
Abstract: Many sensor-based control systems are dynami-
cally changing, and thus require a flexible scheduler. The
rate monotonic (RM) real-time scheduling algorithm does
not support such dynamic systems very well. On the other
hand, with earliest-deadline-first (EDF) and minimum-lax-
ity-first (MLF) dynamic scheduling algorithms, a transient
overload in the system may cause a critical task to fail, which
is certainly undesirable. This paper proposes a new real-
time scheduling algorithm, which we call maximum-urgen-
cy-first (MUF), which combines the advantages of the RM,
EDF, and MLF algorithms. Like EDF and MLF, MUF has a
schedulable bound of 100% for the critical set. And like RM,
a critical set can be defined that is guaranteed to meet all its
deadlines. The MUF algorithm also allows the scheduler to
detect three forms of deadline failures, and call failure han-
dler routines for tasks which fail to meet their deadlines.The
MUF scheduler has been implemented as the default sched-
uler of CHIMERA II, a real-time operating system being
used to control sensor-based control systems both at Carn-
egie Mellon University and elsewhere. There are still many
issues to be addressed with regards to the MUF algorithm.
This paper also presents those issues, with possible ap-
proaches that should be investigated further.

Keywords: computer software, control applications, dy-
namic programming, failure detection, programming envi-
ronments, real-time computer systems, robots, sensors, time-
varying systems.

1  Introduction

Many sensor-based control systems are dynamically chang-
ing, and require a flexible scheduler. We define a dynamic
system as one where the task set to be executed is not only a
function of time, but also a function of the data input from
the sensors. For example consider the case of a tactile sensor,
on the end of a robotic manipulator, that is used to explore an
object. Assume the tactile sensor has a resolution of 2n by 2m

taxels, wheren andm can vary dynamically between 1 and
5. When exploring uninteresting parts of an object, such as
the straightedge of a table, it is desirable to use the lowest
resolution, so that computation time is minimized and sam-
ple frequency is fastest, and the robot can follow the edge
quickly. As the object becomes more interesting, such as the
rounded corner of the table, it is desirable to increase the res-
olution of the tactile sensor. In doing so, the computational
time required to process the data increases, and the frequen-
cy of data samples must be decreased (and not necessarily
linearly).

The rate monotonic (RM) real-time scheduling algorithm
does not support such dynamic systems very well. On the
other hand, withearliest-deadline-first (EDF) andminimum-
laxity-first (MLF) dynamic scheduling algorithms, a tran-

sient overload in the system may cause a critical task to fail,
which is certainly undesirable. This paper proposes a new
real-time scheduling algorithm, calledmaximum-urgency-
first (MUF). It combines the advantages of the RM, EDF, and
MLF algorithms. Like EDF and MLF, MUF has a schedula-
ble bound of 100% for the critical set. And like RM, a critical
set can be defined that is guaranteed to meet all its deadlines.
The MUF algorithm also allows the scheduler to detect three
types of timing failures, and call failure handler routines for
tasks which fail to meet their deadlines.

Section2 briefly describes the RM, MLF, and EDF algo-
rithms, and Section3 describes our new MUF scheduling al-
gorithm. Section 4 describes our implementation of the MUF
scheduler as the default scheduler of the CHIMERAII Real
Time Operating System[8]. It is being used to control several
sensor-based robotic systems at Carnegie Mellon University
and elsewhere. The flexibility of the MUF algorithm pro-
vides many new possibilities in real-time scheduling of sen-
sor-based control systems. A brief discussion in Section5 is
included to stimulate the reader’s interest in the MUF algo-
rithm, and to present a few ideas for further research.We also
show that RM, EDF, and MLF are special cases of the MUF
algorithm.

2  Related Work

Liu and Layland presented the RM algorithm as an optimal
fixed priority scheduling algorithm, and the EDF and MLF
algorithms as optimal dynamic priority scheduling algo-
rithms.[4] Two disjoint scheduling philosophies emerged:
static priority scheduling and dynamic priority scheduling.
The former consists of using RM, while the latter uses either
EDF or MLF as the baseline scheduling algorithm.

2.1   Rate Monotonic Algorithm (RM)

The rate monotonic algorithm is a fixed priority scheduling
algorithm which consists of assigning the highest priority to
the highest frequency tasks in the system, and lowest priority
to the lowest frequency tasks. At any time, the scheduler
chooses to execute the task with the highest priority. By
specifying the period and computational time required by the
task, the behavior of the system can be categorizedapriori.

One problem with the rate monotonic algorithm is that the
schedulable bound is less than 100%. Theschedulable bound
of a task set is defined as the maximumCPU utilization for
which the set of tasks can be guaranteed to meet their dead-
lines. The CPU utilization of task Pi is computed as the ratio

Real-Time Scheduling of Sensor-Based Control Systems

David B. Stewart and Pradeep K. Khosla

Department of Electrical and Computer Engineering and
 The Robotics Institute,

Carnegie Mellon University,
Pittsburgh, PA 15213

in Real-Time Programming, ed. by W. Halang and K. Ramamritham,
(Tarrytown, New York: Pergamon Press Inc.), 1992.



140

of worst-case dcomputing timeCi to the periodTi. The total
utilizationUn for n tasks is calculated as follows:

(1)

For the RM algorithm, the worst-case schedulable boundWn
for n tasks is

(2)

From (2),W1 = 100%,W2 = 83%,W3 = 78%, and in the limit,
W∞ = 69% (ln 2). Thus a set of tasks for which total CPU uti-
lization is less than 69% will always meet all deadlines. All
tasks will be guaranteed to meet their deadlines ifUn ≤ Wn.
If Un > Wn, then the subset of highest-priority tasksS such
that Us ≤ Ws will be guaranteed to meet all deadlines, and
will thus form the critical set. Note that the worst case values
are pessimistic, and it has been shown that for the average
caseW∞ = 88%[3].

Another problem with RM is that it does not support dynam-
ically changing periods very well, a feature required by some
sensor-based control systems. For example, a task set with
three tasks P1, P2, and P3, of periods T1 = 30ms, T2 = 50ms,
and T3 = 100ms would have the following fixed priority as-
signment (from highest to lowest): P1, P2, P3. Suppose the
period of P1 changes to T1 = 75ms. Under the RM algorithm,
we would require that the priorities of each task be reas-
signed to the ordering P2, P1, P3, which violates the condition
that priorities are static.

The problems with RM encourage the use of dynamic prior-
ity algorithms. Although many such algorithms exist, we re-
strict our attention in this paper to EDF and MLF.

2.2   Earliest-Deadline-First Scheduling Algorithm (EDF)

As the name implies, theearliest-deadline-first algorithm
uses the deadline of a task as its priority. The task with the
earliest deadline has the highest priority, while the task with
the latest deadline has the lowest priority. One advantage of
this algorithm is that the schedulable bound is 100% for all
task sets. Secondly, because priorities are dynamic, the peri-
ods of tasks can be changed at any time.

A major problem with the EDF algorithm is that there is no
way to guarantee which tasks will fail in atransient overload
situation. In many systems, although the average case utili-
zation is less than 100%, it is possible that the worst-case uti-
lization is above 100%, leaving the possibility of one or more
tasks failing. In such cases, it is desirable to control which
tasks fail and which succeed during such a transient over-
load. In the RM algorithm, low priority tasks will always be
the first to fail. However, no such priority assignment exists
with EDF, and thus there is no control of which task fails dur-
ing a transient overload. As a result, it is possible that a very
critical task may fail at the expense of a lesser important task.

2.3   Minimum-Laxity-First Scheduling Algorithm (MLF)

Our purpose in describing theminimum-laxity-first algo-
rithm in this section is not to compare it to RM or EDF, but
rather to introduce it as a basis for themaximum-urgency-
first algorithm proposed in this paper. The minimum-laxity-
first algorithm assigns alaxity to each task in a system, then
selects the task with the minimum laxity to execute next.
Laxity is defined as follows:

laxity = deadline – current_time – CPU_time_needed(3)

Laxity is a measure of the flexibility available for scheduling
a task. A laxity oftl means that even if the task is delayed by

Un

Ci

Ti
-----

i 1=

n

∑=

Wn n 21 n/ 1–( )=

tl time units, it will still meet its deadline. A laxity of zero
means that the task must begin to executenow or it will risk
failing to meet its deadline.

The main difference between MLF and EDF is that MLF
takes into consideration the execution time of a task, which
EDF does not do. Like EDF, MLF has a 100% schedulable
bound, but there is no way to control which are guaranteed
to execute during a transient overload. In the next section, we
present the MUF algorithm, which allows the control of task
failures during transient overload, while maintaining the
flexibility of a dynamic scheduler, and 100% schedulable
bound for the critical set.

3  Maximum-Urgency-First Algorithm (MUF)

Themaximum-urgency-first scheduling algorithm which we
have developed is a combination of fixed and dynamic prior-
ity scheduling, also calledmixed priority scheduling. With
this algorithm, each task is given anurgency. The urgency of
a task is defined as a combination of two fixed priorities, and
a dynamic priority. One of the fixed priorities, called thecrit-
icality, has higher precedence over the dynamic priority. The
other fixed priority, which we calluser priority, has lower
precedence than the dynamic priority. The dynamic priority
is inversely proportional to the laxity of a task.

The MUF algorithm consists of two parts. The first part is the
assignment of the criticality and user priority, which is done
apriori. The second part involves the actions of theMUF
scheduler during run-time

The steps in assigning the criticality and user priority are the
following:

1. As with RM, order the tasks from shortest period
to longest period.

2. Define the critical set as the firstN tasks such that
the total worst-case CPU utilization does not ex-
ceed 100%. These will be the tasks that do not fail,
even during a transient overload of the system. If a
critical task does not fall within the critical set,
then period transformation, as used with RM,[6]
can also be used here.

3. Assignhigh criticality to all tasks in the critical set,
andlow criticality to all other tasks.

4. Optionally assign a unique user priority to every
task in the system.

The static priorities are defined once, and do not change dur-
ing execution. The dynamic priority of each task is assigned
at run-time, inversely proportional to the laxity of the task.
Before its cycle, each task must specify its desired start time,
deadline time, and worst-case execution time. Later we will
show that step 1 can be relaxed, but at the increased risk of a
low-criticality task failing to meet its deadline.

Whenever a task is added to the ready queue, a reschedule
operation is performed. The MUF scheduler is used to deter-
mine which task is to be selected for execution, using the fol-
lowing algorithm:

1. Select the task with the highest criticalness.

2. If two or more tasks share highest criticalness, then
select the task with the highest dynamic priority
(i.e. minimum laxity). Only tasks with pending
deadlines have a non-zero dynamic priority. Tasks
with no deadlines have a dynamic priority of zero.



141

3. If two or more tasks share highest criticalness, and
have equal dynamic priority, then the task among
them with the highest user priority is selected.

4. If there are still two or more tasks that share high-
est criticalness, dynamic priority, and highest user
priority, then they are serviced in afirst-come-first-
serve manner.

The optional assignment of unique user priorities for each
task ensures that the scheduler never reaches step4., thus
providing a deterministic scheduling algorithm. We have yet
to investigate the best method for assigning the user priori-
ties.

To demonstrate the advantage of MUF over RM and EDF,
consider the task set shown in Figure 2. We assume that the
deadline of each task is the beginning of the next cycle. Four
tasks are defined, with a total worst-case utilization of over
100%, thus in the worst-case, missed deadlines are inevita-
ble. Figure 2(a) shows the schedule produced by a static pri-
ority scheduler when priorities are assigned using the RM
algorithm. In this case, only P1 and P2 are in the critical set,
and are guaranteed not to miss deadlines. Expectably, both
P3 and P4 miss their deadlines. When using the EDF algo-
rithm, as in Figure 2(b), tasks P1 and P2 fail. However, any
task may have failed, since with EDF there is no way to pre-
dict the failure of tasks during a transient overload of the sys-
tem.

With the MUF algorithm, all tasks in the critical set are guar-
anteed not to miss deadlines. In our example, the combined
worst-case utilization of P1, P2, and P3 is less than 100%, and
thus they form the critical set. Only task P4 can miss dead-
lines, because it is not in the critical set. Figure 2(c) shows
the schedule produced by the MUF scheduler. Note the im-
provement over RM: because of a higher schedulable bound
for the critical set, task P3 is also in the critical set and thus
does not miss any deadlines. Also, unlike EDF, we are able
to control that the only task that may fail is P4.

The choice of using MLF to calculate the dynamic priority
instead of EDF enables the scheduler to detect missed dead-
lines. There are three failures which the MUF scheduler can
detect:

1. A task has not completed its cycle when the dead-
line time has been reached;

2. A task was given as much CPU time as was re-
quested in the worst-case, yet it still did not meet
its deadline;

3. The task will not meet its deadline because the
minimum CPU time requested cannot be granted.
This case also requires that the minimum amount
of CPU time required by a task is specified.

The first case is the standard notion of a missed deadline. The
second case will detect bad worst-case estimates of execu-
tion time. The third case allows the MUF scheduler to make
the most of its CPU time, and it will not start executing a task
if that task has no possibility to finish before its deadline,
thus providing the early detection of missed deadlines. In-
stead, the CPU time can be reclaimed for ensuring that other
tasks do not miss deadlines, or to call alternate, shorter
threads of execution.

4  Implementation

One concern of the MUF scheduler is the overhead that
would be required during each reschedule operation. The
overhead of the MUF scheduler can be reduced by encoding

the algorithm into a singleurgency value, hence the name of
the algorithm. Figure1 shows ann-bit urgency value, which

was encoded usingc bits for criticality, d bits for the dynamic
priority, andu bits for the user priority. With such an encod-
ing, the range of criticalities, dynamic priorities, and user
priorities are 0 to 2c–1, 0 to 2d–1, and 0 to 2u–1 respectively.
The MUF scheduler must then only calculate a single dy-
namic priority for each task, then select the task with the
maximum urgency. This encoding scheme can be used to im-
plement the MUF algorithm as long asc, d, andu are all
greater than or equal tolog2(max number of tasks in system).
Such encoding allows the maximum urgency scheduler to be
implemented efficiently.

We have implemented the MUF scheduler as the default
scheduler of the CHIMERAII Real-Time Operating
System[8]. CHIMERA II is being used both at Carnegie
Mellon University and elsewhere, on a variety of sensor-
based control systems, including the CMU Direct Drive
Arm II [2] and the CMU Reconfigurable Modular Manipula-
tor System[5].

On an Ironics IV3220 Single Board Computer, with a
20MHz M68020 processor, a reschedule operation with four
ready tasks (excluding context switch time), takes
28microseconds. The context switch takes another
66microseconds, for a total of 94microseconds. With a 1
millisecond clock, we maintain over 90% CPU utilization,
while with a 10millisecond clock we maintain over 98% uti-
lization. This type of performance allows the scheduler to be
used with sensor-based control applications that have tasks
with frequencies as high as 1000Hz.

Our implementation also offers deadline failure handling.
Whenever a task fails to meet its deadline, an optional failure
handler is called on behalf of the failing task. The failure
handler can be programmed to execute either at the same or
different criticality and user priority than the failing task.
Such functionality is essential in predictable and fault-toler-
ant systems. Much emphasis in hard real-time systems has
gone into ensuring that critical tasks always meet their dead-
lines. However, very little has been said about what to do
about those tasks which fail to meet their deadlines during a
transient overload. Possible actions include the following:
aborting the task and preparing it to restart the next period;
sending a message to some other part of the system to handle
the error; modifying the priority of the task, and continuing
its execution; performing emergency handling, such as a
graceful shutdown of part of the system or sounding an
alarm; maintaining statistics on failure frequency to aid in
analyzing the system; in the case of iterative algorithms, re-
turning the current approximate value regardless of preci-
sion. Any of these actions and other user-defined actions can
be implemented using the deadline failure handling available
with our MUF scheduler.

Estimating the execution time of tasks is often difficult. For
example, most commercially-available hardware is geared
towards increasing average performance via the use of cach-
es and pipelines. Such hardware is often used to implement
real-time systems. As a result, the execution time cannot nec-

    î

criticality dynamic priority user priority

Bit (n-1) Bit 0

c bits d bits u bits

    î    î

Figure 1: Encoded n-bit urgency value

1



142

Task Priority(RM) Criticality(MUF) Period CPU time Utilization Legend

P1 High High 6 2 33%

P2 Med High High 10 4 40%

P3 Med Low High 12 3 25%

P4 Low Low 15 4 27%

0 2 4 6 8 10 12 14 16 18 20

Figure 2: Example comparing RM, EDF, and MUF algorithms

1

1

1

2

2

2

2

3 4
CPU time requested by each task (deadline is beginning of following cycle):

(a) Schedule generated when using Rate Monotonic algorithm:

1

1 1 1 1 1 1 2 12 1 2 2 3 3 2 2 1 1 4 44 3 3 3 3 5

22 24

5

3

3

P3 misses
1st deadline

P4 misses
1st deadline

0 2 4 6 8 10 12 14 16 18 20

(b) Schedule generated when using Earliest-Deadline-First algorithm:

1 1 1 1 1 1 1 11 2 2 1 1 1 1 3 3 2 2 42 2 2 2 2 4

22 24

P1 misses
4th deadline

P2 misses
2nd deadline

2 4 6 8 10 12 14 16 18 20

(c) Schedule generated when using Maximum-Urgency-First algorithm:

1 1 1 1 1 1 1 11 2 2 2 3 3 2 2 2 2 4 44 2 2 3 3 3

22 24

P4 misses
1st deadline



143

essarily be predicted accurately. Under-estimating worst-
case execution times can create serious problems, as it is pos-
sible that a task in the critical set also fails. The use of dead-
line failure handlers is thus recommended for all tasks in a
system, and not only those tasks which are not guaranteed.
Our MUF scheduler provides this ability.

Using MLF as a basis for calculating the dynamic priority for
MUF creates the potential for an unbounded number of con-
text switches. In practice, EDF can be used instead of MLF
to assign the dynamic priority, while laxity is still used to de-
tect missed deadlines.

5  Discussion of MUF Algorithm

There are still many issues to be addressed with regards to
the MUF algorithm. This section presents those issues, with
possible approaches, which should be investigated further.

Aperiodic Events: The presentation of the MUF algorithm
in this paper assumed only periodic tasks. Most real-time
systems also have aperiodic events. Because MUF is a dy-
namic scheduler, aperiodic events can readily be included in
the system without changing the basic MUF scheduler. How-
ever, such events must not cause tasks from the critical set to
fail. Several methods have been adopted with the RM algo-
rithm, including thesporadic server[7]. Similar methods
can possibly be used with the MUF algorithm. For example,
an aperiodic server can be given a criticality higher than the
critical set. Its CPU utilization is included in the computation
of the critical set, and calculated such that no critical tasks
will miss deadlines if the aperiodic server does not use more
CPU time than it is allotted. As with any periodic task, a
deadline and maximum execution time is specified. If the
server uses up all its time, then the failure handler is called,
which replenishes the server’s execution time, or blocks the
server until its CPU time can be safely replenished

Task Synchronization: Real-time tasks are usually not in-
dependent. The sharing of limited resources, and the com-
munication between tasks require appropriate
synchronization or scheduling. With the RM algorithm,pri-
ority ceiling protocol[6] semaphores are often used for en-
suring critical tasks still meet their deadlines in the presence
of task dependencies. For the dynamic scheduling algo-
rithms, both dynamic priority ceiling protocol
semaphores[1] and resource scheduling[9] have been pro-
posed. Adaptation of one or more of these methods to the
MUF algorithm may be possible.

Varying Time Constraints: In the introduction of this paper
we gave an example of dynamically changing timing con-
straints that may be encountered in sensor-base control sys-
tems. The MUF algorithm supports such tasks. Because the
MLF algorithm is used to schedule tasks within the critical
set, their frequencies and worst-case execution times can
change dynamically. In order to guarantee tasks in the critical
set in a dynamically changing environment, the worst-case
utilization UP for every task P is defined as

, which is the maximum utilization
of taskP during any one cycle. Any combination of period
and CPU execution time can then be used, as long as

 for every cyclePc. This is a signficant im-
provement over RM, where a change in period and CPU ex-
ecution time may cause the critical set to change, even
though utilization remains constant.

Relaxing the Task-Ordering Constraint: The MUF algo-
rithm guarantees that critical tasks will always meet their
deadlines at the cost of non-critical tasks possibly missing
their deadlines, even if total CPU utilization is less than

UP max CPc TPc⁄( )=

CPc TPc⁄ UP≤

100%. When defining the MUF algorithm in Section3, tasks
were ordered from shortest to longest period. This step can
be relaxed, and MUF will still perform properly, but at the
cost of more non-critical tasks failing unnecessarily. The
probability of non-critical tasks failing is at a minimum when
the lowest frequency task in the critical set is greater than or
equal to the highest frequency task in the non-critical set. A
schedulability analysis is needed to prove this statement. Al-
though MUF is not an optimal scheduler, it does provides a
guarantee of critical tasks not failing as with the RM algo-
rithm, and it allows the critical set to have a schedulable
bound of up to 100% like the EDF and MLF algorithms pro-
vide.

Modular Design: In developing modular systems, it may be
desirable to specify timing constraints on a per-module in-
stead of per-task basis. For example, a module may consist
of two dependent tasks, such that the combined worst-case
CPU utilization is less than the sum of the utilization of the
two tasks. In assigning priorities using RM, the frequency of
the tasks plays an important role. However, with the MUF al-
gorithm, only the utilization plays a role. By taking advan-
tage of combined utilizations, it is possible to have a critical
set in which the sum of the utilizations of all tasks within the
set isover 100%, but the worst-case utilization for any one
time slice is still less than 100%.

RM, EDF, and MLF as Special Cases of MUF: Without
any modification, the MUF scheduler can also be used to
schedule task sets using either the RM, EDF, or MLF algo-
rithm. For example, instead of assigning criticalities accord-
ing to the MUF algorithm, assign criticalities to tasks in the
same way as priorities are assigned using the RM algorithm.
Every task thus has a different criticality, and MUF behaves
as a static highest priority scheduler. Deadline and execution
times can still be specified to the MUF scheduler, even
though they will not be used in the selection of which task to
execute. This allows the MUF scheduler to still detect dead-
line failures, even though the RM priority assignment is
used. Most fixed priority schedulers do not have such capa-
bilities. If all tasks are given the same criticality, then the
MUF scheduler behaves as an MLF scheduler. If the tasks all
specifyzero as the worst-case execution time, then the MUF
scheduler reduces to an EDF scheduler, since the urgency of
the task reduces to a function of deadline time. Note that in
the latter case, early detection of deadline failures and fail-
ures due to under-estimating worst-case execution times can-
not be detected.

6  Summary

In this paper we presented some of the major issues in real-
time scheduling of sensor-based control systems. To address
the needs of predictable dynamic scheduling, we have intro-
duced theMUF algorithm, which combines the advantages
of RM, EDF, and MLF scheduling algorithms. Like RM, a
critical set can be defined such that tasks in that set will never
miss their deadlines, even in the presence of a transient over-
load in the system. In addition, MUF can support a schedu-
lable bound of up to 100% for the critical set, as with EDF
and MLF. Our design of the MUF algorithm also allows the
detection and handling of timing-related errors, a necessary
feature of sensor-based control systems.

Although issues such as aperiodic servers and dependent
tasks have not yet been resolved, the advantages of the MUF
algorithm over traditional scheduling algorithms outlined in
this paper show the potential of MUF being used in the de-
sign of predictable sensor-based control systems.



144

7  Acknowledgments

The research reported in this paper is supported, in part, by
U.S. Army AMCOM and DARPA under contract DAAA-
2189-C-0001, by the Department of Electrical and Computer
Engineering, and by The Robotics Institute at Carnegie Mel-
lon University. Partial support for David B. Stewart is pro-
vided by the Natural Sciences and Engineering Research
Council of Canada (NSERC) through a Graduate Scholar-
ship. Special thanks also goes to Donald E. Schmitz, with
whom numerous discussions eventually led to the develop-
ment of some of the ideas presented in this paper.

8  References
[1] Chen, M.-I., and K. J. Lin, “Dynamic Priority Ceilings:

a Concurrency Control Protocol for Real-Time Sys-
tems,” Univ. Illinois at Urbana-Champaign, IL, Tech
Report UIUCDCS-R-89-1511, April 1989.

[2] Kanade, T., P.K Khosla, and N. Tanaka, “Real-Time
Control of the CMU Direct Drive Arm II Using Custom-
ized Inverse Dynamics,” inProceedings of the 23rd
IEEE Conference on Decision and Control, Las Vegas,
NV, December 1984, pp. 1345-1352.

[3] Lehoczky, J., L. Sha, and Y. Ding, “The Rate Monotonic
Scheduling Algorithm: Exact Characterization and
Average Case Behavior,” in Proceedings 10th IEEE
Real-Time Systems Symposium, Santa Monica, CA,
December 1989, pp. 166-171.

[4] Liu, C. L., and J. W. Layland, “Scheduling Algorithms
for Multiprogramming in a Hard Real Time Environ-
ment,” Journal of the Association for Computing
Machinery, v.20, n.1, January 1973, pp.44-61.

[5] Schmitz, D. E., P. K. Khosla, and T. Kanade, “The CMU
Reconfigurable Modular Manipulator System,” inPro-
ceedings of the International Symposium and Exposition
on Robots (designated 19th ISIR), Sydney, Australia,
Nov. 1988, pp.473-488.

[6] Sha, L., J. P. Lehoczky, and R. Rajkumar, “Solutions for
Some Practical Problems in Prioritized Preemtive
Scheduling,” inProceedings 10th IEEE Real-Time Sys-
tems Symposium, Santa Monica, CA, December 1989.

[7] Sprunt, B., L. Sha, and J. Lehoczky, “Aperiodic Task
Scheduling for Hard Real-Time Systems,” Journal of
Real-Time Systems, v.1, n.1, Nov 1989, pp.27-60.

[8] Stewart, D. B., D. E. Schmitz, and P. K. Khosla, “Imple-
menting Real-Time Robotic Systems using
CHIMERA II,” in Proceedings of 1990 IEEE Interna-
tional Conference on Robotics and Automation, Cincin-
natti, OH, May 1990, pp.598-603.

[9] Zhao, W., K. Ramamritham, and J. A. Stankovic,
“Scheduling Tasks with Resource Requirements in Hard
Real-Time Systems”,IEEE Transactions on Software
Engineering, v.SE-13, n.5, May 1987, pp.564-577.


