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ABSTRACT

This report extends the current analysis associated with static priority
pre-emptive based scheduling to address the wider problem of
analysing schedulability of a distributed hard real-time system; in
particular it derives analysis for a distributed system where tasks with
arbitrary deadlines communicate by message passing and shared data
areas. A simple TDMA protocol is assumed, and analysis developed to
bound not only the communications delays, but also the delays and
overheads incurred when messages are processed by the protocol stack
at the destination processor. The report illustrates how a window-
based analysis technique can be used to find the worst-case response
times of a distributed task set. An extended example illustrating the
application of the analysis is presented.
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1. INTRODUCTION

A common way of constructing a hard real-time system is to compose the system from a
number of hard real-time tasks dispatched according to static priorities. Analysis is done a
priori to determine the worst-case response times of each of the tasks, and the system is only
deployed if these response times meet the timing requirements of the system. Hitherto, this
approach has not been applied well to distributed embedded hard real-time systems: the
priority ceiling protocol, for example, has been successfully implemented only on a single-
processor architecture (although some work on a less successful parallel implementation has
been done). One of the barriers to applying fixed priority scheduling to distributed systems has
been the lack of integrated schedulability analysis that can be applied a priori to bound the
timing behaviour of a distributed system (including both processing delays and communications
delays). This report is concerned with developing such analysis for a simple computational
model (space considerations prohibit the addressing of a more complex, and powerful,
computational model).

One of the most important problems with a priori analysis for distributed fixed priority systems
has been the complications introduced by communications costs: the delays for messages being
sent between processors must be accurately bounded, and the overheads due to
communications must be strictly bounded. Other overheads also need to be addressed: for
example, the overheads due to operating a so-called tick scheduler [18, 20] have been bounded
accurately.



In this report we argue that a holistic approach to schedulability analysis for distributed
systems must be taken; the schedulability analysis for single processor systems is integrated
with timing analysis for hard real-time messages on a communications system to provide an
overall piece of analysis. This analysis can be applied a priori to a particular configuration of a
distributed hard real-time system to determine the timing bounds of the system as a whole (as
will be discussed later, this analysis can be used as the basis for determining a suitable
configuration).

Single processor schedulability analysis for fixed priority tasks has received considerable
attention. In recent years the original fixed priority analysis [1] has been considerably extended,
relaxing many of the assumptions of the original computational model. For example, Lehoczky
et al [8] provided exact-case analysis to determine the worst-case timing behaviour of rate
monotonic tasks. Leung and Whitehead [3] formulated an alternative priority assignment
policy, where task deadlines can be less than the period of a task, and provided simple analysis
to determine the schedulability of such tasks. Sha et al [9] discovered a concurrency control
protocol to permit tasks to share critical sections of code. Audsley et al [11] permitted the
addition of guaranteed sporadic tasks (where there is a minimum time between the re-arrivals
of such tasks). Tindell et al [20] extended the approach further to characterise the re-arrival
pattern, covering ‘bursty’ sporadic and periodic tasks, and introduced the concept of release
jitter (where a task is not released into the system immediately upon arrival, but may suffer a
bounded deferral time). Lehoczky [10] formulated the concept of a ‘busy period’, using this to
provide qualitative analysis for tasks with arbitrary static deadlines. Lehoczky also indicated
that neither the rate monotonic nor deadline monotonic priority assignment policies are optimal
for such task sets. Tindell [18] provided quantitative analysis for arbitrary deadlined tasks with
release jitter and bursty behaviour.

Schedulability analysis for communications is much less complete. Strosnider [6] applied the
rate monotonic family of analysis to the 802.5 token-ring communications protocol to
guarantee access times to the bus. Tindell et al [12] extended this work by showing how the
general fixed priority analysis of Tindell et al [20] could be applied to the 802.5 protocol and
to a generalised TDMA protocol. Crucially, the end-to-end deadlines of messages are taken
into account: once a message arrives at the destination processor it must be processed and
delivered to the destination application task.

In this report we will reproduce schedulability analysis for fixed-priority tasks with arbitrary
deadlines, and then use this analysis to determine the worst-case response times of messages
sent between processors. We will then extend the processor schedulability analysis to address
the delivery costs of messages (both to bound the overheads on a destination processor, and to
bound the delivery times of the messages, thus obtaining the end-to-end response times). The
rest of this report is structured as follows: the next section introduces the basic single
processor schedulability analysis used throughout this report, and gives the single-processor
computational model. Section 3 derives the communications analysis for a simple TDMA
protocol, and gives the communications model. Section 4 integrates the results of the
processor and communications schedulability analysis to produce analysis for a distributed hard
real-time system architecture. Section 5 gives an extended example, illustrating the application
of the analysis using a simple tool. Section 6 summarises this report and offers conclusions.
Section 7 contains a glossary of notation used throughout this report.
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2. SINGLE PROCESSOR SCHEDULABILITY ANALYSIS

This section reproduces and decribes the schedulability analysis for arbitrary deadlined tasks.
For simple periodic and sporadic fixed priority tasks [4, 20, 14] the following equation can be
used to compute the worst-case response time of a given task i:
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where ri is the worst-case response time of a given task i, hp(i) is the set of all tasks of higher
priority than task i on the same processor, Ci is the worst-case computation time of task i, and
Tj is the minimum time between successive arrivals of task j (if j is periodic then Tj is equal to
the period).

Priorities are assumed to be unique, and that tasks do not voluntarily suspend themselves (until
they have completed their execution). The term Bi is the longest time that task i could be spent
blocked by a lower priority task, and is computed according to the priority ceiling protocol
analysis. For the purposes of this report we introduce the concept of a ‘protected object’,
where a priority-ceiling semaphore is used to guard access to a Hoare monitor [2]. The
concurrency control requirements of each task is then characterised by the objects and methods
accessed by that task. The worst-case computation time of each method of each object is
computed, which can then be used to both compute the blocking factor Bi according to the
priority ceiling protocol [9], and be used to compute the worst-case execution time of the
caller tasks [15].

The worst-case response time of task i is equal to the smallest value of ri that satisfies equation
1. This can be found by the following recurrence relation:
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A suitable initial value for ri is 0.

Equation 2 is guaranteed to converge if the processor utilisation is ≤ 100% [4, 17]. The above
analysis makes the assumption that the worst-case response time of a task i must be less than
Ti (i.e. the deadline must be less than the period). The analysis also assumes that as soon as a
task arrives it is released (i.e. immediately placed in a notional priority-ordered run-queue). If
this is not the case (for example, if the task is logically able to run, but the system to which the
task is allocated has not recognised this) then the analysis can be updated [20]:
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where wi is given by:
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The term Ji is the worst-case delay between a task arriving (i.e. logically being able to run, yet
not having been detected as runnable), and being released (i.e. placed in the run-queue), and is
termed the release jitter. The effect of the deferral of the release of a task was first noted by
Rajkumar with reference to the blocking of a task on an external event [7].

Release jitter is a problem because the worst-case time between successive releases of a task is
shorter than the worst-case time between arrivals of a task. Consider the following scenario: a
task j, of higher priority than task i, arrives at time 0. At a later time Jj later task j is released
(perhaps j is a sporadic which must be polled for by a tick scheduler). At the same time task i is
released. Task j immediately pre-empts task i, as expected. At time Tj task j re-arrives. This
time j is immediately released (perhaps j arrived just before the tick scheduler polling period).
From the view of task i, task j has arrived with time Tj – Jj between arrivals (Figure 1).

Tj

Ji

ri

task j

task i

Figure 1: the problem of release jitter

Over a large number of periods task j will execute at the period Tj, but over a short period of
time (between just two successive invocations of j) this rate is optimistic. The worst-case
scheduling scenario for this short-term inter-arrival ‘compression’ is as described above: a task
j is released at the same time as the level i busy period. The inclusion of the term Jj in equation
(4) accounts for this behaviour.

To avoid the problem that a later release of the same task could be delayed by the non-
completion of the earlier release, we insist for the above equation that the time spent in the
run-queue must be less than the task period (i.e. wi ≤ Ti). To relax this wi ≤ Ti assumption we
use the arbitrary deadline analysis developed by Tindell [18]:
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The above equations are equivalent to equations (3) and (4) if wi ≤ Ti. Again, the equations are
guaranteed to produce a result if the processor utilisation is ≤ 100%. The sequence of values of
q in equation (5) is finite since only values of q where wi(q) > (q+1)Ti need be considered.
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A simple tool can be built which embodies the above equations and calculates a priori the
worst-case response times of tasks on the processor. Such a tool is used to determine the
worst-case timing characteristics of the example in section 5.

A common way of implementing a fixed priority scheduler is to use tick based scheduling: a
timer interrupts the processor periodically and runs the scheduler. One of the activities of the
scheduler is to make runnable (i.e. place in a notional priority-ordered run-queue) any periodic
and sporadic tasks that have arrived since the last invocation of the scheduler (for example, the
scheduler used by Locke et al [13]). A tick-scheduling approach is usually simple to
implement, but can lead to pessimistic behaviour if poor analysis of the scheduler overheads is
used. The overheads due to operating tick scheduling can be accurately determined by applying
the same family of scheduling analysis as described in previous sections.

Before applying the analysis we will briefly describe some important characteristics of certain
tick scheduling implementations. A common way of implementing tick scheduling is to use two
queues: one queue holds a deadline ordered list of tasks which are awaiting their start
conditions (such as a start time for periodics, or a start event — such as a value in an I/O
register — for sporadics); we denote this queue the pending queue. The other queue is a
priority-ordered list of runnable tasks, denoted the run queue. At each clock interrupt the
scheduler scans the pending queue for tasks which are now runnable and transfers them to the
run queue. Most implementations of such a queuing system have the following characteristic:
the computation cost to take a task from the pending queue to the run queue is lower if more
than one task is taken at the same time. For example, in one implementation of a run-time
system at York [19] the worst-case cost to handle a timer interrupt is 66µs. The cost to take
the first task from the pending queue is another 74µs (we denote this time CQL). For each
subsequent task removed (as part of the processing within the same interrupt) the cost is 40µs
(we denote this time CQS). These time savings are the result of one-off costs associated with
setting up loops, etc. We now develop analysis to accurately account for these overheads.

The costs of the periodic timer interrupt can be modelled as a simple task, with worst-case
computation time Cclk and period Tclk; within a time window of width w the worst-case
number of timer interrupts is given by:
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Now, within the same window the worst-case number of times tasks move from the pending
queue to the run queue is given from equation 6 by:
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If, over a window of width w, the total number of task queue moves, K, is less than the
number of clock interrupts L, then in the worst-case all of the queue manipulations are full
cost (i.e. each taking a worst-case computation time of CQL), and the full cost of tick
scheduling overheads is:
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LCclk + KCQL

If, over w, K is greater than L then only the first L task queue moves are at the full cost CQL;
the remaining K – L require only CQS each. Hence the tick scheduling overheads for a task i
over a window of width w are:

τ i clk QL QSw LC L K C K L C( ) min , max ,= + + −� � � �0 (9)

These overheads are additional computational interference, and thus equation (6) is updated to:
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3. COMMUNICATIONS SCHEDULABILITY ANALYSIS

This section applies the same family of analysis described in the previous section to the
bounding of message delays across a communications system. We first describe the
communications model assumed.

A number of processors are connected to a shared broadcast bus; for a processor to transmit
on the bus it must have exclusive access to the bus. A number of protocols exist to arbitrate
between processors when accessing a shared communications resource, but for the purposes of
this report we assume that the TDMA protocol is used. The TDMA protocol dictates that each
processor is able to transmit for a fixed time (idling the bus if no data is to be transmitted),
termed a slot, before stopping and letting other processors transmit. The cycle of processors
transmitting on the bus is fixed, and hence the cycle time of the bus, denoted TTDMA can be
determined. In strict TDMA all processors have the same slot size. We relax this assumption,
and permit each processor to have an independent slot size.

Messages are assumed to be broken up into packets by the sender task, with large messages
requiring many packets. Each message is assigned a fixed priority, and all packets of the
message are given this priority. Packets from the same message are queued in FIFO order,
such that the last packet of a message to be transmitted corresponds to the last portion of the
message. Packets are placed into a priority-ordered queue shared between the host processor
and the network adapter responsible for physically transmitting the packets onto the network
(the shared buffer could be implemented as dual-port memory). The packets are queued by the
task sending the message, via a protected object guarding the queue; the overheads of
packetising the message and queueing the packets are assumed to be included in the worst-case
execution time of the sender task.

When a processor is allowed to transmit on the bus (indicated by a local clock synchronised to
within ∆ of a notional global time) the network adapter removes from the head of the packet
queue all the packets that can be transmitted in a single slot, and then proceeds to transmit
them, in priority order. In order to prevent clock drift leading to two processors transmitting at
the same time the TDMA cycle time must be set up such that there is a 2∆ time between the
end of one processor transmitting and the start of the next processor transmitting (2∆ is the
largest clock difference between any two local clocks).
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A packet arriving at the destination processor either causes a packet interrupt to be raised, or
an indication in a hardware status register to show the arrival. A packet delivery task is
released (either directly by the packet interrupt, or indirectly by the tick-scheduler polling the
hardware status register) to process the packet. The driver must remove the packet from the
packet buffer shared between the network adapter and the host processor, and then place the
packet in a temporary area where the message is re-assembled. If the arrived packet is the last
packet of a message the destination task is then released to process the message.

We have the following restrictions on message passing: each sender task can send a fixed set of
messages, each of bounded size, to fixed destination tasks. Each message m in the set of
messages a given task i can send may be sent once every nm invocations of task i. Thus m
inherits a periodicity of nmTi from the sender task i (Figure 2).

T

2T

message queued
(every two invocations of sender)

Sender task invocation

2T

Time

Figure 2: message queued every other invocation of sender and inherits a period of 2T

In Figure 2, the message queued by the task has a value of n of 2, and thus inherits a period of
2T.

Each message must have a unique destination task, and no task can receive more than one
message (if more than one message is destined for a certain task then extra ‘server’ tasks must
be created which copy the message into a protected object which the destination task then
reads). These restrictions are needed in order to bound the peak load on the communications
bus, and (as will become clear later) enable the schedulability of the destination tasks to be
determined.

We now derive the schedulability analysis to bound the time taken for a message m, sent from
a processor p, to arrive at the destination processor. We introduce some notation: Pm is the
number of packets, of fixed size, that message m is composed of. Tm is the period of the
message, inherited from the sender task s(m). Sp is the number of packets that processor p is
permitted to transmit in its TDMA slot.

Every TTDMA, the communications adapter attached to the host processor takes Sp packets
from the head of the packet queue, and begins transmitting them (the Sp packets can be
considered to be instantaneously removed from the queue by the communications adapter).
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The number of TDMA cycles needed, in the worst-case, for all the packets of a message m to
be removed from the queue, is given by:
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where Im(w) is the number of packets that can be queued ahead of m (i.e. the number of higher
priority packets) in the packet queue, in the worst-case. Therefore, the worst-case time that a
message m spends in the packet queue is given by:
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The number of packets that can be queued ahead of message m in a time w can be found by
realising that any higher priority message behaves in the worst-case as if it were queued
periodically (with a period inherited from the sender task), but with an inherited release jitter.
This release jitter is equal to the worst-case response time of the sender task: the task could
queue a message at the last possible point during one invocation (i.e. just before finishing at the
worst-case response time), and early during the subsequent invocation (i.e. just as it is
released). In effect, the message can be considered to have ‘arrived’ as soon as the sender task
arrives (since this is the earliest the message can be queued), but is deferred for any time up to
the worst-case response time of the sender. This is illustrated in Figure 3.

rsender

Tsender

w

High priority
message queued

J

Sender task
active

Figure 3: over the interval w two high priority messages are queued

In Figure 3 the dotted boxes represent the worst-case release jitter of the sending task and the
queued message; the high priority message has a release jitter of Jm (equal to the worst-case
response time of the sender task) and a period of T.

Therefore, the number of packets that can be queued ahead of message m in a time w is equal
to:
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Where Tj is given by:
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Equation 13 is almost identical to the interference part of the original scheduling equation
(equation 4). Indeed, if TTDMA is set to 1 (representing the fact that the queue is serviced every
time unit), Sp is set to 1 (representing the fact that the server of the queue delivers a unit of
service each iteration), and Pm is set to Cm (where Cm represents the number of units of
resource requested — time), then the original task scheduling equations can be established.

We can re-use the arbitrary deadline task schedulability analysis (equation 6) and apply it to
message scheduling, giving the following message scheduling equations. The worst-case time
message m takes to arrive at the destination processor communications adapter is given (from
equation 5) by:
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Where the term wm(q) – qTm gives the time the message m spends in the packet queue, and
Xm(q) is the corresponding time taken to transmit the message from the communications
adapter to the destination processor communications adapter, and wm(q) is given (from
equations 6 and 12) by:
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Where Im, the number of packets ahead of message m, is given by:
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To find Xm(q) we need to know which of the Sp packets transmitted in the last TDMA slot for
message m corresponds to the last packet of message m.

The maximum number of packets that need to be taken from the queue over the time wm(q) in
order to guarantee the transmission of the last packet of m is given from equations 16 and 17:

x q P I w qm m m= + +( ) ( )1 � � (18)

The number of slots taken to transmit these packets, from equation 16 is:
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The first s – 1 slot transmissions will not send the last packet of message m. In the final slot
transmission, the last packet of message m will be the ath packet of the final slot, where a is
given by:
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The time taken to transmit these packets is given by:

aρ (21)

where ρ is the time taken to transmit a packet on the communications bus. Allowing for a
constant propagation delay we can therefore say that the last packet of message m arrives at
the destination processor communications adapter at time:

X q am ( ) = +℘ρ (22)

after the packet is taken from the packet queue, where s and x are defined by equations 19 and
18 respectively.

Equation 15 gives the worst-case arrival time of a message m: the worst-case time between
queueing the message m and it arriving in the packet buffer of the network adapter at the
destination processor. To find the end-to-end delay — the worst-case time between queueing a
message and it arriving at the destination task — we must determine the delivery delay.

Each packet is processed by a separate invocation of the packet handler (released either by the
tick scheduler or by an interrupt). In the worst-case, the packet handler could be invoked once
every ρ, since this is the fastest rate that packets can arrive from across the network to the
processor. This is equivalent to assigning ρ to the period of the delivery task, Tdeliver. A bound
on the number of invocations of task deliver within a window of size w is therefore:
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This bound can be pessimistic: in general it is possible that the worst-case computation time of
the packet handler, Cdeliver, could exceed the worst-case packet re-arrival time ρ, leading to
processor with a utilisation > 100%. However, there is another bound on the number of
packets arriving in a time window w: only a certain set of messages can be destined for a
processor p. These messages are queued periodically with a period Tm (inherited from the task
sending m) and release jitter equal to rs(m) + am. By using similar analysis to that of equation 17
we can say that the number invocations of the packet handler is bounded by:
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Where incoming(p) is the set of messages in the system destined for processor p, rs(k) is the
worst-case response time of the task sending message k (equation 5), ak is the worst-case delay
between queueing message k and message k arriving at processor p (equation 15), and Tk is the
inherited period of message k (equation 14).
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The lower bound of the two bounds (equations 23 and 24) on the number of invocations can
be used, and hence the number of packets arriving at processor p over a time window w is
bounded by:
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In equation 6 the term (q + 1)Ci represents the worst-case computation due to task i. When
calculating the worst-case response time of task deliver the term (q + 1)Ci can be replaced
with:

u w l w q Cdeliver q p deliver, ( ) min ( ),= +1� � (26)

where lp(w) is the bound on the number of packets coming into processor p in a time window
of size w (equation 24)

Thus the equation for wdeliver(q) can be re-written (from equations 26 and 10):
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where i = deliver

Since packets are serviced in FIFO order the delivery of the last packet of message m entails
the delivery of message m. Therefore, the delivery time of message m is simply the worst-case
time to deliver a packet, i.e. rdeliver. Hence the end-to-end response time of a message m can be
bounded by summing the worst-case arrival time of a message m and the worst-case delivery
time (equations 15 and 27):

r a rm m deliver= + (28)

where deliver is the delivery task allocated to the destination processor of message m.

4. HOLISTIC SCHEDULING THEORY

The previous two sections have derived a priori analysis that gives the worst-case timing
characteristics of a given task on a given processor, and a given message sent to a given
processor. In this section we show how the analysis can be integrated to provide a powerful
model of distributed hard real-time computation.

The most important aspect of integrating the processor and communications schedulability
analysis is to bound the overheads due to packet handling on given processor. Equation 25
gives the worst-case number of packets arriving at a given processor in a given time window,
and this is used to bound the worst-case response time of the delivery task (equations 5 and
27). This approach can be extended to bound the interference from the packet handler on
lower priority tasks (from equation 6):
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Note that if there are no packets to send in a slot then it is not permissable to send soft-real
time packets instead of idling the bus unless these soft real-time packets are added to the set
incoming(p): in most communications hardware architectures the communications adapter is
unable to distinguish between hard and soft real-time packets, and will generate an interrupt
regardless of the class. Hence if more packets arrive at a processor than were allowed for, too
many interrupts would be generated, potentially causing missed deadlines.

When a message fully arrives at a destination processor, the destination task is released, and
can then read the message. The destination task inherits a release jitter in the same way that a
message inherits release jitter from the sender task. Thus, for a task i that receives a message
m, the inherited release jitter is equal to:

r a rs m m deliver( ) + + (30)

where s(m) is the task that sends the message m, and deliver is the packet handler on the
destination processor of message m

This release jitter is in addition to any other jitter that the task may already have (for example,
if the arrival of the task is polled for by the scheduler then it will have a release jitter of Ttick).
So, for a task d(m) (the destination of message m), with an existing jitter of Ttick due to the
operation of a tick scheduler, we have:

J r a r Td m s m m deliver tick( ) ( )= + + + (31)

We now indicate an interesting property of the scheduling equations. The scheduling equations
are mutually dependent: the release jitter of a receiver task (equation 31) depends on the
arrival time of the message am (equation 15), which in turn depends on the interference from
higher priority messages (equation 16), which in turn depends on the release jitter of sender
tasks (equation 13). Hence the holistic scheduling equations cannot be trivially solved.

A solution to this problem can be found by realising that all of the scheduling equations are
monotonic in window size w, response time, and release jitter (i.e. increasing any of these
variables cannot lead to a decrease in any of the other variables). Therefore, it is possible to for
a recurrence relation and iterate to a solution in the same way as it is possible to iterate to
solve the scheduling equations (for example, equation 2): in the first iteration of the scheduling
equations we set the inherited release jitter for all tasks to zero. On the nth iteration the
inherited release jitter values can be set according to the results of solving the scheduling
equations in the (n – 1)th iteration.

One of the restrictions of the computational model is that task access to a protected object
must always be local: it is not permitted to lock a semaphore on another processor. One way
around this potential problem is to use an approach akin to RPC (Figure 4).
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Figure 4: Calling a remote object

The sender task is split into two separate tasks: the first task sends a message to the processor
where the object is stored, to a server task. The server task is activated once the message
arrives, and calls the appropriate protected object method. The task then sends a return
message to the second task, containing the relevant data. This second task then processes the
message data as normal. The release jitter for the second task can become quite large, but there
is a technique for keeping the release jitter small; this will be discussed in section 5. Note that
this approach to accessing remote objects is very similar to that taken by Rajkumar et al [7],
except that we assume the client task is split into two separate tasks; Rajkumar et al permit a
single client task which suspends itself awaiting the reply from the remote server.

Another restriction of the model is that no task can receive more than one message. This is
because of the difficulty in assessing which message should trigger the task. However, multiple
messages sent to the same task can be permitted using a different mechanism: a server task is
created for each message destined for task i, which then simply writes the message to a shared
protected object. Task i can poll the protected object and read any messages. This has the
advantage that task i and the tasks sending the message may share an offset [17] relationship
(i.e. task i always arrives a fixed time after the arrival of a given sender task, using a global
time mechanism to ensure all processor clocks are kept synchronised [5]) such that all
messages for task i from the sender tasks are always guaranteed to have been delivered by the
time task i arrives (Figure 5).
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Figure 5: Sending multiple messages to a single task

To illustrate some of these principles we now give an extended example, using the analysis
developed.

5. EXTENDED EXAMPLE

The example system consists of three processors, with 32 tasks and 7 objects. A total of 14
different messages are sent by tasks in the system, of which 13 require transmission across a
shared communications bus. The packet size is set to be 1024 bytes, with a packet transmission
time ρ of 800µs. The slot sizes of processors 1, 2, and 3 are 1, 1, and 3 packets respectively.
The processor clocks are synchronised to global time to within 40µs, and hence the TDMA
cycle time, TTDMA, is 4240µs. The constant propagation delay ℘ is assumed to be 1µs. The
clock tick period Tclk is 1000µs, Cclk is 66µs, CQL is 74µs, and CQS is 40µs.

The tasks represent the computation required for a hypothetical aircraft control system.
Processor 3 represents a sensor processor, and has only 3 tasks allocated to it. These tasks
monitor sensors and transmit the results to processors 1 and 2. Computation on processors 1
and 2 result in commands being sent to actuators, which are connected to processor 2.
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Figure 6: Architecture of the Example System

The following tables detail the timing requirements placed on the tasks in the system, and show
the worst-case response times calculated according to the equations given in this report (a
small tool was written to perform the calculations and print the results).

The timing characterstics of tasks allocated to processor 1 are given below:

Problem variables Computed values

task name T C D B J r

deliver_cpu1 800 150 X 0 0 970

task1 200000 2277 5000 0 0 4557

deliver_air_fuse_data 40000 420 15000 321 8890 14478

deliver_air_data_update 20000 552 20000 321 10685 17305

deliver_air_data 20000 496 20000 321 9885 17291

task3 25000 1423 12000 354 0 11150

task5 50000 3096 50000 354 0 15786

task7 59000 7880 59000 354 0 27469

task9 50000 1996 100000 354 15786 46679

deliver_radar 100000 3220 100000 354 34358 72237

deliver_radar_update 100000 3220 100000 343 55558 95446

client1 200000 520 100000 343 0 42108

client2 200000 1120 200000 343 107210 150538

task11 1000000 954 200000 343 141521 185903

task13 200000 1124 200000 343 0 45606

task15 200000 3345 200000 343 0 74284

task17 1000000 1990 1000000 0 0 77626
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For processor 2:

Problem variables Computed values

task name T C D B J r

deliver_cpu2 800 150 X 0 0 770

task4 40000 996 14000 343 0 2879

deliver_health 100000 550 20000 343 16379 19998

task2 25000 689 5000 343 0 4598

task6 50000 4967 50000 410 0 10992

server 200000 2342 X 756 74359 88479

task8 80000 9125 80000 756 0 24177

task10 100000 5120 115000 756 0 30456

deliver_actr 200000 654 200000 756 59317 86833

task12 1000000 3145 200000 350 96157 130270

task14 25000 2325 200000 350 38161 74731

task16 1000000 1455 1000000 0 83437 129891

For processor 3:

Problem variables Computed values

task name T C D B J r

send_air 20000 2245 20000 0 0 2665

send_health 100000 2322 100000 0 0 5185

send_radar 100000 12224 100000 0 0 18267

The symbol X under the deadline column in the above tables denotes “don't care” — that there
is no intrinsic deadline for the task (although the response time of the task adds to the response
time of some other task with a deadline). Tasks task11 and server are sporadic tasks with their
release polled for by the tick scheduler, and hence have a base release jitter of Ttick. All other
tasks have a base release jitter of zero. The calculated release jitter values in the above tables
include the base release jitter values.

The messages sent by each task are described in the table below. The messages are listed in
priority order. Note that message priorities between messages sent from different processors
are meaningless, since the TDMA protocol only uses priority to arbitrate between messages
sent from the same processor.
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Problem variables Computed values

message name size source task source

CPU

destination task destination

CPU

n packets r

air_data 220 send_air cpu3 deliver_air_data cpu1 1 1 6811

air_data_update 550 send_air cpu3 deliver_air_data_update cpu1 8 1 7611

health_data 2230 send_health cpu3 deliver_health cpu2 1 3 10851

radar_data 2048 send_radar cpu3 deliver_radar cpu1 1 2 16091

radar_data_update 16384 send_radar cpu3 deliver_radar_update cpu1 8 16 35691

message1 500 task17 cpu1 task16 cpu2 1 1 5811

message2 800 task13 cpu1 deliver_actr cpu2 1 1 10051

message3 779 task4 cpu2 deliver_air_fuse_data cpu1 1 1 6011

message4 225 task5 cpu1 task9 cpu1 1 1 0

message5 1255 task17 cpu1 task12 cpu2 2 2 18531

message6 1255 task3 cpu1 task14 cpu2 7 2 27011

message7 800 task12 cpu2 task11 cpu1 1 1 10251

toserver 500 client1 cpu1 server cpu2 1 1 31251

fromserver 1500 server cpu2 client2 cpu1 1 2 18731

As can be seen from the table, the radar update message is a large message, sent infrequently,
at the lowest priority (of messages sent by processor 3). The worst-case response time of the
message is 37291 µs. Message 4 in the table is a message sent between two tasks on the same
processor, and thus the worst-case response time of the message is deemed to be zero. This
results in an inherited release jitter for task 9, equal to the worst-case response time of task 5.

Details of the objects in the system are shown in the table below:

object name ceiling task host object type

messages_cpu1 task3 cpu1 message_mgmt_object

messages_cpu2 task4 cpu2 message_mgmt_object

messages_cpu3 send_air cpu3 message_mgmt_object

air_data deliver_air_fuse_data cpu1 air_data_object

gyro_data task9 cpu1 gyro_data_object

actuator_ctrl task6 cpu2 actuator_ctrl_object

radar_data task3 cpu1 radar_data_object

health_data server cpu2 health_data_object

buffer_mgmt_cpu1 task13 cpu1 buffer_mgmt_object

buffer_mgmt_cpu2 task12 cpu2 buffer_mgmt_object
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Details of the objects called are shown in the table below:

task name object called method called

server health_data read_data

deliver_radar radar_data write_data

deliver_radar_update radar_data write_data

deliver_air_data air_data write_data

fuse_data

deliver_air_data_update air_data write_data

task12 buffer_mgmt_cpu2 enter

task13 buffer_mgmt_cpu1 enter

task9 gyro_data update

radar_data write_data

air_data write_data

read_data

fuse_data

deliver_air_fuse_data air_data fuse_data

task15 gyro_data calibrate

task10 actuator_ctrl set_ctrl

task6 actuator_ctrl set_ctrl

task3 radar_data read_data

task12 health_data update_health

task16 health_data read_health

deliver_actr actuator_ctrl set_ctrl

deliver_air_data air_data write_data

Additionally, all tasks that send messages call method ‘queue_packet’ of the object of type
‘message_mgmt_object’ allocated to the processor.

Details of the worst-case execution times of each of the methods of each object are given in
the table below:

object type method name WCET

air_data_object write_data 256

read_data 209

fuse_data 321

gyro_data_object update 221

calibrate 252

actuator_ctrl_object set_ctrl 410

radar_data_object read_data 108

write_data 354

health_data_object update_health 756

read_health 350

buffer_mgmt_object enter 477

remove 632

message_mgmt_object queue_packet 343

The tasks client1, server, and client2 illustate access to a remote object: client1 sends a
message to task server, which then accesses the object health_data (via the method
read_data). The results are sent back to client2 via a message (denoted fromserver, taking
18731 µs to arrive at the client2 task. As can be seen, client2 inherits a large release jitter
(107210 µs) equal to the worst-case response time of server plus the time for message
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fromserver to be sent to client2. The worst-case response time of task server itself is formed
partly from release jitter inherited from client1 and message toserver.

A large part of the release jitter for client2 and server could be removed by using time offsets
[17] between the three tasks. Time offsets ensure that the early arrival of a message does not
entail an early release of the task waiting for the message. The reduction (or removal) of
release jitter from a higher priority task using offsets does not improve the worst-case response
time of that task, but will lead to a reduction in the worst-case response times of lower priority
tasks.

6. SUMMARY AND CONCLUSIONS

This report has shown how to analyse distributed hard real-time systems conforming to a
particular architecture — simple fixed priority scheduling of processors, with a simple TDMA
protocol arbitrating access to a shared broadcast bus. The software architecture is a simple
one, with periodic and sporadic tasks communicating via messages and shared data areas. The
analysis has been applied to an extended example to illustate some of the ways a system can be
composed, and some of the timing characteristics that result. The real benefit of the analytical
approach taken is this report is not just to obtain a priori schedulability guarantees across a
distributed system, but to aid the configuration of such a system. Tindell et al show how
rudimentary analysis is used as part of a combinatorial optimisation algorithm to allocate tasks
across a distributed system [16]; research in progress is applying the analysis of this report to
the wider configuration problem.

7. GLOSSARY OF NOTATION

The following table summarises the notation used throughout this report.

Ti Minimum time between arrivals of task i
Ci Worst-case computation time of task i
Bi Worst-case blocking time of task i
incoming(p) Set of messages destined for processor p
hp(i) Set of tasks of higher priority than task i and located on the same

processor
Ji Worst-case time between arrival and release for an invocation of task i;

termed the release jitter
ri Worst-case response time of task i, measured from the arrival of the task

to the completion of the task
nm Message m will be sent once every nm invocations of the sender of the

message
s(m) The sender task of message m
d(m) The destination task of message m
Pm The number of packets of which message m consists
℘ The propagation delay across the broadcast bus
ρ The time taken to transmit a packet
Sp The number of packets a processor p may transmit in its TDMA slot
TTDMA The TDMA cycle time
∆ The worst-case difference in time between any local clock and global time
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am The worst-case arrival time of a message m, measured relative to the time
the message is queued

Xm The worst-case time taken to transmit the last packet of message m once
the TDMA slot for the processor has arrived

rdeliver The worst-case delivery time of a packet once arrived at the destination
processor

wi The time the processor spends executing tasks of priority equal or higher
than that of task i

CQL The largest computation time cost of taking a task from the pending
queue to the delay queue

CQS The per-task cost of taking more than one task from the pending queue to
the delay queue

Cclk The cost of handling the timer interrupt driving the scheduler
Ttick The period of the timer interrupt that drives the scheduler
Im The interference from higher priority messages on message m
L Defined by equation 7
K Defined by equation 8
s Defined by equation 19
lp Defined by equation 24
vdeliver Defined by equation 25
udeliver Defined by equation 26
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