Towards User-Level extensibility of an Ada
library : an experiment with Cheddar

Frank Singhoff, Alain Plantec

LISYC/EA 3883, University of Brest
20, av Le Gorgeu
CS 93837, 29238 Brest Cedex 3, France
{singhoff,plantec}@univ-brest.fr

Abstract. In this article, we experiment a way to extend an Ada library
called Cheddar. Cheddar provides a domain specific language. Programs
written with this domain specific language can be interpreted in order
to perform real time scheduling analysis of real time systems. By the
past, different projects showed that the Cheddar programming language
is useful for the modeling of real time schedulers. But these experiments
also showed that the interpreter is lacking of efficiency in case of large
scheduling simulations. In this article, by designing a Cheddar meta-
model, we investigate on how to compile such Cheddar programs in order
to extend the Cheddar library. For such a purpose, we use Platypus, a
meta CASE Tool based on EXPRESS. For a given Cheddar program and
with a meta-model of Cheddar handled by Platypus, we can generate a
set of Ada packages. Such Ada packages can be compiled and integrated
as builtin schedulers into Cheddar. Then, the efficiency of scheduling
simulations can be increased.

Key words: Meta-modeling, Ada code generating, Cheddar, Platypus

1 Introduction

This article deals with the Cheddar library [1]. Cheddar is a library designed
for the performance analysis of real time applications. With Cheddar, a real
time application is modeled as a set of tasks, processors, schedulers, buffers
... This library provides a set of real time schedulers and their analysis tools
implemented in Ada. Schedulers currently implemented into Cheddar are mostly
met in real time applications and the library can be used to perform performance
analysis of many different types of real time applications. However, it exists a
need to extend these Cheddar analysis tools to specific scheduler or task models.
For such a purpose, it requires that the user understands the Cheddar design.
Furthermore, designing a new scheduler or a new task model may be difficult
without an environment which makes it possible to easily write and test the
scheduler code. In order to ease the design of new schedulers, Cheddar provides
a programming language. The model of a scheduler or of a task model described

2 Frank Singhoff, Alain Plantec

and tested with the Cheddar programming environment is interpreted : thus the
designer can easily handle and experiment his scheduler models.

Different projects showed that the Cheddar programming language is useful
for the modeling of real time schedulers. But these experiments also showed that
the interpreter is lacking of efficiency in case of large scheduling simulations.

This article presents a way to extend an Ada library. It presents a way to
compile Cheddar programs by automatically producing Ada code corresponding
to the modeled schedulers. For such a purpose, we use the Platypus meta CASE
tool and a meta-model which specifies both the Ada 95 programming features
and the Cheddar programming language features. Then, from the user-defined
scheduler model, one can generate the new builtin scheduler fully integrated into
the Cheddar library.

Launch Cheddar, edit user—defined
scheduler and test by interpreting it

AADL/XML Ada packages .
" h r binan
Cheddar flles\ﬁ U Cheddar binan
The user-defined scheduler Compile Cheddar with
design step is over: call the Platypus generator these new features

Fig. 1. The user-defined scheduler design process with Cheddar

The scheduler design and integration process proposed in this article is de-
picted by figure 1. This process is made of two main steps:

1. the first step is the new scheduler or the new task model design; a new sched-
uler and task model is specified with the Cheddar programming language;
such a program can be interpreted by Cheddar allowing early testing and
improvements;

2. the second step is the new scheduler or the new task model integration. It
consists in the automatic generation of Ada packages from the user-defined
scheduler; a Cheddar version integrating the new scheduler and task model
is then recompiled.

This article is organized as follows. In section 2, we outline the Cheddar
programming language and we give an example of its use. Then, we shortly
describe the design of the Cheddar library in section 3. Section 4 is devoted to
the process we use to generate Ada packages with the meta CASE Tool Platypus.
In section 5, we propose a meta-model for the Cheddar programming language.
The generated Ada code is briefly described in section 6. Finally, we conclude
by describing the current status of the project in section 7.

Towards User-Level extensibility of the Cheddar Ada library 3
2 The Cheddar programming language

In this section, we give an overview of the Cheddar programming language. A
complete description of the language can be found in [2]. The use of the Cheddar
programming language is illustrated by the example of the sporadic task model
with an EDF scheduler [3].

2.1 Outline of the Cheddar programming language
The Cheddar programming language is composed of two parts :

1. a small Ada-like language which is used to express computations on simula-
tion data. Simulation data are constants or variables used by the scheduling
simulator engine of Cheddar in order to simulate task and scheduler behav-
iors. Examples of simulation data are task wake up times or task priorities.
A program written with the Cheddar programming language is organized in
sections. A section is a kind of Ada sub-program;

2. a set of timed automata such as those proposed by UPPAAL [4-6] which is
a toolbox for the verification of real time systems. In Cheddar, these timed
automata allow to model timing and synchronization behaviors of tasks and
schedulers. Automata may run Ada-like sections in order to read or modify
simulator data.

The Ada-like language provides usual statements such as loops, condition-
nal statements, assignments. It also provides statements which are specific to
the design and the debug of scheduling algorithms. Two kinds of such specific
statements exist: high-level and low-level statements. High-level statements op-
erate on vectors which store a simulation data for all tasks, messages, buffers,
processors ... Low-level statements only operate on scalar simulation data.

The simplified BNF syntax of the language is given in figure 8. The entry
rule specifies that a program is a set of sections. Most of the time, a program is
composed of the following sections [1]: a start_section which contains variable
declarations ; a priority_section which contains the code to compute simulation
data on each unit of time during simulation; and an election_section which looks
for the task to run on simulation time.

The statement rule gives the syntax of all available statements to the sched-
uler designer. The most important specific statements are the return statement
and the uniform/exponential statements. The return statement gives the iden-
tifier of the task to run. uniform/exponential statements customize the way
random values are generated during simulation time.

The language also provides operators and types. It provides usual Ada types
such as scalar integer, boolean, double, string types or array and their attributes
(first, last, range, ...). It also provides usual logical and arithmetic operators.
As for the statements, scheduling specific types and operators are available. For
instance, the lem operator computes the last common multiplier of simulation
data, the maz_to_index operator looks for the ready task which has the highest

4 Frank Singhoff, Alain Plantec

value of an array variable and the random type provides random generator
capabilities.

The second part of a scheduler or a task model is a specification of its tim-
ing and synchronization behavior with a set of automata. Automata used by
Cheddar are timed automata as they are defined in the UPPAAL toolset [6].
A timed automaton is a finite state machine extended with clock variables. In
UPPAAL, a system is modeled as a network of several timed automata. The
model is extended with variables. A state of the system is defined by the lo-
cations of all automata, the clock constraints, and the values of the variables.
Every automaton may fire a transition separately or synchronize with another
automaton, which leads to a new state.

At least, each automaton has to be composed of some predefined locations
and transitions. Transitions can run sections, read and write simulation data
depending on the statements given by users on transitions (clock update, syn-
chronization, guard, ...). The BNF syntax of a guard, a synchronization or a
clock update can be read in [6].

2.2 Example of a user-defined task model : the sporadic task model

start_section

dynamic_priority : array (tasks_range) of integer;
genl : random;

exponential(genl, 100);

cycle_duration : array (tasks_range) of integer;

sporadic-model : task_activation_section
cycle_duration:=max(tasks. period, genl);

priority_section

dynamic-priority := tasks.start_-time
+ ((tasks.activation.number—1)*tasks. period)
+ tasks. deadline;

election_section
return min_to_index(dynamic_priority);

sporadic_model : automaton_section
Initialize : initial state;
Pended, Ready, Blocked, Run : state:

Initialize —> [,tasks.activation_.number:=0 ,start_section?] —> Pended
Pended —> [engine_clock >tasks. activation_number+

cycle_duration, cyclic_task_clock:=tasks.capacity, | —> Ready
Ready —> [, cyclic_task_clock:=cyclic_task_clock+1l,elect?] —> Run
Blocked —> [, , V1] —> Ready
Run —> [cyclic-task_clock >0, , preempt!] —> Ready
Run —> [,cyclic_task_clock:=0, task_activation_section!] —> Pended

Fig. 2. Example of a user-defined task model : the sporadic task

Towards User-Level extensibility of the Cheddar Ada library 5

- activation_number:=0 Pended
Initialize

start_section?

© <

engine_clock>=activation_number+cycle_duration

cyclic_task_clock==0 cyclic_task_clock:=capacity

task_activation_section!

elect?

Run (\/ Ready
cyclic_task_clock:=
cyclic_task_clock-1
V!
preempt?
cyclic_task_clock>0
P!
Blocked

Fig. 3. Cyclic task modeling

Figure 2 and figure 3 show an example of a user-defined task model : the
sporadic task model. A sporadic task is a task which can be activated several
times and which has a minimal delay between each of its successive activations
[7].

Figure 2 shows a Cheddar program modeling a sporadic task. The task_acti-
vation_section specifies how inter-activation delays have to be computed. In this
case, the delay is the maximal value between the period of the task ! and a value
which is randomly generated according to an exponential density function.

The EDF scheduler run tasks according to task deadlines. These deadlines
are computed in the priority_section and the task with the shortest deadline is
chosen in the election_section sub-program.

Figure 3 models the synchronization and the timing part of the sporadic
task model. In this example, the automaton describes the different task states :
basically, a task can be Pended (it waits its next activation), Blocked (it waits
for a shared resource access), Ready (it only waits for the processor), or Run
(currently accessing the processor). The task_activation_section is called when
the task goes from the Run location to the Pended location. During this call,
the delay that the task has to wait upto its next activation time is computed
and stored in the cycle_duration variable, as seen in figure 2.

3 Implementation of Cheddar

Before proposing a meta-model of Cheddar, let see how the library is imple-
mented. The library implements the components showed in figure 4:

! The period is the minimal inter-activation delay.

6 Frank Singhoff, Alain Plantec

Cheddar Cheddar Scheduler-—----_ New scheduler
Framework generator --|. and task models integration

Builtin scheduler
and task models

Data and 3
Interpreter - » meta-data-w= <P
repo;itory |

New scheduler
and task models design

Start section : .
dynamic_prior] User—defined schedule
genl : randory; and task models

Fig. 4. The Cheddar library

— Cheddar implements a data and a meta-data repository (eg. tasks, processors
or schedulers are data; an automaton transition definition or a loop statement
is a meta data);

— data and meta-data are read or written from or into the repository using the
Cheddar Data Acces Interface (CDAI); the CDAI is used by every compo-
nents of Cheddar library in order to read or write data and meta-data;

— anew scheduler and task model is specified using the Cheddar programming
language; the result is a Cheddar program; this program is read by a compiler
that produces meta-data constituting an internal representation for it; meta-
data are stored into the repository;

— the Cheddar interpreter is implemented in order to run user-defined sched-
ulers; an interpreting process run statements and expressions stored as meta-
data and interacts with Cheddar for data values reading and writing;

— the Cheddar scheduler generator is used to produce Ada packages from user-
defined schedulers; for one user-defined scheduler, generated code consists
in :

e a package that implements the scheduler;
e a package that extends CDATI for the new scheduler.

4 Modeling, meta-modeling and code generating

Data and meta-data stored into the repository are described by a set of models
and meta-models. All these models are handled by specific Ada code generators

Towards User-Level extensibility of the Cheddar Ada library 7

built with the meta CASE tool Platypus [8]. First, this section briefly describes
the Platypus meta-CASE tool. Second, it describes Platypus using for code gen-
erating.

4.1 The Platypus meta CASE tool

Platypus [8] is a meta-environment fully integrated inside Squeak [9], a free
Smalltalk system. Platypus allows meta-model specification, integrity and trans-
formation rules definition. Meta-models are instantiated from user-defined mod-
els and, given a particular model, integrity and transformation rules can be
interpreted.

Platypus allows only textual meta-modeling and modeling facilities. Platypus
benefits from the ISO 10303 namely the STEP [10] standard for meta-models
specification and implementation. STEP defines a dedicated technology, mainly
an object oriented modeling language called EXPRESS [11] that can be used as
a modeling language as well as a meta-modeling language [12, 13].

In Platypus, a meta-model consists in a set of EXPRESS schemas that can
be used to describe a language. The main components of a meta-model are types
and entities. They are describing the language features. Entities contain a list
of attributes that provide buckets to store meta-data while local constraints are
used to ensure meta-data soundness.

Code generators are specified by translation rules. A translation rule is de-
fined within a meta-entity as a derived attribute: a named property which value
is computed by the evaluation of an associated expression. A typical translation
rule returns a string and can be parameterized with other meta-entities. The re-
sulting string represents part of the target textual representation (eg. Ada source
code, documentation, XML data).

4.2 Code generating
As shown by figure 5, code generation is used at two levels of abstraction:

1. the first level is the Cheddar level. This level is related to a particular Ched-
dar version for which all handled object types (processors, tasks, buffers, ...)
are fixed and described by the Cheddar model. The Cheddar model is an
EXPRESS model, it is parsed by an Ada code generator that produces the
CDALI set of packages. Translation rules applied by the generator are speci-
fied by an Ada for Cheddar meta-model. More explanations about this first
level of design can be read in [14];

2. the second level is the Cheddar language level. It corresponds to Cheddar
specializations driven by the specification of new schedulers and task models.
These new parts are specified using the Cheddar programming language. The
dedicated code generator is able to parse a Cheddar program and first, to
produce a new scheduler implementation and second, to enrich the Cheddar
object model. Then, the CDAI packages are regenerated and a new Cheddar
version can be compiled.

8 Frank Singhoff, Alain Plantec

Ada/Cheddar
meta—model
Specification of EXPRESS > Code for
Cheddar objects g beC Ada package
: model Pacta%®! the coal
A\ T
\
s Code for new
AN ---->| Ada package
S~ Re P 9 scheduler
RN i
N Cheddar level
,,,,,,,,,,,,,,,,, - -
\ Cheddar language level
i Start section : |\
User-defined | gynamic_prior
scheduler genl : random;
Cheddar language
meta—model
3 {E} Code generator —P parses ——o Uses services of 3
' - -I> generates code for ——= run translation rules of |

Fig. 5. Cheddar code generating from models and meta-models

5 Meta-modeling of the Cheddar programming model

The Cheddar programming language model is made of one meta model speci-
fied with EXPRESS that includes meta-data types (meta-entities), their rela-
tionships, constraints, and includes translation rules that are specified as meta-
entities computed properties.

The meta-model is made of several EXPRESS schemas. cheddar_language
and cheddar_automaton schemas are the two main schemas. A part of their
specification is shown in figure 6. cheddar_language includes the cheddar_schema
entity that specifies what a Cheddar program is. A program is made of a set
of sections. Two main kind of section can be specified, a program_section or an
automaton_section. A program_section mainly contains a list of statements. An
automaton_section is made of the specification of an automaton.

Cheddar compiler populates this meta-model. As an example, from one Ched-
dar program, one instance of cheddar_schema entity is created and stored into
the repository.

Code generating consists in the reading of the two translation rules specified
in cheddar_schema entity, namely the two derived attributes cdai-entities and
scheduler_package :

— cdai_entities value is computed by the evaluation of the function ched-
dar_schema_cdai_entities; computing result consists in a new EXPRESS

Towards User-Level extensibility of the Cheddar Ada library 9

SCHEMA cheddar_language;
ENTITY cheddar_schema;
sections : SET [1:?7] OF section_definition;
DERIVE
cdai_entities : STRING:=cheddar_schema_cdai_entities(SELF);
scheduler_package : STRING:=cheddar_schema_scheduler_package(SELF)

‘WHERE
have_one_and_only_one_election :
sizeof(query(e <% sections | e.identifier = ’election_section’))=1;
END_ENTITY;

ENTITY section_definition ABSTRACT SUPERTYPE;
identifier : STRING;

INVERSE
context : cheddar_.schema FOR sections;
UNIQUE
context, identifier;
END_ENTITY;
ENTITY election_section_definition SUBTYPE OF (section_definition);
task_id : return_stmt;
DERIVE

SELF\section_definition.identifier: STRING:=’election_section’;
END H
ENTITY program_section_definition SUBTYPE OF (section_definition);
declarations : LIST OF variable;
statements : LIST OF statement;

END_ENTITY;

ENTITY automaton_section_-definition SUBTYPE OF (section_definition);
automaton : automaton_definition;

END_ENTITY;

SCHEMA cheddar_automaton;
ENTITY automaton._definition;
states : SET OF state_definition;
transitions : SET OF transition_definition;
initial_state : state_definition;
END_ENTITY;

Fig. 6. A part of the meta-model for the Cheddar programming language

schema which extends the Cheddar model. From this new model we gen-
erate a new set of Ada packages which extends the CDAL

— scheduler_package value is computed by the evaluation of the function ched-
dar_schema_scheduler_package; computing result consists in the new sched-
uler and task model Ada package.

6 Cheddar Ada packages which are generated from a
Cheddar program

The Ada packages we generate for the Cheddar level is described in [14]. For
the Cheddar language level, two different Ada packages are expected to be gen-
erated : packages implementing a new user-defined task model and packages
implementing a new user-defined scheduler.

Cheddar tasks are implemented by a set of tagged records (see [14]) : each
task type is defined by a tagged record. The Task_Activation method of such

10 Frank Singhoff, Alain Plantec

10 procedure Build_Scheduling_Sequence(...) is

30 begin

40 for I in Processor_Range loop
50 Check_Before_Scheduling(...);
60 Scheduler_Initialize(...);

70 end loop;

80

90 while(Current_Time < Total_Scheduling_Time) loop
100 for I in Processor_Range loop

110 Do_Election(...);

120 Next-Task(...);

130 end loop;

140 Current_Time:=Current_Time+1;

150 end loop
160 end Build_Scheduling_Sequence;

Fig. 7. Algorithm sketch of the Cheddar simulation engine

a tagged record is able to compute the task wake up times. This sub-program
is generated according to the statement the user gives in its Cheddar program
(source code provided into the task_activation_section).

Cheddar schedulers are also implemented by a set of tagged records. A new
scheduler is implemented by extending an abstract tagged record or any already
existing schedulers which has a similar behavior. In order to be plugged with
the Cheddar simulation engine, each scheduler tagged record has to implement
a set of sub-programs such as :

Scheduler_Initialize which initializes variables used by the scheduler; this
Ada sub-program contains the start_section code;

— some sub-programs to check scheduler assumptions (eg. the C'heck_Befo-
re_Scheduling sub-program);

Do_Election which computes task priorities and chose the task to run; such
a sub-program contains the priority_section and the election_section of the
implemented scheduler;

Finally, if a scheduler requires to store data for the tasks it provides schedul-
ing facilities, it has to define a TCB? and a set of sub-programs to copy,
initialize or display instances of such a TCB.

Figure 7 shows how these sub-programs work all together. The
Build_Scheduling_Sequence is the main entry point of the Cheddar scheduling
simulator. Since a system analyzed by Cheddar may model a multi-processors
system, the Build_Scheduling_Sequence drives the simulation time unit per time
unit. First, simulation data are initialized and some checks are performed to be
sure that tasks meet scheduler assumptions (lines 30-70). Then, time unit per
time unit, schedulers are called (line 110) and task wake up times are computed
(line 120).

2 TCB stands for Task Control Block.

Towards User-Level extensibility of the Cheddar Ada library 11
7 Conclusion

This article describes a way to extend an Ada library. The method is experi-
mented with Cheddar, a library providing performance analysis tools. Cheddar
provides a domain specific language which helps users to the design of real time
schedulers. Programs written with this domain specific language can be inter-
preted in order to perform real time scheduling analysis of real time systems.
By the past, different projects showed that the Cheddar programming language
and its interpreter are useful for the modeling of real time schedulers. But these
experiments also showed that the interpreter is lacking of efficiency in case of
large scheduling simulations. In this article, we experiment a way to compile
such a program. By designing a Cheddar meta-model, we show how to compile
Cheddar programs in order to extend the Cheddar library. For such a purpose,
we use Platypus, a Meta CASE Tool based on EXPRESS.

At the time we write this article, the CDAI is modeled and we are able to
generate the corresponding Ada packages [14]. We are currently designing the
meta-model of the Cheddar programming language and experimenting Cheddar
scheduler and task generation.

References

1. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar : a Flexible Real Time
Scheduling Framework, ACM Ada Letters journal. 24(4):1-8. Also published in the
proceedings of the International ACM SIGAda Conference, Atlanta, USA (2004)

2. Singhoff, F.: Cheddar Release 2.x User’s Guide. Technical report, number singhoff-
01-2007, Available at http://beru.univ-brest.fr/~singhoff/cheddar (2007)

3. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in a Hard
Real-Time Environment. Journal of the Association for Computing Machinery
20(1) (1973) 46-61

4. Hopcroft, J.E., Ullman, J.D.: Introduction of Automata Theory, Languages and
Computation. (2001)

5. Alur, R., Dill, D.L.: Automata for modeling real time systems, Proc. of Int. Col-
loquium on Algorithms, Languages and Programming, Vol 443 of LNCS (1990)
322-335

6. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. Technical Report
Updated the 17th November 2004, (Department of Computer Science, Aalbord
University, Denmark)

7. Sprunt, B., Sha, L., Lehoczky, J.: Aperiodic Task Scheduling for Hard-real-time
Systems. The Journal of Real Time Systems 1 (1989) 27-60

8. Plantec, A.: Platypus Technical Summary and download. (http://cassoulet.univ-
brest.fr/mme)

9. Team, T.S.: Squeak web site. (http://www.squeak.org)

10. ISO 10303-1: Part 1: Overview and fundamental principles. (1994)

11. ISO 10303-11: Part 11: EXPRESS Language Reference Manual. (1994)

12. Plantec, A., Ribaud, V.: Experiences using an Application Generator Builder. Pro-
ceedings of the 11th International Conference on software engineering and knowl-
edge engineering, June the 16-19, Kaiserslautern, Germany (1999)

12 Frank Singhoff, Alain Plantec

entry := sections
sections := section {sections}
section := program_section | automata_section
program._section := [identifier] ":" section_type statements
automata_section := [identifier] ":" Tautomaton_section" states transitions
section_type := "start_section" | "priority_section"

| "election_section" ‘ "task_activation_section" ‘
states := state {states}
transitions := transition {transitions}
state := identifier ["initial"] ":" M"state" ";"
transition := identifier "-->" "[" [guards] ,[clocks],

[synchronizations] "1" "-->" identifier ";"
synchronizations : = synchronization {synchronizations}
synchronization := identifier ’!” | identifier "?"
clocks := assignment {clocks}
guards := expression
statements := statement {statements}
statement := put | assignment | declare | while | for | if | return | random
put := "put" "(" identifier [, expression] [, expression]")" ";"
declare := identifier ":" data_type [":=" expression | ";"
assignment := identifier ":=" expression ";"
if := "if" expression "then" statements ["else" statements] "end" "if" ";"
return := "return" expression ";"
for := "for" identifier "in" ranges "loop" statements "end" "loop" ";"
while := "while" expression "loop" statements "end" "loop" ";"
random := "uniform" "(" identifier "," expression ","

expression ")" ";"

| "exponential" "(" identifier "," expression ")" ";"
data_type := scalar_data_type

| "array" "(" ranges ")" "of" scalar_data_type
ranges := "tasks_range"

| "buffers_range" | "messages_range'
scalar_data_-type := "boolean" | "integer" | "random"
operator := "and" | "or" | "mod" | "< | "> | tg=n | nwy=n
expression := expression operator expression

| "max_to_index" "(" expression ")"

| "lem" "(" expression "," expression ")" |

Fig. 8. BNF grammar of the Cheddar programming language

13. Mimoune, M.E.H., Pierra, G., Ait-Ameur, Y.: An ontology-based approach for
exchanging data between heterogeneous database systems. In: ICEIS 2003: Pro-
ceedings of the 5th International Conference On Enterprise Information Systems,
Angers - France, Ecole Supérieure d’ Electronique de I’ Ouest (2003)

14. Plantec, A., Singhoff, F.: Refactoring of an Ada 95 Library with a Meta CASE
Tool, ACM Ada Letters journal. 26(3):61-70. Also published in the proceedings of
the International ACM SIGAda Conference, Albuquerque, USA (2006)

