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ABSTRACT

This article describes an Ada set of packages which allows
designers to perform resource requirements analysis of AADL
specifications. This set of Ada packages is part of Cheddar,
an Ada framework that we are developing at the University
of Brest [22].

The framework provides tools to check if AADL threads
will meet their deadline at execution time. Some new AADL
properties are proposed to model and analyze dependent
AADL thread sets. It also provides some tools to perform
memory requirements analysis on AADL specifications.
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General Terms

Performance, Reliability, Verification.

Categories and Subject Descriptors

SOFTWARE ENGINEERING [Software/Program Ver-
ification]: Validation

1. INTRODUCTION

In [22], we presented a set of Ada packages which aims
at performing performance analysis of concurrent real time
applications. This set of packages includes most of classical
scheduling simulation methods and classical scheduling fea-
sibility tests in the case of dependent and independent tasks
running on monoprocessor and distributed systems. This
article presents how this set of packages can be used to per-
form this kind of analysis on real time applications designed
with the help of AADL specifications.

The SAE Architecture Analysis and Design Language (AA-
DL) is a textual and graphical language support for model-
based engineering of embedded real time systems that has
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been approved and published as SAE Standard AS-5506[9].
It is used to design and analyze the software and the hard-
ware architecture of embedded real-time systems. Proper-
ties that are critical to the operation of such a system are
timing, throughput, and reliability properties. As shown
by the studies led by Axlog', the SAE AADL is applicable
to any performance-critical embedded real-time system in
domains such as avionics, aerospace, automotive, and au-
tonomous systems.

A prototype of AADL was previously developed by Hon-
eywell under US Government sponsorship (DARPA and oth-
ers) to prove the concept. This system called MetaH has
been used extensively to validate the concepts currently in
AADL. The main advantages of using AADL are the follow-
ing :

e It makes it possible to apply system engineering ap-
proach to software intensive systems rather than brute
force.

e The resulting architecture is analyzable and this de-
creases rework, upgrade coasts as well as program risk
and complexity.

e It enables rapid system evolution for complex, real-
time, safety critical systems with predictable change
to both hardware and software.

e It is a standard and is mature (12 years of DARPA
investment and additional experiments) in comparison
to other ADL.

e It is extendable : it offers a good foundation for addi-
tional capabilities in analysis, automated system inte-
gration, systems of systems, distribution, and dynam-
ics.

This article describes an Ada set of packages which al-
lows designers to perform resource requirements analysis of
AADL specifications. Our Ada packages are based on Oca-
rina, an AADL parser distributed by the National Telecom-
munications Engineering School of Paris (ENST)[26].

First, we propose new AADL properties for the modelling
of information frequently used in state of the art of the
real time scheduling theory which are missing in the current
AADL standard. We can then apply both classical schedul-
ing simulation methods and classical scheduling feasibility
tests on AADL specifications in the case of distributed sys-
tems with dependent tasks[4, 2, 24] and in the case of POSIX
1003.1b schedulers|[8].

!See http://www.axlog.fr/R_d/aadl/activites_en.html




Second, we propose several methods to evaluate the mem-

ory requirements of a real time embedded system described
with AADL. These methods are based on queueing system
theory[13]. This article focuses on buffer requirements anal-
ysis when AADL specifications contain event or event data

data shared_resource_type
end shared resource_type;

data implementation shared_resource_type.Impl

ports. properties
This article is organized as follows. The AADL language Concurrency_Control Protocol =>
is first described in section 2. An overview of the exist- PRIORITY _CEILING_PROTOCOL;
ing AADL tools is then given in section 3. In section 4, end shared resource_type.Impl;
we describe how to perform scheduling analysis on AADL thread task_type
specifications with Cheddar. Section 5 is devoted to memory features
requirements analysis. Finally, we conclude and give future can_access : requires data access shared_resource_type;
works in section 6. end task_type;

thread implementation task_type.Impl
2. THE AADL DESCRIPTION LANGUAGE properties _
An AADL specification describes both the hardware part Source-Text => “task bodies.adb”;

and the software part of an embedded real time system. Ba- S(?urce_Stack_Size => 4092,; .
sically, an AADL specification is mainly composed of com- Dispatch_Protocol => Periodic;

ponents such as data, threads, processes (the software side Period => 50;
of a specification), processors, devices and busses (the hard- Compute_Execution_time => 3 ms .. 3 ms;
ware side of a specification). Cheddar_Properties::Dispatch_Absolute_Time => 7;

A data component may represent a data structure in the Cheddar_Properties:POSIX_
program source text. It may contain sub-programs such Scheduling Policy => SCHED _FIFO;
as functions or procedures. In this case, an AADL data Cheddar_Properties::Fixed_Priority => 5;
component can be implemented by an Ada tagged record. Cheddar_Properties::Bound_On_

A thread is a sequential flow of control that executes a Shared Resource_Blocking_Time => 3;
program. An AADL thread can be implemented by an Ada Cheddar_Properties::Dispatch _Jitter => 10;
task. AADL threads can be woken up according to several end task_type.Impl;
policies : a thread may be periodic, sporadic or aperiodic. processor a_cpu
An AADL p(.erio'dic t.hread is.woken up at a.regular time end a_cpu;
interval. This t.lme interval is f:alled a “period”. In .the processor implementation a_cpu.Impl
case of a sporadic thread, a minimum inter-woken up time properties
interval is considered. An aperiodic thread may be woken Scheduling_Protocol => RATE_MONOTONIC;

up at any time.

An AADL process models an address space. In the most
simple case, a process owns threads and datas.

Finally, processors, busses and devices represent hardware
components hosting one or several applications.

Cheddar_Properties::Scheduler_Quantum => 1;
Cheddar_Properties::Preemptive_Scheduler => true;

end a_cpu.Impl;
Process a_proc

end a_proc;
Figure 1 shows a simple example of an AADL specifica- process implementation a_proc.Impl
tion. This specification contains a shared resource (called subcomponents
R1) accessed by two threads (threads TH1 and TH2). The THI : thread task_type.Impl;
threads and the shared resource are defined into one ad- TH2 : thread task_type.Impl;

dress space (process proc0). The threads are scheduled by

R1 : data shared._resource_type.Impl;
a processor called cpu0.

connections
AADL is a typed language. In the case of the Figure data access R1 — > TH1.can_access;
1, task_type and shared_resource_type are types defined by data access R1 — > TH2.can_access;
the designer. One can declare properties which are common end a_proc.Impl;
for several components. (e.g. task_type defines several prop- system a_system

erties for the threads TH1 and TH?2). A property is defined
by a name, a value and a type. Information provided by
component properties can be related to the component be-
havior, its state, the way it will be implemented in Ada or
anything else that make it possible to perform AADL spec-
ification analysis. The designer can provide properties with
most of AADL components.

end a_system;
system implementation a_system.Impl
subcomponents
cpul : processor a_cpu.Impl;
procO : process a_proc.Impl;
properties
Actual_Processor_Binding =>
reference cpu0 applies to proc0;
end a_system.Impl;

Figure 1 includes some properties examples :

e The Source_Text property indicates that the Ada source

code of the threads TH1 and T'H2 can be found in the ] ) . .
“task_bodies.adb” file. This kind of properties allows Figure 1: A simple AADL specification
CASE tools to merge the Ada source code given by the

user with the one generated from the AADL design.



e The Source_Stack_Size property stores the amount
of stack required by the Ada task implementing the
threads TH1/TH?2. The Scheduling_Protocol defines
the way the processor will be shared between the thre-
ads of the application. These two last properties are
related to the application behavior at execution time.
They may be used by CASE tools which are designed
to check before execution time that the system will
meet its requirements. Section 4 shows how to perform
this kind of test on scheduling requirements.

3. OVERVIEWOFEXISTING AADLTOOLS

AADL has been used in important software tools and its
use is planned in several projects.

The Software Engineering Institute has developed an Open
Source AADL Tool Environment (OSATE) as a set of plug-
ins on top of the open source Eclipse platform[19]. The
Eclipse Platform is designed for building integrated develop-
ment environments (IDEs) that can be used to create appli-
cations as diverse as web sites, embedded JavaTM programs,
C++ programs, and Enterprise JavaBeansTM. The initial
set of plug-ins provides a toolset for front-end processing of
AADL models :

e A syntax-sensitive text editor with syntax highlight-
ing, popup help.

e A parser (based on open source ANTLR. See www.-
antlr.org) and semantic checker for textual AADL with
conversion into AADL XML and error reporting inte-
grated with the text editor.

o An AADL XML viewer and editor.

e A syntax-sensitive structural object editor of AADL
models with drag-and-drop as well as undo capabili-
ties, and an AADL properties viewer; this editor sup-
ports both an AADL library view and a system in-
stance view.

e An AADL XML to textual AADL converter (AADL
unparser). Additional plug-ins to extend OSATE, in-
cluding AADL to MetaH conversion, an example anal-
ysis plug-in performing security-level checks, and a
plug-in performing various consistency checks.

e A graphical AADL editor based on the Eclipse Graphi-
cal Editing Framework (GEF. See www.eclipse.org/gef)
is being developed by Mayur Patel at USC as an ad-
ditional front-end plug-in.

TNI Europe supplies State of the Art software modelling
tools (UML 2.0/O0OA/OOD/Object Oriented) for the de-
velopment of mission critical software. These tools offer ad-
ditional capabilities such as AADL. STOOD is one of the
earliest software tools to support AADLI6].

The ASSERT project also involves the use of AADL. AS-
SERT is an European approach for Proof-Based System En-
gineering (PBSE). In the context of this project, Axlog de-
velops AADL tools based on OSATE. In the same project,
a work aiming at defining and integrating the notion of
connector as fundamental element to support dependabil-
ity uses AADL as the main basis. The latter is done in
the distribution and hard real time cluster of the ASSERT
project.

To perform AADL analysis, Cheddar relies on Ocarina
[26]. Ocarina is a lightweight Ada95 library developed at the
National Telecommunications Engineering School of Paris
(ENST)?. It provides facilities to parse and print AADL files;
it also provides an API to navigate through AADL models
and instantiate AADL descriptions. Ocarina was created as
a fundation library to perform code generation, configura-
tion and deployment for distributed applications described
in AADL, in connection with the ASSERT project.

Finally, Axlog has developed ADeS, a software tool to sim-
ulate the behavior of an architecture described with AADL.
ADeS has been developed in a joint study with the Euro-
pean Space Agency (ESA) to evaluate the interest of AADL
for the space domain.

Despite all these projects, there is currently few open
source tools devoted to performance analysis of AADL spec-
ifications. The next sections describe such tool.

4. SCHEDULING REQUIREMENTS ANAL-
YSIS ON AADL SPECIFICATIONS

In the real time scheduling theory[5], a real time applica-
tion is defined by a set of processors, shared resources and
tasks. In the most simple task model, each task periodically
performs a treatment. This “periodic” task is defined by
three parameters : its deadline (D;), its period (P;) and its
capacity (C;). P; is a fixed delay between two successive
wake up times of task ¢. Each time the task i is woken up,
it has to do a job whose execution time is bounded by C;
units of time. This job has to be ended before D; units of
time after the task wake up time.

From a set of tasks, two kinds of analysis can be performed
by Cheddar : scheduling simulation and feasibility tests.

Scheduling simulation consists in predicting for each unit
of time, the task to which the processor should be allocated.
Checking if tasks meet their deadline can then be done by
analyzing the computed scheduling. Figure 2 shows a set of
3 periodic tasks (T1, T2 and T3) respectively defined by the
periods 29, 5 and 10, the capacities 7, 1, 2 and the deadlines
29, 5 and 10. These tasks are scheduled with a preemptive
Rate Monotonic scheduler?.

For a given task set, if a scheduling simulation is very long
to compute [15], feasibility tests can be applied instead. Dif-
ferent kinds of feasibility tests exist. The most simple test is
based on processor utilization factor. With a set of periodic
tasks, the processor utilization factor can be computed with
the formula )7 | %’, where n is the number of tasks on the
processor. For instance, with a preemptive Rate Monotonic
scheduler, Liu and Layland have shown that if the proces-
sor utilization factor is less than n(2'/™ — 1), task temporal
constraints are met [16].

Most of the real time scheduling theory abstractions al-
ready exist in the current AADL standard. An AADL thread
can be directly implemented by a task such as the one de-
scribed above and AADL properties can express temporal
properties such as deadline, period or capacity (see [9], chap-
ter 5). In the same way, real time scheduling theory shared
resources can be implemented by AADL data components

2Qcarina is free software, available at

http://ocarina.enst.fr
3With such a scheduler, the task with the lowest period is
the task with the highest priority.
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Figure 2: A set of periodic tasks scheduled according to Rate Monotonic

and classical synchronization protocols[20] can be expressed
with AADL properties.

Then, most of Cheddar’s scheduling analysis services can
be directly used. However, some AADL properties were
required to run some real time scheduling analysis algo-
rithms. Section 9 gives a sample of AADL properties we
implemented into Cheddar. All these new properties were
grouped into a set called Cheddar_Properties (see Figure
1). The Cheddar_Properties set includes properties related
to task dependencies, POSIX 1003.1b scheduling and shared
resources.

Properties related to tasks dependencies (Dispatch_Jit-
ter and Task_Dependencies) permit to compute thread re-
sponse time in the case of distributed systems [24] and to
schedule AADL threads according to precedency relation-
ships[4, 2].

POSIX 1003.1b scheduling is based on fixed priority[8]. A
POSIX scheduler allocates the processor to the task with the
highest priority. If two POSIX threads have the same prior-
ity level, the scheduler chooses the task to run according to
the task policy and the scheduler quantum. A quantum is a
bound on the time a task can hold the processor. Task pol-
icy may sort tasks according to the time they become ready
to run (ie. SCHED_FIFO). The new AADL properties
Fized_Priority and POSIX _Scheduling_Policy store for
each thread its fixed priority and its scheduling policy. The
properties Scheduler _Quantum and Preemptive_Scheduler
are associated to processor components. The first one stores
the maximum time a POSIX thread can keep the processor.
The second one indicates if the POSIX scheduler works pre-
emptively or not.

Finally, even if some standard AADL properties already
exist for shared resources, the current Cheddar’s Ada pack-
ages introduce new properties such as Bound_On_Shared_-
Resource_Blocking_Time and Critical_Section in order to
ease the implementation of shared resources analysis algo-
rithms.

5. MEMORY REQUIREMENTS ANALYSIS
ON AADL SPECIFICATIONS

The previous section described how scheduling analysis
can be performed on AADL specifications. In Figure 1,
we have seen that the threads of an AADL specification
can communicate with shared data. In the AADL stan-
dard, thread synchronization and communication can also
be expressed with the abstraction of port. Ports are logical
connection points between components that can be used for
transfer of control and data between threads.

Three kinds of ports exist : event ports, data ports and
event data ports. Figure 3 shows an example of threads

thread Producer
features
Data_Source : out event data port;

end Producer;
thread implementation Producer.Impl
properties
Dispatch_Protocol => Periodic;
Period => 20 ms;
end Producer.Impl;
thread Consumer

features
Data_Sink : in event data port;

end Consumer;
thread implementation Consumer.Impl
properties
Dispatch_Protocol => Periodic;
Period => 10 ms;
end Consumer.Impl;

process With_Buffer
end With_Buffer;

process implementation With_Buffer.Impl
subcomponents
Producerl : thread Producer.Impl;
Producer2 : thread Producer.Impl;
Consumerl : thread Consumer.Impl;

connections
event data port Producerl.Data_Source — >

Consumerl.Data_Sink;
event data port Producer2.Data_Source — >
Consumerl.Data_Sink;
end With_Buffer.Impl;

Figure 3: AADL specification with buffers

connected by event data port. Even data port are intended
for message transmission.

In this example, three threads exchange messages : a thread
(called Consumerl) receives messages from the two other
threads (called Producerl and Producer2). All threads are
periodic and we can assume that consumption and produc-
tion rates are periodic too. Depending on the rate threads
produce or consume messages, this specification implies that
the system will require memory to store in a buffer the set
of received messages before their consumption.

A good performance analysis tool should provide features
for both scheduling and buffer analysis. Indeed, maximum
buffer size must be chosen according to the rate threads
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Table 1: Main performance criteria

produce or consume data. In the same way, thread con-
sumption or production rate have to be chosen according to
the maximum size of the buffer when they will write/read
data.

Cheddar provides such buffer analysis tools. They
are based on queueing system theory. In the sequel,
we propose some buffer analysis tools in order to
predict buffer requirements in the case of AADL
threads connected by event data ports. The AADL
consumer threads are periodic. The AADL pro-
ducer threads may be aperiodic or periodic. Con-
sumers and producers are both scheduled with real
time schedulers such as Rate Monotonic.

5.1 Queueing system theory

The queueing system theory makes it possible to study
performance of a system composed of servers, customers and
storage places [11] : people waiting in a room for a doctor,
network switch routing data, ... If new customers arrive in
the system when a server is busy, their requests are stored
in a queue. By defining the average rate of customer ar-
rivals and the average rate of requests that the server can
handle, the queueing system theory allows the designer to
compute many performance criteria. Table 1 gives the main
performance criteria for the most usual queueing systems.
In this table, A means the customer arrivals rate, p means
the queueing system utilization factor, W, and o2 respec-
tivelly mean the average customer service time and its vari-
ance. With these parameters, one can compute the average
number of customers (L), the average customer waiting time
(W), and the probability of having n customers in the queue
(Pn).

Different customers inter-arrival time distributions and
service time distributions exist. The most usuals are de-
terministic (D), markovian (M) and general (G). D means
constant delay between two customer arrivals and constant
customer service times. M describes a customer arrival rate
or a service time where delays follow an exponential proba-
bility distribution. Finally, if no assumption on the proba-
bility distribution is done, G is used. G is only defined by
an average rate and its variance.

Following the Kendall notation, a queueing system is de-
scribed by at least 3 parameters : a|blc. The a parameter
is the customer arrival rate. b describes the service time
rate. Finally, ¢ is the number of servers. For instance, a
system with one server, with a constant service time and an
exponential client arrival is an M/D/1 queueing system.

Let’s go back to the buffer requirements analysis of AADL
threads and event data ports. Even if buffers are common
operating system functionalities, it seems that few buffer
performance analysis results exist that we can apply to AADL
periodic threads scheduled according to a real time scheduler
[25].

However, some results for similar systems exist. In prior-
ity queueing, a priority can be given to customers [1, 23].
The most common priority queue is the HOL (Head Of Line)
queue where priorities are fixed [10].

Chen proposes mean waiting time for real time traffic with
deadline constraints [3]. This work is based on non pre-
emptive M/G/1 and work-conserving queue. Each real time
traffic is a customer with a priority given by the Earliest
Deadline First policy.

The real time queueing theory aims at using priority queue-
ing in order to check temporal constraints of tasks randomly
activated under “heavy traffic” [14].

None of these approaches suits to AADL periodic threads.
Indeed, these approaches assign priorities to customers/mes-
sages. Futhermore, they can not handle the fact that thread
can be woken up even if no message is stored in buffers,
which may be the case of periodic or sporadic AADL threads.

A periodic server can be found in the queueing system
theory. Such a queueing system is composed of some queues
cyclically served by a single server [21]. Except the periodic
behavior of the server, the service time distribution does not
handle the fact that thread reponse time can be variable due
to the real time scheduler.

Several works on queueing system have been led in the
real time community. A lot of queue service disciplines have
been studied in the communication field [27]. These ser-
vices generally aim at providing bandwidth, end-to-end de-
terminist or statistic guarantee on delays. Unfortunately,
to avoid buffer overflow, service policies usually proposed in
this context have a behavior which depends on the number
of messages in the buffer.

5.2 Memory requirements with AADL threads
connected by event data port

To study event data port memory requirements when con-
nected AADL threads are scheduled according to a real time
scheduler like Rate Monotonic, we propose a new service
time distribution : the P distribution. Port buffers are mod-
eled using queueing systems. Customers are messages stored
into buffers. The buffer state is modeled by the queueing
system server and the queue state. The P distribution
models the fact that periodic consumer/producer
threads are scheduled with a real time scheduler.
The P distribution assumes that thread wake up times are
not synchronized with message arrivals : the AADL con-
sumer thread is periodically woken up even if no
message is arrived in the buffer.



package Queueing_System is

type Queueing _Systems_Type is
(Qs-Mm1, Qs-Mdl, Qs_Mpl, Qs_-Mgl, Qs_Ppl,
)
type Generic_Queueing_System is abstract
new Ada.Finalization.Controlled with
record
Queueing _System_Type : Queueing_Systems_Type;
Arrival Rate : Arrival_Rate_Table;
Service_Rate : Service_Rate_Table;
end record;
type Generic_Queueing_System Ptr is
access all Generic_Queueing_System’Class;

-;.).ackage A_Arrival Rate is new Indexed_Tables(

Double, ...);
package A _Service_Rate is new Indexed_Tables(
Double, ...);

subtype Arrival Rate_Table is

A _Arrival_Rate.Indexed_Table;
subtype Arrival Rate Range is

A _Arrival Rate.Indexed _Table_Range;

subtype Service_Rate_Table is

A _Service_Rate.Indexed_Table;
subtype Service_Rate_Range is

A Service Rate.Indexed_Table_Range;

end “Queueing_System;

package Queueing_System.Theoretical is
type Generic_Queueing_System _Theoretical is abstract
new Generic_Queueing_System with null record;

— Return the theoretical average/maximum waiting time
— of one customer in the queue

procedure Qs_Maximum_Waiting_Time (

A _Queue : in Generic_Queueing_System_Theoretical;
Value : in out Double) is abstract;
procedure Qs_Average Waiting_Time (

A _Queue : in Generic_Queueing _System_Theoretical;
Value : in out Double) is abstract;

— Return the theoretical average/maximum number
— of customer in the queue

procedure Qs_Maximum Number_Customer (

A _Queue : in Generic_Queueing _System_Theoretical;
Value : in out Double) is abstract;
procedure Qs_Average Number_Customer (

A _Queue : in Generic_Queueing_System_Theoretical;
Value : in out Double) is abstract;

end .Queueing_System. Theoretical;

package Queueing _System.Theoretical.Ppl is

type Ppl_Queueing_System_Theoretical is new
Generic_Queueing_System_Theoretical
with null record;

type Ppl_Queueing_System_Theoretical _Ptr is
access all Ppl_Queueing_System_Theoretical’Class;

procedure Qs_Maximum_Waiting_Time (
A _Queue : in out Ppl_Queueing System_Theoretical;
Value : in out Double);

end Queueing_System.Theoretical.Ppl;

package body Queueing System.Theoretical.Ppl is

procedure Qs_Maximum Number_Customer (
A _Queue : in Ppl_Queueing System_Theoretical;
Value : in out Double) is
begin
If (harmonic = true) then
Value:= 2*Service_Rate.Nb_Entries;
Else
Value:= 2*Service_Rate.Nb_Entries+1.0;
End if;
end Qs_Maximum Number_Customer;

procedure Qs_Maximum Waiting_Time (
A _Queue : in Ppl_Queueing _System_Theoretical;
Value : in out Double) is
begin
If (harmonic = true) then
Value:= 2 *
(1.0/Service_Rate.Entries(0));
Else
Value:= 2 *
(1.0/Service_Rate.Entries(0)) +1.0;
End if;
end Qs_Maximum_Waiting_Time;

end.Queueing_System.Theoretical.Ppl;

Figure 4: Queueing_System package specifications

Figure 5: P/P/1 queueing system package example




From the P distribution, two new queueing systems are
defined : P/P/1 and M/P/1. An exact resolution of P/P/1
is given and we provide an approximation of the M/P/1[13].
This approximation is based on a M/G/1 queueing model.
AADL Applications sharing buffers can then be stud-
ied by both worst case and average case analysis.
Worst case analysis can be performed if assump-
tions are made on message arrival rate. In this case,
the system is checked with P/P/1 assuming that a
smallest period of message arrivals rate exists. Oth-
erwise, if no worst case assumption is made, we show
that average analysis can be realized with M /P /1.

5.2.1 Averagebuffer performanceanalysis: producer
threads are aperiodic

Let’s suppose now that messages arrive in the event data
port buffer at a random rate. This case occurs when
AADL producer threads are aperiodic.

In the sequel, according to the Kendall notation, a buffer
receiving random rate messages and shared by an AADL
periodic consumer thread will be modeled with a M/P/1
queueing system [11, 18]. Messages are served in a FIFO
manner : the earlier a message arrives, the earlier it is served.

We propose an approximation of the M/P/1 queueing sys-
tem. This M/P/1 approximation consists in evaluating its
average service time W, and its variance o2. With W, and
o2, aM/P/1 queueing system can be modeled with a M/G/1
queueing system. Then, M/P/1 message waiting time and
number of messages in the buffer can be computed with the
following M/G/1 equations [11] :

AWZ +0?)

W=W,+ ———=
2(1-p)

N(W? +a?)

L=\W, +——=—
2(1-p)

where p is the queueing system utilization factor and A,
the message arrival rate.

The M/P/1 mean service time and its variance which are
valid for all p values are[13] :

THEOREM 1. The M/P/1 average service time is equal
to :

Pcons
W, = 5 (1+p)=

PCO'ILS
2(1 — \Eegne)

And the variance of the average service time is :

2

2 1 n ! 2 Pcans
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Where p = AW, S; are the service time when p tends to 1
and P.ons 1s the period of the consumer thread.

Due to the fact that the server models the periodic be-

havior of the consumer task, the number of S’; elements is
bounded (n elements).

5.22 \Worst case buffer analysis : producer threads
are periodic

We now study a system where event data port buffer
productions and consumptions are assumed to be periodic.
This case occurs when AADL producer threads are
periodic.

According to the Kendall notation, a buffer shared by n
periodic producer AADL threads and 1 periodic consumer
AADL thread scheduled with a real time scheduler can be
modeled with a P/P/1 queueing system. Messages are served
in a FIFO manner.

Some similarities exist between this system and voice trans-
mission service provided by the AAL1 layer of ATM net-
works [7]. In order to solve our P/P/1 queueing system, we
apply results from this ATM layer.

For a buffer shared by n periodic producers and one peri-
odic consumer, the buffer bound is given by [12] :

THEOREM 2. For a P/P/1 buffer shared by an harmonic
threads set * and Vi : D; < P;, the mazimum buffer size and
the mazimum memorization delay are respectively :

Loz =20
and
Wimaz = 2.10.Peons

For a non harmonic threads set, the mazimum buffer size
and the mazimum memorization delay are respectively :

Lpae =20 +1
and
Wmam = (2n + 1)-Pcons

5.3 Adaimplementation of AADL memory re-
quirements analysis

In order to develop AADL event data port memory re-
quirements analysis tools, we wrote a set of object oriented
Ada packages (see Figure 6). These packages implement
classical queueing system theory results (see Table 1) and
results from our works on M/P/1 and P/P/1 queueing sys-
tems (see Theorem 1 and 2). These results (called theoreti-
cal or analytical in the sequel) give to the designer a quick
estimation of the memory requirements. When any analyti-
cal/theoretical performance criterion was never proposed for
a given queueing system, the framework also provides a set
of Ada packages in order to design, write and run simula-
tions.

Figures 4 and 5 give samples of this set of packages.

Each queueing system is implemented by a tagged record
composed of the following attributes :

o Queueing_System_Type. This attribute specifies the
type of the queue (ie. M/M/1, M/G/1, M/D/1, P/P/1
or M/P/1).

o Arrival_Rate and Service_Rate arrays. These attri-
butes are used for the specification of mean arrival
rates and mean departure rates of customers. Arri-
val_Rate_ Table and Service_Rate Table types define
such arrays.

The queueing system class is implemented in the Queue-
ing_Systems package and its child packages. The Queue-
ing_System packages gather all queueing system common

“A thread set is said to be harmonic if and only if each
thread period is a positive integer multiple of all smaller
thread periods.



Generic_Queueing_System

Queueing_System_Type : Queueing_Systems Type;

Arrival_Rate: Arrival_Rate Table;
Service_Rate: Service Rate Table;

Var_Service: Double;
Avg_Service: Double;
Waiting_Time: Double;
Utilisation : Double;
Nb_Arrival : Double;
Nb_Server : Double;

Generic_Queueing_System_Theoretical

procedure Qs_Average Waiting_Time(...) is abstract;
procedure Qs_Average Number_Customer(...) is abstract;
procedure Qs_Maximum_Waiting_Time(...) is abstract;
procedure Qs_Maximum_Number_Customer(...) is abstract;

PP1_Queueing_System Theoretical

procedure Qs_Maximum_Waiting_Time(...);
procedure Qs_Maximum_Number_Customer(...);

Generic_Queueing_System_Simulation

Sim_Mit : Double;
Sim_Mst : Double;
Sim_Var_Mst: Double;
Sim_Mwt : Double;
Sim_Mnc : Double;

function Compute_Service_Time(...) return ... is abstract;
function Compute_Inter_Arrival_Time(...) return ... is abstract;

PP1 _Queueing_System Simulation

function Compute_Service_Time(...) return ...;
function Compute_Inter_Arrival_Time(...) return ...;

Figure 6: UML diagram of the queueing system framework

source code. These packages contain two inheritance sub-
trees : one for theoretical/analytical criterion (Generic_-
Queueing_System_Theoretical) and one for simulation (Ge-
neric_Queueing_System_Simulation).

Most of the time, developing a new queueing system con-
sists in extending this class to add new theoretical /analytical
criteria or simulation code. For example, in the case of the
theoretical /analytical queueing system inheritance sub-tree,
Qs_Average Waiting Time, Qs_Mazximum W aiting_Time,
Qs_Average_Number_Customer and Qs_Maximum_Num-
ber _Customer abstract sub-programs must be implemented
in order to compute customer average waiting time, maxi-
mum waiting time, average number of customers and max-
imum number of customers for each queueing system. For
some queueing systems, other theoretical /analytical perfor-
mance criteria can be computed like probability to be in
a given queue state (method Get_Probability_O f_State) or
probability of a queue overflow (method Get_Probability_—-
Of_Full_Buffer).

If no theoretical/analytical criterion exists for a given queue-
ing system, simulated performance criterion can be com-
puted with the simulation queueing system inheritance sub-
tree. These packages implement an event discrete time queue-
ing system simulator which works as follows (see Figure 7) :

e At initialization step (box 0), the first customer arrival
and departure dates are calculated.

e At the first step (box 1), the next event to occur (cus-
tomer arrival or departure) is chosen.

e At the second step (box 2 and 3), whether the next
event is an arrival or a departure (see T'est1), the num-
ber of customers present in the queueing system is de-
creased or increased by one and the event date is poped
or pushed in a buffer for waiting time computation.

At the third step (box 4 and 5), whether an arrival
or a departure has been processed (see Test2), a new
arrival or departure date is computed with Compute_-
Service_Time and Compute_Inter Arrival Time func-
tions. These abstract functions have to be implemented
for each queueing system in order to compute next cus-
tomer arrival and departure date.

e At the final step (box 6), from the number of customers
gathered (during box 2 and 3), the performance crite-
ria are computed.

6. CONCLUSION AND FUTURE WORKS

In this article, we have presented how performance analy-
sis of AADL specifications can be performed with Cheddar.
Cheddar provides a set of Ada packages allowing scheduling
and memory requirements analysis. First, we have stud-
ied how the scheduling analysis services implemented into
Cheddar can be applied to AADL specifications. We have
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Figure 7: Simulator algorithm Chart

then proposed some new AADL properties to take the state
of the art real time scheduling into account. Second, we
have studied how memory requirements analysis on AADL
specifications can be performed. This article only focuses on
memory requirements related to AADL event data ports.

The current Cheddar implementation is able to transform
Cheddar’s specification into AADL specification. We are
currently testing the Ada packages to translate AADL spec-
ifications into Cheddar’s specification in order to perform
scheduling and memory analysis.

These AADL performance analysis methods will be tested
with a real life application : a robot monitoring control sys-
tem called PILOT[17]. This control system is dedicated
to the remote control of robot such as AUV (Autonomous
Underwater Vehicle). It has been designed and built by
the LISYC laboratory in order to ease and to secure the
programming of robot missions. We are currently refac-
toring the PILOT control system software with STOOD[6],
an UML/HOOD/AADL models editor distributed by TNI-
Europe.
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9. ANNEX : CHEDDAR’S AADL PROPERTIES

property set AADL_Project is

Supported_Dispatch_Protocols : type enumeration (Periodic, Aperiodic, Sporadic,
Background, Poisson_Process, Parametric) ;

Supported_Concurrency_Control_Protocols : type enumeration (No_Protocol, Priority_Ceiling_Protocol,
Priority_Inheritance_Protocol);

Supported_Scheduling_Protocols : type enumeration (Parametric, Earliest_Deadline_First,
Least_Laxity_First, Rate_Monotonic, Deadline_Monotonic, Highiest_Priority_First);

end AADL_Project;

property set Cheddar_Properties is

Dispatch_Seed_is_Predictable : aadlboolean

applies to (thread, thread group);
Dispatch_Seed_Value : aadlinteger

applies to (thread, thread group);
Dispatch_Absolute_Time : aadlinteger

applies to (thread, thread group);
Bound_0On_Shared_Resource_Blocking_Time : aadlinteger

applies to (thread, thread group);
Dispatch_Jitter : aadlinteger

applies to (thread, thread group);
Fixed_Priority : aadlinteger 0..255

applies to (thread, thread group);
POSIX_Scheduling_Policy : enumeration (SCHED_FIF0, SCHED_RR, SCHED_OTHERS)

applies to (thread, thread group);

Scheduler_Quantum : aadlinteger
applies to (processor);

Preemptive_Scheduler : aadlboolean
applies to (processor);

Shared_Resource_State : aadlinteger
applies to (data);

Critical_Section : list of aadlstring
applies to (process);

Source_Global_Heap_Size : aadlinteger
applies to (process);

Source_Global_Stack_Size : aadlinteger
applies to (process);

Source_Global_Text_Size : aadlinteger
applies to (process);

Source_Global_Data_Size : aadlinteger
applies to (process);

Task_Dependencies : list of aadlstring
applies to (system);

end Cheddar_Properties;



