Tight Performance Bounds of Heuristicsfor a Real-Time Scheduling Problem
Yingfeng Oh and Sang H. Son

Technical Report No. CS-93-24
May 24, 1993

Tight Performance Bounds of Heuristicsfor a Real-Time
Scheduling Problem

Yingfeng Oh and Sang H. Son
Department of Computer Science
University of Virginia
Charlottesville, VA 22903

Abstract

The problem of scheduling a set of periodic tasks on a number of pro-
cessors using a fixed-priority assignment scheme was first studied by Dhall
and Liu in their paper entitled “On a real-time scheduling problem”. Two
scheduling heuristickl Rate-Monotonic-Next-Fit (RMNF) and Rate-Mono-
tonic-First-Fit (RMFF) were proposed, and their worst-case performance was
proven to have an upper bound of 2.67 and 2.2, and a lower bound of 2.4 and
2.0, respectively. In this paper, we first tighten up the worst-case bounds for
both RMNF and RMFF, and at the same time, correct some errors existing in
the original proof of the upper bound for RMFF. The tight worst-cast bounds
of RMNF and RMFF are proven to be 2.67 and 2.33, respectively. Then, in an
effort to find a more efficient algorithm, we propose a new scheduling heuristic
[l Rate-Monotonic-Best-Fit (RMBF), and study its worst-case performance.
Surprisingly, RMBF also has a tight worst case bound of 2.33.

|. Introduction

The problem of preemptively scheduling a set of periodic tasks with hard deadlines equal to
the task periods on a single processor was first solved by Liu and Layland [12], and Serlin[17]. In
the case of fixed priority assignment, the rate-monotonic algorithm [12] [17] was proven to be
optimal. In the case of dynamic priority assignment, the earliest deadlineEfdB} @lgorithm
[12] was proven to be optimal. The rate-monotonic algorithm assigns priorities to tasks according
to their periods, where the priority of a task is in inverse relationship to its period. The rate-mono-
tonic algorithm has recently gained a lot of recognition since it can be used as a backbone algo-
rithm for designing predictable real-time systems. Many significant results have been obtained

This work was supported in part by ONR, by DOE, and by IBM.

within the framework of rate-monotonic scheduling, for example, the scheduling of tasks which
need to be synchronized [20], the scheduling of tasks which are “imprecise” [13] [14] [21], the
scheduling of aperiodic and sporadic tasks [9] [22], and the scheduling of support to overcome
transient overload [16].

In this paper, we consider the problem of scheduling a set of periodic tasks on a multipro-
cessor system using a fixed priority assignment scheme. The study of scheduling periodic tasks on
a multiprocessor system is justified for various reasons. In some cases, due to heavy computing
demands, multiprocessor support can be the best, perhaps the only, means of providing sufficient
processing power to meet critical real-time deadlines. In other cases, multiprocessor support for a
hard real-time system is a much better choice for reliability than a uniprocessor system, since a
multiprocessor system is generally more reliable than a uniprocessor system. However, the prob-
lem of scheduling a set of periodic tasks, using either fixed priority or dynamic priority assign-
ment, on a number of processors, ifNR-hard problem [11]. For practical purpose, simple
scheduling heuristics which can obtain fast results need to be devised.

There are potentially numerous scheduling heuristics to solve this scheduling problem. A
particular class of scheduling heuristics, which use the rate-monotonic algorithm to schedule the
set of tasks assigned on each individual processor, is especially favored for a number of reasons.
First, the rate-monotonic algorithm is optimal for fixed priority assignment of periodic tasks on a
processor. The reason the fixed priority assignment is used is for practical purposes, such as ease
of implementation and the minimal scheduling overhead involved. Secondly, simple and efficient
bin-packing heuristics can be used to assign tasks onto processors so that the least number of pro-
cessors is used. Finally, since rate-monotonic scheduling is used to schedule tasks on a processor,
many extant results concerning rate-monotonic scheduling of real-time tasks on a single processor
can be readily adapted to accommodate more practical needs of real-time systems, such as, the
scheduling of soft-deadline tasks [10], the scheduling of tasks which need to be synchronized
[20], and the mode change protocols [19] [23].

Dhall and Liu [5] were the first to propose heuristic algorithms to solve this problem. They
proposed two scheduling algorithms, which were called the Rate-Monotonic-NeRMNIF]
and Rate-Monotonic-First-FIRMFF), and analyzed their performance. The worst-case perfor-
mance ofRMNF andRMFF was proven to have a upper bound of 2.67 and 2.23, and a lower
bound of 2.4 and 2.0, respectively. Unfortunately, the bounds were not tight, with gaps existing
between the upper bounds and lower uppers of both algorithms. This posed a nagging problem,
since the lower bounds may in fact be the real lower bounds, and the upper bounds may in fact be
the real upper bounds, or neither the lower bounds nor the upper bounds have anything to do with
the real bounds. This problem may be aggravated in actual implementation when multiple proces-
sors are needed to execute a number of periodic tasks in some hard real-time applications. On the
one hand, a sufficient number of processors should be provided to execute the tasks so that their

hard deadlines are guaranteed even in the worst case. On the other hand, the least number of pro-
cessors should be used so that processor resources are not wasted. In this paper, we tighten up the
worst-case performance bounds for bBMNF andRMFF. In the process, we found that there

were some errors in the original proof of the upper boun&®N§tfFF. The errors were corrected,

and the tight bound ®®MFF was shown to be 2.33 rather than 2.23.

In an attempt to find more efficient algorithms, we then propose a new scheduling algorithm
[l Rate-Monotonic-Best-FitRMBF), and study its performance. This new algorithm, based on
the bin-packing heuristic, Best-Fit, assigns tasks on processors in such a manner as to maximize
the utilization of a processdRMBF is intrinsically more complex thaRMFF, and is expected to
have better performance in assigning tasks to processors. However, the worst-case performance
of RMBF is, to our surprise, no better than thaRMFF.

Bin-packing heuristics are chosen because assigning tasks on processors bears many simi-
larity to packing items into bins. Many of the bin-packing heuristics are quite simple, and yet
deliver very good performance. The key difference in this case, however, is that bins in bin-pack-
ing have unitary size, while the “size” or utilization of a processor in scheduling tasks on a multi-
processor changes dynamically according to some pre-defined functions. This difference makes
the analysis of the worst-case performance of the scheduling heuristics considerably more com-
plicated than that of bin-packing heuristics.

Other related work in this area includes the two scheduling heuristics studied by Davari and
Dhall [3] [4]. They are the First-Fit-Decreasing-Utilization-FacteFDUF) and NEXT-FIT-M
algorithms.FFDUF sorts the tasks in non-increasing order of utilization factor and assigns them
to processors in that ord®EXT-FIT-M classifies tasks inthl classes with respect to their utili-
zations. Processors are also classifiedhigroups, so that a processokigroup executes tasks
in k-class exclusively. The worst-case performancer@dUF is tightly bounded by 2, while the
performance oNEXT-FIT-M is upper bounded by a numk&gj, which is a decreasing function
of the pre-selected numblh, e.g.,5 = 2.34 forM = 4, andS, = 2.28 forM — oo.

This paper is organized as follows. In the next section, the scheduling problem is formally
defined. The performance BMNF is proven to be tightly bounded B67 in Section Ill. The
RMFF algorithm is presented, and its performance analyzed in Section 1V, while the performance
of RMBF is given in Section V. Finally, we conclude in Section VI and indicate the remaining
problems.

[1. Problem Definition

In order to present any scheduling results, it is necessary to state the assumptions before-
hand. The presentation of these assumptions follows the format used by Liu and Layland [12].

(A) The requests of all tasks for which hard deadlines exist are periodic, with constant
interval between request.

(B) Each task must be completed before the next request for it drtivies., all its ver-
sions must be completed by the end of each request period.

(C) The tasks are independent in that the requests of a task do not depend on the initiation
or the completion of requests for other tasks.

(D) The computation time for each task is constant for that task and does not vary with
time. Computation time here refers to the time which is taken by a processor to exe-
cute the task without interruption.

(E) Any non-periodic tasks in the system are special, and do not have hard deadlines.

Assumptions (A), (B), and (D) have been argued to have close resemblance to many indus-
trial real-time systems [12], and have thus been used by many in studying and building real-time
systems. Though Assumption (C) does exclude the situation where certain tasks have precedence
of execution before others, it nevertheless is a good model for many real-time systems. Assump-
tion (E) may appear to be overly restrictive in the first glance. However, with the rapid advance of
real-time scheduling techniques, Assumption (E) can be totally omitted. It is put in here so that we
can focus ourselves on periodic tasks at the moment. The various ways to efficiently schedule
non-periodic, hard deadline tasks along with periodic tasks can be found in real-time scheduling
literature [9] [22].

It follows that a tasK; is completely characterized by two numbers, the computation time
C; and the period;. The ratioC; / T is called the utilization factor of the task The problem of
scheduling a set of periodic tasks on a multiprocessor can be defined as follows: Givema set of
tasksZ = {14, To, ..., T,}, Where each task; is characterized by its computation ti@eand its
periodT;, i.e.,T; = (G;, Tj), what is the minimum number of processors needed to execute the task
set such that all tasks can be guaranteed to meet their deadlines? The preemptive scheduling dis-
cipline and the fixed priority assignment scheme are assumed.

To solve this problem, a heuristic approach which consists of two steps is usually adopted:
(1) A heuristic algorithm is employed to assign tasks to processors; (2) The rate-monotonic algo-
rithm is used to schedule tasks on each individual processor. The problem of assigning tasks onto
a minimal number of processors very closely resembles the bin-packing problem, in which items
of variable sizes are packed into as few bins as possible. Therefore, many of the bin-packing heu-
ristics can be used to assign tasks onto processors. However, there is a key difference between
bin-packing and the scheduling of periodic tasks on a multiprocessor: the “size” of a bin, which
corresponds to the utilization of a processor, is not always unitary, but rather it is a variable whose
values are determined by some pre-defined functions. These functions are refersebdetubes
bility conditions.

When atask is assigned to a processor, the scheduler must make sure that the addition of the
task to the processor should not jeopardize the schedulability of those tasks that have already been
assigned to it. To accomplish this goal, the following schedulability condition can be used.

Condition WC: If aset of m tasksis scheduled according to the rate-monotonic scheduling algo-
rithm, then the minimum achievable utilization factor is m(2¥™-1). As m
approaches infinity, the minimum utilization factor approaches In2.

This schedulability condition was first given by Liu and Layland [12]. It implies that a task
set can be scheduled to meet their deadlinesif the total utilization factor of the tasksislessthan a
threshold number, which is given by m (2% ™~ 1) , where mis the number of tasks to be sched-
uled. This condition is a worst-case condition, and therefore it is referred to as Condition WC
(Worst Case). The function f (m) = m (2™~ 1) isastrictly decreasing function with regards to
m, the number of tasks on a processor. In studying the performance of RMNF and RMFF, Dhall
and Liu [5] used a different schedulability condition, which is stated as follows:

Condition IP: Let 1,,T,,...,T_ be a set of m tasks with periods T, <T,<..<T,. Let
u=SIC/Ts (m=-1) (Y (™D 1) 4f Cf TS 2(1+ u/f (mr1)) (™
1) - 1, then the set can be feasi bly scheduled by the rate-monotonic scheduling
agorithm. As m approaches infinity, the minimum utilization factor of t_
approaches 2e’Y - 1.

This schedulability condition requires that the tasks be sorted in the order of non-decreasing
period, thus implying that the task set should be known beforehand. Some of the task sets that can
not be scheduled by using Condition WC can be scheduled by using this condition, since this con-
dition takes advantage of the fact that tasks are ordered against non-decreasing periods. This con-
dition is referred to as Condition I P (Increasing Period). The function f (u, m) = 2(1 + u/(m-1))
MmD _1isa strictly decreasing function with regards to both u and m. Both Condition WC and
Condition I P can be easily used to test the schedulability of atask set, since the only parameters
involved are the total utilization of tasks and the number of tasks. A sufficient and necessary con-
dition, which takes into account both the computation time and the period of atask when atask is
scheduled, was recently given by Lehoczky et a [8]. Because of its complexity, the performance
of the scheduling heuristics using this condition is not studied here. In the following, we focus our
studies on the scheduling heuristics using Condition | P as schedulability condition. Note that the
scheduling heuristics] RMNF and RMFF studied by Dhall and Liu used the same schedul ability
condition.

Notations: Let Ny and N(A) be the number of processors used by an optimal algorithm and
the number of processors used by a heuristic algorithm A, respectively. Then, the guaranteed per-
formance bound of the algorithm A, denoted as [1(A), is defined as

Processors are numbered in the order consistent with that of allocating them. P and Q are
used to denote processors.T, | denotes the Ith task that is assigned on the xth processor. u, |
denotes the utilization of task T, . T; is used to denote the ith task where there is no confusion. u;
denotes the utilization of the ith task on a processor or in atask set. T = (X, y) characterizes atask
T, where x and y are the computation time and the period of task T.

[11. Tight Bound for Rate-M onotonic-Next-Fit

The Rate-Monotonic-Next-Fit algorithm is given as follows:
Algorithm RMNF:

1. Tasksare sorted in the non-decreasing order of their periods.
2. Seti=|=1/*idenotestheithtask, j the number of processors allocated */

3. Assign task T; to processor P; if this task together with the tasks that have been
assigned to Pj can be feasibly scheduled on Pj according to Condition IP. If not,
assign task T, to Pis1 andsetj=j+ 1

4. Ifi<n,thenseti =1+ 1andgoto step 3 else stop.

When the algorithm finishes, the valuein j is the number of processors required to execute a
given set of tasks. In order to obtain the tight bound of its worst-case performance, we prove that
the upper bound given by Dhall and Liu is indeed the real upper bound by showing that for a
given number of processors in the optimal schedule, atask set which can achieve the worst-case
upper bound under Algorithm RMNF can always be constructed. The upper bound was stated in
Theorem 3.1, the proof of which can be found in [12]. The low bound, as given in Theorem 3.2,
requires surprisingly a much involved proof.

Theorem3.1: For al sets of tasks, lim N/N, < 2.67, where N is the minimum number of
processors required t0 teas bly schedule the same set of tasks, and N is the num-
ber of processors obtained by Algorithm RMNF.

Theorem 3.2: Let N be the number of processors required to feasibly schedule a set of tasks by
Algorithm RMNF, and N, the minimum number of processors required to feasi-
bly schedule the same set of tasks. Then lim N/N, = 2.67. Together with The-
orem 3.1, it is concluded that 0 (RMNF)°= 367,

Proof: In order to find the worst-case situations, where the biggest ratio between N and Nj is

achieved, it is necessary to find those sets of tasks, which, when scheduled by Algorithm RMNF,

use as many processors as possible. In other words, for a given set of tasks, where the total utiliza-
tion is fixed, the worst case is achieved by appropriately allocating the utilization for each task
and ordering the tasks in a certain way such that the number of processors required to execute the

task set is maximized according to the RMNF Algorithm.

The function f (u, m) =2(1 + u/(ml))'(””) - lisadtrictly decreasing function with regards
to m, and it approaches the minimum utilization factor given by 2e’¥ - 1 when m approaches infin-
ity. In fact, for a sufficiently large number m, 2(1 + u/ (ml))'(ml) - 1 approaches 2’ - 1 very
quickly. Therefore, we claim that the following set of N*(m + 1) tasks requires N processors for
sufficiently large mand small €, when scheduled by Algorithm RMNF:

@D & Yy dfddy s oo O D (g Dy (BT
m m

where the value of O is obtained by solving the equation 0 = 2e® - 1. O = 0.3745. That N
processors are used by Algorithm RMNF to schedule the N*(m + 1) tasksis because O > 2¢(@+mé)
- 1. The total utilization of this set of tasksis therefore equal to NO + NmE. If this task set can be
perfectly scheduled on Ng = NO + Nm€ in the optimal schedule, then [] = lll\l =N/ (NO + Nmg)
=1/ =267, for very smal € such that me is small. Unfortunately, since 0% 0.3745, the above
task set can not be perfectly scheduled in the optimal schedule using only NO' + NmE processors,
unless the execution of atask can be interrupted (not because of the rate-monotonic property), and
its execution be resumed on another processor immediately. This later requirement is often
referred to as processor migration. This implies that rate-monotonic algorithm is not honored in
the optimal schedule.

Though the above example does not suit our purpose, there are a number of things that we
can adopt from the above example in finding the worst-case examples. First, the last tasks
assigned to each processor in the completed RMNF schedule is a very large number m of tasks
each with avery small utilization € such that me is small. Then the equation f(u) = 2e™ - 1isused
as the schedulability test condition. Second, on each processor in the completed RMNF schedule,
itisaways assigned, asthefirst task, atask with alarge utilization (compared to €), followed by,
with few exceptions, m tasks each with avery small utilization € subsequently. From now on, we
only concern ourselves with the utilization of the first task on each of processorsin the completed
RMNF schedule. The following set of the tasks (tasks with € utilization excluded) gives the
worst-case performance of Algorithm RMNF:

(0.402764, 1), (0.336940, 1), (0.427903, 1), (0.303749, 1),
(0.476093, 1), (0.242412, 1), (0.569466, 1), (0.131655, 1), (0.223080, 1)
(0.402764, 1), (0.336940, 1), (0.427903, 1), (0.303749, 1),
(0.476093, 1), (0.242412, 1), (0.569466, 1), (0.131655, 1).

The utilization of u, , , isgivenby 2e "' -1 for 1<i<7and 9<i < 16. According to the
reasons given above, the first 8 tasks (tasks with € utilization excluded) occupy 8 processors in
the completed RMNF schedule, the 9th task is scheduled on the 8th processor, and the rest of the

8 tasks are scheduled on 8 processors, for the same reasons. Therefore the total number of proces-
sors used in the completed RMNF schedule is 16. Excluding the 9th task, these 16 tasks can be
optimally scheduled on 6 processors, as shown below:

Processor 1: tasks 1 and 5. Processor 2: tasks 2 and 6. Processor 3: tasks 3 and 4. Processor
4: tasks 7, 8, and 16. Processor 5: tasks 10, 11, and 12. Processor 6: tasks 13, 14, 15, and 17. The
total utilizations of these processors are 0.997369, 0.997369, 0.952186, 0.937183, 0.977629, and
0.920228, respectively. Obviously task 9 can not be scheduled into any of these 6 processors,
though the total available processor utilization on the 6 processors is larger than the utilization of
the 9th task. If the 9th task is replaced by a number of tasks each with a small utilization, yet their
total utilizations add up to 0.223080, then the number of processors required to execute this new
set of tasksis still 6 in the optimal schedule, since those newly replacing tasks can be now sched-
uled on the 6 processors. The replacement of the 9th task does not change the number of proces-
sors used in the RMNF schedule either. Therefore, [= ’\'TI =16/6=2.67.

Y et, in order to prove the theorem, we need to show tﬁat for any given number N, atask set
can be constructed such that the ratio 2.67 is achieved. Even though we only give one task set
above as the example where this worst-case ratio is indeed achieved, we claim that the 2.67 ratio
isindeed achievable for different numbers of N,. For any given number N, the task set that can
achieve the worst-case ratio can be constructed. However, the construction has to be done in a
case by case manner, similar to the above example. The claim liesin the fact that, if the utilization
of atask (taskswith € utilization excluded) isgivenby u; , ; = 2e '—1for1<i<N-1,and up >
a, then the total utilization of the N tasks is given by NO + NmeE. Theratio is then given by [=
N <N/ (Na + Nmeg) = 2.67. The key, of course, isto find many sequences of u, s such that they
cah be perfectly scheduled in the optimal scheduled without requiring process migration. Note
that withu; > 0 = 0.3745, and u,,; =2€ "= 1for 1Si<N-1, Uy _; + Uy <20 for 1<i <
[N/2], asshowninFigure1. 3 I u; < Not if Niseven. $'{L,u; 2 Na if Nisodd, since u,,
+Uy,q>20forl<si<| (N-1)/2].

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Utilization

Figure 1: Properties of Condition IP

From Theorem 3.1, it isconcluded that [= lim N - 2.67. Q.E.D.

V. Tight Bound for Rate-Monotonic-Fir st-Fit

In assigning tasks to processors, Algorithm RMNF only checks the current processor to see
whether atask together with those tasks that have already been assigned to that processor can be
feasibly scheduled or not. If not, the task has to be scheduled on an idle processor, even though
the task may be scheduled on those processors used earlier. To overcome this waste of processor
utilization, the RMFF Algorithm always starts to check the schedulability of atask on processors
with lower indexes, i.e., those processors on which some tasks have been assigned. Thisalgorithm
isgiven asfollows:

Algorithm RMFF: Let the processors be indexed as P4, Py, ..., with each initialy in the
idle state, i.e., with zero utilization. The tasks T4, Ty, ..., T,,, Wwhich are ordered according to non-
decreasing periods, will be scheduled in that order. To schedule T;, find the least j such that task
Tj, together with all the tasks that have been assigned to processor P; can be feasibly scheduled
according to Condition I P for asingle processor, and assign task T; to P;.

Algorithm RMFF can be described in a more algorithmic format as follows:
Algorithm RMFF (Input: task set > ; Output: m)
1. Tasksare sorted in the non-decreasing order of their periods.
2. Seti=l1landm= 1./* i denotestheith task, mthe number of processors allocated*/
3. (@) Setj=1./*] denotesthejth processor */
(o) Ifu<2(1+ Uj/kj) K1, assign task T; to P, i.e., increment kj = kj +1land UJ-
=U; +u;, and set m=j if j < m, where kj and U denote the number of tasks
already assigned to processor P; and the total utilization of the kj tasks, respec-

tively, and u; denotesthe utilization of task T;. Otherwise, incrementj = j + 1 and
go to step 3(b).
4. Ifi>n,i.e, al tasks have been assigned, then return m. Otherwiseincrementi =i + 1
and go to step 3(a).
When the algorithm terminates, mis the number of processors required for scheduling the
given set of tasks according to the RMFF Algorithm. Since an idle processor will not be used
until all the processors with some utilizations can not execute an incoming task, it is therefore

expected that Algorithm RMFF would have better performance than that of Algorithm RMNF,
which was shown to be the case, to some extent, by Dhall and Liu [5]. The following results were

obtained in [5].

Lemma 1: If m tasks can not be feasibly scheduled on m— 1 processors according to the RMFF
Algorithm, then the utilization factor of the set of tasks is greater than m/ (1 + 2%/3) .

Lemma 2: If tasks are assigned to the processors according to the RMFF Algorithm, among all
processors to each of which two tasks are assigned, there is at most one processor for
which the utilization factor of the set of the two tasksisless than 1/2.

Theorem 1: Let N be the number of processors required to feasibly schedule a set of tasks by the
RMFF Algorithm, and N, the minimum number of processors required to feasibly
schedule the same set of tasks. Then as N,, approaches infinity, 2 < N/Ny < 4 x 213/
(1+2Y3) (= 2.23).

Unfortunately, Lemma 1 isincorrect, as shown by the following counter example. Lemma 2
gives aweak result for RMFF Algorithm. These two errors led the authors to arrive at the wrong
upper bound. In the following, we first show the incorrectness of Lemma 1, and present its correct
version. We then give a strong version of Lemma 2. A new upper bound is proven finally.
Example: Consider the case where m= 2 and the two tasks are given as follows:

1,=(2Y2-1,1)

To=(2- V21 ¢ 2“2), where € isasmall number and € > 0.

According to the RMFF Algorithm, T isfirst assigned to a processor. Since u; = 2V2 1
and2(1+ ul)'1 1=2Y2.1<212 1 +¢/22= Uy, To can not be scheduled together with task
T4 on one processor, according to Condition I P. Since T4 and T, can not be scheduled on one pro-
cessor, Uy + U, must be greater than 2/(1 + 2/3) [10.88 according to Lemma 1. But uy + u, = 2(2%
2_1)+¢&/2Y2=0.8284 + £/ 2Y2 which isless than 0.88 for small €.

When m > 2, similar examples can be constructed to show the incorrectness of Lemma 1.
Henceforth, a new version of Lemmalisgiven asfollows:

Lemma 4.1: If mtasks can not be feasibly scheduled on m - 1 processors according to the RMFF
Algorithm, then the utilization factor of the set of tasksis greater thanm/ (1 + 2V 2)
=m(2V%2-1).

Proof: The proof is by induction.

(1) m= 2. Suppose u; and u, are the utilizations of two tasks which can not be scheduled on
a processor according to Condition IP, i.e., Uy > 2(1+uy) ™t - 1. ug + up = ug + 2(1 +uy) 1 - 1. To
find the minimum of f(u;) = u; + 2(1 + up)™* - 1, we take the derivative of function f(u;), and solve
for u;. The minimum of f(u,) isachieved when u; = (2Y2- 1). Therefore Up + Up > 2212 - 7).

(2) Supposethe Lemmaistruefor m = k, i.e,

Z:(: LU > k(2Y2-1) (E.Q.1)

where u; isthe utilization of task i.
When m = k+ 1, the (k + 1)th task can not be scheduled on any of the k processors, i.e.,
U + Uy, >2 (22~ 1), where 1 <i < k. Summing up the k equations yields

S Ko qi + kg, > 2k(2Y% - 1) (EQ.2)

Multiplying k-1 on both sides of equation (E.Q.1) yields
(k-1) Z:‘: LU > (k-1) k(2Y2-1) (E.Q.3)

Adding up equations (E.Q.2) and (E.Q.3) and dividing the new equation on both sldes by

yields Z:‘fi > (k+1) (2Y2-1) . Therefore Lemma 4.1 is proven. Q.E.D.

A strong version of the original lemnid Lemma 2 by Dhall and Liu is given as follows:

Lemma 4.2: If tasks are assigned to the processors according RMikd= Algorithm, among all
processors to each of which two tasks are assigned, there is at most one processor for
which the total utilization factor of the two tasks is less than or eqm{@-l) =
0.52.

Proof: This lemma is proven by contradiction. Suppose that the contrary is true Lade

be the two tasks assigned to proceﬁ"?‘,oandi 1 andrk , be the two tasks assigned to processor

Py with j < k, such that

Uty s 2(213-1)
and
U 1 + Uy o S2(2Y3), (E.Q.4)

whereu, , is the utilization of task
There are three cases to conS|der Note that the testing condition @eadii®on IP, i.e.,
if a task’s utilizationC/T< 2(1+u/(m-1)) (M=1) _ 1, then this task together with time 1
tasks which have already been assigned to a processor can be feasibly scheduled by the rate-
monotonic scheduling algorithm, whene = Im_ 11C /T, < (m-1) (21/(m_1) -1). The
functionf(u, m) = 2 (1+u/ (m-1)) " (MY . 175 a strictly decreasing function with regards to
uandm.
Case 1: Tasksk , and T o were assigned to procesd®y after taskr , had been
assigned to processt According toRMFF we must have
1>2(1+ (uJ 1ty 2)/2)
and
Ugp > 201+ (U 4 +u)/ 2)%-1
Summing up these two inequalities, we have
Uy + U o >4+ (U g+ ,)/2)2-2> 41+ 2Y3.)2- 2= 22139
which is a contradiction to (E.Q.4).
Case 2: Tasksk , and T, o Were assigned to procesd®y after taskr , had been
assigned to processBJr but before task ,- According toRMFF, we must have
p>2(1+ 4)1
and
U o >2(1+ Uy)t -1
Summing up these two inequalities yields
U1 + uk§ >4(1+u)t 2> 4(1+ 2(213.1))1 - 2) > 2(2¥3-1)
sinceu; ; < 2(243-1) and2(1 + 2(213-1))1 > 213 However, this is again a contradiction
to (E.Q.4).
Case 3: Taskk’ , Was assigned to proces$y after taskrj' , had been assigned to pro-

- 10 -

cessor Pj, and task Ty o Was assigned to Py after task To had been assigned to Pj. According to
RMFF, we must have
U1 >2(1+ U)1
and
U o >2(1+ (U4 + Uy 5) /2)2-1> 201+ 213:1)2- 1= (213.)
Summing up these two inequalities yields
Ug g+ U o > 20+ U) -1+ 2Y31) > 201+ 20213))t - 14+ (2Y31) > 213
-1+ (2Y3.1) = 2(213.1)
which is again a contradiction to (E.Q.4). Q.E.D.
Actualy, a more generalized result is obtained for the case where the number of tasks
assigned to a processor is arbitrary. The proof of the following lemmais given in the appendix.

Lemma 4.3: If tasks are assigned to the processors according to the RMFF Algorithm, among all
processors to each of which n = 1 tasks are assigned, there is at most one processor
for which the utilization factor of the n tasks is less than or equal to n(2Y/("1)-1),

limn2Y ™Y _1y = n2

n - oo

Theorem4.1: Let N be the number of processors required to feasibly schedule a set of tasks by
the Algorithm RMFF, and N, the minimum number of processors required to
feasibly schedule the same set of tasks. Then lim N/Nj < 2+ (3 - 2%2) |
(2(2Y3-1)) =233, No - e

In order to prove the above bound, we define a function that maps the utilizations of tasks
into thereal interval [0, 1] asfollows:

u/ (2(2Y3-1)) Osu<2(2V3-1)

f(u) =
(W) {1 2(2Y3-1) <us<1
or

f(uX

1.0

12|

0
a=052 1 ™

Figure 2: Mapping Function for RMFF and RMBF

-11-

/ Su<
f(u) = {u a Os<u 2 Wherea=2(2Y3-1).
asus<l «
Let LS TRSIPYRES fi) be k; tasks assigned to processor Pj, and let Zi":luj’i = U;. The

deficiency 6 of processor I5j Isdefined as

0o U2k (2V5-1

O
[R(1+U;/k) -1 Otherwise

1)

]

The coarseness O of processor Pj is defined as
0] = 1

max,cicj-19 1>1

Lemma 4.4: For Algorithm RMFF, the following properties hold:

(1) No task is assigned to an idle processor unless it can not be assigned in any non-
idle processor.

o = {

(2) If aprocessor P has a coarseness of A, then the utilization of each task that was
assigned to P exceeds Q..

Proof: For Algorithm RMFF, properties (1) and (2) hold according to its definition. Q.E.D.

Lemma 4.5: If a processor is assigned a number of tasks 1, -y T, With utilizations
U, Uy, .., U, then $M f(u;) <1/a, wherea= 2(21/3 1) .
Proof: Without lose of generality, It is assumed that uy 2 uy 2 ... 2 upy,. If up 2 &, then u, < a.

Zl_lf(u) =f(uy) + zm f(u) —1+(z)/aS1+(1-a)/az1/a.Otherwise(u1<
a), then Zl_lf(ul) —Zl_l lasl/a QED

Lemma 4.6: Suppose tasks are assigned to processors according to RMFF Al gorithm If aproces-
sor with coarseness 0 2 a/ 3isassigned m = 3 tasks, then) ;'_ 1f(u) > 1, where
Uy, Uy, ..., Uy, are utilizations of the m tasks t1,, 1,, ..., T, that are assigned to the
processor.

Proof: According to Lemma4.4, u, > 2 a/ 3for 1<i<m. If one of the tasks has a utilization

greater than a, then ZI = (W) >1 Otherwise, ZI = f(w) = ZI _.u/azm(as3) lazl,

sincem= 3. Q.E.D.

Lemma 4.7: Suppose tasks are assigned to processors according to RMFF Algorithm. If aproces-

sor with coarseness 0 < a/ 3isassigned m= 3 tasks 1, .., T, with utilizations
ul,uz,...,um,andz 1U; =1n2-a, then zm f(u)>1
Proof: If one of the tasks 1., T,, ..., T, has a utilization greater than a, then zl -, f(u) =21,

Otherwise, z|—1f(u) _Zl—l i a>(|n2 a)/a=(In2-a/3)/a=1 Q.E.D.

Lemma 4.8: Suppose tasks are assigned to processors according to RMFF Algorithm. If aproces-
sor with coarseness O is assigned m 2 1 tasks T, T,, ..., T, With utilizations
Up, Uy, ..., Uy, and 5L, f(u) =1 — B where >0, then
Q) m= 1and u, <aor

-12-

(2gm=2and u; +u, <aor
(3) m=3and zim:lui <In2-qa - af.
Proof: (1) If m= 1and u; = a, then Z:m: 1f(u) 21, whichisacontradiction.
(2)If m=2and u; +u, =4, then Z|m= 1f(y;) 21, whichisagain acontradiction.

(3) If properties (1) and (2) do not hold, then m= 3. Since Zlmz 1f(y) <1, a must be less

thana/3and § ", u; <In2- a according to Lemma 4.6 and Lemma4.7. Let 3 7. ;u; =In2-
O -y, wherey > 0. To find out the relationship between y and [3, et us replace the first three tasks
T,, T,, and 1, by three new tasks with utilizations U4, Uy, and U3, such that U + Uy + Uz =ug +
Uy +uz+VY,U;2ug, Uy 22Uy Uz 2uz and Vg <a, Up<a, Uz<a According to Lemma4.7,
f(UD) +1(Up) +f(Ug) + T, (Uy) 21 Sincef(Uy) + (V) + f(Vg) = f(uy) + (up) +fi(ug) + (V)
=f(up) +f(up) +f(uz) + Y/a y/a+1-PB=1y=aP. Therefore, Zimzlui <In2-a - aP.
Q.E.D.

Proof of Theorem 4.1: Let 2 = {1, T,, ..., T} be aset of m tasks, with their utilizations
Uy, Uy, ..., U, respectively, and @ = Zlmz ,f(u). By Lemma 45, @ < Ng / a, where a =
2(2Y3-1).

Suppose that among the N number of processors used by RMFF Algorithm to schedule a
given set 2 of tasks, L of them has zjf () = 1-B; with Bi > 0, wherej ranges over al tasksin
processor i among the L processors. Let us divide these processors into three different classes:

(1) Processors that only one task is assigned. Let n, denote the number of processorsin this
class.

(2) Processors that two tasks are assigned. Let n, denote the number of processors in this
class. According to Lemma 4.2, there is at most one processor whose utilization in the
RMFF scheduleislessthan or equal toa= 2 (2Y3-1) . Thereforen, = O or 1.

(3) Processors that at least three tasks are assigned. Let n3 denote the number of processors
in this class.

Obviously, L = n; + ny, + ng. For each of therest N - L processors, ij (uj) =1, where |
ranges over all tasksin a processor.

For the processors in class (1), zlnlz U >m (21/2 - 1) according to Lemma 4.1. Since
N

i=,f(u) <1,y <a, and therefore zlnlz fu) >ng (2”2 - 1) / a. Moreover, according to
Lemma 4.9, there is a most one task whose utilization is less than or equal to (21/2 - 1). Inthe
optimal assignment of these tasks, the optimal number N of processors used can not be less than
Ny /2,i.e., Ng 2 nq /2, since possibly with one exception, any three tasks among these tasks can not
be scheduled on one processor.

- 13-

For the processorsin class (3), let Qq, Qo, , Qn3 denote the n3 processorsin this class,
and o, be the coarseness of processor Q;, and Z:(iz f(u) =1-Bjwith3;>0, for 1<i < ng. For
processor i, U; <In2- a, - af3; according to Lemma 4.8.

According to the definition of coarseness, a, , , 2 d, 2In2- U, since §, =2 (1 + U;/k)) i
-1>2e " -1>1In2- Uj. Therefore o, , , 2 a; + af3;, for 1 <i < ng. Summing up these (n3 - 1)
equationsyields

azlna_ll , LT 0y <al3,ie, zn3 1[3 <1/3.

2.3—1 ,_1f(u)>n3 1- Zl_lﬁ >ng-4/3.

Now we are ready to find out the relationship between N and Ny,

W= Zl_lf(ui)Z(N-L)+n1(21/2-1)/a+n3-4/3
:N-nl-nz-n3+n1(21/2-1)/a+n3-4/3
=N-n(1-(2Y2-1)/a)-n,-4/3
>N-2Ng(1-(2Y2-1)/a)-n,-4/3, wherea=2(2Y3-1).

Since W < Ny / aby Lemma4.5,

Ng/a=N-2Ng(1- (2Y2-1)/a)-ny-4/3 2N-2Ng(1- (2Y2-1)/a)-7/3.

Therefore, N/ Ng < (2a+ 1 - 2(2Y2 - 1)) / a+ 7/(3Np).

lim N/N, < (2a+ 1-2(2Y?-1))/a=2.33. QED.

ano

Theorem4.2: Let N be the number of processors required to feasibly schedule a set of tasks by
RMFF Algorithm, and N, the minimum number of processors required to feasi-
bly schedule the same set of tasks. Then lim N/Ny=>2.3.

Proof: In order to find the bound [] = I|m N/ Ny, we pro‘&:eea by finding the maximum number

of processors needed to schedule a cerfaln set of tasks using RMFF Algorithm, given that the
optimal number of processors required to schedule the same set of tasks is known. In the process,
the desired set of tasks is constructed. Note that this process is exactly opposite to how a set of
tasksis scheduled.

Let Ny = m, where mis anatura number. A set of tasks, which uses exactly N, number of
processors in the optimal schedule, is to be specified in the following. Without generality, all
tasks are assumed to have a period of 1. This set of tasks consists of a theoretically infinite
regions, given that N, is sufficiently large. The regions of tasks are given asfollows. Note that the
regions specified first are scheduled last in the RMFF Algorithm, in other words, they appear last
in the task set.

Region 1: There are 2N, number of tasks each with a utilization of u; = (21/2 -1) + €, where

- 14-

€ is a arbitrary small number. These 2N, tasks will utilize 2N, number of processors in the
RMFF schedule, while requires only N, number of processors in the processors in the optimal
schedule. If N, < 2, then we have found L] = 2.

Region 2: If 3< N, <5, there are N, tasks, each of which has a utilization of u, = (21/5 -1).
These N, tasks utilize one processorsin the RMFF schedule, while requires no extra processor in
the optimal schedule, only to fill part of the utilization left by tasksinregion 1, i.e., (21/5 -)<1-
2* ((21/2 - 1) + €). Note that tasks in region 1 can not be scheduled on this processor, since u; >
2(1+3uy/3)3-1.N=2N, + 1. Thebound isgiven by (1 = 2N, / Ny + 1/ N,.

Region 3: If 6 < Ny <9, the tasks in regions 1 and 2 are included. Furthermore, there are
three more tasks each having a utilization of (21/ 5. 1) and six tasks each with a utilization of uz =
1- 2*((2”2 -1)+§€) - (2”5 - 1) - €. These nine tasks use one processor in the RMFF schedule,
while requires no extra processor in the optimal schedule, only to fill part or al of the utilization
left by tasks in regions 1 and 2. Note that since u, > 2(1 + (3u, + 6ug) / 10)1° - 1. The tasks in
region 2 can not be scheduled on the processor occupied by tasksin thisregion. N = 2N, + 2, and
the bound is therefore given by L = 2N, / Ny + 2/ Nj,.

Region 4: If 10< N, < 12, thetasksin regions 1, 2, and 3 are included. Furthermore, there
are four more tasks each having a utilization of (21/5 - 1), except the last one with a utilization of
(21/ 5. 1) + €, where € is an arbitrary small number. These four tasks are placed in one processor
in the RMFF schedule, while requires no extra processor in the optimal schedule, only to fill part
of the utilization left by tasksin regions 1, 2, and 3. Note that these tasks do not appear first in the
task, rather they follow after the nine tasks in region 3, but before the three tasks each having a
utilization of (2/° - 1). Since 5(2Y° - 1) - 4u, < u,. The last three tasks in region 3 can not be
scheduled on the processor occupied by tasksin thisregion. N = 2N, + 3, and the bound is there-
foregivenby [J = 2N,/ Ny + 2/ N,.

This process continues until the largest value of N is found for agiven N, asillustrated by
Figure 3. Note that the value u; is determined by finding the smallest k such that u; = (21/ k. 1) and
u<1- Z:;llul,fori =2

Foragiven Ng, N=2Ny +1+| (Ng=3)/4]| +1+| (Ny—-25)/30] +...... The bound

isgiven by
2Ny +1+| (Ny—3)/4|+1+| (N,—25)/30]| +......
- N _“ | (No=3)74] | (Ng=25)730] = 2.30. (E.Q.5)
No No
For example, given N, = 27, we construct a set of tasks which, according to RMFF Algo-

rithm, requires N = 62 number of processors.

There are 2N, = 54 number of tasks with utilization uy = (21/2 -1) + €, where € isaarbitrary
small number. There is one processor occupied by three tasks each with a utilization of u, = (21/ 5
- 1). Thereare | (Ny—3) /4| = 6 number of processors occupied by 6*4 tasks each with a utili-
zation of (21/ 5_1). Thereisfinally a processor occupied by 25 tasks each with a utilization of ug

- 15-

=1-2%((2Y2-1) + €) - (2Y5- 1) - €. The set of tasksis given as follows. Note that the total num-
ber of tasksis 106.

+) +) +U) £+0) E+H) 4141
B0x0.00263 P551x0.00263 BOX0.0226 P5X0)56527
F0..693238 $0.67088 F0.678343 +0.545275
Ux0.1487 [3x0.1487 D.4141
£0.5948 £0.4461 4141
— I I N —
Directionot . 1 | (Ng=25)/30] 1 | (Ng-3)/4] 1 2N, N,
allocating processors
(&) RMFF Schedule (b) Optimal Schedule

Figure 3: RMFF vs Optimal

T, =(u3, 1), for1<i <25,
T, =(up, 1) for 26 < i < 52 except i =29, 33, 37, 41, 45, 49, where T, = (U + €, 1),
T, = (ug, 1) for 53<i < 106.

According to RMFF Algorithm, The first 25 tasks are scheduled on the first processor.
Since uy > 2(1 + 25ug3 / 25)'25 - 1, the 26th task is scheduled on the second processor. The 29th
task can not be scheduled on the second processor, since u, + € > 2(1 + 4ug / 4)'4 - 1. Proceeding
in this fashion, the 23 successive tasks occupy 6 processors. The 53th task have to be scheduled
on the 8th processor, sinceu; + € > 2(1 + 3ug/ 34)'3 - 1. Therest of the 53 tasks occupies 53 pro-
cessors, one task for a processor, since (22 - 1) + £ > 2(1 +uy)1-1=2/ (I%”Z +€) - 1. Thetotal

number of processors required isthus N = 62. The bound isgiven by [] = '\To = 2.30.
Table 1. Performance of RMFF (and also RMBF)
S LI (RMFF) S L (RMFF)
2 2 10 2.30
3 2.33 11 2.29
4 2.25 12 2.25
5 2.20 13 231
6 2.33 17 2.29
7 2.29 20 2.30
8 2.25 27 2.30
9 2.22 48 2.29

- 16-

The exact performance bounds for several given optimal number of processors are given in
Table 1. We conjecture that the above formula (E.Q.5) gives the EXACT tight bound for RMFF
Algorithm. Q.E.D.

V. Tight Bound for Rate-M onotonic-Best-Fit

When Algorithm RMFF schedules atask, it always assignsit to the lowest indexed proces-
sor on which the task can be scheduled. This strategy may not be optimal in some cases. For
example, the lowest indexed processor on which atask is scheduled may be the one with the larg-
est available utilization among all those busy (non-idle) processors. This processor could have
been used to execute a future task with large enough utilization so that it could not be scheduled
on any busy processors, had it not been assigned atask with asmall utilization earlier on. In order
to overcome these likely disadvantages, a new algorithm is designed as follows, which is based on
the Best-Fit bin-packing algorithm.

Algorithm RMBF: Let the processors be indexed as Py, Py, ..., with each initially in the
idle state, i.e., with zero utilization. The tasks T4, Ty, ..., T,,, which are ordered according to their
non-decreasing periods, will be scheduled in that order. To schedule T;, find the least j such that
task Tj, together with all the tasks that have been assigned to processor P; can be feasibly sched-
uled according to Condition | P for asingle processor, and 2 (1 + Uj/kj) K -1 peassmall as pos-
sible, and assign task T; to Pj, where kj and U are the number of tasks aready assigned to
processor P; and the total utilization of the kj tasks, respectively, and u; isthe utilization of task
T;.

Surprisingly, even with this modification in assigning tasks to processors, the RMBF
Algorithm does not outperform Algorithm RMFF in the worst-case, as shown by Theorem 5.1
and Theorem 5.2. Before we prove the tight bound for RMBF, the following definition is needed,
which is key to the proof of Theorem 5.1.

Definition 1: For all the processors required to schedule a given set of tasks by the RMBF Algo-
rithm, they are divided into two types of processors:

Type (1): For dl the tasks t,, T, ..., T With utilizations uy, u,, ..., u,, that were
assigned to a processor Py in the completed RMBF schedule, there exists at least
onetask T, withi = 2 that was assigned to Py, not because it could not be assigned
on any processor Py w_it(ti1_ 1I)ower index, i.e, y < X but because
2(1+ (Z|;11U|)/ (i-1)) ~1<2(1+ (z,”vzlul)/ny) "~ 1, where n,
is the number of tasks assigned to processor Py. Processor Py is called a Type (1)
processor. Such atask T, is, for convenience, referred to as a task with Type (1)

- 17-

property.
Type (I1): They consist of all the processors that do not belong to Type (I).

Lemma 5.1: For Algorithm RMBF, the following properties hold:
(1) No task is assigned to an idle processor unless it can not be assigned in any non-

idle processor.
Proof: For Algorithm RMBF, properties (1) is true according to its definition. Q.E.D.

Lemma 5.2: If m tasks can not be feasibly scheduled on m— 1 processors according to the
RMBF Algorithm, then the utilization factor of the set of tasks is greater than
m2¥?%-1).

Proof: The proof of thislemmais similar to that of Lemma4.1. Q.E.D.

The two lemmas given below follow directly from Lemma4.2 and Lemma4.3.

Lemma 5.3: In the completed RMBF schedule, among all processors of Type (Il), to each of
which two tasks are assigned, there is at most one processor for which the total utili-
zation factor of the set of the two tasksis|ess than or equal to 2(21/ 3-1).

Lemma 5.4: In the completed RMBF schedule, among all processors of Type (l1), to each of
which n tasks are assigned, there is at most one processor for which the total utiliza-
tion factor of the set of the n tasks is less than or equa to n(21/(”+ 1)-1).

limnY ™Y -1y = In2.

Lemma 5.5: {hthe completed RMBF schedule, if the second task on any of the Type () proces-
sors has Type (1) property, then the first task on that processor has a utilization
greater than (2”2 1).

Proof: Let Ty 1 and L be the first and second tasks assigned to processor Py of Type (1), and Py,

withy < k, isone of the procrs on which T, could have been scheduled, but 2(1 + u, 1) -1

<2(1+(In_ 1 Uy, M) /ny) - 1, where n, |sthe number of tasks assigned to processor Py, and

where u, | Isthe utilization of task T, ,. n

Since u, 1 > 2(1+ (ZI L 1 Uy, I)/n) 7 - 1 (note that this is true even though T 1 is
assigned to processor Py before some of tasks among the n, tasks are assigned to processor Py),
U1 >2(1+ (Zu—l w0 /n) T -1>2(1+ uy 1)t - 1 Therefore uy ; > (2Y2-1). QED.

Lemma 5.6: In the completed RMBF schedule, if the mth task on any of the Type (I) processors
has Type (I) property, where m = 3, then the total utilization of the first (m-1) tasks
on that processor is greater than (m-1)(2Y™1).

The proof of thislemmais given in the appendix.

The following lemmais key to the proof of Theorem 5.1.

Lemma 5.7: In the completed RMBF schedule, among the processors of Type (I) on which the
second task has Type (I) property, there are at most three of them, each of which has
atotal utilization less than 2(2V/3-1).

Proof: This lemma s proven by contradiction. Let P;, Pj, Py, and Py be the four processors, each

- 18-

of which has a total utilization less tha?¥g-1) withi < j < k<1, i.e.,
n; 13
Z =1 | x < 2(2 1)

S re 1l x < 20%5D)
zgk_ Uy < 2@Y3-1)

Zx= 1u,’X < 2@V

wheren; 2 2,n; 2 2,n 2 2, andn| 2 2 are the number of tasks assigned to proceBgors
Pi, P andPj, respectively.

Let's defineu; ; andu; , to be the utilizations of the first tagk ; and second tasks ,
assigned to processBy, u; ; andy; , to be the utilizations of the first task ; and second tasks
T; , assigned to processe}, u ; andu, ,, U, ; andu, , are similarly defined. We further
assume thaﬂ]y is the number of tasks which have been assigned to proégsatren the second

task on processd; is assigned. Note that j and 1< n, <n.
There are three cases to consider.

Case 1: Taskz;j 1 andrj , are assigned to processyfter taskr, , is assigned to proces-
sorP;. Since taskr. , is aType (1) task, the foIIowing inequality must hold

2(1+u]1)11<2(1+(z LU0 /ny) -1

Note thatny 2 2, i.e., other tasks may have been assigned to prodgsafter taskr, ,, but
beforet. . is assigned to proceser

j,1
Since 2(1 + (zx_l /N T S1S 201+ Uy tu o) /221 <2(1 4y 4 /221,
20+ Uy) t-1<2(L 4y, /221 0e 1+ Uy > (L+u o /2P
Case 2: Tasksj’ 1 andrj, , are assigned to processyrfter taskri, , Is assigned to proces-
sorP; but before task. , Is assigned to processr

This case is |mp053|ble WitRMBF scheduling. Slncez Uiy < 2Y3.1) and U g >
(2Y2-1) according to Lemma 5.5 , < 2@Y3-1) - (2Y/2-1) = 0.1056. Since task , is assigned
to processoP before taskt, , is assigned to processgy and taskr , Isa Type (I) task, A(+
) -1>2@1+ u 1)1 1 |e

U <Uj . (E.Q.6)
Since taskr. , is also a Type (1) task, it must be true according to the definition that

2L+ u; 4) 1 -1<2(1+ (zx 1Yj, X)/n) " 1, wheren, is the number of tasks that
have been aSS|gned to proced3aafter taskrjl »» but before taski, , Is assigned to procesdgt
Note that it is conceivable that other tasks may have been assigned to prlE)Jcafteortaskrj 5
but before task; , is assigned to processar

Since 20 + u; 4 yl-1<2(1+ (Z

)/n) M 1<o20+ u)t-Lu, >y

le 1

- 19 -

Thisisacontradiction to equation (E.Q.6).

Case 3: Task T is assigned to processor Pj after task T, ; isassigned to processor Pj, and
task T2 is assigned to processor P; after task T, ., isassigned to processor P;. Since task T2 isa
Type (1) task, the following inequality must hold

-N,
2(1 + ujll)'1-1<2(1+(z“y u,)/n) -1

x=1"1,Xx

Note that n, 2 2, i.e, other tasks may have been assigned to processor P; after task T, ,, but

before T2 is assigned to processor P;.
n
Since2 (1 + (z;‘yzlui,x)/ny) Ti1S24 (U U) /2P 1<2(L+y 12)2-1,

21+ U t-1<2(1+u /)P 1ie, 1+ U, >+ u /22

Therefore for processors P; and Pj, we have

1+u > +u /22 (E.Q.7)
For the tasks assigned on processors Pj and Py, and P and Py, it can be similarly proven that
1+ U, >(1+u 4 /2)3 (E.Q.8)
1+u ,>1+u /27> (E.Q9)

Summing up equations (E.Q.7), (E.Q.8), and (E.Q.9) yields u; ; > (u; 12+ u 12 + Uy 12) /4
+u 5. Since u; 4 > (2Y2-1), u; ;> (2Y2-1), and u, ; > (21%-1) according to Lemma 5.5, u;, >
3(21/ 2-1)2 /4+ (21/ 2-1) =0.5429> 2(21/ 3-1). Thisresults in a contradiction to the assumption that
S x=1U,x <22"%1). QED.

Theorem5.1: Let N be the number of processors required to feasibly schedule a set of tasks by
the RMBF Algorithm, and N, the minimum number of processors required to
feasibly schedule the same set of tasks. Then lim N/N, < 2+ (3-2¥?%)/a
~2.33, wherea= 2 (2%3-1). No e

In order to prove the above bound, we define a function that maps the utilization of tasks
into thereal interval [0, 1] asit isdone in the previous section. The function is the same as the one
used for RMFF Algorithm.

For a processor Pj, its deficiency 5j and its coarseness O are similarly defined as those for
RMFF Algorithm. Also note that Lemma 4.6, Lemma 4.7, and Lemma 4.8 also hold for those
processors of Type (1) in the RMBF schedule. The following lemmais also true.

Lemma 5.8: If a processor is assigned a number of tasks 1,,T,, ..., T, With utilizations

Uy, Uy, ..., Uy, then ST F (1) <1/, wherea = 2(2V°-1).

Proof of Theorem 5.1: Let 2 = {1, T,, ..., T} be aset of m tasks, with their utilizations

Uy, Uy, ..., U, respectively, and @ = Zlmz ,f(u). By Lemma 5.8, W < Ng / a, where a =
2(2Y3-1).

- 20-

Suppose that among the N number of processors used by RMBF Algorithm to schedule a
given set 2 of tasks, M, of them belongs to processors of Type (I). Since all processors of Type
(I must be assigned at least two tasks, there exists for each processor at least an number mwith m
2 2 such that the mth task is a Type (1) task. For all the processors of Type (I) on each of which
the mth task is a Type (I) task withm = 3, ij(uj) > 1 since Zjuj > 2(21/3 - 1) according to
Lemma 5.6.

When m = 2, there are at most three of them, each of which has atota utilization less than
2(21/ 3. 1). Therefore, for all the processors of Type (1), there are at most three processors whose
ij (u;) islessthan 1inthe RMBF schedule.

Now let L = nq + ny + ng be defined similarly asin Section 1V, except that they are for pro-
cessorsof Type (11). All the results derived in Section IV are applicable to the set of Type (1) pro-
cessors in the RMBF schedule

Now we are ready to find out the relationship between N and Ng.

:N-nl-nz-n3+n1(21/2-1)/a+n3-13/3
>N-2Ng(1-(2Y2-1)/a)-n,-13/3, wherea=2(2V3-1).
SinceW<Ng/a, Ng/a=N-2Ngy(1- (2Y2-1)/4q)- n,-13/3
Therefore, N/ Ng < (2a+ 1 - 2(2Y2 - 1)) / a + 16/(3Np).
lim N/N, <(2a+ 1-2(2Y2-1))/a=2.33. Q.ED.

Ny -

Theorem 5.2: Let N be the number of processors required to feasibly schedule a set of tasks by
RMBF Algorithm, and N, the minimum number of processors required to feasi-
bly schedule the same set of tasks. Then lim N/N,=>2.3.

Proof: The proof of Theorem 4.2 is applicable to the proo'f\I of this theorem. Q.E.D.

V1. Concluding Remarks

In this paper, we are motivated by the increasingly important role played by the rate-mono-
tonic algorithm in designing predictable real-time systems. The problem of scheduling a set of
periodic tasks on a multiprocessor using a fixed priority assignment scheme is studied, and the
performance of the first two scheduling heuristics used to solve the problem is revisited. The
worst-case performance of these algorithms is studied since task deadlines in a hard real-time sys-
tem have to be guaranteed even in the worst cases. The worst-case performance bounds are tight-
ened up to be 2.33 for RMFF and 2.67 for RMNF. A new scheduling agorithm [] RMBF was

-21-

proposed as an alternative to RMFF, and it also has atight worst-case bound of 2.33. The analytic
results presented here are the few ones on scheduling periodic tasks on multiprocessors.

Since these three algorithms require that tasks are ordered according to their non-decreasing
periods, they are static algorithms. These algorithms obviously are not applicable in situations
where the scheduling decisions have to be made dynamically, since the period of an incoming
task may be shorter than some of the tasks already assigned to some processors. Therefore,
dynamic algorithms need to be developed. We are currently investigating the performance of sev-
eral dynamic algorithms.

Appendix

Before we prove Lemma 4.3, we need to prove the following lemma.

Lemma 4.9: If tasks are assigned to the processors according to the RMFF Algorithm, among all
processors to each of which one task is assigned, there is at most one processor for
which the utilization factor of the task isless than or equal to (21/ 2-1).
Proof: Thislemmais proven by contradiction. The contrary is supposed to be true, i.e., there are
at least two processors, each of which has utilization less than or equal to (2” 2-1). Let T be the
task with utilization equal to u;, that is assigned to processor P;, and T, be the task with utilization
equal to u,, that is assigned to processor P, with j < k, such that
u, < (2Y2-1) and uy < (2Y2-1)
Summing up these two inequalities yields
Uy + Uy < 2(2Y2.2)
Thisimplies that tasks T and T, are assigned on a single processor, which is a contradic-
tion to the assumption. Q.E.D.

Lemma 4.3 If tasks are assigned to the processors according to the RMFF Algorithm, among all
processors to each of which n = 1 tasks are assigned, there is at most one processor
for which the utilization factor of the set of the n tasks is less than n(21/(n+ 1)-1).
limnY ™Y -1 = In2
n - oo
Proof: Thislemma holds when nisequal to 1or 2 according to Lemma4.9 and Lemma 4.2. Now
suppose that the lemma holds for n < k. Thelemmais proven to be true for n = k+ 1 by contradic-
tion. Letn=k+ 1, and P; and P; withi < j be the two processors on each of which exactly n tasks
are assigned, such that the total utilization of the n tasks on each processor satisfies
LU < (k+ 1)2YK+2)) (E.Q.10)

and

- 22-

k¥l < (k+1)YK+2).q). (E.Q.11)

m=1 j m
respectively, where u; ,, denotes the utilization of the mth task assigned on processor i.
Since processors P; and P; are each assigned n = k + 1 tasks, we must have
Ui e 1 < 2(1+ Zm U /K1
and

Uikr1 S 21+ 3 oo 1 k) - 1

Assume that A =a;;+ U oand A = %ﬁ: " U, ;- Among the n tasks which are
assigned to processor Pj, task T, is the first task that is assigned to processor P; immediately
after task T .41 was assigned to processor P, 1 < x < k+1. We will consider the boundary condi-
tion where task Tj, 41 is assigned to processor P; before task Tj, .1 is assigned to processor P;.

Casel: 1< x < k+l

For x < z=< k+1, sinceT;, , can not be scheduled on processor P; even after Tj .+ has been
scheduled on P;, we must have

U 2> 2(1+Al(k+1)) D -1

SinceA' = § KL u < (k + 1)(2YK*+2)1) from equation (E.Q.10),

U, >2(1+ Zﬂtkﬂz) 1YkHD) g = pUKk#2)

For 1<z <X, sinceT;j , can not be scheduled on processor P; before T .1 is scheduled
on P;, we must have

Uj Z>2(1+AI Iy)7Y - 1forsomey<kandA'y— AV

Since 21+ A /y) Y1221+ Al /(k+1)) KD 273 "and A = L u < k+RY
(k+2). 1) from equation (E Q.10),

21/(k+2) 1

A] Zm 1uJ m* zlr(n+ 1x U, m > (k+1)(2YK*2)-9),

which 1s a contradiction to equation (E.Q.11).

Case 2: The boundary condition where task T;, .1 is assigned to processor P; before task
T; k+1 IS assigned to processor P;.

For 1<z < k+1, since Tj, , can not be scheduled on processor P; before T; . is sched-
uled on P;, we must have

uJZ>2(1+A' ly)”Y - 1forsomey<kandA' =3 Ui m

Since 2(1 + Alyly)Y - 12 2(1 + Ay, 4/(k+1)) (Re1) 4 "and A= Lu < k+1)RY
(k+2). 1) from equation (E Q.10),

> 21/(k+2) 1
e 3 KLU > () VE21),

which 1s a contradiction to equation (E.Q.11). Q.E.D.

Lemma 5.6: In the completed RMBF schedule, if the mth task on any of the Type (1) processors
has Type (I) property, where m = 3, then the total utilization of the first (m-1) tasks
on that processor is greater than (m-1)(2Y™-1).

Proof: Let 1 T , be the tasks that were assigned a processor Py of Type (1), and

k, 1’ k 20 Tk m-

- 23-

Py, with y < k, is one of the 2 processors on whla:q] could have been scheduled, but
2(1+ (Y1 1uk|)/(m 1)) ™Y 1<+ (Zl_l uy, 1) /ny) Y, wheren, is the
number of tasks assigned to proce$3prand whereu, | is the utilization of taskxyI on proces-
sorPy.

Sinceu, ; > 2(1+ (|—1 u, I)/n) v 1 (note that this is true even thougp
assigned to processBy betore snome of tasks among mtasks are aSS|gned to procesi%%r
fori<i<ml u,;>2(1+ (zl_l yI)/n) -1>2(1+ (Z uk D/ (m=1))

- 1. Summing up thegen- 1) mequalltles yields
g}“_‘fukl >2m-1) (1+ (ST S)/ (m=1))
olving the above equation ylelds

Tlu LU > (m1)(2Y™.1). Q.E.D.

-(m-1)

- (m-1).

Refer ences

[1] E.G. @FFMAN, JR. (ED.), Computer and Job Shop Scheduling Theory, New York: Wiley,
1975.

[2] E.G. @WFFMAN, R., M.R. GRAREY, AND D.S. DHNSON “Approximate Algorithms for Bin
Packing - An Updated Survey,” W gorithm Design for Computer System Design, pp. 49-
106, G. AJUSIELLO, M. LUCERTINIT, and P. &RAFINI (Eds), Springer-Verlag, New York,
1985.

[3] S. DAavARI AND S.K. DHALL, “An On Line Algorithm for Real-Time Tasks Allocation,”
| EEE Real-Time Systems Symposium, 194-200 (1986).

[4] S.DAVARIAND S.K. DHALL, “On a Periodic Real-Time Task Allocation Probleid;bc. of
19th Annual International Conference on System Sciences, 133-141 (1986).

[5] S.K. DHALL AND C.L. Liu, “On a Real-Time Scheduling Problen@Qperations Research
26, 127-140 (1978).

[6] M.R. GAREY AND D.S. HDHNSON Computers and Intractability: A Guide to the Theory of
NP-completeness, W.H. Freeman and CompanyyY, 1978.

[7] D.S. DHNSON Near-Optimal Bin Packing Algorithms, Doctoral Thesis, MIT, 1973

[8] J. LEHOCZKY, L. SHA, AND Y. DING, “The Rate Monotonic Scheduling Algorithm: Exact
Characterization and Average Case BehavibEEE Real-Time Symposium, 166-171
(1989).

[9] J.P. LEHOCZKY, L. SHA, AND J.K. SSROSNIDER “Enhanced Aperiodic Responsiveness in
Hard Real-time Environments,EEE Real-Time Systems Symposium, 261-270 (1987).

[10] J.P. LEHOCZKY AND S. RAMOS-THUEL. “An Optimal ALgorithm for Scheduling Soft-Ape-
riodic Tasks in Fixed-Priority Preemptive System&EE Real-Time Systems Symposium,
110-123 (1992).

[11] J.Y.T. LEUNG AND J. WHITEHEAD. “On the Complexity of Fixed-Priority Scheduling of

- 24 -

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Periodic, Real-Time TasksPerformance Evaluation 2, 237-250 (1982).

C.L. Liu AND J. LAYLAND, “Scheduling Algorithms for Multiprogramming in a Hard Real-
Time Environment,’J. Assoc. Comput. Machinery 10(1), 174-189 (1973).

J.W.S. Ly, K.-J. LN, AND S. NATARAJAN. “Scheduling Real-time, Periodic Jobs Using
Imprecise Results JEEE Real-Time Systems Symposium, 252-260 (1987).

J.W.S. by, K.-J. LN, W.K. $HIH, A.C. YU, J.Y. GHUNG AND W. ZHAO. “Algorithms for
Scheduling Imprecise Computation€6mputer, 58-68 (May 1991).

K. RAMAMRITHAM . “Allocation and Scheduling of Complex Periodic Taskstérnational
Conference on Distributed Computing Systems, May 1990.

S. RAMOS-THUEL AND J.K. STROSNIDER “The Transient Server Approach to Scheduling
Time-Critical Recovery Operationd EEE Real-Time Systems Symposium, 286-295 (1991).

P. SRLIN, “Scheduling of Time Critical ProcesseRy'oceedings of the Spring Joint Com-
puters Conference 40, 925-932 (1972).

L. SHA, J.P. [EHOCZKY, AND R. RAJKUMAR. “Solutions for Some Practical Problems in
Prioritized Preemptive Schedulind EEE Real-Time Systems Symposium, 181-191 (1986).

L. SHA, R. RAJKUMAR, J.P. IEHOCZKY, AND K. RAMAMRITHAM . “Mode Change Protocols
for Priority-Driven Preemptive SchedulingJburnal of Real-Time Systems 1(3), 244-264
(1989)

L. SHA, R. RAJKUMAR, AND J.P. LEHOCZKY. “Priority Inheritance Protocols: An Approach
to Real-Time Synchronization,TEEE Transactions on Computers 39(9), 1175-1185
(1990).

W-K. SHIH, J.W.S. I, AND J-Y CHUNG. “Fast Algorithms for Scheduling Imprecise Com-
putations,”|EEE Real-Time Systems Symposium, 12-19 (1989).

B. SPRUNT, L. SHA, AND J.P. IEHOCZKY. “Aperiodic Task Scheduling for Hard Real-time
Systems,Journal of Real-Time Systems 1, 27-60 (1989).

K.W. TINDELL, A. BURNS, ANDA.J. WELLINGS. “Mode Change in Priority Pre-emptively
Scheduled Systemd EEE Real-Time Systems Symposium, 100-109 (1992).

- 25-

