About Bounds of Buffers Shared by Periodic Tasks : the IRMA project

J. Legrand, F. Singhoff, L. Nana, L. Marcé
LIMI/EA 2215, University of Brest
20, av Le Gorgeu
29285 Brest Cedex
{jlegrand,singhoff nana,marce } @Quniv-brest.fr

Abstract

This paper presents the first results of the IRMA
project. In this project, we study the feasibility of real
time monitoring applications. By monitoring applica-
tions, we mean applications which detect and analyse
failure information, and finally, present them to the user
at maintenance periods. We suppose that these applica-
tions are composed of periodic tasks and of tasks which
are randomly activated when faults occur. We also sup-
pose that these two task families share resources and spe-
cially buffers. An application is feasable if all tasks meet
their temporal constraints and if no buffer overflow ex-
15ts.

In this paper, we propose tests to bound buffers shared
by periodic tasks. These tests are implemented in a real
time scheduling simulator which provide most of classical
uniprocessor real time scheduling feasibility tests.

1 Introduction

Due to the increasing complexity of large real time
systems, their maintenance becomes a crucial point.

This kind of system can be made of many different
equipments. Therefore, the probability that one of the
equipments fails can be high. Most of the time, large
real time systems require regular maintenance periods.

In order to decrease maintenance cost, more and more
often, large real time systems propose monitoring ser-
vices (ie. aeronautical systems [2]). These services help
operators to detect and diagnose failures. They provide
features to collect data during the life of the system, to
analyze them and to store analysis results into a persis-
tent memory. Finally, they also provide tools for analysis
information display at maintenance time.

We suppose that the studied monitoring applications
are composed of two kinds of tasks. Some tasks are peri-
odically activated and the others are activated on failure
information. Tasks have to meet temporal constraints
and are scheduled according to a real time scheduler such
as Rate Monotonic[6].

Tasks are independent even if they share buffers.
Buffer producers and consumers are not synchronized.

F. Dupont, H. Hafidi
TNI-Valiosys
Z.1. Pointe du Diable, BP 70801
29608 Brest Cedex

{Francois.Dupont, Hicham.Hafidi} @tni-valiosys.fr

Tasks produce or consume at their own rate : a periodic
consumer can be awoken without having a message to
read. Indeed, we suppose that only one message can be
produced or consumed during a periodic task activation.

This paper relates the first stage of the IRMA
project where we suppose that failure informa-
tion is provided in a periodic way. All the tasks
are therefore independent periodic tasks[6].

In IRMA, we study the feasibility of such applica-
tions. An application is said feasable if tasks meet their
temporal constraints and if no buffer overflow occurs.

Task temporal constraints and buffer bounds are
studied independently.

Task temporal constraints are checked with classical
real time uniprocessor scheduling feasibility tests such
as bound on processor utilization factor [6] and task re-
sponse times [4, 1].

We propose buffer bounds which are built without as-
sumption on the way the tasks are scheduled but with
the assumption that every task meets its temporal con-
straints. In other words, bounds are valid even if the
scheduling at execution time is different from the one
planned at specification time (the differences may be due
to unpredictable events such as jitter on task wake up
time or task variable execution time, ...) provided that
task deadlines are met.

In the second section of this paper, we show how to
bound buffers shared by periodic tasks. These sugges-
tions are illustrated with a tool presented in the third
section. In the fourth section, we conclude and present
ongoing works.

2 Bounds on buffers shared by periodic
tasks

Let now suppose a set of tasks sharing buffers. Each
of these tasks produces or consumes one message per pe-
riodic activation. Producer and consumer are not syn-
chronized : they produce or consume at their own rate.
A consumer can therefore be awoken even if no message
is present in its buffer. In this case, we assume that the
periodic activation of the consumer is discarded. Buffers

are managed in a FIFO manner.

Producer Con?Jmer
v A
AAL2 1
| AAL2
i !
ATM ATM

l 6mina 6mam ‘

Figure 1: About the ATM AAL?2 layer

To find a buffer bound, we can extend a result from
the voice transmission service provided by the AAL2
layer of ATM networks.

In AAL2/ATM, a producer sends audio packets at a
fixed rate d. This troughtput is expressed in cells per
second, the protocol data unit of ATM networks. A
bounded variable delay is needed to each cell to go from
the sender to the receiver.

In an AAL2 communication service, the consumer
should receive the cell flow in the same rate the pro-
ducer sends it. To solve this problem, a buffer is added
at the receiver side (see figure 1). Each received cell is
then buffered during a sufficient amount of time to hide
the variable transmission delay.

In [3], it is shown that a buffer bound B of :

o]

allows to avoid buffer overflow. In (1), 6 = 2.(0maz —
Omin) wWhere 04, and 0,4, are respectively the maxi-
mum and the minimum transmission delay in the ATM
network.

0 is the maximum time spent by a cell in the buffer.
In the sequel, we call this delay the maximum mem-
orization delay. This delay is also the maximum
delay between two successive consumptions.

2.1 Applying AAL2 buffer bound to peri-
odic tasks

The systems studied in the context of the IRMA
project are similar to the one described above and we
will show how to apply equation (1) to a set of periodic
tasks sharing a buffer.

Later on, we will note P;, the period of a task and
D;, its deadline. Obviously, if a buffer bound exists, the
following equation holds :

1 1
Z S Z PCO’I'LS (2)

P
prodePROD ~ Pl onscCONS

where PROD (resp. CONS) is the set of producer
tasks (resp. consumer tasks) of a buffer and P04 (resp.

P.,,s) the period of the producer prod (resp. of the
consumer cons).

Equation (2) simply states that a bound exists only
if the production rate is less than or equal to the con-
sumer rate. We assume in this paper that one message
is produced or consumed on each activation of a periodic
producer or consumer.

Let see now how to apply the ATM/AAL2 bound
when a buffer is shared by IV producers and 1 consumer.

We first look for the maximum memorization delay
of a message in the buffer. We study messages added to
the buffer by a producer i. When a message of i is added
to the buffer, y messages could be already present in the
buffer. These y messages have to be consumed before the
message of ¢ since the buffer is managed in a FIFO way.
Furthermore, in the worst case, i produces a message
immediately after the beginning of a consumer activa-
tion. This message could be consumed at the end of a
consumer activation. Then, the maximum memorization
delay of a message of i is § = Peons + Y- Peons + Deons,
ord = (y + 1)-Pcons + Deons-

From the maximum memorization delay, we can now
propose a buffer bound B :

pom| > [HOm],)

Vy>0 P,
Y=\ prodePROD prod

Equations (1) and (3) differ on four points. 1) Con-
trary to ATM/AAL2, N periodic tasks produce mes-
sages in IRMA | then, equation (3) have to count the mes-
sages produced by all tasks. 2) Contrary to ATM/AAL2,
in (3), no particular assumption is done on task wake up
times. For a producer prod, Opoq is the bound on the
delay between the wake up time of the consumer and
the wake up time of prod. Since during Opyoq, prod can
produce messages that we can not forget, Op,0q have to
be added to §. 3) y messages are substracted from the
bound expression (3). Indeed, contrary to ATM/AAL2
where no consumption is done during 4, in (3) y con-
sumptions are done during this delay. 4) Finally, to find
a buffer bound from (3), we have to study it for all posi-
tive integer values of y. However, we will see in the next
section that simple bound expressions without y exist.

2.2 Buffer bound with Vi: D; < P,

From the bound expression given above, we show how
to find a simple bound when the deadlines of the tasks
are equal to their periods. In this case, the maximum
memorization delay is § = (y + 2).P.ons (since Deops =
Pcons)-

With N producers and 1 consumer, in the worst case,
the delay between the consumer and a producer wake up
time is bounded by the period of the producer. Then,

Vprod € PROD : Oproq = Pproa- Since 6 = (y+2).Peons,
substituting from (3), we have :

2 ‘PCOTLS P 0
B = max Z [(y-i-)P + pd-‘_
Y920\ L 0dePROD prod
(4)
From equation (4), we can prove the following theo-
rem :

Theorem 1 (a simple bound) The bound of a buffer
shared by 1 periodic consumer and N periodic producers,
when Vi : D; < P; and when all deadlines are met, is :

B=2N (5)

if tasks are harmonics and
B=2N+1 (6)
in the other cases.

Proof :

Let prove the buffer bound for non harmonic tasks.
From (2) and (4), we will show that, in the worst case,
one producer can add 3 messages in the buffer and the
N — 1 other producers can only add 2 messages.

Let show that a producer add y + 3 messages during
the memorization delay.

From (2), if a task set is composed of 1 consumer
and N producers, Pp.oq > P.ons holds. The max-
imum throughput of a producer ¢ can be achieved
when P; — P.,ns. In this case [M]
[(y+2).Pms+Pms

Peons
during 4.

Now, let find I, the maximum time interval of P;
within which ¢ can produce up to y + 3 messages.

If P — P.ons, the first (or the last) of the y + 3
messages produced by ¢ is done during the time interval
10, P.ons[- This delay can be uniformly distributed to
the y + 1 producer activations ; in order to maximize its
period with y + 3 produced messages.

The longest period of i with y + 3 produced messages
is then P; = P“j_"ls 4+ P.ons = M% We have shown
that a producer can add y + 3 messages in the buffer
when its period belongs to I =|P.ops, %[Let
us consider the N — 1 other producers now.

If the period of the producer i is close by %,
then, the N — 1 other producers have period near to
(y +2).Pt, .. Indeed, (2) can be rewritten as follows :

1 1 1
E—{_ Z S Pcons

P,
prode PROD~* ~ Prod

-| = y + 3 messages can be produced

or :

1 <$_Pcons

prod€ PROD* Pproa = T-Peons

where PROD* is PROD — {x} (z is the producer which
adds 3 messages).
Let assume f(z) :

T — Peons
fle)=—5—
2. Peons
and investigate it when = — % and z —

Peons :

) _ 1
° llmzﬁm?% f(z) = W+2)-Peons

1
(y+2).Peons’
which implies, in the worst case :

Vprod € PROD* : Pproq — (y + 2).P1

cons*

1
Or ZprodEPROD* Porod <

o lim,yp,,,, f(z) =0

Or medepROD* P; < 0, and thus, Vprod €

prod

PROD* : Pproq — 0.
From the investigation of f(z), we have shown that
producers from PROD* have a period included in J =
[(y+2).Peons, 0[. Then, the largest production message

Z P + Oprod-‘

18

prod€ PROD* Porod
or :
S {(y +2) Peons + (y + 2)'P£nsl N s
prode PROD* (y + 2)Pc:gns

From (4), the buffer bound is :

B =y+3+ Z

’V(y +2)Peons + (y + 2)'Pctns-‘ _
prode PROD*

(y + 2)P$ns

and finally : B=y+3+2N-2—-y=2N+1

Let see now the case where tasks are harmonics. The
method previously applied for non harmonic tasks could
be used in this case except that with harmonic tasks, y+
2 messages are produced during the memorization delay.
Indeed, when two tasks ¢ and j have the same period,
0; = O = 0. In the worst case, a producer ¢ sends
[(y+2)-Pcons

cons

-| = y + 2 messages. During a time interval

I, P; can take values in [Pe.ops, %] Substituting

the information above in (3) yields :

B = y+2+

prode PROD* (Y +2).Peons

and finally : B=y+2+2N—-2—-y=2.N

3 The Cheddar real time scheduling
simulator

From the ATM/AAL2 buffering service, we have pro-
posed bounds on buffers shared by periodic tasks. We
now describe a tool we use to test these bounds and
which can help to model an application and to analyse
its feasibility.

This tool, Cheddar, provides services to check tem-
poral constraints of tasks. Cheddar implements bounds
similar to the ones presented in the previous section and
some classical uniprocessor scheduling feasibility tests.

Cheddar is a tool published under the GNU/GPL
license. Source code, binaries and documenta-
tion can be downloaded from http://beru.univ-
brest.fr/~singhoff/cheddar. Cheddar runs on Solaris,
Linux and Win32 systems.

The tool is composed of two independent parts :

e A graphical editor used to design a real time system
or a real time application.

e An object oriented framework providing the most
usual real time schedulers and feasibility tests.

Cheddar lets you describe a system or an applica-
tion composed of periodic/aperiodic tasks, processors,
buffers, shared resources and messages.

From an application description, Cheddar provides
two features : feasibility tests and a simulation engine.

The main feasibility tests provided are response time
and processor utilization factor computation for Rate
Monotonic, Deadline Monotonic, Earliest Deadline First
and Least Laxity First [6, 4]. Of course, Cheddar can
bound buffer size with equations such as (5) and (6).

Simulation features allow the user to display a
scheduling in a graphical way. From this simulation,
much information can be computed by Cheddar : re-
sponse times, shared resource blocking times®, free time
units ... Today, most of the classical scheduling algo-
rithms are implemented in Cheddar but the simulation
engine can be tuned by users with a small and easy to use
language. This is a useful feature since in many cases,
no feasibility tests are available for specific task models
or scheduling algorithms.

An exhaustive list of services provided by Cheddar is
given on the Cheddar user’s guide Web pages.

LSupported shared resource protocol are PCP and PIP.

Z [(y +2)Peons + (y + 2)'Pcons-‘ y

4 Conclusions and ongoing works

This paper have presented the IRMA project. In this
project, we have studied feasibility of real time monitor-
ing applications. Applications we have considered run
on a uniprocessor and are composed of tasks which can
be activated in a periodic or in a random manner. This
two task families share resources such as buffers. Check-
ing feasibility of such applications consists in checking
that tasks meet their deadline and that no buffer over-
flow occurs.

In this paper, we first supposed that failure informa-
tion was provided periodically to the monitoring appli-
cation. All tasks are then periodic ones.

We have proposed a test to find bounds on buffers
shared by periodic tasks. These bounds do not suppose
that tasks are scheduled according to a particular sched-
uler : they are valid for all scheduling provided tasks
meet their deadline.

The proposed bounds are implemented in a GPL real
time scheduling simulator : the Cheddar simulator. This
simulator provides most of classical uniprocessor feasi-
bility tests for real time schedulers (fixed priority and
deadline driven schedulers).

Future works in the IRMA project should now con-
sider monitoring applications where failure information
is provided in a random way. Indeed, most of the time,
reliability of embedded equipments is expressed by ran-
dom law[5]. Unfortunately, few feasibility tests are pro-
posed when periodic and randomly activated tasks share
a processor and buffers.

References

[1] A.N. Audsley, A. Burns, M. Richardson, and K. Tin-
dell. Applying new scheduling theory to static pri-
ority pre-emptive scheduling. Software Engineering
Journal, pages 284-292, 1993.

[2] B. Burchell. A3XX Maintenance A First
Look. Owerhaul and Maintenance Revue. URL :
www. aviationnow.com, August 2000.

[3] M. Gagnaire and D. Kofman. Réseaux Haut Débit :
réseaur ATM, réseaux locaux, réseaux tout-optiques.
Masson-Inter Editions, Collection ITA, 1996.

[4] M. Joseph and P. Pandya. Finding Response Time in
a Real-Time System. Computer Journal, 29(5):390—
395, 1986.

[5] C. M. Krishna and K. G. Shin. Real-Time Systems.
Mc Graw-Hill International Editions, 1997.

[6] C.L. Liu and J. W. Layland. Scheduling Algorithms
for Multiprogramming in a Hard Real-Time Envi-
ronnment. Journal of the Association for Computing
Machinery, 20(1):46—61, January 1973.

