigned to processorPk before some of tasks among the tasks are assigned to processorPy),
for 1 ≤ i ≤ m-1,  > 2 - 1 > 2
- 1. Summing up these(m - 1) inequalities yields

 > 2(m - 1)  - (m - 1).
Solving the above equation yields

 > (m-1)(21/m-1). Q.E.D.
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