
Refactoring of an Ada 95 Library with a Meta CASE Tool

Alain Plantec, Frank Singhoff
LISYC/EA 3883, University of Brest

20, av Le Gorgeu
CS 93837, 29238 Brest Cedex 3, Francefplantec,singhoffg@univ-brest.fr

ABSTRACTThis paper presents the refa
toring work of Cheddar, a set ofAda pa
kages whi
h aims at providing performan
e analysistools for
on
urrent real time appli
ations. CASE tools
anbe used for su
h a purpose. However, we
hose to use ameta CASE tool
alled Platypus. It seems that few studiesexist
on
erning Ada and meta-modelization. Then, in thispaper, we investigate how to use a meta CASE tool in orderto automati
ally produ
e some parts of an Ada 95 obje
toriented software.
KeywordsMeta-modeling, Meta CASE, STEP, EXPRESS, Code gen-erating, Platypus, Cheddar
General TermsDesign, Languages
Categories and Subject DescriptorsSOFTWARE ENGINEERING [Design Tools and Te
h-niques℄: Computer-aided software engineering (CASE)
1. INTRODUCTIONIn [22, 23℄, we presented Cheddar, a set of Ada pa
kageswhi
h aims at providing performan
e analysis of
on
urrentreal time appli
ations. With Cheddar, a real time appli
a-tion is modeled by a set of pro
essors, shared resour
es, andtasks des
ribed by an AADL spe
i�
ation[7℄.The development of this toolset started in 2002. Today,it in
ludes most of
lassi
al s
heduling simulation methodsand
lassi
al s
heduling feasibility tests in the
ase of de-pendent and independent tasks running on monopro
essorand distributed systems[5, 12℄.We plan to strongly extend it in order to be able to ana-lyze multipro
essor systems and hierar
hi
al s
hedulers[20℄.These new servi
es will imply a large amount of mo-di�
ations. Due to the toolset size (around 140000 lines)
Copyright ACM (2006). This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in the ACM SIGADA’2006 Interna-
tional conference Proceedings, November 12–16, 2006, Albuquerque, New
Mexico, USA.

and due to the large amount of modi�
ations we will haveto do, we
hose to perform a refa
toring of this library witha CASE tool. From this refa
toring work, the Cheddar teamexpe
ts:First, to strongly in
rease the Cheddar maintainability.Indeed, a large part of the Cheddar sour
e
ode is
omposedof pa
kages providing servi
es to parse di�erent appli
ationspe
i�
ation �les, to
he
k integrity
onstraints on data, tostore these data into the simulation engine, and to presentthem on a ma
hine-man interfa
e. All these pa
kages
anbe automati
ally produ
ed from the Cheddar data model.By the past, doing
hanges on the Cheddar data model inorder to implement new performan
e tools implied a hugeamount of work on these pa
kages. By using
ode genera-tion, we expe
t to strongly redu
e the
ost of su
h futuremodi�
ations on these pa
kages.Se
ond, the use of CASE tools makes it possible to applysour
e
ode generation rules. These generation rules allow totune the generated software a

ording to user requirements.A good framework should be able to automati
ally take intoa

ount the user software
on�guration requirements. Weexpe
t to provide su
h a user
on�guration
exibility withspe
i�
 sour
e
ode generation rules.Finally, we simply expe
t to improve the design and thereliability of the Cheddar framework.Several Ada CASE tools are already available to the Ada
ommunity. We
hose to use our meta CASE tool
alledPlatypus[19℄ in order to investigate how meta-modelization
an be applied to Ada. This paper shows how to use Platy-pus in order to automati
ally produ
e some parts of an Ada95 obje
t oriented software.This paper is organized as follows. In se
tion 2, we presentwhat a meta CASE tool is. In se
tion 3, we give an intro-du
tion to the Platypus meta-modeler and we des
ribe themeta-modeling of Cheddar and Ada 95 with Platypus. Se
-tion 4 gives few details on the design of the Cheddar frame-work and the Ada pa
kages we expe
t to generate. Finally,we
on
lude in se
tion 5.
2. CASE AND META CASE TOOLSCASE stands for Computer-Aided Software Engineeringand is the use of software to assist in the analysis, the design,the implementation, the maintenan
e or the refa
toring ofsoftware. A CASE tool is usually implemented a

ordingto a parti
ular method or software implementation pro
ess.It automates the use of spe
i�
 method modeling
on
eptsor spe
i�
 pro
ess steps and mainly provides modelizationenvironments and
ode generators.

associationconcept

Ada/Cheddar
Object domain

Relational database
domain

Order Customer

Date

Product

column

table

key
attribute

supertype

2..*

0..1

0..*1..*1..*

Customer foreign key

Period

Capacity

Policy

Periodic_Task

Generic_Task1

Relational DB tagged record objects in Cheddar

tagged_record

Meta−meta−model

Meta−model

Model

Data Figure 1: Meta-model, model and dataClassi
ally, systems are built on a four layers ar
hite
ture :meta-meta-models, meta-models, models and data[17℄. Thelowest layer is the appli
ation data layer. These data areinstan
es of a model whi
h is itself des
ribed by a language,usually
alled the meta-modele. Figure 1 shows two ex-amples of meta-models, models and data. The meta-meta-model provides a minimal meta-modeling language.The �rst example deals with relational data base systems.The meta-model des
ribes the
on
epts of table,
olumn andkey. The meta-model is used to des
ribe data base ar
hite
-tures. A parti
ular data base ar
hite
ture is des
ribed bya model. The data are the tuples of the data base. These
ond example is related to the work des
ribed in this pa-per: an Ada obje
t oriented appli
ation. The set of
on
eptsis
omposed of tagged re
ord and attributes. The meta-model spe
i�es su
h
on
epts of tagged re
ord and attribute.The model of an appli
ation is the set of Cheddar taggedre
ords (eg. Periodi
 Task) and the data are the taggedre
ord instan
es.Figure 2 shows the ar
hite
ture of a CASE tool and atarget appli
ation. A CASE tool is based on a �xed meta-model: method
on
epts are spe
i�
ally implemented asbuiltin stru
tures (eg. C++
lasses or Ada tagged re
ords).A CASE tool provides a mean to edit or elaborate mod-els (eg. UML models). A model is internally handled asinstan
es of builtin stru
tures that are read by
ode gener-ators from a repository in order to produ
e a realization. Adatabase
omponent is a typi
al realization. Often, CASEtools provide a framework made of generi
 libraries that areneeded in order to
ompile or run target appli
ation. Com-paring to a CASE tool, a meta CASE tool provides a wayto edit meta-models and has a �xed meta-meta-model.
2.1 CASE tools available for Ada 95Several Ada CASE tools su
h as STOOD (Ellidiss), Ar-tisan Studio, UML STP (AONIX), Rhapsody (Telelogi
) or

Repository

Models
of

Generated

Framework

Components

Fixed

Code
Generator

Target applicationCASE tool

CASE toolMethod and

meta−model

Figure 2: A CASE tool and a target appli
ationar
hite
tureRational Rose, are already available to the Ada
ommu-nity[2, 6, 10, 11℄. In order to model and generate a domainspe
i�
 software, two methods
an be used by a CASE tool:1. building the CASE tool and its generator on a meta-model whi
h enfor
es the domain spe
i�
 features ;2. providing a meta-model whi
h
an be adapted to thespe
i�
 domain.Let see some examples of Ada CASE tools based on a �xedmeta-model. In this se
tion, we
hose to present CASE toolsdesigned for the spe
i�
ation and the generation of real timeappli
ations (whi
h is the Cheddar domain).Ellidiss te
hnologies provides STOOD[2℄, a modeling toolfor UML, AADL and HOOD. The STOOD meta-model isbased on HRT-HOOD[1℄. The HRT-HOOD model in
ludesa set of features whi
h enables the design of real time appli-
ations. The HOOD meta-model of STOOD allows a user to

see the model of his appli
ation as an UML or an AADL de-sign : STOOD is able to automati
ally translate a design to-wards UML, AADL or HOOD ; thanks to pre-de�ned map-pings between the internal meta-model and the user levelnotations. Unlike most of the other CASE tools, STOODdoes not use simple
ode template instan
iation to generatethe appli
ative
ode from the design model. Instead,
odegeneration rules are formally de�ned using the LMP (Log-i
al Model Pro
essing) te
hnology, and
an be easily tunedto �t any spe
i�
 proje
t
oding standard.Let see some CASE tools whi
h provide meta CASEfa
ilities su
h as the one proposed by UML. Some UMLCASE tools make it possible the de�nition of spe
i�
 domain
on
epts with me
hanisms su
h as stereotypes. A stereo-type represents an UML usage distin
tion[10℄. A parti
ularstereotype is an unstandardized modeling
on
ept that istool dependent. It is expe
ted that
ode generators willtreat stereotyped UML designs in order to generate sour
e
ode tuned to the spe
i�
 domain[11℄.
2.2 Meta CASE toolsAs des
ribed in [13℄, it exists many meta-modeling tools.The most known are MetaEdit+[14℄ and Dome[3℄. Theyprovide a minimal meta-modeling language that is generalenough to spe
ify a large amount of meta-modeling
ases.They also provide a set of graphi
al tools allowing graphi
almeta-modeling and graphi
al domain editor de�nition. Spe-
i�

ode or do
umentation generators
an be implementedusing a dedi
ated language.They provide a graphi
al way to spe
ify meta-models andrelated model editor. They are multi-language based. Clas-si
ally, these languages are for meta-modeling,
ode gener-ating and optionally, meta-
onstraints expressing. A meta-modeler has to spe
ify not only domain spe
i�
 meta-modelsbut also domain spe
i�
 editors.Usually, meta CASE tools are general purpose CASEtools. This is the
ase of the meta CASE tools presentedabove. However, it also exists some domain spe
i�
 metaCASE tools : TOPCASED[4℄ is one of su
h an environ-ment. As for MetaEdit+ or Dome, TOPCASED
an beuse for the developement of any kind of appli
ations, but itis also espe
ially well suited for
riti
al real time embeddedsystems design (one of the Cheddar domain appli
ation).The TOPCASED CASE tool is managed by the Fren
hAeronauti
 and Spa
e National Resear
h Center. It is basedon the E
lipse platform : meta-models are des
ribed withEMF[26℄.
3. THE PLATYPUS META CASE TOOLPlatypus[19℄ is a meta-environment fully integrated in-side Squeak [24℄, a free Smalltalk system. Platypus allowsmeta-model spe
i�
ation, integrity and transformation rulesde�nition. Meta-models are instantiated from user de�nedmodels and, given a parti
ular model, integrity and trans-formation rules
an be interpreted.Platypus allows only textual meta-modeling and model-ing fa
ilities. Platypus bene�ts from the STEP standard formeta-models spe
i�
ation and implementation. As an ISOstandard, STEP [8℄ is developed to fa
ilitate produ
t infor-mation sharing by spe
ifying suÆ
ient semanti

ontent fordata and their usage. Parts of STEP are intended to stan-dardize
on
eptual stru
tures of information either generi
,

or within a parti
ular domain (e.g. me
hani
s). Standard-ized parts are expressed with a dedi
ated te
hnology, mainlyan obje
t oriented modeling language
alled EXPRESS[9℄and a data a

ess interfa
e. EXPRESS
an be used as ameta-modeling language[18, 16℄.Platypus is a mono-language tool: only EXPRESS is usedfor meta-modeling,
onstraints and
ode generator spe
i�-
ation. In Platypus, a meta-model
onsists in a set of EX-PRESS s
hemas that
an be used to des
ribe a language.The main
omponents of the meta-model are types and en-tities. They are des
ribing the language
on
epts. Entities
ontain a list of attributes that provide bu
kets to storemeta-data while lo
al
onstraints are used to ensure meta-data soundness.A translation rule is de�ned within a meta-entity as a de-rived attribute: a named property whi
h value is
omputedby the evaluation of an asso
iated expression. A typi
altranslation rule returns a string and
an be parameterizedwith other meta-entities. The resulting string representspart of the target textual representation (eg. Ada sour
e
ode, do
umentation, XML data).Platypus meta-model
an itself be reused for meta-modeling. This feature de
reases domain spe
i�
 environ-ment implementation
ost by allowing Platypus environmentreusing not only for meta-modeling but also for modelingand
ode generator running.
3.1 Meta-modelization of Ada for CheddarFigure 3 shows a part of a simple Ada 95 meta-s
hema
alled Ada For Cheddar Meta Model. It
ontains �ve en-tities,
lass in pa
kage, attribute, string type, real type andin pa
kage type alias and one type, attr domain:�
lass in pa
kage spe
i�es a Cheddar tagged re
ord; ithas four expli
it attributes, super for the supertypereferen
e, name for the name of the tagged re
ord, at-tributes, a list that
ontains tagged re
ord attributereferen
es and is private that is set to true if thetagged re
ord is a private one;� attribute spe
i�es what a tagged re
ord attribute is; ithas two expli
it attributes, asso
iating a name with adomain;� in pa
kage type alias spe
i�es a Cheddar subtype withtwo expli
it attributes, name and alias name;� string type and real type spe
ify two basi
 Ada types;� and attr domain is de�ned in order to pre
isely enu-merate attribute domain possible types; an attributevalue
an be a string, a real, ...These entities show how to produ
e the Ada
ode de
lar-ing subtypes and tagged re
ords. Entity
lass in pa
kageis spe
i�ed with four translation rules (derived attributes),with use list, ptr type, ads
ode and adb
ode.As an example, with use list is intended to produ
e thelist of pa
kages name on whi
h a tagged re
ord is dependentand ads
ode is intended to produ
e
lass de�nition
ode ina pa
kage by
lass in pa
kage ads
ode fun
tion
omputing.
3.2 Ada code generationAs shown in Figure 4, given a Cheddar model (eg. Ched-dar Task, Figure 7),
ode generation is made of two pro-
esses:

SCHEMA Ada For Cheddar Meta Model;ENTITY
lass in pa
kage ;super : OPTIONAL
lass in pa
kage ;name : STRING;a t t r ibutes : LIST o f attr ibute ;i s p r i v a t e : BOOLEAN;DERIVEwith use l i s t : LIST OF STRING :=
 lass in pa
kage with use l i s t (SELF) ;ptr type : STRING := name + '_Ptr';ads
ode : STRING :=
lass in pa
kage ads
ode(SELF) ;adb
ode : STRING :=
lass in pa
kage adb
ode(SELF) ;ENDENTITY;ENTITY attr ibute ;name : STRING;domain : attr domain;ENDENTITY;TYPE attr domain =SELECT (str ing type , real type , . . .) ;ENDTYPE;ENTITY str ing type . . .ENTITY rea l typeENTITY in pa
kage type al ias ;name : STRING;al ias name : STRING;DERIVEads
ode : STRING :='subtype ' + name+' is ' + alias name + ';';ENDENTITY;FUNCTION
lass in pa
kage ads
ode(
 ip :
 lass in pa
kage) : STRING;LOCAL
ode : STRING;ENDLOCAL;
ode := 'type ' +
ip. name + ' is new '+
ip . super. name + ' with ';IF (
 ip . i s p r i v a t e) THEN
ode :=
ode + 'private;\n';ELSE
ode :=
ode + attr ibutes ads
ode(
 ip) ;END IF;. . .RETURN(
ode) ;ENDFUNCTION;ENDSCHEMA;Figure 3: A part of an Ada/Cheddar meta-modelwritten with EXPRESS

translation rules
interpretation

Ada_For_Cheddar_Meta_Model
instances

instanciation
Ada_For_Cheddar_Meta_Model

Package Body

Tasks is ...

Package Tasks

Cheddar_Task

model

Figure 4: Code generation pro
ess1. the model is parsed, and as a result, Ada For Che-ddar Meta Model meta-model instan
es are
reated;2. translation rules spe
i�ed in Ada For Cheddar Meta -Model meta-model
an be interpreted, as a result, anAda pa
kage is generated.
3.3 Reusing PlatypusEven within a meta-environment, meta-model spe
i�
a-tion, modeling dialogs elaboration or model analyzer imple-mentation are diÆ
ult and expensive tasks. The
ore partof Platypus is made of an EXPRESS meta-model and of anEXPRESS modeling environment. Within Platypus, EX-PRESS models are stored into a repository of models inwhi
h models are instan
es of Platypus EXPRESS meta-model.New domain meta-model (eg. Ada For Cheddar Meta -Model)
an be de�ned as Platypus EXPRESS meta-modelspe
ialization. In su
h a
ase, a diale
t of EXPRESS
anbe used as the modeling language. Platypus modeling envi-ronment
an be used for meta-modeling as well as for mod-eling. Then, Platypus model to meta-model instan
iationpro
edures
an be reused. Using this feature avoid domainspe
i�
 modeling environment implementation and fully au-tomates appli
ation generator running.
3.3.1 Platypus meta-model reuseEXPRESS is an hybrid obje
t oriented modeling lan-gage. Platypus EXPRESS meta-model spe
ify langage andenvironment
on
epts that
an be reused for another lan-gage modeling. As an example, Figure 5 shows a part of thePlatypus meta-model, platypus di
tionary s
hema. It
on-tains the entity de�nition meta-entity that spe
ify what anEXPRESS entity is: mainly, a named type, owned by a
ontext, that may have some supertypes and that may beasso
iated with some attributes.Figure 6 shows how the Ada For Cheddar Meta Modelmeta-model is simpli�ed if it is de�ned as a Platypus meta-model spe
ialization:

SCHEMA platypus di
tionary s
hema;ENTITY named typeABSTRACT SUPERTYPESUBTYPE OF (d i
t ionary instan
e) ;name : STRING;where rules : LIST OF where rule;owner :
ontext de f in i t ion ;ENDENTITY;ENTITY ent i ty de f in i t i onSUBTYPE OF (named type) ;supertype
onstraint :OPTIONAL supertype
onstraint;supertypes : LIST OFUNIQUE ent i ty de f in i t i on re f e r en
e ;attr ibutes : LIST OFUNIQUE attr ibute ;uniqueness rules : LIST OFUNIQUE uniqueness rule;
omplex : BOOLEAN;instant iab le : BOOLEAN;independent : BOOLEAN;ENDENTITY;. . .Figure 5: A part of Platypus EXPRESS meta-modelshowing entity de�nition meta-entity�
lass in pa
kage is de�ned as a subtype of en-tity de�nition; now it only has the expli
it attributeis private, be
ause priva
y does not exist for an entitywithin EXPRESS;� in pa
kage type alias is also de�ned as a subtype of en-tity de�nition and keeps the only one expli
it attribute(
alled alias name);� attribute, attr domain, string type and real type arenot needed anymore be
ause all these
on
epts arefully reused from Platypus meta-model.
3.3.2 Platypus environment reuseAs we explained in se
tion 3.2, appli
ation generator ismade of two parts.For a parti
ular meta-model, using STEP implementationmethods, Platypus automates the se
ond part with meta-data
he
king and translation rules interpretation.The se
ond part is also automated be
auseAda For Cheddar Meta Model is spe
i�ed as a spe
ializa-tion of Platypus EXPRESS meta-model. Then our diale
tof EXPRESS is used as the modeling language and Platy-pus modeling environment is used for modeling Cheddar
on
epts
onforming to Ada For Cheddar Meta Modelmeta-model.Figure 7 shows the Cheddar model
alled Cheddar Task.Generi
 Task EXPRESS entity des
ribes how su
h Cheddarfeature has to be implemented in Ada (see Figure 11). As anexample, Generi
 Task entity is expli
itly linked to its meta-entity
lass in pa
kage. As a result, in the
ontext of anEXPRESS to Ada for Cheddar translation, a Generi
 Task

SCHEMA Ada For Cheddar Meta Model;USE FROM platypus di
tionary s
hema;ENTITY
lass in pa
kageSUBTYPE OF (ent i ty de f in i t i on) ;i s p r i v a t e : BOOLEAN;DERIVEsuper :
 lass in pa
kage :=supertypes[1 ℄ . r e f ;w i th use l i s t : LIST OF STRING :=
 lass in pa
kage with use l i s t (SELF) ;ptr type : STRING := name + '_Ptr';ads
ode : STRING :=
lass in pa
kage ads
ode(SELF) ;adb
ode : STRING :=
lass in pa
kage adb
ode(SELF) ;WHEREhave one supertype : SIZEOF(supertypes) = 1 ;ENDENTITY;ENTITY in pa
kage type al iasSUBTYPE OF (ent i ty de f in i t i on) ;alias name : STRING;DERIVEads
ode : STRING :='subtype ' + name+' is ' + alias name + ';';adb
ode: STRING:= '';ENDENTITY;. . .Figure 6: A part of an Ada/Cheddar meta-modelreusing the Platypus meta-entity entity de�nitionis not only an entity de�nition but also a tagged re
ord inan Ada pa
kage.
4. SOURCE CODE AUTOMATICALLY

PRODUCED WITH THE ADA META-
MODEL

4.1 Few words about the Cheddar designLet see now whi
h Cheddar sour
e
ode we plan to gener-ate from our meta-model. Cheddar is a set of Ada pa
kageswhi
h aims at performing performan
e analysis of
on
ur-rent real time appli
ations. Cheddar is
omposed of twosoftware
omponents:� a framework whi
h implements the analysis methodsand algorithms,� a GtkAda ma
hine-man interfa
e whi
h provides aneasy way to
all the framework sub-programs and todisplay the analysis results.These two
omponents are written with a
ontainer librarywhi
h
an be
on�gurated in order to use stati
 or dynami
memory allo
ations.With Cheddar, a real time appli
ation is modeled as setsof pro
essors, address spa
es, bu�ers, resour
es, and tasks.Attributes of su
h features are stored in simulation data.

SCHEMA Cheddar Task;META FROM Ada For Cheddar Meta Model;TYPE Po l i
 i e s fada enumeration (?) g= ENUMERATIONOF (S
hed Fifo , S
hed Rr, S
hed Others) ;END TYPE;ENTITY Generi
 Taskf
lass in pa
kage (f a l s e)gSUBTYPE OF (Generi
 Obje
t) ;Task Poli
y : Po l i
 i e s ;. . .ENDENTITY;ENTITY Periodi
 Taskf
lass in pa
kage (f a l s e)gSUBTYPE OF (Generi
 Task) ;Period : Natural Type;. . .ENDENTITY;ENDSCHEMA;Figure 7: A part of the Ada/Cheddar domain modelspe
i�ed with Platypus EXPRESS diale
tThe framework provides servi
es to manage Cheddar sim-ulation data. For ea
h simulation data type, the frame-work implements sub-programs to perform integrity
he
ks,to print/parse XML or AADL[21℄ spe
i�
ation �les and tostore them in
ontainers. Finally, the ma
hine-man inter-fa
e provides a widget for ea
h feature in order to update
ontainers and to get feature attributes.For ea
h Cheddar feature, we expe
t to generate threepa
kages (see Figures 10, 11 and 12):1. ea
h Cheddar feature is implemented by an Ada
lass. For example, the Ada
lass
orrespond-ing to the task feature is
omposed of the taggedre
ords Generi
 Task (the super tagged re
ord ofthe task
lass) and its derived tagged re
ords(eg. Periodi
 Task, Aperiodi
 Task, ...). This �rstgenerated pa
kage in
ludes su
h a feature de
larations(see Figure 11);2. the set of instan
es of an Ada
lass (eg. instan
es ofGeneri
 Task, Periodi
 Task, Aperiodi
 Task, ...) isstored in a
ontainer. This
ontainer is built froma generi
 pa
kage whi
h is extended to provide in-put/ouput sub-programs. For example, this pa
kageimplements AADL/XML printer, parser and integrity
he
ks sub-programs. Cheddar
an be
urrently
om-piled with two di�erent Ada 95
ontainer implementa-tions: the �rst implementation only does stati
 mem-ory allo
ations and the se
ond one is based on dynami
memory allo
ations. The user has the possibility to
hoose one of these implementations. This
hoi
e hasbe taken into a

ount by the meta-model. Figure 12shows an example of su
h a
ontainer pa
kage;3. a pa
kage
ontaining a GtkAda Widget will be alsogenerated (see Figure 10). The window of this widgetis split in two sub-windows: the top-left sub-window

Software
omponents Size Expe
ted tobe generatedContainers and
on�guration 7205 few linespa
kages (
on�guration)Ma
hine-Man interfa
e 53650 17013 (31,7%)Simulation framework 79297 27474 (34,6%)All
omponents 140152 44487 (25-35%)Figure 8: Number of lines of the Cheddar toolsetallows the user to get feature attributes. The bottom-left sub-window displays a set of buttons whi
h
an bepressed to update the
ontainer. The instan
es storedin the
ontainer are listed in the right sub-window.
4.2 Current status and first resultsThe design of the Ada meta-model and the model of theCheddar library is still in progress. At the time we writethis arti
le, only the Ada pa
kages implementing Cheddarfeatures are automati
ally generetad.The EXPRESS sour
e
ode modeling the Cheddar fea-tures and their data is
omposed of 348 lines of
ode. 947lines of EXPRESS sour
e
ode were required in order towrite the Ada 95 meta-model (this amount of lines also in-
ludes the Ada sour
e
ode generator). This meta-model
an be reuse for the modeling of any Ada 95 obje
t orientedappli
ation.The amount of automati
ally generated sour
e
ode forthis part of Cheddar is about 75 per
ents of the Ada pa
k-ages whi
h were originally manually implemented. But,when the refa
toring work will be over, in the best
ase,about 30 per
ents of the Cheddar library
an be expe
tedto be automati
ally implemented. The Figure 8 gives anoverview of the Ada
ode we expe
t to automati
ally pro-du
e with the meta-model.The
urrent Ada meta-model des
ribes the features ofre
ord (dis
riminated or not), tagged re
ord (with or with-out private types and with or without tagged re
ord ex-tension), enumeration,
onstrained array types and generi
pa
kages instan
iation. For ea
h of these Ada
on
epts,the Ada sour
e
ode generator produ
es the type de�ni-tion but also an a

ess type de�nition and a sub-programto release dynami
ally allo
ated memory. For ea
h re
ordand tagged re
ord types, the Ada sour
e
ode generatoralso produ
es sub-programs to perform basi
 input/out-put operations on the type (eg. Put sub-programs), to ini-tialize and �nalize obje
ts (if the tagged re
ord extendsAda.Finalization.Controlled tagged re
ord) and to providespe
i�
 Cheddar servi
es. From the meta-model, renamesand subtypes
an also be generated if ne
essary. Finally,by expressing Cheddar feature relationships, the use andwith
lauses are also automati
ally
omputed. Of
ourse,the Ada 95 meta-model and the Ada sour
e
ode generator
an be adapted to the designer requirements.Using CASE tools (with or without meta-modeling
apa-bilities) also improves the design of the target appli
ation.By de�ning the Ada 95 meta-model and the Cheddar model,we were able to dete
t the following mistakes in the previousCheddar design and implementation :� some anti-patterns were dete
ted and removed (eg. a

violation of the open-
lose prin
iple in the Cheddarfeatures
opy
onstru
tor[15℄);� some sub-programs were de�ned in wrong pa
kages(pa
kages whi
h do not
ontain the types related tothe mispla
ed sub-programs). For instan
e, the sub-programs whi
h
he
k Cheddar feature integrity
on-straints were de�ned in the ma
hine-man interfa
epart. Then, no integrity
he
k was able to be per-formed when Cheddar data were provided from AADL�les;� the way identi�ers were built was sometimes wrong(identi�ers of GtkAda sub-widgets, identi�ers oftagged re
ord, of a

ess types, of enumeration sub-programs, ...). This mistake was easily
orre
ted withthe Ada sour
e
ode generator;� some un-used attributes in the GtkAda user-de�nedwidget were dete
ted. Some un-usefull use/with
lauses was also dete
ted and removed (extra use/with
lauses in
hild pa
kages);� some basi
 sub-programs, subtypes and renames onCheddar features were missing. The automati
 gener-ation of su
h
ode eases the use of the Cheddar library.Finally, using meta-modeling will de
rease the futuremaintenan
e
ost. Basi
ally, adding a new analysis toolinto Cheddar requires to add new attributes in the existingCheddar features. Let take the example of a new kind ofs
heduling algorithm that we added last year: this s
hedul-ing algorithm,
alled the MUF s
heduler[25℄, assumes that a
riti
ality level is de�ned for ea
h task of the system. Addingthis new attribute into the tagged re
ord whi
h models atask in the Cheddar framework leads to the modi�
ationof 8 Ada pa
kages. 90 lines of the Ada
ode were writ-ten to store, initialize, and display this new attribute in thema
hine-man interfa
e. By the use of the Ada meta-model,most of these 90 lines of
ode may be automati
ally imple-mented.
5. CONCLUSIONIn this paper, we have presented the refa
toring work ofCheddar, a set of Ada pa
kages whi
h aims at providingperforman
e analysis tools for
on
urrent real time appli
a-tions. CASE tools
an be used for su
h a purpose. However,we
hose to use a meta CASE tool
alled Platypus. Indeed,it seems that few studies exist
on
erning Ada and meta-modelization. Here, we're investigating how to use a metaCASE tool in order to automati
ally produ
e some parts ofan Ada 95 obje
t oriented software.At the time we write this arti
le, the Ada 95 meta-modelexpresses the most important Ada 95 obje
t-oriented fea-tures that we use in Cheddar. It is written in EXPRESS.From this meta-model, we were able to des
ribe the Cheddardata model and we developed the Ada
ode generator to au-tomati
ally produ
e a part of the Cheddar implementation.The amount of automati
ally generated sour
e
ode for thispart of Cheddar is about 75 per
ent of the Ada pa
kageswhi
h were originally manually implemented. But, whenthe refa
toring work will be over, in the best
ase, around30 per
ents of the Cheddar library
an be expe
ted to beautomati
ally implemented. This refa
toring work also in-
reased the quality of the Cheddar design.

This level of automati
ally generated sour
e
ode
an bea
hieve with
lassi
al CASE tools without meta-modeling
apabilities. The next step will
onsist in in
luding in themeta-model some
on
epts whi
h are more spe
i�
 to theCheddar domain su
h as the s
heduling algorithms
urrentlyimplemented in the analysis tools of Cheddar. Su
h an im-proved Ada 95 meta-model should make it possible to gen-erate a part of the s
heduling simulation engine of Cheddar.This part of
ode
ould not be designed and generated witha CASE tool without meta-modeling
apabilities.
6. REFERENCES[1℄ A. Burns and A.J. Wellings. HRT-HOOD: A DesignMethod for Hard Real-time Systems. Real TimeSystems journal, 6(1):73{114, 1994.[2℄ P. Dissaux. AADL Model transformations. In theDAta Systems in Aerospa
e
onferen
e (DASIA 2005),Edinbugh, July 2005.[3℄ Dome OÆ
ial Website.http://www.ht
.honeywell.
om/dome/download.htm.[4℄ P. Farail, P. Gau�llet, A. Canals, C. Le Camus,D. S
iamma, P. Mi
hel, X. Cr�egut, and M. Pantel.TOPCASED : An Open Sour
e DevelopmentEnvironment for Embedded Systems. Chapter 11,From MDD Con
epts to Experiments and Illustrations,ISTE Editor, pages 195{207, September 2006.[5℄ L. George, N. Rivierre, and M. Spuri. Preemptive andNon-Preemptive Real-time Uni-pro
essor S
heduling.INRIA Te
hni
al report number 2966, 1996.[6℄ M. Hause. Artisan Studio : support for Model DrivenAr
hite
ture (MDA). White paper of Artisan SoftwareTools, 2002.[7℄ SAE In
. Ar
hite
ture analysis and design language(aadl) as 5506. Te
hni
al report, The EngineeringSo
iety For Advan
ing Mobility Land Sea Air andSpa
e, Aerospa
e Information Report, Version 0.994,August 2004.[8℄ ISO 10303-1. Part 1: Overview and fundamentalprin
iples, 1994.[9℄ ISO 10303-11. Part 11: EXPRESS LanguageReferen
e Manual, 1994.[10℄ J. Rumbaugh and I. Ja
obson and G. Boo
h. TheUni�ed Modeling Language - Referen
e Manual.Addison-Wesley, 1999.[11℄ M. Kersten, J. Matthes, C. F. Manga, S. Zipser, andH. B. Zeller. Customizing UML for the development ofdistributed rea
tive systems and
ode generation toAda 95. Ada User Journal, 23(6), 1999.[12℄ M. H. Klein, T. Ralya, B. Pollak, R. Obenza, andM. G. Harbour. A Pra
titioner's Handbook for RealTime Analysis. Kluwer A
ademi
 Publishers, 1994.[13℄ Yi Lu. Reading proje
t report,
omparison ofmeta-modelling te
hniques and tools. Te
hni
alreport, Computer S
ien
e Department, M
GillUniversity, Mar
h 2003.[14℄ MetaEdit+ Te
hni
al Summary.http://www.meta
ase.
om/papers/index.html.[15℄ B. Meyer. Obje
t Oriented Software Constru
tions.Prenti
e Hall editor, 2000.[16℄ Mourad El-Hadj Mimoune, Guy Pierra, and YamineAit-Ameur. An ontology-based aproa
h for ex
hangingdata between heterogeneous database systems. In

ICEIS 2003: Pro
eedings of the 5th InternationalConferen
e On Enterprise Information Systems,Angers - Fran
e, 2003. �E
ole Sup�erieure d'�Ele
tronique de l'Ouest.[17℄ OMG. Model Driven Ar
hite
ture.http://www.omg.org/mda, 2003.[18℄ A. Plante
 and V. Ribaud. Experien
es using anAppli
ation Generator Builder. Pro
eedings of the 11thInternational Conferen
e on software engineering andknowledge engineering, June the 16-19,Kaiserslautern, Germany, 1999.[19℄ Platypus Te
hni
al Summary and download.http://
assoulet.univ-brest.fr:8000/Platypus.[20℄ J. Regehr and J. A. Stankovi
. Hls : a framework for
omposing soft real-time s
hedulers. In the 22th IEEEInternational Real-Time Systems Symposium(RTSS'01). London, UK., pages 3{14, De
ember 2001.[21℄ SEI. OSATE : An extensible Sour
e AADL ToolEnvironment. SEI AADL Team te
hni
al Report,De
ember 2004.[22℄ F. Singho�, J. Legrand, L. Nana, and L. Mar
�e.Cheddar : a Flexible Real Time S
hedulingFramework. International ACM SIGADA Conferen
e,Atlanta, USA, November 2004.[23℄ F. Singho�, J. Legrand, L. Nana, and L. Mar
�e.S
heduling and Memory requirements analysis withAADL. International ACM SIGADA Conferen
e,Atlanta, USA, November 2005.[24℄ Squeak web site. http://www.squeak.org.[25℄ D. B. Stewart and P. K. Khosta. Real-TimeS
heduling of Dynami
ally Re
on�gurable Systems. InPro
eedings of the IEEE International Conferen
e onSystems Engineering, Dayton, Ohio, pages 139{142,August 1991.[26℄ EMF website. E
lipse Modeling Framework.http://www.e
lipse.org/emf.
7. ANNEX

Figure 9: A Platypus snapshot: the deepest windowshows the Platypus editor with, on the left, the treeof EXPRESS elements
orresponding to the
urrents
hema edited on the right. The front window showsa
ode generating result.

Figure 10: Widget related to a Cheddar feature.

with Text Io;use Text Io;with Un
he
ked Deallo
ation;with Convert Strings;with Convert Unbounded Strings;with Obje
ts;use Obje
ts;pa
kage Tasks i stype Po l i
 i e s i s (S
hed Fifo , . . .pro
edure To Pol i
 ies i snew Convert Strings(Pol i
 i e s , S
hed Fifo) ;pro
edure To Pol i
 ies i snew Convert Unbounded Strings(Pol i
 i e s ,S
hed Fifo) ;pa
kage Po l i
 i e s I o i s newText Io. Enumeration Io(Po l i
 i e s) ;use Po l i
 i e s I o ;type Generi
 Task i sabstra
t new Generi
 Obje
t withre
ordPoli
y : Po l i
 i e s ;. . .end re
ord ;type Generi
 Task Ptr i sa

ess a l l Generi
 Task ' Class ;. . .type Periodi
 Task i snew Generi
 Task withre
ordPeriod : Natural ;. . .end re
ord ;type Periodi
 Task Ptr i sa

ess a l l Periodi
 Task ' Class ;pro
edure I n i t i a l i z e(A Task : i n out Periodi
 Task) ;fun
tion Copy(A Task : i n Periodi
 Task Ptr)return Periodi
 Task Ptr;fun
tion Copy(A Task : i n Periodi
 Task)return Periodi
 Task Ptr;pro
edure Put(A Task : i n Periodi
 Task Ptr) ;pro
edure Put(A Task : i n Periodi
 Task) ;pro
edure Free i snew Un
he
ked Deallo
ation(Periodi
 Task ' Class ,Periodi
 Task Ptr) ;. . .end Tasks;Figure 11: Part of a pa
kage spe
i�
ation gener-ated for the Cheddar feature. Poli
ies is an at-tribute type generated from an EXPRESS type.Generi
 Task and Periodi
 Task are tagged re
ordsgenerated from EXPRESS entities.

with Sets ;with Tasks;use Tasks;pa
kage Task Set i spa
kage Generi
 Task Set i snew Sets (Element => Generi
 Task Ptr , . . .) ;type Tasks Set i snew Generi
 Task Set. Set with private ;subtype Tasks Range i sGeneri
 Task Set. Element Range;. . .�� XML/AADL pr in t e r sub�programsfun
tion Export Xml(My Tasks : Tasks Set. . .) return Unbounded String;fun
tion Export Aadl(My Tasks : Tasks Set. . .) return Unbounded String;�� Perform i n t e g r i t y
he
ks on a t t r i b u t e spro
edure Che
k Integrity(My Tasks : i n Tasks Set. . .) ;. . .end Task Set;Figure 12: Example of a
ontainer pa
kage whi
hstores instan
es of a feature. Tasks Range is a sub-type generated from an EXPRESS entity.

