Refactoring of an Ada 95 Library with a Meta CASE Tool

Alain Plantec, Frank Singhoff
LISYC/EA 3883, University of Brest
20, av Le Gorgeu
CS 93837, 29238 Brest Cedex 3, France
{plantec,singhoff}@univ-brest.fr

ABSTRACT

This paper presents the refactoring work of Cheddar, a set of
Ada packages which aims at providing performance analysis
tools for concurrent real time applications. CASE tools can
be used for such a purpose. However, we chose to use a
meta CASE tool called Platypus. It seems that few studies
exist concerning Ada and meta-modelization. Then, in this
paper, we investigate how to use a meta CASE tool in order
to automatically produce some parts of an Ada 95 object
oriented software.

Keywords

Meta-modeling, Meta CASE, STEP, EXPRESS, Code gen-
erating, Platypus, Cheddar

General Terms

Design, Languages

Categories and Subject Descriptors

SOFTWARE ENGINEERING [Design Tools and Tech-
niques]: Computer-aided software engineering (CASE)

1. INTRODUCTION

In [22, 23], we presented Cheddar, a set of Ada packages
which aims at providing performance analysis of concurrent
real time applications. With Cheddar, a real time applica-
tion is modeled by a set of processors, shared resources, and
tasks described by an AADL specification[7].

The development of this toolset started in 2002. Today,
it includes most of classical scheduling simulation methods
and classical scheduling feasibility tests in the case of de-
pendent and independent tasks running on monoprocessor
and distributed systems[5, 12].

We plan to strongly extend it in order to be able to ana-
lyze multiprocessor systems and hierarchical schedulers[20].
These new services will imply a large amount of mo-
difications. Due to the toolset size (around 140000 lines)

Copyright ACM (2006). This is the author’s version of the wolt is posted
here by permission of ACM for your personal use. Not for reitigtion.

The definitive version was published in the ACM SIGADA'200&drna-
tional conference Proceedings, November 12-16, 2006 cAkxgue, New
Mexico, USA.

and due to the large amount of modifications we will have
to do, we chose to perform a refactoring of this library with
a CASE tool. From this refactoring work, the Cheddar team
expects:

First, to strongly increase the Cheddar maintainability.
Indeed, a large part of the Cheddar source code is composed
of packages providing services to parse different application
specification files, to check integrity constraints on data, to
store these data into the simulation engine, and to present
them on a machine-man interface. All these packages can
be automatically produced from the Cheddar data model.
By the past, doing changes on the Cheddar data model in
order to implement new performance tools implied a huge
amount of work on these packages. By using code genera-
tion, we expect to strongly reduce the cost of such future
modifications on these packages.

Second, the use of CASE tools makes it possible to apply
source code generation rules. These generation rules allow to
tune the generated software according to user requirements.
A good framework should be able to automatically take into
account the user software configuration requirements. We
expect to provide such a user configuration flexibility with
specific source code generation rules.

Finally, we simply expect to improve the design and the
reliability of the Cheddar framework.

Several Ada CASE tools are already available to the Ada
community. We chose to use our meta CASE tool called
Platypus[19] in order to investigate how meta-modelization
can be applied to Ada. This paper shows how to use Platy-
pus in order to automatically produce some parts of an Ada
95 object oriented software.

This paper is organized as follows. In section 2, we present
what a meta CASE tool is. In section 3, we give an intro-
duction to the Platypus meta-modeler and we describe the
meta-modeling of Cheddar and Ada 95 with Platypus. Sec-
tion 4 gives few details on the design of the Cheddar frame-
work and the Ada packages we expect to generate. Finally,
we conclude in section 5.

2. CASE AND META CASE TOOLS

CASE stands for Computer-Aided Software Engineering
and is the use of software to assist in the analysis, the design,
the implementation, the maintenance or the refactoring of
software. A CASE tool is usually implemented according
to a particular method or software implementation process.
It automates the use of specific method modeling concepts
or specific process steps and mainly provides modelization
environments and code generators.

Relational database

domain

Ada/Cheddar
Object domain

Meta—-model

Model

Rel ational DB

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ftagged record objects in Cheddar

Figure 1: Meta-model, model and data

Classically, systems are built on a four layers architecture :
meta-meta-models, meta-models, models and data[17]. The
lowest layer is the application data layer. These data are
instances of a model which is itself described by a language,
usually called the meta-modele. Figure 1 shows two ex-
amples of meta-models, models and data. The meta-meta-
model provides a minimal meta-modeling language.

The first example deals with relational data base systems.
The meta-model describes the concepts of table, column and
key. The meta-model is used to describe data base architec-
tures. A particular data base architecture is described by
a model. The data are the tuples of the data base. The
second example is related to the work described in this pa-
per: an Ada object oriented application. The set of concepts
is composed of tagged record and attributes. The meta-
model specifies such concepts of tagged record and attribute.
The model of an application is the set of Cheddar tagged
records (eg. Periodic_Task) and the data are the tagged
record instances.

Figure 2 shows the architecture of a CASE tool and a
target application. A CASE tool is based on a fixed meta-
model: method concepts are specifically implemented as
builtin structures (eg. C++ classes or Ada tagged records).
A CASE tool provides a mean to edit or elaborate mod-
els (eg. UML models). A model is internally handled as
instances of builtin structures that are read by code gener-
ators from a repository in order to produce a realization. A
database component is a typical realization. Often, CASE
tools provide a framework made of generic libraries that are
needed in order to compile or run target application. Com-
paring to a CASE tool, a meta CASE tool provides a way
to edit meta-models and has a fixed meta-meta-model.

2.1 CASE tools available for Ada 95

Several Ada CASE tools such as STOOD (Ellidiss), Ar-
tisan Studio, UML STP (AONIX), Rhapsody (Telelogic) or

: """"" |
|
Method and || casEtool | !
Fixed ! Framework | 1
meta—model | |

|
' I

|
| Generated :

N

Models : Components :
! l
! I

CASE tool

Figure 2: A CASE tool and a target application
architecture

Rational Rose, are already available to the Ada commu-
nity[2, 6, 10, 11]. In order to model and generate a domain
specific software, two methods can be used by a CASE tool:

1. building the CASE tool and its generator on a meta-
model which enforces the domain specific features ;

2. providing a meta-model which can be adapted to the
specific domain.

Let see some examples of Ada CASE tools based on a fixed
meta-model. In this section, we chose to present CASE tools
designed for the specification and the generation of real time
applications (which is the Cheddar domain).

Ellidiss technologies provides STOOD]2], a modeling tool
for UML, AADL and HOOD. The STOOD meta-model is
based on HRT-HOODJ1]. The HRT-HOOD model includes
a set of features which enables the design of real time appli-
cations. The HOOD meta-model of STOOD allows a user to

see the model of his application as an UML or an AADL de-
sign : STOOD is able to automatically translate a design to-
wards UML, AADL or HOOD ; thanks to pre-defined map-
pings between the internal meta-model and the user level
notations. Unlike most of the other CASE tools, STOOD
does not use simple code template instanciation to generate
the applicative code from the design model. Instead, code
generation rules are formally defined using the LMP (Log-
ical Model Processing) technology, and can be easily tuned
to fit any specific project coding standard.

Let see some CASE tools which provide meta CASE
facilities such as the one proposed by UML. Some UML
CASE tools make it possible the definition of specific domain
concepts with mechanisms such as stereotypes. A stereo-
type represents an UML usage distinction[10]. A particular
stereotype is an unstandardized modeling concept that is
tool dependent. It is expected that code generators will
treat stereotyped UML designs in order to generate source
code tuned to the specific domain[11].

2.2 Meta CASE tools

As described in [13], it exists many meta-modeling tools.
The most known are MetaEdit+[14] and Dome[3]. They
provide a minimal meta-modeling language that is general
enough to specify a large amount of meta-modeling cases.
They also provide a set of graphical tools allowing graphical
meta-modeling and graphical domain editor definition. Spe-
cific code or documentation generators can be implemented
using a dedicated language.

They provide a graphical way to specify meta-models and
related model editor. They are multi-language based. Clas-
sically, these languages are for meta-modeling, code gener-
ating and optionally, meta-constraints expressing. A meta-
modeler has to specify not only domain specific meta-models
but also domain specific editors.

Usually, meta CASE tools are general purpose CASE
tools. This is the case of the meta CASE tools presented
above. However, it also exists some domain specific meta
CASE tools : TOPCASEDI4] is one of such an environ-
ment. As for MetaEdit+ or Dome, TOPCASED can be
use for the developement of any kind of applications, but it
is also especially well suited for critical real time embedded
systems design (one of the Cheddar domain application).
The TOPCASED CASE tool is managed by the French
Aeronautic and Space National Research Center. It is based
on the Eclipse platform : meta-models are described with
EMF[26].

3. THE PLATYPUS META CASE TOOL

Platypus[19] is a meta-environment fully integrated in-
side Squeak[24], a free Smalltalk system. Platypus allows
meta-model specification, integrity and transformation rules
definition. Meta-models are instantiated from user defined
models and, given a particular model, integrity and trans-
formation rules can be interpreted.

Platypus allows only textual meta-modeling and model-
ing facilities. Platypus benefits from the STEP standard for
meta-models specification and implementation. As an ISO
standard, STEPI8] is developed to facilitate product infor-
mation sharing by specifying sufficient semantic content for
data and their usage. Parts of STEP are intended to stan-
dardize conceptual structures of information either generic,

or within a particular domain (e.g. mechanics). Standard-
ized parts are expressed with a dedicated technology, mainly
an object oriented modeling language called EXPRESS[9]
and a data access interface. EXPRESS can be used as a
meta-modeling language[18, 16].

Platypus is a mono-language tool: only EXPRESS is used
for meta-modeling, constraints and code generator specifi-
cation. In Platypus, a meta-model consists in a set of EX-
PRESS schemas that can be used to describe a language.
The main components of the meta-model are types and en-
tities. They are describing the language concepts. Entities
contain a list of attributes that provide buckets to store
meta-data while local constraints are used to ensure meta-
data soundness.

A translation rule is defined within a meta-entity as a de-
rived attribute: a named property which value is computed
by the evaluation of an associated expression. A typical
translation rule returns a string and can be parameterized
with other meta-entities. The resulting string represents
part of the target textual representation (eg. Ada source
code, documentation, XML data).

Platypus meta-model can itself be reused for meta-
modeling. This feature decreases domain specific environ-
ment implementation cost by allowing Platypus environment
reusing not only for meta-modeling but also for modeling
and code generator running.

3.1 Meta-modelization of Ada for Cheddar

Figure 3 shows a part of a simple Ada 95 meta-schema
called Ada_For_Cheddar_Meta_Model. Tt contains five en-
tities, class_in_package, attribute, string_type, real_type and
in_package_type_alias and one type, attr_domain:

e class_in_package specifies a Cheddar tagged record; it
has four explicit attributes, super for the supertype
reference, name for the name of the tagged record, at-
tributes, a list that contains tagged record attribute
references and is_private that is set to true if the
tagged record is a private one;

o attribute specifies what a tagged record attribute is; it
has two explicit attributes, associating a name with a
domain;

e in_package_type_alias specifies a Cheddar subtype with
two explicit attributes, name and alias_name;

e string_type and real_type specify two basic Ada types;

e and attr-domain is defined in order to precisely enu-
merate attribute domain possible types; an attribute
value can be a string, a real, ...

These entities show how to produce the Ada code declar-
ing subtypes and tagged records. Entity class_in_package
is specified with four translation rules (derived attributes),
with_use_list, ptr_type, ads_code and adb_code.

As an example, with_use_list is intended to produce the
list of packages name on which a tagged record is dependent
and ads_code is intended to produce class definition code in
a package by class_in_package_ads_code function computing.

3.2 Ada code generation

As shown in Figure 4, given a Cheddar model (eg. Ched-
dar_Task, Figure 7), code generation is made of two pro-
cesses:

SCHEMA Ada_For_Cheddar_Meta_Model;

ENTITY class_in_package;
super : OPTIONAL class_in_package;
name : STRING;

attributes : LIST of attribute;
is_private : BOOLEAN;
DERIVE

with_use_list : LIST OF STRING :=
class_in_package_with_use_list (SELF) ;

ptr_type : STRING := name + ’_Ptr’;
ads_code : STRING :=
class_in_package_ads_code(SELF);
adb_code : STRING :=
class_in_package_adb_code(SELF) ;
END_ENTITY:

ENTITY attribute;
name : STRING;
domain : attr_domain;
END_ENTITY;

TYPE attr_domain =
SELECT (string_type, real_type, ...);
END_TYPE;

ENTITY string_type ...
ENTITY real_type ...

ENTITY in_package_type_alias;
name : STRING;

alias_name : STRING;
DERIVE
ads_code : STRING :=

’subtype ’ -+ name
+ is ’ 4+ alias_.name + ’;7;
END_ENTITY;

FUNCTION class_in_package_ads_code
(cip: class_in_package): STRING;

LOCAL
code : STRING;
END_LOCAL;
code := ’type ’ + cip.name + ’ is new ’

+ cip.super. name + ’ with ’;
IF (cip.is_private) THEN
code := code + ’private;\n’;
ELSE
code := code + attributes_ads_code(cip);
END._IF;

RETURN code) ;
END_FUNCTION;

END.SCHEMA,

Figure 3: A part of an Ada/Cheddar meta-model
written with EXPRESS

Package Taskg

translation rules

interpretation Package Body

Tasks is ...

i

|

Ada_For_Cheddar_Meta_Model model
instance

Cheddar_Task

Ada_For_Cheddar_Meta Model
instanciation

Figure 4: Code generation process

1. the model is parsed, and as a result, Ada_For_Che-
ddar_Meta_-Model meta-model instances are created;

2. translation rules specified in Ada_For_Cheddar_Meta._-
Model meta-model can be interpreted, as a result, an
Ada package is generated.

3.3 Reusing Platypus

Even within a meta-environment, meta-model specifica-
tion, modeling dialogs elaboration or model analyzer imple-
mentation are difficult and expensive tasks. The core part
of Platypus is made of an EXPRESS meta-model and of an
EXPRESS modeling environment. Within Platypus, EX-
PRESS models are stored into a repository of models in
which models are instances of Platypus EXPRESS meta-
model.

New domain meta-model (eg. Ada_For_Cheddar_Meta_-
Model) can be defined as Platypus EXPRESS meta-model
specialization. In such a case, a dialect of EXPRESS can
be used as the modeling language. Platypus modeling envi-
ronment can be used for meta-modeling as well as for mod-
eling. Then, Platypus model to meta-model instanciation
procedures can be reused. Using this feature avoid domain
specific modeling environment implementation and fully au-
tomates application generator running.

3.3.1 Platypus meta-model reuse

EXPRESS is an hybrid object oriented modeling lan-
gage. Platypus EXPRESS meta-model specify langage and
environment concepts that can be reused for another lan-
gage modeling. As an example, Figure 5 shows a part of the
Platypus meta-model, platypus_dictionary_schema. It con-
tains the entity_definition meta-entity that specify what an
EXPRESS entity is: mainly, a named type, owned by a
context, that may have some supertypes and that may be
associated with some attributes.

Figure 6 shows how the Ada_For_Cheddar_-Meta_Model
meta-model is simplified if it is defined as a Platypus meta-
model specialization:

SCHEMA platypus_dictionary_schema;

ENTITY named_type

ABSTRACT SUPERTYPE

SUBTYPE OF (dictionary_instance);
name : STRING;

where_rules : LIST OF where_rule;
owner : context_definition;
END_ENTITY:

ENTITY entity-definition
SUBTYPE OF (named_type);
supertype_constraint :

OPTIONAL supertype_constraint;

supertypes : LIST OF
UNIQUE entity_definition_reference;
attributes : LIST OF

UNIQUE attribute;
uniqueness_rules : LIST OF
UNIQUE uniqueness_rule;

complex : BOOLEAN,
instantiable BOOLEAN;
independent : BOOLEAN;
END_ENTITY;

Figure 5: A part of Platypus EXPRESS meta-model

showing entity_definition meta-entity

o class_in_package is defined as a subtype of en-
tity_definition; now it only has the explicit attribute
is_private, because privacy does not exist for an entity
within EXPRESS;

o in_package_type_alias is also defined as a subtype of en-
tity_definition and keeps the only one explicit attribute
(called alias-name);

o qattribute, attr_domain, string_type and real_type are
not needed anymore because all these concepts are
fully reused from Platypus meta-model.

3.3.2 Platypus environment reuse

As we explained in section 3.2, application generator is
made of two parts.

For a particular meta-model, using STEP implementation
methods, Platypus automates the second part with meta-
data checking and translation rules interpretation.

The second part 1is also automated because
Ada_For_Cheddar_Meta_Model is specified as a specializa-
tion of Platypus EXPRESS meta-model. Then our dialect
of EXPRESS is used as the modeling language and Platy-
pus modeling environment is used for modeling Cheddar
concepts conforming to Ada_For_Cheddar_Meta_Model
meta-model.

Figure 7 shows the Cheddar model called Cheddar-Task.
Generic_Task EXPRESS entity describes how such Cheddar
feature has to be implemented in Ada (see Figure 11). As an
example, Generic_Task entity is explicitly linked to its meta-
entity class_in_package. As a result, in the context of an
EXPRESS to Ada for Cheddar translation, a Generic_Task

SCHEMA Ada_For_Cheddar_Meta_Model;
USE FROM platypus-dictionary_schema;

ENTITY class_in_package
SUBTYPE OF (entity_-definition);

is_private : BOOLEAN;
DERIVE
super : class_in_package :=

supertypes[1].ref;
with_use_list : LIST OF STRING :=
class_in_package_with_use_list (SELF) ;

ptr_type : STRING := name + ’_Ptr’;

ads_code : STRING :=
class_in_package_ads_code(SELF);

adb_code : STRING :=
class_in_package_adb_code(SELF);

WHERE

have_one_supertype : SIZEOF(supertypes) = 1;

END_ENTITY:

ENTITY in_package_type_alias
SUBTYPE OF (entity_-definition);

alias_name : STRING;
DERIVE
ads_code : STRING :=

’subtype ’ + name

+ is ’ 4 alias_name + ’;’;
adb_code: STRING:= ’’;
END_ENTITY;

Figure 6: A part of an Ada/Cheddar meta-model
reusing the Platypus meta-entity entity_definition

is not only an entity definition but also a tagged record in
an Ada package.

4. SOURCE CODE AUTOMATICALLY
PRODUCED WITH THE ADA META-
MODEL

4.1 Few words about the Cheddar design

Let see now which Cheddar source code we plan to gener-
ate from our meta-model. Cheddar is a set of Ada packages
which aims at performing performance analysis of concur-
rent real time applications. Cheddar is composed of two
software components:

e a framework which implements the analysis methods
and algorithms,

e a (GtkAda machine-man interface which provides an
easy way to call the framework sub-programs and to
display the analysis results.

These two components are written with a container library
which can be configurated in order to use static or dynamic
memory allocations.

With Cheddar, a real time application is modeled as sets
of processors, address spaces, buffers, resources, and tasks.
Attributes of such features are stored in simulation data.

SCHEMA Cheddar_Task;
META FROM Ada_For_Cheddar_Meta_-Model;

TYPE Policies {ada_enumeration (?) }
= ENUMERATION
OF (Sched_Fifo, Sched_Rr, Sched_Others);

END TYPE
ENTITY Generic_Task{class_in_package(false)}
SUBTYPE OF (Generic_Object);
Task_Policy : Policies;
END_ENTITY;

ENTITY Periodic_Task{class_in_package(false)}
SUBTYPE OF (Generic_Task);
Period : Natural_-Type;
END_ENTITY;

END.SCHEMA,

Figure 7: A part of the Ada/Cheddar domain model
specified with Platypus EXPRESS dialect

The framework provides services to manage Cheddar sim-
ulation data. For each simulation data type, the frame-
work implements sub-programs to perform integrity checks,
to print/parse XML or AADL[21] specification files and to
store them in containers. Finally, the machine-man inter-
face provides a widget for each feature in order to update
containers and to get feature attributes.

For each Cheddar feature, we expect to generate three
packages (see Figures 10, 11 and 12):

1. each Cheddar feature is implemented by an Ada
class. For example, the Ada class correspond-
ing to the task feature is composed of the tagged
records GenericTask (the super tagged record of
the task class) and its derived tagged records
(eg. Periodic_Task, Aperiodic_Task, ...). This first
generated package includes such a feature declarations
(see Figure 11);

2. the set of instances of an Ada class (eg. instances of
Generic_Task, Periodic_Task, Aperiodic_Task, ...) is
stored in a container. This container is built from
a generic package which is extended to provide in-
put/ouput sub-programs. For example, this package
implements AADL/XML printer, parser and integrity
checks sub-programs. Cheddar can be currently com-
piled with two different Ada 95 container implementa-
tions: the first implementation only does static mem-
ory allocations and the second one is based on dynamic
memory allocations. The user has the possibility to
choose one of these implementations. This choice has
be taken into account by the meta-model. Figure 12
shows an example of such a container package;

3. a package containing a GtkAda Widget will be also
generated (see Figure 10). The window of this widget
is split in two sub-windows: the top-left sub-window

Software components Size Expected to
be generated
Containers and configuration | 7205 few lines
packages (configuration)
Machine-Man interface 53650 | 17013 (31,7%)
Simulation framework 79297 | 27474 (34,6%)

[AIl components | 140152 [44487 (25-35%) |

Figure 8: Number of lines of the Cheddar toolset

allows the user to get feature attributes. The bottom-
left sub-window displays a set of buttons which can be
pressed to update the container. The instances stored
in the container are listed in the right sub-window.

4.2 Current status and first results

The design of the Ada meta-model and the model of the
Cheddar library is still in progress. At the time we write
this article, only the Ada packages implementing Cheddar
features are automatically generetad.

The EXPRESS source code modeling the Cheddar fea-
tures and their data is composed of 348 lines of code. 947
lines of EXPRESS source code were required in order to
write the Ada 95 meta-model (this amount of lines also in-
cludes the Ada source code generator). This meta-model
can be reuse for the modeling of any Ada 95 object oriented
application.

The amount of automatically generated source code for
this part of Cheddar is about 75 percents of the Ada pack-
ages which were originally manually implemented. But,
when the refactoring work will be over, in the best case,
about 30 percents of the Cheddar library can be expected
to be automatically implemented. The Figure 8 gives an
overview of the Ada code we expect to automatically pro-
duce with the meta-model.

The current Ada meta-model describes the features of
record (discriminated or not), tagged record (with or with-
out private types and with or without tagged record ex-
tension), enumeration, constrained array types and generic
packages instanciation. For each of these Ada concepts,
the Ada source code generator produces the type defini-
tion but also an access type definition and a sub-program
to release dynamically allocated memory. For each record
and tagged record types, the Ada source code generator
also produces sub-programs to perform basic input/out-
put operations on the type (eg. Put sub-programs), to ini-
tialize and finalize objects (if the tagged record extends
Ada.Finalization.Controlled tagged record) and to provide
specific Cheddar services. From the meta-model, renames
and subtypes can also be generated if necessary. Finally,
by expressing Cheddar feature relationships, the use and
with clauses are also automatically computed. Of course,
the Ada 95 meta-model and the Ada source code generator
can be adapted to the designer requirements.

Using CASE tools (with or without meta-modeling capa-
bilities) also improves the design of the target application.
By defining the Ada 95 meta-model and the Cheddar model,
we were able to detect the following mistakes in the previous
Cheddar design and implementation :

e some anti-patterns were detected and removed (eg. a

violation of the open-close principle in the Cheddar
features copy constructor[15]);

e some sub-programs were defined in wrong packages
(packages which do not contain the types related to
the misplaced sub-programs). For instance, the sub-
programs which check Cheddar feature integrity con-
straints were defined in the machine-man interface
part. Then, no integrity check was able to be per-
formed when Cheddar data were provided from AADL
files;

e the way identifiers were built was sometimes wrong
(identifiers of GtkAda sub-widgets, identifiers of
tagged record, of access types, of enumeration sub-
programs, ...). This mistake was easily corrected with
the Ada source code generator;

e some un-used attributes in the GtkAda user-defined
widget were detected. Some un-usefull use/with
clauses was also detected and removed (extra use/with
clauses in child packages);

e some basic sub-programs, subtypes and renames on
Cheddar features were missing. The automatic gener-
ation of such code eases the use of the Cheddar library.

Finally, using meta-modeling will decrease the future
maintenance cost. Basically, adding a new analysis tool
into Cheddar requires to add new attributes in the existing
Cheddar features. Let take the example of a new kind of
scheduling algorithm that we added last year: this schedul-
ing algorithm, called the MUF scheduler[25], assumes that a
criticality level is defined for each task of the system. Adding
this new attribute into the tagged record which models a
task in the Cheddar framework leads to the modification
of 8 Ada packages. 90 lines of the Ada code were writ-
ten to store, initialize, and display this new attribute in the
machine-man interface. By the use of the Ada meta-model,
most of these 90 lines of code may be automatically imple-
mented.

5. CONCLUSION

In this paper, we have presented the refactoring work of
Cheddar, a set of Ada packages which aims at providing
performance analysis tools for concurrent real time applica-
tions. CASE tools can be used for such a purpose. However,
we chose to use a meta CASE tool called Platypus. Indeed,
it seems that few studies exist concerning Ada and meta-
modelization. Here, we're investigating how to use a meta
CASE tool in order to automatically produce some parts of
an Ada 95 object oriented software.

At the time we write this article, the Ada 95 meta-model
expresses the most important Ada 95 object-oriented fea-
tures that we use in Cheddar. It is written in EXPRESS.
From this meta-model, we were able to describe the Cheddar
data model and we developed the Ada code generator to au-
tomatically produce a part of the Cheddar implementation.
The amount of automatically generated source code for this
part of Cheddar is about 75 percent of the Ada packages
which were originally manually implemented. But, when
the refactoring work will be over, in the best case, around
30 percents of the Cheddar library can be expected to be
automatically implemented. This refactoring work also in-
creased the quality of the Cheddar design.

This level of automatically generated source code can be
achieve with classical CASE tools without meta-modeling
capabilities. The next step will consist in including in the
meta-model some concepts which are more specific to the
Cheddar domain such as the scheduling algorithms currently
implemented in the analysis tools of Cheddar. Such an im-
proved Ada 95 meta-model should make it possible to gen-
erate a part of the scheduling simulation engine of Cheddar.
This part of code could not be designed and generated with
a CASE tool without meta-modeling capabilities.

6. REFERENCES

[1] A. Burns and A.J. Wellings. HRT-HOOD: A Design
Method for Hard Real-time Systems. Real Time
Systems journal, 6(1):73-114, 1994.

[2] P. Dissaux. AADL Model transformations. In the
DAta Systems in Aerospace conference (DASIA 2005),
Edinbugh, July 2005.

[3] Dome Official Website.
http://www.htc.honeywell.com/dome/download.htm.

[4] P. Farail, P. Gaufillet, A. Canals, C. Le Camus,

D. Sciamma, P. Michel, X. Crégut, and M. Pantel.
TOPCASED : An Open Source Development
Environment for Embedded Systems. Chapter 11,
From MDD Concepts to Experiments and Illustrations,
ISTE Editor, pages 195-207, September 2006.

[6] L. George, N. Rivierre, and M. Spuri. Preemptive and
Non-Preemptive Real-time Uni-processor Scheduling.
INRIA Technical report number 2966, 1996.

[6] M. Hause. Artisan Studio : support for Model Driven
Architecture (MDA). White paper of Artisan Software
Tools, 2002.

[7] SAE Inc. Architecture analysis and design language
(aadl) as 5506. Technical report, The Engineering
Society For Advancing Mobility Land Sea Air and
Space, Aerospace Information Report, Version 0.994,
August 2004.

[8] ISO 10303-1. Part 1: Overview and fundamental
principles, 1994.

[9] ISO 10303-11. Part 11: EXPRESS Language
Reference Manual, 1994.

[10] J. Rumbaugh and I. Jacobson and G. Booch. The
Unified Modeling Language - Reference Manual.
Addison-Wesley, 1999.

[11] M. Kersten, J. Matthes, C. F. Manga, S. Zipser, and
H. B. Zeller. Customizing UML for the development of
distributed reactive systems and code generation to
Ada 95. Ada User Journal, 23(6), 1999.

[12] M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and
M. G. Harbour. A Practitioner’s Handbook for Real
Time Analysis. Kluwer Academic Publishers, 1994.

[13] Yi Lu. Reading project report, comparison of
meta-modelling techniques and tools. Technical
report, Computer Science Department, McGill
University, March 2003.

[14] MetaEdit+ Technical Summary.
http://www.metacase.com/papers/index.html.

[15] B. Meyer. Object Oriented Software Constructions.
Prentice Hall editor, 2000.

[16] Mourad El-Hadj Mimoune, Guy Pierra, and Yamine
Ait-Ameur. An ontology-based aproach for exchanging
data between heterogeneous database systems. In

[17]

[18]

ICEIS 2003: Proceedings of the 5th International
Conference On Enterprise Information Systems,
Angers - France, 2003. Ecole Supérieure d’
Electronique de I’Ouest.

OMG. Model Driven Architecture.
http://www.omg.org/mda, 2003.

A. Plantec and V. Ribaud. Experiences using an
Application Generator Builder. Proceedings of the 11th
International Conference on software engineering and
knowledge engineering, June the 16-19,
Kaiserslautern, Germany, 1999.

X8

=k g "

=1 @ expressZcheddar_meta_sct]
- @ expressZcheddar_meta_s
= - entities
€ ada_enumeration
€ ada_package (ads_uwit
E ada_primitive (ada_typ
E class_in_package
& class_in_package_witl
E constrained_array (rar

TamBrowser on: cheddar

xBIAI0EH@ L

Slada_package (ads_with_use_list, adb_witt

ENTITY ada_package

SUBTYPE OF (schema definition),

ads_with_use_list :

adb_with use list
DERIVE

ads_head :

source_licence +

STRING

LIST OF STRING;
X B PlatypusStepModelContentsCodeHolder |
] 2] >

— GNU General Public License for more details.

[19] Platypus Technical Summary and download. et e L Tt — You shouid have received a copy of the GNU Ge
. £ discriminated_type_un {l“@{AggregatSCO — along with this program; if not, write to the Free ¢
http://CaSSOulet.uan—breSt.fI':SOOO/PlatypuS. E generic_package_insti \n' — Foundation, Inc,, 53 Temple Place, Suite 330, Bos
& in_package_type_alias adb_head : STRING |-
1 . E record 1i + =
[20] J. Regghr and J. A. Stankovm. Hls : a framework for p— Jrommes oence + | ot
composing soft real-time schedulers. In the 22th IEEE < 2 ada. domain_visitor StringhggregateCo)|~
. . . w8 => Platypus_expressions_ \n' ;
International Real-Time Systems Symposium = 51 => Platypus_steterments ¢ ads_code : STRING

+ & => Platypus_aggregate_d:

) _ s - Pl Jai ads_head + with Ada.Strings Unbounded;
(RTSS 01)' London’ UK'v pages 3 147 December 2001. *mn;)pég‘;ﬁijﬁﬁ‘v’ﬁfnﬂl;?f *\npackage ' + use Ada Strings.Unbounded;
. w5 == Pl dicti name + i . Finalization;
[21] SEL. OSATE : An extensible Source AADL Tool T o o o e \n \a* R T

Environment. SEI AADL Team technical Report,

D a'express2cheddar_meta
= test_cheddar_data
+ s Objects

ada_package_ads_c

with Convert_Strings;
with Convert_Unbounded_Strings;

December 2004. s Processors ‘\nend ' + package Objects is
i) = Bufers e T
[22] F. Singhoff, J. Legrand, L. Nana, and L. Marcé. O s R
. . . P Obj Type,
Cheddar : a Flexible Real Time Scheduling Task Obect Typs,

Framework. International ACM SIGADA Conference,
Atlanta, USA, November 2004.

F. Singhoff, J. Legrand, L. Nana, and L. Marcé.
Scheduling and Memory requirements analysis with
AADL. International ACM SIGADA Conference,
Atlanta, USA, November 2005.

Squeak web site. http://www.squeak.org.

D. B. Stewart and P. K. Khosta. Real-Time
Scheduling of Dynamically Reconfigurable Systems. In
Proceedings of the IEEE International Conference on
Systems Engineering, Dayton, Ohio, pages 139-142,
August 1991.

EMF website. Eclipse Modeling Framework.
http://www.eclipse.org/emf.

Figure 9: A Platypus snapshot: the deepest window
shows the Platypus editor with, on the left, the tree
of EXPRESS elements corresponding to the current
schema edited on the right. The front window shows
a code generating result.

[26]

7. ANNEX

1 B
@ Mein pege | @ Users defined parameters | @ Ofsets |
Main page ™
Narms —] R e R A I CRN
Taskype Perodic =
Adress space fam
Procassor o _cpu
ol T
Priarty -
Copaciy 2
ster 5
Decdine 0
Perod §
Startime o
Blocking fme v
Citcaly o
Actvetion e 1
Sockmemoysie: [0 K
Textmemory size fo———
Seed ~ Preciciable + Unprediciatle
Sezd
Clase Concel | Advenced | Delete | mody | Akl | 3 -

Figure 10: Widget related to a Cheddar feature.

with Text_lo;

use Text_lo;

with Unchecked_Deallocation,;
with Convert_Strings;

with Convert_Unbounded_Strings;
with Objects;

use Objects;

package Tasks is

type Policies is (Sched_Fifo,...
procedure To_Policies is
new Convert_Strings(Policies, Sched_Fifo);
procedure To_Policies is
new Convert_Unbounded_Strings(Policies,
Sched_Fifo);
package Policies_Io is new
Text_lo. Enumeration_Io(Policies);
use Policies_Io;

type Generic_Task is
abstract new Generic_Object with
record
Policy Policies;
end record,;

type Generic_.Task_Ptr is
access all Generic_Task’ Class;

type Periodic_Task is
new Generic_Task with
record
Period : Natural;
end record;
type Periodic_Task_Ptr is
access all Periodic_Task’ Class;

procedure Initialize
(A_Task : in out Periodic_Task);
function Copy
(A_Task : in Periodic_Task_Ptr)
return Periodic_Task_Ptr;
function Copy
(A_Task : in Periodic_Task)
return Periodic_Task_Ptr;
procedure Put
(A_Task : in Periodic_Task_Ptr);
procedure Put
(A_Task : in Periodic_Task);
procedure Free is
new Unchecked_Deallocation
(Periodic_Task’ Class,
Periodic_.Task_Ptr);

end Tasks;

Figure 11: Part of a package specification gener-
ated for the Cheddar feature. Policies is an at-
tribute type generated from an EXPRESS type.
Generic_Task and Periodic_Task are tagged records
generated from EXPRESS entities.

with Sets;
with Tasks;
use Tasks;

package Task_Set is

package Generic_Task_Set is

new Sets (Element => Generic_Task_Ptr,...)
type Tasks_Set is

new Generic_Task_Set. Set with private;
subtype Tasks_Range is

Generic_Task_Set. Element_Range;

— XML/AADL printer sub—programs

function Export_Xml(My_Tasks : Tasks_Set
.) return Unbounded_String;

function Export_-Aadl(My_Tasks :
.) return Unbounded_String;

Tasks_Set

— Perform integrity checks on attributes
procedure Check_Integrity
(My_Tasks : in Tasks_Set...);

end Task_Set;

Figure 12: Example of a container package which
stores instances of a feature. Tasks_Range is a sub-
type generated from an EXPRESS entity.

