
Towards User-Level extensibility of an Adalibrary : an experiment with CheddarFrank Singho�, Alain Plante
LISYC/EA 3883, University of Brest20, av Le GorgeuCS 93837, 29238 Brest Cedex 3, Fran
efsingho�,plante
g�univ-brest.frAbstra
t. In this arti
le, we experiment a way to extend an Ada library
alled Cheddar. Cheddar provides a domain spe
i�
 language. Programswritten with this domain spe
i�
 language
an be interpreted in orderto perform real time s
heduling analysis of real time systems. By thepast, di�erent proje
ts showed that the Cheddar programming languageis useful for the modeling of real time s
hedulers. But these experimentsalso showed that the interpreter is la
king of eÆ
ien
y in
ase of larges
heduling simulations. In this arti
le, by designing a Cheddar meta-model, we investigate on how to
ompile su
h Cheddar programs in orderto extend the Cheddar library. For su
h a purpose, we use Platypus, ameta CASE Tool based on EXPRESS. For a given Cheddar program andwith a meta-model of Cheddar handled by Platypus, we
an generate aset of Ada pa
kages. Su
h Ada pa
kages
an be
ompiled and integratedas builtin s
hedulers into Cheddar. Then, the eÆ
ien
y of s
hedulingsimulations
an be in
reased.Key words: Meta-modeling, Ada
ode generating, Cheddar, Platypus1 Introdu
tionThis arti
le deals with the Cheddar library [1℄. Cheddar is a library designedfor the performan
e analysis of real time appli
ations. With Cheddar, a realtime appli
ation is modeled as a set of tasks, pro
essors, s
hedulers, bu�ers... This library provides a set of real time s
hedulers and their analysis toolsimplemented in Ada. S
hedulers
urrently implemented into Cheddar are mostlymet in real time appli
ations and the library
an be used to perform performan
eanalysis of many di�erent types of real time appli
ations. However, it exists aneed to extend these Cheddar analysis tools to spe
i�
 s
heduler or task models.For su
h a purpose, it requires that the user understands the Cheddar design.Furthermore, designing a new s
heduler or a new task model may be diÆ
ultwithout an environment whi
h makes it possible to easily write and test thes
heduler
ode. In order to ease the design of new s
hedulers, Cheddar providesa programming language. The model of a s
heduler or of a task model des
ribed

2 Frank Singho�, Alain Plante
and tested with the Cheddar programming environment is interpreted : thus thedesigner
an easily handle and experiment his s
heduler models.Di�erent proje
ts showed that the Cheddar programming language is usefulfor the modeling of real time s
hedulers. But these experiments also showed thatthe interpreter is la
king of eÆ
ien
y in
ase of large s
heduling simulations.This arti
le presents a way to extend an Ada library. It presents a way to
ompile Cheddar programs by automati
ally produ
ing Ada
ode
orrespondingto the modeled s
hedulers. For su
h a purpose, we use the Platypus meta CASEtool and a meta-model whi
h spe
i�es both the Ada 95 programming featuresand the Cheddar programming language features. Then, from the user-de�neds
heduler model, one
an generate the new builtin s
heduler fully integrated intothe Cheddar library.
The user−defined scheduler

design step is over: call the Platypus generator

scheduler and test by interpreting it
Launch Cheddar, edit user−defined

Cheddar files
AADL/XML

Cheddar binaryAda packages

Compile Cheddar with
these new featuresFig. 1. The user-de�ned s
heduler design pro
ess with CheddarThe s
heduler design and integration pro
ess proposed in this arti
le is de-pi
ted by �gure 1. This pro
ess is made of two main steps:1. the �rst step is the new s
heduler or the new task model design; a new s
hed-uler and task model is spe
i�ed with the Cheddar programming language;su
h a program
an be interpreted by Cheddar allowing early testing andimprovements;2. the se
ond step is the new s
heduler or the new task model integration. It
onsists in the automati
 generation of Ada pa
kages from the user-de�neds
heduler; a Cheddar version integrating the new s
heduler and task modelis then re
ompiled.This arti
le is organized as follows. In se
tion 2, we outline the Cheddarprogramming language and we give an example of its use. Then, we shortlydes
ribe the design of the Cheddar library in se
tion 3. Se
tion 4 is devoted tothe pro
ess we use to generate Ada pa
kages with the meta CASE Tool Platypus.In se
tion 5, we propose a meta-model for the Cheddar programming language.The generated Ada
ode is brie
y des
ribed in se
tion 6. Finally, we
on
ludeby des
ribing the
urrent status of the proje
t in se
tion 7.

Towards User-Level extensibility of the Cheddar Ada library 32 The Cheddar programming languageIn this se
tion, we give an overview of the Cheddar programming language. A
omplete des
ription of the language
an be found in [2℄. The use of the Cheddarprogramming language is illustrated by the example of the sporadi
 task modelwith an EDF s
heduler [3℄.2.1 Outline of the Cheddar programming languageThe Cheddar programming language is
omposed of two parts :1. a small Ada-like language whi
h is used to express
omputations on simula-tion data. Simulation data are
onstants or variables used by the s
hedulingsimulator engine of Cheddar in order to simulate task and s
heduler behav-iors. Examples of simulation data are task wake up times or task priorities.A program written with the Cheddar programming language is organized inse
tions. A se
tion is a kind of Ada sub-program;2. a set of timed automata su
h as those proposed by UPPAAL [4{6℄ whi
h isa toolbox for the veri�
ation of real time systems. In Cheddar, these timedautomata allow to model timing and syn
hronization behaviors of tasks ands
hedulers. Automata may run Ada-like se
tions in order to read or modifysimulator data.The Ada-like language provides usual statements su
h as loops,
ondition-nal statements, assignments. It also provides statements whi
h are spe
i�
 tothe design and the debug of s
heduling algorithms. Two kinds of su
h spe
i�
statements exist: high-level and low-level statements. High-level statements op-erate on ve
tors whi
h store a simulation data for all tasks, messages, bu�ers,pro
essors ... Low-level statements only operate on s
alar simulation data.The simpli�ed BNF syntax of the language is given in �gure 8. The entryrule spe
i�es that a program is a set of se
tions. Most of the time, a program is
omposed of the following se
tions [1℄: a start se
tion whi
h
ontains variablede
larations ; a priority se
tion whi
h
ontains the
ode to
ompute simulationdata on ea
h unit of time during simulation; and an ele
tion se
tion whi
h looksfor the task to run on simulation time.The statement rule gives the syntax of all available statements to the s
hed-uler designer. The most important spe
i�
 statements are the return statementand the uniform/exponential statements. The return statement gives the iden-ti�er of the task to run. uniform/exponential statements
ustomize the wayrandom values are generated during simulation time.The language also provides operators and types. It provides usual Ada typessu
h as s
alar integer, boolean, double, string types or array and their attributes(first, last, range, ...). It also provides usual logi
al and arithmeti
 operators.As for the statements, s
heduling spe
i�
 types and operators are available. Forinstan
e, the l
m operator
omputes the last
ommon multiplier of simulationdata, the max to index operator looks for the ready task whi
h has the highest

4 Frank Singho�, Alain Plante
value of an array variable and the random type provides random generator
apabilities.The se
ond part of a s
heduler or a task model is a spe
i�
ation of its tim-ing and syn
hronization behavior with a set of automata. Automata used byCheddar are timed automata as they are de�ned in the UPPAAL toolset [6℄.A timed automaton is a �nite state ma
hine extended with
lo
k variables. InUPPAAL, a system is modeled as a network of several timed automata. Themodel is extended with variables. A state of the system is de�ned by the lo-
ations of all automata, the
lo
k
onstraints, and the values of the variables.Every automaton may �re a transition separately or syn
hronize with anotherautomaton, whi
h leads to a new state.At least, ea
h automaton has to be
omposed of some prede�ned lo
ationsand transitions. Transitions
an run se
tions, read and write simulation datadepending on the statements given by users on transitions (
lo
k update, syn-
hronization, guard, ...). The BNF syntax of a guard, a syn
hronization or a
lo
k update
an be read in [6℄.2.2 Example of a user-de�ned task model : the sporadi
 task model: s t a r t s e
 t i ondynami
 priority : array (tasks range) o f integer;gen1 : random;exponential(gen1, 100) ;
y
le duration : array (tasks range) o f integer;sporadi
 model : task a
t ivat ion se
t ion
y
le duration:=max(tasks . period , gen1) ;: p r i o r i t y s e
 t i ondynami
 priority := tasks . start t ime+ ((tasks . a
tivation number�1)�tasks . period)+ tasks . deadline;: e l e
 t i on s e
 t i onreturn min to index(dynami
 priority) ;sporadi
 model : automaton se
tionI n i t i a l i z e : i n i t i a l s tate ;Pended, Ready, Blo
ked, Run : s tate :I n i t i a l i z e ��> [, tasks . a
tivation number:=0 , s t a r t s e
 t i on? ℄ ��> PendedPended ��> [engine
lo
k>=tasks . a
tivation number+
y
le duration ,
y
 l i
 task
 lo
k :=tasks .
apa
ity, ℄ ��> ReadyReady ��> [,
y
 l i
 task
 lo
k :=
y
 l i
 task
 lo
k+1,e l e
 t ? ℄ ��> RunBlo
ked ��> [, , V! ℄ ��> ReadyRun ��> [
y
 l i
 task
 lo
k>0, , preempt! ℄ ��> ReadyRun ��> [,
y
 l i
 task
 lo
k :=0 , task a
t ivat ion se
t ion! ℄ ��> PendedFig. 2. Example of a user-de�ned task model : the sporadi
 task

Towards User-Level extensibility of the Cheddar Ada library 5
Initialize

Blocked

Run Ready

Pended

P!

start_section?

activation_number:=0

cyclic_task_clock==0

task_activation_section!

V!

engine_clock>=activation_number+cycle_duration

cyclic_task_clock:=capacity

cyclic_task_clock>0

preempt?

elect?

cyclic_task_clock:=
 cyclic_task_clock-1

Fig. 3. Cy
li
 task modelingFigure 2 and �gure 3 show an example of a user-de�ned task model : thesporadi
 task model. A sporadi
 task is a task whi
h
an be a
tivated severaltimes and whi
h has a minimal delay between ea
h of its su

essive a
tivations[7℄. Figure 2 shows a Cheddar program modeling a sporadi
 task. The task a
ti-vation se
tion spe
i�es how inter-a
tivation delays have to be
omputed. In this
ase, the delay is the maximal value between the period of the task 1 and a valuewhi
h is randomly generated a

ording to an exponential density fun
tion.The EDF s
heduler run tasks a

ording to task deadlines. These deadlinesare
omputed in the priority se
tion and the task with the shortest deadline is
hosen in the ele
tion se
tion sub-program.Figure 3 models the syn
hronization and the timing part of the sporadi
task model. In this example, the automaton des
ribes the di�erent task states :basi
ally, a task
an be Pended (it waits its next a
tivation), Blo
ked (it waitsfor a shared resour
e a

ess), Ready (it only waits for the pro
essor), or Run(
urrently a

essing the pro
essor). The task a
tivation se
tion is
alled whenthe task goes from the Run lo
ation to the Pended lo
ation. During this
all,the delay that the task has to wait upto its next a
tivation time is
omputedand stored in the
y
le duration variable, as seen in �gure 2.3 Implementation of CheddarBefore proposing a meta-model of Cheddar, let see how the library is imple-mented. The library implements the
omponents showed in �gure 4:1 The period is the minimal inter-a
tivation delay.

6 Frank Singho�, Alain Plante

BA A generates B A B B read from A

Cheddar Scheduler New scheduler
and task models integrationgenerator

and task models design
New scheduler

CDAI

Interpreter

Compiler

Builtin scheduler
and task models

User−defined scheduler
and task models gen1 : random;

 dynamic_prior

Start section :

F r a m e w o r k
C h e d d a r

repository

Data and
meta−data

Fig. 4. The Cheddar library{ Cheddar implements a data and a meta-data repository (eg. tasks, pro
essorsor s
hedulers are data; an automaton transition de�nition or a loop statementis a meta data);{ data and meta-data are read or written from or into the repository using theCheddar Data A

es Interfa
e (CDAI); the CDAI is used by every
ompo-nents of Cheddar library in order to read or write data and meta-data;{ a new s
heduler and task model is spe
i�ed using the Cheddar programminglanguage; the result is a Cheddar program; this program is read by a
ompilerthat produ
es meta-data
onstituting an internal representation for it; meta-data are stored into the repository;{ the Cheddar interpreter is implemented in order to run user-de�ned s
hed-ulers; an interpreting pro
ess run statements and expressions stored as meta-data and intera
ts with Cheddar for data values reading and writing;{ the Cheddar s
heduler generator is used to produ
e Ada pa
kages from user-de�ned s
hedulers; for one user-de�ned s
heduler, generated
ode
onsistsin :� a pa
kage that implements the s
heduler;� a pa
kage that extends CDAI for the new s
heduler.4 Modeling, meta-modeling and
ode generatingData and meta-data stored into the repository are des
ribed by a set of modelsand meta-models. All these models are handled by spe
i�
 Ada
ode generators

Towards User-Level extensibility of the Cheddar Ada library 7built with the meta CASE tool Platypus [8℄. First, this se
tion brie
y des
ribesthe Platypus meta-CASE tool. Se
ond, it des
ribes Platypus using for
ode gen-erating.4.1 The Platypus meta CASE toolPlatypus [8℄ is a meta-environment fully integrated inside Squeak [9℄, a freeSmalltalk system. Platypus allows meta-model spe
i�
ation, integrity and trans-formation rules de�nition. Meta-models are instantiated from user-de�ned mod-els and, given a parti
ular model, integrity and transformation rules
an beinterpreted.Platypus allows only textual meta-modeling and modeling fa
ilities. Platypusbene�ts from the ISO 10303 namely the STEP [10℄ standard for meta-modelsspe
i�
ation and implementation. STEP de�nes a dedi
ated te
hnology, mainlyan obje
t oriented modeling language
alled EXPRESS [11℄ that
an be used asa modeling language as well as a meta-modeling language [12, 13℄.In Platypus, a meta-model
onsists in a set of EXPRESS s
hemas that
anbe used to des
ribe a language. The main
omponents of a meta-model are typesand entities. They are des
ribing the language features. Entities
ontain a listof attributes that provide bu
kets to store meta-data while lo
al
onstraints areused to ensure meta-data soundness.Code generators are spe
i�ed by translation rules. A translation rule is de-�ned within a meta-entity as a derived attribute: a named property whi
h valueis
omputed by the evaluation of an asso
iated expression. A typi
al translationrule returns a string and
an be parameterized with other meta-entities. The re-sulting string represents part of the target textual representation (eg. Ada sour
e
ode, do
umentation, XML data).4.2 Code generatingAs shown by �gure 5,
ode generation is used at two levels of abstra
tion:1. the �rst level is the Cheddar level. This level is related to a parti
ular Ched-dar version for whi
h all handled obje
t types (pro
essors, tasks, bu�ers, ...)are �xed and des
ribed by the Cheddar model. The Cheddar model is anEXPRESS model, it is parsed by an Ada
ode generator that produ
es theCDAI set of pa
kages. Translation rules applied by the generator are spe
i-�ed by an Ada for Cheddar meta-model. More explanations about this �rstlevel of design
an be read in [14℄;2. the se
ond level is the Cheddar language level. It
orresponds to Cheddarspe
ializations driven by the spe
i�
ation of new s
hedulers and task models.These new parts are spe
i�ed using the Cheddar programming language. Thededi
ated
ode generator is able to parse a Cheddar program and �rst, toprodu
e a new s
heduler implementation and se
ond, to enri
h the Cheddarobje
t model. Then, the CDAI pa
kages are regenerated and a new Cheddarversion
an be
ompiled.

8 Frank Singho�, Alain Plante

 gen1 : random;
 dynamic_prior

Start section :
User−defined

scheduler

Cheddar level

Cheddar language level

Ada package
Code for new

scheduler

Ada package Code for
the CDAI

Ada/Cheddar
meta−model

model
EXPRESS

Code generator

generates code for run translation rules of

Cheddar language
meta−model

Specification of
Cheddar objects

parses Uses services ofFig. 5. Cheddar
ode generating from models and meta-models5 Meta-modeling of the Cheddar programming modelThe Cheddar programming language model is made of one meta model spe
i-�ed with EXPRESS that in
ludes meta-data types (meta-entities), their rela-tionships,
onstraints, and in
ludes translation rules that are spe
i�ed as meta-entities
omputed properties.The meta-model is made of several EXPRESS s
hemas.
heddar languageand
heddar automaton s
hemas are the two main s
hemas. A part of theirspe
i�
ation is shown in �gure 6.
heddar language in
ludes the
heddar s
hemaentity that spe
i�es what a Cheddar program is. A program is made of a setof se
tions. Two main kind of se
tion
an be spe
i�ed, a program se
tion or anautomaton se
tion. A program se
tion mainly
ontains a list of statements. Anautomaton se
tion is made of the spe
i�
ation of an automaton.Cheddar
ompiler populates this meta-model. As an example, from one Ched-dar program, one instan
e of
heddar s
hema entity is
reated and stored intothe repository.Code generating
onsists in the reading of the two translation rules spe
i�edin
heddar s
hema entity, namely the two derived attributes
dai entities ands
heduler pa
kage :{
dai entities value is
omputed by the evaluation of the fun
tion
hed-dar s
hema
dai entities ;
omputing result
onsists in a new EXPRESS

Towards User-Level extensibility of the Cheddar Ada library 9SCHEMA
heddar language;ENTITY
heddar s
hema;se
t ions : SET [1 : ? ℄ OF s e
 t i on de f i n i t i on;DERIVE
da i en t i t i e s : STRING:=
heddar s
hema
dai entities (SELF) ;s
heduler pa
kage : STRING:=
heddar s
hema s
heduler pa
kage(SELF) ;WHEREhave one and only one ele
tion :s i z e o f (query(e <� se
t ions j e. i d en t i f i e r = 'ele
tion_se
tion'))=1;ENDENTITY;ENTITY s e
 t i on de f i n i t i on ABSTRACT SUPERTYPE;i d e n t i f i e r : STRING;INVERSE
ontext :
heddar s
hema FOR se
t ions ;UNIQUE
ontext , i d e n t i f i e r ;ENDENTITY;ENTITY e l e
 t i on s e
 t i on de f i n i t i on SUBTYPE OF (s e
 t i on de f i n i t i on) ;task id : return stmt;DERIVESELFns e
 t i on de f i n i t i on. i d en t i f i e r : STRING:='ele
tion_se
tion';ENDENTITY;ENTITY program se
tion def init ion SUBTYPE OF (s e
 t i on de f i n i t i on) ;de
larations : LIST OF var iab le;statements : LIST OF statement;ENDENTITY;ENTITY automaton se
tion def init ion SUBTYPE OF (s e
 t i on de f i n i t i on) ;automaton : automaton definition;ENDENTITY;. . .SCHEMA
heddar automaton;ENTITY automaton definition;s t a t e s : SET OF s t a t e de f i n i t i on;t rans i t ions : SET OF t r an s i t i on de f i n i t i on;i n i t i a l s t a t e : s t a t e de f i n i t i on; . . .ENDENTITY;. . .Fig. 6. A part of the meta-model for the Cheddar programming languages
hema whi
h extends the Cheddar model. From this new model we gen-erate a new set of Ada pa
kages whi
h extends the CDAI.{ s
heduler pa
kage value is
omputed by the evaluation of the fun
tion
hed-dar s
hema s
heduler pa
kage;
omputing result
onsists in the new s
hed-uler and task model Ada pa
kage.6 Cheddar Ada pa
kages whi
h are generated from aCheddar programThe Ada pa
kages we generate for the Cheddar level is des
ribed in [14℄. Forthe Cheddar language level, two di�erent Ada pa
kages are expe
ted to be gen-erated : pa
kages implementing a new user-de�ned task model and pa
kagesimplementing a new user-de�ned s
heduler.Cheddar tasks are implemented by a set of tagged re
ords (see [14℄) : ea
htask type is de�ned by a tagged re
ord. The Task A
tivation method of su
h

10 Frank Singho�, Alain Plante
10 pro
edure Build S
heduling Sequen
e(. . .) i s20 . . .30 begin40 f o r I i n Pro
essor Range loop50 Che
k Before S
heduling(. . .) ;60 S
hedu l er In i t i a l i z e(. . .) ;70 end loop;8090 while(Current Time < Total S
heduling Time) loop100 f o r I i n Pro
essor Range loop110 Do Ele
tion(. . .) ;120 Next Task(. . .) ;130 end loop ;140 Current Time:=Current Time+1;150 end loop160 end Build S
heduling Sequen
e;Fig. 7. Algorithm sket
h of the Cheddar simulation enginea tagged re
ord is able to
ompute the task wake up times. This sub-programis generated a

ording to the statement the user gives in its Cheddar program(sour
e
ode provided into the task a
tivation se
tion).Cheddar s
hedulers are also implemented by a set of tagged re
ords. A news
heduler is implemented by extending an abstra
t tagged re
ord or any alreadyexisting s
hedulers whi
h has a similar behavior. In order to be plugged withthe Cheddar simulation engine, ea
h s
heduler tagged re
ord has to implementa set of sub-programs su
h as :{ S
heduler Initialize whi
h initializes variables used by the s
heduler; thisAda sub-program
ontains the start se
tion
ode;{ some sub-programs to
he
k s
heduler assumptions (eg. the Che
k Befo-re S
heduling sub-program);{ Do Ele
tion whi
h
omputes task priorities and
hose the task to run; su
ha sub-program
ontains the priority se
tion and the ele
tion se
tion of theimplemented s
heduler;{ Finally, if a s
heduler requires to store data for the tasks it provides s
hedul-ing fa
ilities, it has to de�ne a TCB2 and a set of sub-programs to
opy,initialize or display instan
es of su
h a TCB.Figure 7 shows how these sub-programs work all together. TheBuild S
heduling Sequen
e is the main entry point of the Cheddar s
hedulingsimulator. Sin
e a system analyzed by Cheddar may model a multi-pro
essorssystem, the Build S
heduling Sequen
e drives the simulation time unit per timeunit. First, simulation data are initialized and some
he
ks are performed to besure that tasks meet s
heduler assumptions (lines 30-70). Then, time unit pertime unit, s
hedulers are
alled (line 110) and task wake up times are
omputed(line 120).2 TCB stands for Task Control Blo
k.

Towards User-Level extensibility of the Cheddar Ada library 117 Con
lusionThis arti
le des
ribes a way to extend an Ada library. The method is experi-mented with Cheddar, a library providing performan
e analysis tools. Cheddarprovides a domain spe
i�
 language whi
h helps users to the design of real times
hedulers. Programs written with this domain spe
i�
 language
an be inter-preted in order to perform real time s
heduling analysis of real time systems.By the past, di�erent proje
ts showed that the Cheddar programming languageand its interpreter are useful for the modeling of real time s
hedulers. But theseexperiments also showed that the interpreter is la
king of eÆ
ien
y in
ase oflarge s
heduling simulations. In this arti
le, we experiment a way to
ompilesu
h a program. By designing a Cheddar meta-model, we show how to
ompileCheddar programs in order to extend the Cheddar library. For su
h a purpose,we use Platypus, a Meta CASE Tool based on EXPRESS.At the time we write this arti
le, the CDAI is modeled and we are able togenerate the
orresponding Ada pa
kages [14℄. We are
urrently designing themeta-model of the Cheddar programming language and experimenting Cheddars
heduler and task generation.Referen
es1. Singho�, F., Legrand, J., Nana, L., Mar
�e, L.: Cheddar : a Flexible Real TimeS
heduling Framework, ACM Ada Letters journal. 24(4):1-8. Also published in thepro
eedings of the International ACM SIGAda Conferen
e, Atlanta, USA (2004)2. Singho�, F.: Cheddar Release 2.x User's Guide. Te
hni
al report, number singho�-01-2007, Available at http://beru.univ-brest.fr/~singho�/
heddar (2007)3. Liu, C.L., Layland, J.W.: S
heduling Algorithms for Multiprogramming in a HardReal-Time Environment. Journal of the Asso
iation for Computing Ma
hinery20(1) (1973) 46{614. Hop
roft, J.E., Ullman, J.D.: Introdu
tion of Automata Theory, Languages andComputation. (2001)5. Alur, R., Dill, D.L.: Automata for modeling real time systems, Pro
. of Int. Col-loquium on Algorithms, Languages and Programming, Vol 443 of LNCS (1990)322{3356. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. Te
hni
al ReportUpdated the 17th November 2004, (Department of Computer S
ien
e, AalbordUniversity, Denmark)7. Sprunt, B., Sha, L., Leho
zky, J.: Aperiodi
 Task S
heduling for Hard-real-timeSystems. The Journal of Real Time Systems 1 (1989) 27{608. Plante
, A.: Platypus Te
hni
al Summary and download. (http://
assoulet.univ-brest.fr/mme)9. Team, T.S.: Squeak web site. (http://www.squeak.org)10. ISO 10303-1: Part 1: Overview and fundamental prin
iples. (1994)11. ISO 10303-11: Part 11: EXPRESS Language Referen
e Manual. (1994)12. Plante
, A., Ribaud, V.: Experien
es using an Appli
ation Generator Builder. Pro-
eedings of the 11th International Conferen
e on software engineering and knowl-edge engineering, June the 16-19, Kaiserslautern, Germany (1999)

12 Frank Singho�, Alain Plante
entry := se
t ionsse
t ions := se
t ion fse
t ionsgse
t ion := program se
tion j automata se
tionprogram se
tion := [i d en t i f i e r ℄ ":" se
t ion type statementsautomata se
tion := [i d en t i f i e r ℄ ":" "automaton_se
tion" s t a t e s t rans i t ionsse
tion type := "start_se
tion" j "priority_se
tion"j "ele
tion_se
tion" j "task_a
tivation_se
tion" j . . .s t a t e s := state fs t a t e sgt rans i t ions := trans i t ion ft rans i t ions gs tate := i d en t i f i e r ["initial"℄ ":" "state" ";"t rans i t ion := i d en t i f i e r "-->" "[" [guards℄ , [
 lo
ks℄ ,[syn
hronizations ℄ "℄" "-->" i d e n t i f i e r ";"syn
hronizations : = syn
hronization fsyn
hronizationsgsyn
hronization := i d en t i f i e r '!' j i d e n t i f i e r "?"
 lo
ks := assignment f
 lo
ksgguards := express ionstatements := statement fstatementsgstatement := put j assignment j de
lare j while j f o r j i f j return j randomput := "put" "(" i d en t i f i e r [, express ion℄ [, express ion℄ ")" ";"de
lare := i d en t i f i e r ":" data type [":=" express ion ℄ ";"assignment := i d en t i f i e r ":=" express ion ";"i f := "if" express ion "then" statements ["else" statements ℄ "end" "if" ";"return := "return" express ion ";"f o r := "for" i d e n t i f i e r "in" ranges "loop" statements "end" "loop" ";"while := "while" express ion "loop" statements "end" "loop" ";"random := "uniform" "(" i d e n t i f i e r "," express ion ","express ion ")" ";"j "exponential" "(" i d e n t i f i e r "," express ion ")" ";"data type := s
alar data typej "array" "(" ranges ")" "of" s
alar data typeranges := "tasks_range"j "buffers_range" j "messages_range" . . .s
alar data type := "boolean" j "integer" j "random" . . .operator := "and" j "or" j "mod" j "<" j ">" j "<=" j ">=" . . .express ion := express ion operator express ionj "max_to_index" "(" express ion ")"j "l
m" "(" express ion "," express ion ")" j . . .Fig. 8. BNF grammar of the Cheddar programming language13. Mimoune, M.E.H., Pierra, G., Ait-Ameur, Y.: An ontology-based approa
h forex
hanging data between heterogeneous database systems. In: ICEIS 2003: Pro-
eedings of the 5th International Conferen
e On Enterprise Information Systems,Angers - Fran
e, �E
ole Sup�erieure d' �Ele
tronique de l' Ouest (2003)14. Plante
, A., Singho�, F.: Refa
toring of an Ada 95 Library with a Meta CASETool, ACM Ada Letters journal. 26(3):61-70. Also published in the pro
eedings ofthe International ACM SIGAda Conferen
e, Albuquerque, USA (2006)

