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Abstract

This paper presents a performance analysis of buffers
shared by real time tasks. We focus on systems composed
of several uniprocessor systems connected by a network.
FEach of these systems owns buffers and runs periodic
tasks. Messages arriving from the network are stored in
buffers and are consumed by a periodic task scheduled
according to a scheduler like RM (Rate Monotonic) or
EDF (Earliest Deadline First). No assumption is done
on the rate at which messages are delivered to the unipro-
cessor system. From queueing system models, we provide
performance analysis of buffers. We propose a new ser-
vice time distribution, the P distribution. This service
time distribution models the scheduling of a set of inde-
pendent periodic tasks. From these propositions, a worst
case and an average case performance analysis is given.

1 Introduction

In this paper, we present a performance analysis of
buffers shared by real time tasks. We study real time
systems composed of uniprocessor systems connected by
a network. Each processor hosts an application running
a set of real time tasks accessing buffers. Two kinds of
buffers are distinguished :

e Buffers receiving messages sent by remote applica-
tions.

o Buffers receiving messages sent by tasks running on
the same uniprocessor system.

In any cases, messages are consumed by a single
periodic task running on the same uniprocessor
system. We assume consumer tasks are not activated
on message arrivals. They are independent and read
messages from buffers at their own rate : a consumer
task can be awoken even if the buffer is empty. This
model of buffer can be applied on time-triggered/polling
based systems where data are periodically read [KB02].

Tasks are scheduled according to a preemptive sched-
uler such as Rate Monotonic or Earliest Deadline First
[LL73]. Tasks are defined by a capacity C;, a period P;

and a deadline D;. The capacity C; is a bound on the
task execution time. The period P; is the fixed delay be-
tween two activations of a task. Tasks have to meet tem-
poral constraints : tasks execution must be ended before
the deadline D;. Message consumptions and produc-
tions by periodic tasks are assumed to be instantaneous
events. Only the dates of these events are considered in
the sequel.

This paper deals with our analysis work on such sys-
tem. By analysis, we mean checking that task deadlines
will be met and that sier of buffers will be sufficient
to avoid overflow. The real time scheduling theory of-
fers interesting feasibility tests, such as bounds on pro-
cessor utilization factor [LL73] or task response times
[JP86, ABRT93] to check deadlines of independent
tasks. Unfortunately, few buffer performance analysis
results exist for this kind of real time system (eg. mes-
sage waiting time, number of messages in the buffer,...)
[Kre00].

The queueing system theory makes it possible to
study performance of a system composed of servers, cus-
tomers and storage places [Kle75b] : people waiting in
a room for a doctor, network switch routing data, ...
If new customers arrive in the system when a server is
busy, their requests are stored in a queue. By defining
the average rate of customer arrivals and the average
rate of requests that the server can handle, the queueing
system theory allows the designer to predict the aver-
age number of customers, the average customer waiting
time, and the probability of having a given number of
customers in the queue.

Different customers inter-arrival time distributions
and service time distributions exist. The most usuals
are deterministic (D), markovian (M) and general (G).
D means constant delay between two customers arrivals
or between two customers service times. M describes a
customer arrival rate or a service time where delays fol-
low an exponential probability distribution. Finally, if
no assumption on the probability distribution is done, G
is used. G is defined by an average rate and its variance.



Following the Kendall notation, a queueing system is
described by at least 3 parameters : a|b|c. The a param-
eter is the customer arrival rate. b describes the service
time rate. Finally, ¢ is the number of servers. For in-
stance, a system with one server, with a constant ser-
vice time and an exponential client arrival is an M/D/1
queueing system.

Even if buffers are common operating system func-
tionnalities, it seems that few results exist about buffer
performance analysis when periodic tasks are scheduled
according to a real time scheduler [TZ99].

In queueing system theory, results for similar systems
exist. In priority queueing, a priority can be given to
customers [AVS02, Sta92]. The most common prior-
ity queue is the HOL! queue where priorities are fixed
[Kle75a].

Chen proposes mean waiting time for real time traffic
with deadline constraints [CD97]. This work is based
on non preemptive M/G/1 and work-conserving queue.
Each real time traffic is a customer with a priority given
by the Earliest Deadline First policy.

The real time queueing theory aims at using priority
queueing in order to check temporal constraints of tasks
randomly activated under “heavy traffic” [Leh96].

None of these approaches suits to the systems we
study in this paper. Indeed, these approaches assign
priorities to customers. Futhermore, they can not han-
dle the fact that task can be awoken even if no message
is stored in buffers.

A periodic server can be found in the queueing sys-
tem theory. Such a queueing system is composed of some
queues cyclically served by a single server [SLF92]. Ex-
cept the periodic behavior of the server, the service time
distribution does not handle the fact that task reponse
time can be variable due to the real time scheduler.

Several works on queueing system have been lead in
the real time community. A lot of queue service dis-
ciplines have been studied in the communication field
[ZF94]. These services generally aim at providing band-
width, end-to-end determinist or statistic guarantee on
delays. Unfortunately, to avoid buffer overflow, service
policies usually proposed in this context have a behavior
which depends on the number of messages in the buffer.

To study buffers shared by independent periodic tasks
scheduled according to a scheduler like RM or EDF,
we propose a new service time distribution : the P
distribution. The P distribution models the fact
that periodic tasks are scheduled with a real
time scheduler. The P distribution assumes that
task wake up times are not synchronized with mes-
sage arrivals. Task dependencies lead to more
complex feasibility tests to check task deadlines
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[SSNB95, Bla76, CSB90]. With the P distribution,
scheduling feasibility tests for independent tasks can be
applied to check task deadlines (eg. task reponse times
with a Rate Monotonic scheduler [JP86, ABRT93]).

From the P distribution, two new queueing systems
are defined : P/P/1 and M/P/1. An exact resolution
of P/P/1 is given and we provide an approximation of
the M/P/1. This approximation is based on a M/G/1
queueing model. Applications sharing buffers can
then be studied by both worst case and average
case analysis. Worst case analysis can be per-
formed if assumptions are made on message ar-
rival rate. In this case, the system is checked with
P/P/1 assuming that a smallest period of mes-
sage arrivals rate exists. Otherwise, if no worst
case assumption is made, we show that average
analysis can be realized with M/P/1.

This paper is organized as follows. In section 2, we
describe the P service time distribution. From this dis-
tribution, we describe an average case analysis and a
worst case analysis in sections 3 and 4. Some simulation
performances which show the correctness of the model
are provided in section 5. Finally, we conclude and give
future works in section 6.

2 The P service time
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Figure 2: Buffer modelization

Buffers are modeled using queueing systems (see Fig-
ure 2). Customers are messages stored into buffers. The
buffer state is modeled by the server and the queue
state. Message departure dates in the queueing system
are equal to consumption dates of consumer task. Thus,
message waiting time in the buffer is equal to message
waiting time in thequeue and in the server (this is also
the case for the number of message in the buffer).

We propose a P distribution which describes the pe-
riodic behavior of a consumer task scheduled according
to a real time scheduler.

In the sequel, a producer or a consumer task ¢ will be
defined by a period (denoted by P;), a deadline (denoted
by D;) and a response time per activation.



Message @

Message i + 2

Empty buffer consumption consumption

consumption Message i + 3

Prons Message @ + 1 consumption !

Consumer [ 17yt TifLy rides 1 T righ o rigny |

task ] A I | ! 1
scheduling I I I I I I I I A

L L I L ;

i i+1 i+2 : |

o; Ojii | Ojiz o3 |

Message i + 1

arrival Empty buffer Message i + 3

. . arrival !

Message i Message i + 2

arrival arrival

Wit

Buffer | Wi | | Wito Witd :

waiting time !
Server \ S; | Sip1 | Sit2 Si+3 B

wailting time 1

Queue Wit H

service time i+2 |

—_ T

Buffer \ [

occupation !

Server \
occupation ! C

Queue [ ]

occupation

Figure 1: The P service time

In order to simplify explanation and results expres-
sion, we consider that one message is produced or con-
sumed per task periodic activation. Furthermore, a mes-
sage is consumed or produced r] units of time. r] is the
response time of the j** periodic activation of the task
i.

First of all, we give characteristics of our P service
time distribution. Let’s recall the service time definition
of a queueing server :

Definition 1 (Service time) Service time S; is the
time spent by a message i in the server [Kle75b]. Then,
S; is the time between the server activation and the end
of a customer computation.

If the system is empty, the server is activated when a
new customer arrives.

If customers are waiting in the queue, the server is
activated just after the end of the previous service.

One can apply the Definition 1 to our buffers :

Definition 2 (P service time) P service time is
equal to the delay between the message arrival date in
the server and the message consumption date.

From Definition 2, an equation of S; can be obtained.
On Figure 1, one can find three groups of chronograms :
e Chronograms A illustrate the consumer task cons
scheduling. P.,,s is the consumer task period and
79, is the response time of the j** consumer task
activation. rJ is also the delay between the jt*
consumer task activation and the message consump-
tion date. The O;'- parameter represents the delay
between the message ¢ arrival date in the server and

the jt* consumer task activation date.

e Chronograms B illustrate the buffer waiting time
Wi, the queueing system waiting time W] and the
service time S; of message i. Their values are based
on consumer task scheduling. For instance, from
Definition 2, S; is equal to O} + i,

e Chronograms C' give buffer, queue and server occu-
pation rate.

From Figure 1, let’s see now an example of message
arrival (messages ¢ and i+ 1) :
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Figure 3: Service time with an idle server

1. Initially, the queueing system is empty. Message @
is then immediately served. Message ¢ waiting time
in the queue W; is equal to 0s. The queue is empty
and the server occupation (current number of client)
is equal to one.

2. Unlike the message i, when message ¢ + 1 arrives
in the queueing system, the server is busy. Thus,
message i + 1 is stored in the queue during Wit!
units of time until the server is becoming idle again.
There is 1 message in the server and 1 in the queue.

3. When message i is consumed, message i + 1 starts
to be served by the server. Occupation of the server
is still equal to 1 and the queue becomes empty.

4. ..

From this example, one can have a delay between a
message arrival and the periodic activation of the con-
sumer. Then, on the one hand, a message is not neces-
sarily consumed at each activation of the consumer task.
On the other hand, a consumer can be activated when
the buffer is empty. In the last case, the consumer just
continues its execution. From Definition 2, the service
time of the P distribution can be defined as follows :

Theorem 1 When the server j is busy, its it" service

time is equal to :

! . .
— J _ i1
Si = Tcons + PCOTLS Tcons

In the opposite case, S; is equal to :
8; = Tlons + 0]

O belongs to the interval [=r],,s; Peons — Topns]-

ons?

Proof : Indeed, service time S; is composed of two
parts : O% and 15,

When the buffer is empty, message ¢ is immediately
handled by the server. From Figure 3, one can see two
cases : the message i arrives before or after the jt*
consumer task activation.

When more than one message is waiting, the server
handles the next message as soon as the precedent ser-
vice is finished (see Definition 1). From Definition 2, the
message entrance date in the server corresponds to the
consumption date of the precedent message.

In the case of Figure 4, O% is equal t0 Peons — 1,5
Thus, service time is equal to Peons
O

— i1 J
Tcons plus rcons‘

3 Buffer average performance analysis

Let’s suppose now that messages arrive in the system
at a random rate.

In the sequel, according to the Kendall notation, a
buffer receiving random rate messages and shared by 1
consumer task, will be modeled with a M/P/1 queueing
system [Kle75b, Rob90]. Messages are served in a FIFO
manner : the earlier a message arrives, the earlier it is
served.

We propose an approximation of the M/P /1 queueing
system. This M/P/1 approximation consists in evaluat-
ing its average service time W and its variance o2. With
Ws and 02, a M/P/1 queueing system can be modeled
with a M/G/1 queueing system. Then, M/P/1 mes-
sage waiting time and number of messages in the buffer
can be computed with the following M/G/1 equations
[Kle75b] :

AW 4 02)

W =W, +
2(1-p)
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studied when p tends to 0.

e Finally, a linear regression is applied in order to
compute average and variance service times which
are valid for all p values.

To study W; for the M/P/1 queueing system, we first
have to define what an “actual” or “unactual” consump-
tion is.

Due to the P service time distribution characteris-
tics, a consumer can be activated whatever the number
of messages stored in the buffer is. Figure 5 shows an
actual and an unactual consumption. An “unactual con-
sumption” occurs when a consumer is awoken when the
buffer is empty. Otherwise, the consumption is said to
be “actual”.

Theorem 2 The actual consumption rate U. for a
M/P/1 queueing system is equal to :
Uc=1-F = P

Where p is the utilization factor of the queue and Py is
the probability of having no message in the buffer.

Empty buffer Empty buffer

Figure 5: “Actual” versus “unactual” consumptions

Proof : Indeed, a consumption is actual when the
buffer is not empty. The actual consumption rate U, is
equal to 1 — Py. Because for a G/G/1 queue, p=1-F,
[Kle75b], U, is equal to p. O

Since actual and unactual consumptions are defined,
let’s investigate on the mean service time. The usual
mean service time equation is :

where n is the number of “actual” consumptions.

Unfortunately, for a given task activation i, it’s diffi-
cult to know if the associated consumption will be actual
or not. Then, it’s difficult to evaluate if a given task ac-
tivation will imply a request to the server.



We study two particular cases of the M/P/1 service
time. First, we solve the case where the server is re-
quested at each task activation (when p tends to 1, and
then U, tends to 1). Second, we propose an approxi-
mation when p tends to 0. In this case, only some task
activations imply server requests. Finally, with a linear
regression between these two cases, we give an approxi-
mation of M/P/1 mean service time and variance for all
p values.

When p tends to 1, the behavior of the M/P /1 queue-
ing system tends to be a deterministic one. We have the
following mean service time :

Theorem 3 When p tends to 1, the service time S; is
equal to :

i—1

’ .
. _
Sz' = Tcons + PCO"S Tcons

where cons is the consumer task of the M/P/1 queueing
system. The average service time and its variance are
then equal to :

Proof : Indeed, when p tends to 1, all consumptions
are actual (see Theorem 2).

If we study the queueing system during an infinite
time interval, we have an infinite sequence of S;. Due
to the real time scheduling of the consumer task, from
one base period? to another one, the sequence of task
response times is repeated.

Thus, if we consider nc base periods of n consumer
activations, we have :

7 _ 1 n
® NC*x Sl =ncx (Tcons + Pcons - rcons)

o 2 1
® nNC* SZ =ncx* (Tcons + PCOHS - rcons)

o 3 2
ne * S3 = ncx* (T.cons + PCOHS - Tcons)

_ Tn—Z)

7
— -1
® NC* Sn—l =ncx* (T?ons + PCO"S cons

7
— n n—1
® ncx Sn =ncx* (Tcons + Peons — Tcons)

2The base period (or Hyperperiod) is a cycle such as the pattern
of arrival of a periodic tasks set recurs similarly [LM80].

Finally, the average of all service times is equal to :

s = nen.Peons = Peons
nc.n

The variance is computed on the same n service time
samples. o2 is then equal to :

1 n
7
or=="S2-W?
n <
=1

O
Let’s see now the case where p tends to 0.

Theorem 4 When p tends to 0, the service time is equal
to :

to :

P,
Ws — c;ns
0_2 — Pc20ns
8 12

Proof : when p tends to 0, the actual consumptions
are rare (see Theorem 2). Tt is difficult to compute an
exact value of the service time. Therefore, we propose
an approximation of it.

The service time S;' is equal to O; +ri . (see Theo-
rem 1). A first difficulty is to find an exact value of O;.
A second one is that the number of server requests (or
S;) is smaller than the number of task activations.

To solve these problems, we study the probability to
have an interval of time t between 2 arrivals [Rob90,
Kle75b] :

fOLt) =1—e M

When p tends to 0 with a fixed value of average service
time, A tends to 0. In this case, the time ¢ between 2
arrivals is infinite and for all values of ¢, the function
f(0,t) tends to 0.

The probability to have a particular time between 2
subsequent arrivals is the same whatever this time is.
Then, the server request date is uniformely distributed
in the interval [0, S;]? :
y:$+0:$
‘ 2 2

3]0, S;] is a time interval between two subsequent consumptions.
The server will be necessarily requested during this time interval.




Moreover, if arrival dates are uniformely distributed
on an infinite time interval, the number of activations
nc is the same for all service times.

Thus, the average service time is equal to :

1 " ncx S,
Ws = G
N * NC “ 2
=1
Or
— 1 = !
T p T
Finally, we have
P,
Ws — C;'I'LS

The variance is uniformely distributed on the interval
[0, P.ons], thus :

2
0_2 — Pcons

¢ 12
O
Applying a linear regression to the cases studied
above (when p tends to 0 and when p tends to 1), we
propose a mean service time and its variance which are
valid for all p values.

Theorem 5 The M/P/1 service time is equal to :

Si=pS; + (1= p).S; =(1+p).S;
The average service time is then equal to :

— Pcons
2(1 — A Eegne)

And the variance of the average service time is :

2

1 P,
o =p. <EZS,. —Wf) +(1—p). =52
i=1

Where p = \W, and S; = ri

cons

+ Peons — ri

cons”*

Proof: This linear regression is based on the following
fact : the probability for a message to arrive in the queue
whereas the server is busy, resp. not busy, is p, resp.
1 — p (see Theorem 2). Then, the weights associated to
the service times S; and S;' are respectively p and 1 — p.
The service time S; is then equal to :

Si = pS; +(1-p).S;

Thus, the mean service time becomes :

i=1
Or
1—p 1 —
=1
Since
|
- Z S, = Peons
n 4
=1
We have
PCO’H,S
Ws = 9 (]- + P)

If we change p to AW, we have :

PCOTLS
W, = T(l + AWy)
And we deduce the final mean service time :

PCOTLS
2(1 — APegns)

s =

The same linear regression is applied to compute the
variance. When p tends to 0, o2, is equal to :

0_2” — Pc20ns
8 12

2
s

1 n
’
n
=1

And when p tends to 1, 0% is equal to :

Thus,

2

R P
ol =p. (EZS,. —Wf) +(1-p). =53
i=1

O

4 Worst case buffer analysis

We now study a system where buffer productions and
consumptions are assumed to be periodic.

According to the Kendall notation, a buffer shared by
n periodic producer tasks and 1 periodic consumer task
scheduled with a real time scheduler can be modeled
with a P/P/1 queueing system. Messages are served in
a FIFO manner.

Some similarities exist between this system and voice
transmission service provided by the AAL1 layer of ATM
networks [GK96]. In order to solve our P/P/1 queueing
system, we apply results from this ATM layer.



In AAL1/ATM, a producer sends audio packets at
a fixed rate %. This troughtput is expressed in cells
per second, the protocol data unit of ATM networks.
A bounded variable delay is required by each cell to go
from the sender to the receiver. In an AAL1 communica-
tion service, the consumer should receive the cells at the
same rate the producer sends them. Each received cell is
then buffered during a sufficient amount of time to hide
this variation transmission delay. In [GK96], it has been
shown that the size of the buffer used to hide variable
transmission delay is bounded by L., as follows :

Theorem 6 The mazimum size of ATM AALI1 layer
buffers is :

Lmaw = ’VWmaw-‘

d

Where Wy ao is the mazimum delay a cell stays in the
buffer. We call this delay the mazimum memorization
delay. This delay is also the maximum delay between
two successive consumptions.

The systems we study are similar to the one de-
scribed above and we can apply Theorem 6 to find
bounds on buffers shared by real time scheduled peri-
odic tasks. Let’s now suppose that the messages arrival
rate is bounded by a period, the smallest period between
two successive arrivals. For a buffer shared by n periodic
producers and one periodic consumer, the buffer bound
is given by [LSNT03] :

Definition 3 The P/P/1 mazimum buffer size Lpyax
S :

_ Wmaz + Oprod
Vy>0 Z ’V -‘ -y

P,
- prode PROD prod

where PROD is the set of producers, Pproq the period
of the producer prod and Oproq the mazimum delay be-
tween the wake up time of the consumer and the wake
up time of the producer prod.

Definition 3 is based on the maximum memorization
delay W4, which is defined as follows :

Definition 4 The mazimum waiting time of a message
1148 :
Wmaz = (Zl + ]-)-Pcons + Dcons

Where y is the number of messages present in the buffer
before the message i is inserted.

From Definition 3 and for all possible values of y, one
can be prove that for a buffer shared by one periodic
consumer and n periodic producers, the buffer bound
is :

Theorem 7 For a P/P/1 buffer shared by an harmonic
tasks set * and Vi : D; < P;, the mazimum buffer size
and the mazimum memorization delay are respectively :

Lipez =21
and
Wnaz = 2.0.Peons

For non harmonic tasks set, the mazimum buffer size
and the mazimum memorization delay are respectively :

Lipge =2n+1
and
Wmaz = (2.7’L + 1)-Pcons

A proof of Theorem 7 is given in [LSN103].

5 Simulations of M/P/1 and P/P/1
models

T T
Simulation  +
Theoretical bound -------

Number of message in the buffer

R e i s s ad

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
Scheduling simulation

Figure 6: Worst case analysis : P/P/1 buffer bounds

Let’s see now few simulations result which show the
efficiency of the proposed performance models.

Simulations are performed with randomly generated
systems composed of n producers and one consumer.

For the worst case analysis (P/P/1 queueing system),
1000 tasks sets with three periodic producers and one
periodic consumer were generated. 1000 scheduling were
randomly generated for each tasks set over 20 times the
consumer period. No assumption is done concerning the
real time scheduler. In Figure 6, the maximum buffer
bound proposed in Theorem 7 is compared to simulation

4A tasks set is said to be harmonic if and only if each task
period is a positive integer multiple of all smaller task periods.
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Figure 7: M/P/1 mean service time and variance with
high priority tasks

100

' Service l‘lme: slmu\a‘\lmn - MIP/i +
Variance : simulation - M/P/1 X

Difference %

w0l % ]
%564

1 1 1 1 1
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9
Server utilization rate

Figure 8: M/P/1 mean service time and variance with
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results. This Figure shows that the buffer bound is met
but never overflowed.

For the average case analysis (M/P/1 queueing sys-
tem), 990 systems composed of n message arrival flows
and one periodic consumer task were generated. Simu-
lations were done during 20000000000 units of time.

The main objective of those simulations is to test the
mean service time, the variance and their impact on the
average message waiting time and buffer utilization fac-
tor. A fixed priority scheduler is chosen for the sim-
ulations. The variance of the service time depends on
the response time of the consumer task. Consequently,
modifying the priority of the consumer tasks will modify
the variance of the service time. We present graphs for
both high and low fixed priority consumer tasks. Low
priority consumer task response times were uniformely
generated in [0, P.,ps]. We assume that high priority
tasks have fixed response time.

Simulations were done for different queueing utiliza-
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Figure 9: M/P/1 : number of messages in the buffer
with high priority tasks
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Figure 10: M/P/1 : number of messages in the buffer
with low priority tasks

tion factors (p € [0.01,0.99]). Figures 7, 8,9 and 10 show
simulation and theoretical results of M/P /1, M/M/1 and
M/D/1 queueing systems in order to compare their ef-
ficiency. On the horizontal axis, we have the queueing
utilization factor. On the vertical axis, we have the gap
between simulation results and theoretical results.

In order to calibrate the simulator correctness, we
show the gap between M/P/1 simulation results and
M/G/1 theoretical results computed with mean service
time and variance resulting from simulations (see “hy-
brid results” graphs in Figures).

Figures 7 and 8 show the comparisons between M/P /1
theoretical and simulated mean service time and vari-
ance. The gap between theoretical and simulated mean
service time is less than 8 percents. Unfortunately, it
seems that theoretical mean service time variance does
not match simulated results.

Figures 9 and 10 show the comparisons between
M/P/1 theoretical and simulated number of messages in



W/L

High Low
priority priority

M/P/1 (M/G/1
with W from Theorem 5)

[0%,10%) [0%,10%]

M/M/1 with Wy = Peops
M/M/1 with W, from simulation

M/M/1 with W, from Theorem 5 0% [0%,10%)]

100% [75%,100%]
[0%,19%] | [0%,19%]

M/D/]. Wlth WS == PCOTLS
M/D/1 with W, from simulation
M/D/1 with W, from Theorem 5

[100%,5%] | [-75%,5%]
[0%,37%) | [0%,37%)
[0%,37%) | [0%,37%)

Table 1: Simulation results summary

the buffer. Despite of the variance results, the theoreti-
cal M/P/1 number of messages in the buffer match the
simulated results (less than 10 percents). From Figure
9 and Figure 10 and the Little’s result, one can deduce
average message waiting time in buffers [Kle75b].

Table 1 summarizes the difference between proposed
theoretical results and simulation results obtained dur-
ing simulation.

6 Conclusion

This paper presents performance analysis of buffers
shared by independent periodic tasks. Tasks are sched-
uled according to a real time scheduler like RM or EDF
[LL73].

The analysis focuses on task deadlines and buffer per-
formance such as the messages waiting times and num-
ber of messages in the buffer. The real time scheduling
theory offers interesting feasibility tests to check dead-
lines of independent tasks [JP86, ABRT93]. Unfortu-
nately, few results exist for buffer performance analysis
[Kre00].

We propose a new service time distribution : the P
distribution. The P distribution models the fact that
periodic tasks are scheduled with a real time scheduler.
It also assumes that task wake up times are not syn-
chronized with message arrivals. Scheduling feasibility
tests designed for independent tasks can then be
applied to check task deadlines [JP86, ABRT93]. Our
model of buffer can be applied on time-triggered/polling
based systems where data are periodically read [KB02].

From the P distribution, two new queueing systems
are presented : M/P/1 and P/P/1. Applications sharing
buffers can then be studied by both worst and average
cases analysis. for the worst case analysis, the system
is checked with P/P/1 assuming that a smallest period
of message arrivals rate exists. When no worst case as-
sumption is done, we show that average analysis can be
performed with M/P/1.

An exact resolution of P/P/1 is given and we provide
an M/P/1 approximation. The M/P/1 queueing sys-

tem approximation is based on the fact that, due to the
real time scheduling, the system is mainly deterministic
when the utilization factors are high and that, due to the
message arrival rate, the system is mainly Markovian for
low utilization factors.

The P/P/1 and M/P/1 proposed models have been
simulated and tested. Simulations show that M/P/1 the-
oretical average service time is close by the one observed
at simulation time. It is not the case for the theoreti-
cal variance on the mean service time. Despite of the
variance results, the theoretical M/P/1 message waiting
time and the theoretical M/P/1 number of messages in
the buffer are better than the M/M/1 and M/D/1 ones
for the simulated systems.

Future works will consider randomly activated tasks.
Today, few results exist for checking temporal con-
straints of such tasks. We aim at providing feasibility
tests and buffer analysis tools for such tasks running on
the studied systems.
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