Extending Rate Monotonic Analysis when Tasks Share
Buffers

F. Singhoff, J. Legrand, L. Nana, L. Marcé
EA 2215 Team, University of Brest
20, av Le Gorgeu, CS 93837
29238 BREST Cedex 3
{singhoff,jlegrand,nana,marce } @univ-brest.fr

Abstract

In this paper, we study applications composed of periodic tasks and buffers. We assume that
tasks are scheduled according to Rate Monotonic. We also assume that tasks read messages
from buffers. Messages are received from network at an unknown rate. Checking feasibility of
such applications consists in checking task deadlines with classical RMA feasibility tests but
also checking that no buffer overflow occurs. We present a RMA extension which makes it
possible to study this kind of application. From a queueing system model, a maximum and an
average buffer analysis are proposed. This performance analysis is implemented in a tool : the
Cheddar Real Time Simulator.

1 Introduction

This paper deals with performance analysis of distributed real time systems. Real time sys-
tems we study are composed of processors connected by a network. On each processor, tasks
are scheduled according to a preemptive fixed priority scheduler [12]. Tasks are periodically
activated and share buffers. Buffer producers and consumers are not synchronized. A task pro-
duces or consumes data at its own rate : a consumer can be awaked without having a message
to read.

Since 1980, many models, methods and tools were proposed to study performance of this kind
of real time systems (eg. Petri Net [13], Synchronous languages [6], ...). One of them, usually
called “Rate Monotonic Analysis” (or RMA), provides a set of quantitative methods which
helps the system designer to predict the timing behavior of real time tasks. With RMA, task
temporal constraints can be checked with scheduling simulation and feasibility tests such as
bound on processor utilization factor [12] or task response times [7, 2].

The first ideas about RMA were proposed 30 years ago [12]. The method was strongly extended
to cope with many application requirements [8] and was successfully used in many projects [14].
Nevertheless, RMA is still unusable in many cases.

Processor
1 Random failure events ‘ Network
g g g g Buffers
T
Processor ~ L g Producer periodic task

L o
E I P g Consumer periodic task

Shared resource

Figure 1: A Distributed Real Time System

First, even if buffers are common operating system functionalities (such as queueing ports in
ARINC 653][1]), it seems that few results exist about buffer performance analysis in the case of
tasks scheduled according to RMA.

Secondly, with RMA, tasks and messages should most of the time be activated in a periodic
way[4]. Unfortunately, in large real time distributed systems, some parts may not be fully
periodic. It’s the case of monitoring services in aeronautical systems [3] which help operators to
detect and diagnose failures (see Figure 1). This kind of real time system can be made of many
different equipments, and then, its failure probability can be high. Most of the time, these
systems require regular maintenance periods. Sometimes, in order to decrease maintenance
cost, they provide services to collect data during the life of the system, to analyze them and
to store analysis results into a persistent memory. These analysis results are finally presented
at maintenance period. Since failures occur in a random way, this kind of application has to
handle random arrival rates of data.

This paper extends RMA to cope with applications composed of buffers where
events/messages are delivered to the system in a random way. We propose new

measures of buffer performances. These propositions are implemented in a simulation tool
which allows the designer to perform analysis of applications built according to Rate Monotonic
Analysis.

RMA applications made of buffers can then be studied using both worst case and average case
analysis. We'll show that worst case analysis can be performed if assumptions are made on
event arrival rate. In this case, the system is checked assuming that a smallest period of event
arrival rate exists. Otherwise, if no worst case assumption is made, we’ll show that an average
analysis can be realized.

In section 2, we first give a short description of our buffer performance propositions. Section 3
is devoted to the presentation of a simulator which implements these propositions. Finally, in
section 4, we conclude and present ongoing works.

2 Performance analysis of buffers shared by tasks sched-
uled with RMA

Let us go back to the application example of Figure 1. In this monitoring application, we sup-
pose that two kinds of inter-tasks communication exist. First, periodic tasks receive messages
from the network. These messages, which provide failure information, are stored in buffers
such as ARINC 653 queueing ports. Secondly, tasks share data through buffers and shared
resources. In the two cases, we suppose that at most one message/data can be produced or
consumed during a periodic task activation. All the tasks are independent and are scheduled
with RMA[12].

To check the feasibility of this kind of application, we have to check task deadlines. This can be
done with RMA feasibility tests. We also have to check buffer performance. This section deals
with buffer performance and mainly focus on mean/maximum waiting time of one message/data
in a buffer and on mean/maximum buffer utilization factor.

2.1 Worst case buffer analysis

We first show how to perform buffer analysis if assumptions on worst case failure arrival rate
are made. To find a bound on buffer utilization factor in the case of a buffer shared by tasks
scheduled with RMA, we can study the case of voice transmission service provided by the AAL2
layer of ATM networks.

In AAL2/ATM, a producer sends audio packets at a fixed rate d. This throughput is expressed
in cells per second, the protocol data unit of ATM networks. A bounded variable delay is
required by each cell to go from the sender to the receiver. In an AAL2 communication service,
the consumer should receive the cell at the same rate the producer sends it. Each received cell

is then buffered during a sufficient amount of time to hide this variable transmission delay. In
[5], it has been shown that the size of the buffer used to hide variable transmission delay is
bounded by :

-

Where 0 is the maximum delay a cell stays in the buffer. We call this delay the maximum
memorization delay.

The systems we study in this paper are similar to the one described above and we can apply
equation (1) to find bound on buffers shared by RMA scheduled periodic tasks. Let now suppose
that the failure arrival rate is bounded by a period, the smallest period between two successive
failures. For a buffer shared by N periodic producers and 1 periodic consumer, the buffer bound
is [11] :

pen(2[5) ?

P
prode PROD prod

where PROD is the set of producers, Pp,.,q the period of the producer prod and O, the
maximum delay between the wake up time of the consumer and the wake up time of the
producer prod. This bound is based on the maximum memorization delay which is equal to
0 = 2(y + 1).P.yys for a given message i (y is the number of messages that may already be in
the buffer before the message i is inserted; Py, is the period of the buffer consumer). From
(2) and for all possible values of y, it may be proven that for a buffer shared by 1 periodic
consumer and N periodic producers, the buffer bound is :

B=2N

if tasks are harmonics! and
B=2N4+1

in the other case.

LA task set is said to be harmonic if and only if each task period is a positive integer multiple of all smaller
task periods.

2.2 Average buffer analysis

The previous section describes how to perform a worst case analysis of buffers shared by RMA
scheduled tasks, let’s see now the average case.

We can model buffers of our monitoring applications with queueing models [9]. A queueing
model is a model which makes it possible to compute measures of performances on a system.
The modeled system is composed of servers and customers. Servers run customer requests : a
server is awaked when a customer requires it. If new customers arrive in the system when a
server is busy, their requests are stored in a queue. By defining the rate of customer request
arrivals and the rate of requests that the server can handle, a queueing system model makes it
possible to predict the average queue utilization factor and the average customer waiting time.

Different kind of customer arrivals and service time definition exists. The most usual are
deterministic (D), Markovian (M) or general (G). D means constant delays (constant service
time for the server side or constant delay between two customer arrivals for the customer side).
M describes a customer arrival or a service time where delays follow an exponential probability
distribution. Finally, if no assumption on the probability distribution is made, GG is used. G is
defined by an average rate and its variance. Following the Kendall notation, a queueing system
is described by at least 3 parameters : alb|c. The a parameter is the customer arrival rate. b
describes the service time rate. Finally, ¢ is the number of servers. For instance, a system with
one server, a constant service time and an exponential customer arrival is a M/D/1 queueing
system.

Let’s see now how our monitoring application can be modeled with a queueing system model (a
detailed explanation can be found in [10]). Each buffer can be modeled by a queue. Messages
from the network are customers and periodic consumer tasks are servers.

The service time is determinist but, due to the RMA scheduling, the service time is different
from the one modeled by the D service time distribution :

e A customer request does not require a constant delay of the server. Indeed, the response
time of a consumer task depends on its fixed priority.

e Since tasks are periodically activated, a consumer task is not necessary ready to run when
a customer request arrives.

e Finally, a consumer task can be awaked even if the buffer is empty.

Then, to perform buffer analysis with a queueing model, we have to define a new kind of
deterministic service rate. This new service rate will be called P in the remaining of the paper.

As usual service rates, P is described by a mean service time W, and its variance o2. Let’s

define the mean service time. The message service time is the time used by the server to handle

a message (remains being computed by the server). When there are one or several messages
in the buffer, the service time is the time between 2 subsequent consumer activations. On the
other hand, when the buffer is empty, the service time is the time between one message arrival
and the next consumer activation.

Due to the fact that a consumer task could be awaked when the buffer is empty, we have to
study two cases :

1. The production rate is very low compared to the consumption rate. No message is con-
sumed for most of consumer awakening times. In this case, the mean service time is equal
t0 Prons/2.

2. The production rate is close to the consumption rate. In the case of heavy queueing
utilization factor, each time a consumer is awaked, it has a message to consume. In such
case, the mean service time is P,,;.

By combining these two cases, an approximation of P mean service time can be found. In order
to compute o2, the response time of each consumer task activation is needed. This information
can be obtained with an extension of the classical RMA worst case response time algorithm [7].
Finally, if customer arrival rate is Markovian, the service time for the corresponding M/P/1
queueing system is :

P, P,
WS — cons — cons 1 _"_ 3
2(1 o)\%) 2 (p) ()

Where p = AW, and A is the mean arrival rate of data in the buffer

The variance on average service time is :

1+3p) 1 —
= (B2 Ly w-w, (@)
=1

Where W; is the ith service time of the queueing system server (which is also the ith consumer
task response time).

From (3) and (4) and with the help of M/G/1 theoretical results, we can compute a theoretical
average message waiting time and a theoretical average number of messages in the buffer. These
last measures of performances are computed with these M/G/1 usual equations [9] :

AW?Z +02)

W =W, +
2(1-p)

(5)

and

L=\W (6)

Where W is the average message waiting time and L, the average number of messages in the
buffer.

3 Cheddar, a real time scheduling simulator

We are developing a tool which helps designers to study RMA applications. This tool, Cheddar,
provides features for describing a system or an application composed of tasks, processors, buffers
and shared resources. Tasks can be activated periodically or randomly and can run on different
processors.

Cheddar is composed of two independent parts : a graphical editor and a framework. The
editor is used to describe the real time application. The framework provides a set of feasibility
tests and a flexible scheduling simulation engine.

Cheddar runs on Solaris, Linux and win32 systems and the framework is distributed under the
GNU General Public License (see http://beru.univ-brest.fr/~singhoff/cheddar). An exhaustive
list of services provided by Cheddar is given on the Cheddar’s user guide Web pages [15].

Many RMA feasibility tests are provided by the framework (most of the feasibility tests in
the uniprocessor case and some of them in the distributed and in the multiprocessor cases).
The main feasibility tests are based on response time and processor utilization factor for most
of usual schedulers [12, 7]. Of course, if buffers are defined, buffer performance analysis can
be performed. These performance analysis are based on results presented in section 2 of this

paper.

The simulation engine allows users to display a scheduling in a graphical way. From this
simulation, much information can be computed by Cheddar : response times, shared resource
blocking times, free time units ... Since feasibility tests are only available for a few well known
schedulers, the Cheddar’s simulation engine is flexible enough to simulate systems with specific
task models or schedulers[16].

We propose the use of a small language to express scheduler behaviors. Schedulers expressed
with this language are not compiled but interpreted by the framework at simulation time.

Figure 2 shows an example of an ARINC 653 partitions scheduling with Cheddar [1]. An
ARINC 653 system is composed of several partitions. A partition is an unit of program and
is itself composed of processes and memory spaces. A processor can host several partitions.
Two levels of scheduling exist in an ARINC 653 system : partitions scheduling and processes
scheduling.

1.

IFI.I.- Edit View Teslz Help

£

Processes scheduling. In one partition, processes are scheduled according to their fixed
priority. The scheduler is preemptive and always gives the processor to the highest fixed
priority ready task of the partition. When several tasks of a partition have the same
priority level, the oldest one is elected.

. Partitions scheduling. Partitions share the processor in a predefined way. On each

processor, partitions are activated according to an activation table. This table is built
at design time and defines a cycle of partitions scheduling. The table describes for each
partition when it has to be activated and how much time it has to run.

v olalal «He=

T
TE_FT Py e———— e e o |

T3 PT

o s v | — 1 —
Fes il Ce 5 De 7 Sa { Frs 7 (O0=nnsEss

Fas e 5 De 0 Se I e 5 Codsganinetss

i L | [

e]
P 200 Ca T D= B0 S 0 Pre 8 Coo=grincgid

F

Scheduling simulation, Processor arinciS3

= Humhas of pressption T
- Humber of conkext switch]
- Taika gesponies Eimm (From aimulation)

e—————————————s |

TL P =% 13 missed 1ts desdline {desdline = 10 ; completion time = 13}
Ta_PL =2
TAPL =» @

Figure 2: An example of ARINC 653 scheduling with Cheddar

Figure 2 displays a system made of 3 tasks hosted by one processor. The processor owns 2
partitions : partitions PO and P1. The task T1 runs on the partition PO and the two others
run on the partition P1. Tasks have a fixed priority : T2 is the highest priority level task and
T1 is the lowest one. The cyclic partitions scheduling has to be done so that PO runs before
P1. In each cycle, PO should run during two units of time and P1 should run during four units
of time.

This kind of specific scheduling can be easily designed with Cheddar. To achieve this scheduling,
a possible user-defined scheduler could be the one given in Figure 3. This user-defined Cheddar
scheduler is interpreted at simulation time and is made of several “sections” :

e The start section provides variable declarations.

e The priority section computes task priorities. The code given here is called each time
a scheduling decision has to be taken (at each unit of time for preemptive schedulers and
when a task stops running for the non preemptive case).

e The election section. In this section, the scheduling simulator engine decides which
ready task should receive the processor for the next units of time.

4 Conclusion and future work

This paper proposes extensions to RMA in the case of buffers shared by periodic tasks. The
applications we consider are composed of periodic tasks running on uniprocessor systems. These
tasks share buffers and receive messages from the network in a random way. Checking feasibility
of such applications consists in checking task deadlines with usual RMA feasibility tests but
also checking that no buffer overflow occurs.

We have proposed tests to find the maximum bounds on buffer sizes which hold when as-
sumptions on worst case message rate arrival are made. We have also proposed a performance
analysis to compute the average size of these buffers if no minimum inter-arrival time between
2 messages can be found.

These propositions are implemented in a GNU GPL real time scheduling simulator. This
simulator provides most of usual feasibility tests for Rate Monotonic Scheduling.

Future work should study applications with randomly activated tasks. Today, few results exist
for checking temporal constraints of such tasks. We aim at providing feasibility tests (response
time and shared resources blocking time) for such tasks running on uniprocessor systems with
fixed priority schedulers.

References

[1] Arinc. Avionics Application Software Standard Interface. The Arinc Committee, January
1997.

2]

3]

4]

[11]

[12]

[13]
[14]

[15]

[16]

A. N. Audsley, A. Burns, M. Richardson, and K. Tindell. Applying new scheduling theory
to static priority pre-emptive scheduling. Software Engineering Journal, pages 284-292,
1993.

B. Burchell. A3XX Maintenance : A First Look. Overhaul and Maintenance Revue. URL
s www. aviationnow. com, August 2000.

F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri. Scheduling in Real Time Systems.
John Wiley and Sons Ltd editors, 2002.

M. Gagnaire and D. Kofman. Réseaur Haut Débit : réseaur ATM, réseaux locaux, réseaur
tout-optiques. Masson-Inter Editions, Collection ITA, 1996.

P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming real time
applications with SIGNAL. INRIA-RENNES, Rapport numéro 1446, 1991.

M. Joseph and P. Pandya. Finding Response Time in a Real-Time System. Computer
Journal, 29(5):390-395, 1986.

M. H. Klein, T. Ralya, B. Pollak, R. Obenza, and M. G. Harbour. A Practitioner’s
Handbook for Real Time Analysis. Kluwer Academic Publishers, 1994.

L. Kleinrock. Queueing System : theory. Wiley-interscience, 1975.

J. Legrand, F. Singhoff, L. Nana, and L. Marcé. Performance Analysis of Buffers Shared
by Independent Periodic Tasks. Submitted to the IEEE International Real-Time Systems
Symposium (RTSS), July 2004.

J. Legrand, F. Singhoff, L. Nana, L. Marcé, F. Dupont, and H. Hafidi. About Bounds of
Buffers Shared by Periodic Tasks : the IRMA project. In the 15th Euromicro International
Conference of Real Time Systems (WIP Session), Porto, July 2003.

C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in a Hard Real-
Time Environnment. Journal of the Association for Computing Machinery, 20(1):46-61,
January 1973.

J. L. Peterson. Petri Net theory and the Modelling of Systems. Prentice Hall, 1981.

SEI. The Rate Monotonic Analysis. Technical report, In the Software Technology
Roadmap. http://www.sei.cmu.edu/str/descriptions/rma_body.html, September 2003.

F. Singhoff, J. Legrand, L. Nana, and L. Marcé. Cheddar User’s Guide. Techni-
cal report, Technical report number singhoff-01-2003, Available at http://beru.univ-
brest.fr/~singhoff/cheddar/docs/ug.html, September 2003.

F. Singhoff, J. Legrand, L. Nana, and L. Marcé. Cheddar : a Flexible Real Time Scheduling
Framework. International ACM SIGADA Conference, Atlanta, November 2004.

start_section:
partition_duration : task array of integer;

dynamic_priority : task array of integer;
number_of_partition : integer :=2;
current : integer :=0;

time_partition : integer :=0;

— The activation partition table

partition_duration[0]:=2;
partition_duration[1]:=4;
time_partition:=partition_duration|current];
priority_section:
if time_partition=0
then current:=(current+1)
mod number_of_partition;
time_partition:=partition_duration|current];
end if;
forall i loop
if task_partition[i]=current
then dynamic_priority[i]:=priority[i];
else dynamic_priority/[i]:=0;
readyli]:=false;
end if;
end loop;
time_partition:=time_partition-1;

election_section:
return max_to_index(dynamic_priority);

Figure 3: Process and partition scheduling in an ARINC 653 system

