UNIVERSITAT POLITECNICA
DE CATALUNYA

On real time teaching in non computer science
curricula

Ramon Costa-Castello

10C-DT-P-2005-3
Gener 2005

Institut d’Organitzacié i Control

de Sistemes Industrials

On Real Time Teaching in Non Computer Science

Curricula

Ramon Costa-Castell

Abstract— This work describes the topics taught on a real- of software for such systems requires skills and knowledge

time programming course. This course is part of the Degrees that exceed what is foreseen in generic engineering claricu

in Electronics, Mechanical Engineering and Automatic Control, . L.
9 g Automation software has several characteristics thatldhou

and thus most students do not have a background in operating
, ,) be taken into account, the most important of these being
systems and related topics. This prevents us from using methods

that are traditionally employed in teaching real-time topics to concurrency (capability of simultaneously executing salve

computer science students. The paper presents the specifics oprograms) and time constraints. Although these requirésnen

the topics, methods and materials used on this course. can be implemented using low-level programming schemes,

Index Terms—Real Time System, Automation Software, Real such as cyclic executive or interruptive schemes, the use

Time Operating Systems. of higher level development techniques reduces developmen

time and increases reliability. Real-Time Operating Syste
I. INTRODUCTION

(RTOSSs) are a special family of operating systems (OSs) that

Today, most automation-related devices are designed by) , o .
are designed to allow tasks to fulfil their time constraints.

means of digital technology. These technologies includ€$PL =~))) i
This kind of tool is becoming very popular in the automation

(Programmable Logic Controllers), DSPs (Digital Signab-Pr
industry. Unfortunately, these tools are based on conaapts

cessors) and microcontrollers, which most electronic -engi , ,

ideas that students outside of computer science (CS)/dempu
neering students are familiar with. Although most of these)) -)

engineering (CE) curricula [1] are not familiar with. In erdo
devices have software libraries and development envirotsne = |])

minimize the problems students may have when dealing with
their programming may be considered low-level. This kind of)))

these kinds of technologies, from the 1997-1998 acadenaic ye
programming, however, is usually very time-consuming and . .)

onwards, the School of Industrial Engineering of Barcelona
can only be taken on in large productions or in cases in)

(ETSEIB) has been offered a course that addresses topics
which a lot of computing effort is needed (e.g. DSPs). As the i . o

related to Real-Time Systems (RTSs). This course is didecte
prices of powerful computers, such as PCs, fall and the marke))]]

at last-year engineering students who are following generi
requirements that they must fulfil are extended, other wdys o))))

courses that may include electrical, electronic and mechhn

developing automation software are needed. The develdpmen))
engineering. Although they may have studied elementary

programming subjects, most of them do not have a background
Ramon Costa-Castéllis with the Institut d’Organizacd i Control de

Sistemes IndustrialdJniversitat Poliecnica de CatalunyaBarcelona, Spain. in OSs and other relevant topics in CS. This paper preseats th

E-mail: ramon.costa-castello@ieee.org specifics of the topics, methods and materials of this course

the content of which is the result of several previous cairs® use these tools; therefore, they need qualitative kriyde

and analyses that the students see applied during the coursktheir operation and associated problems.

Il. FRAMEWORK IIl. GOALS

Before following this course, engineering students at the Although several topics, such as real-time schedulinggtesi
ETSEIB follow at least two courses in basic computer scienseethodologies [3], the design of drivers [4], object-otezh
and programming, in which they learn basic programmingrogramming techniques[5], and security and reliabili@j [
methods such asequential searghup-bottom designrecur- are of great relevance to real-time systems, time resinisti
sive designdivide and conquerand basic data structures and the students’ academic background mean that many of
This is the only experience in computer science that can #eese topics cannot be tackled during the course. The course
assumed in all the students. Their background knowledgs digfocused on those fundamental concepts and their implemen
not include OO (object-oriented programming), UML (Unifiedation principles [7].

Modelling Language) [2] or other tools employed in software The most important goal of the course is to provide students
engineering. On the other hand, most students are famiitar wwith the fundamental concepts that allow them to implement
aspects of digital systems, such as timers. simple real-time applications in the field of automatione3é

Although in previous courses most algorithmic concepts agencepts are related to concurrency and time constraints.
presented by means of an algorithmic language, in practiddthough concurrency may be a very complex matter, the
work the C programming language is used; therefore, knowleurse’s characteristics do not allow it to be studied iragre
edge of C can be taken for granted. Additionally, some ¢fetail. Concepts that are considered of great relevance are
the students use this language in courses in microprocessgheduling criteria and mutual exclusion access. In aufdit
programming. these qualitative concepts, the quantitative tools tHatabne

This framework limits the ways in which the concepts malp determine whether a given system will be able to execlte al
be taught to students and conditions the goals of the couri necessary tasks whilst fulfilling time and data consisgte
For students to get the most out of it, the content and methad¥straints are deemed an important topic for engineering
must be designed taking this framework into account. students (schedulability analysis [8])

The course’s theory part is worth 3 credits, while the In their professional lives, graduates will use tools to
practical sessions are worth 1.5 credits, and they compriggplement RTSs, which are presented in this course. RTOSs,
ten lectures and seven laboratory sessions, all of thegegasas is the case with most technologies, are far from beind idea
two hours each. Due to the limited duration of the course, g@mponents, so it is important for students to learn what the
is important to concentrate on relevant topics related tal-Remain differences between ideal and real RTOSs are. As the
Time Systems (RTS), without using complex tools that may Igfect of the most relevant of these technical phenomena can
difficult for the students to grasp. Although the studentowteasily be included in schedulability analyses, it is impott
take the course do not develop OSs or RTOSs, they will halg show how this can be done in order to improve students’
runderstanding of the phenomena.

1These courses may be taken at the same time as, or before, tise dou

question, depending on the curricular path followed by tielent Additionally, during their professional lives, studentdllw

1) Introduction
2) Concurrency
a) Task Concept
b) Shared Resources
¢) Scheduling
i) Time sharing
i) Real Time Schemes
3) OS Basics
a) Functions
b) Memory Management
c) Device Drivers
d) RTOS parameters
e) AP

4) High Level methods

Fig. 1. Syllabus outline

state machine implementatfonThe experience shows that
this type of example especially motivates the students, and
allows theory concepts from other courses to be linked to
implementations in the real world.

1) Introduction{4 hourg

Activation time

running

waiting

time

D (Deadline time)

Fig. 2. Periodic task Ideal execution Chronogram.

need to choose between different RTOSs, so it is important

The most important needs and characteristics of real-

to teach the students the criteria that they might employ in

choosing between them. Students are also shown the problems

time systems are presented in this part [8, chapter 1].

Particular emphasis is placed on the parameters and

that they may encounter when using a traditional OS to

implement applications with real-time constraints.

When students have completed the course, they should be

able to implement simple automation applications by me#&ns o

time constraints used to define periodic and aperiodic
tasks (Figure 2). An example that has been useful
for the students concerns control task implementation.

According to the theory [9], a certain algorithm must be

RTOSs and they should also understand how these components

behave.

IV. SYLLABUS

executed periodically and the activation time should be
kept stable. Most implementations will introduce some
variations in the ideal activation time (e.g. jitter). In

order to allow for these variations and for it to agree

Theory concepts are taught to the students by means of

traditional lectures. In the following, the content of thdlabus

with the theory, a deadline which is around 10-15% of

the period is permitted in the control community., It is

(Fig. 1) and how this is organised as lectures is described.

Although bibliographic aspects will be introduced in seuti

then possible to obtain the periodic task parameters and

formulation directly from this desired behaviour.

VI, details are given on the basic reference work for each

particular topic.

In order to spark the students’ interest, the examples used

will be related to automation, including filter, controlland

2) Concurrency{12 hoursg.

2|t is important to note that the specific topics of each implemiéom have
een studied by students as part of previous courses andegieddre not dealt

with on this course.

admitted
/\ scheduler

In this subject, we explain fundamental concepts related

to the simultaneous execution of several programs and

the benefits of describing the behaviour of a system by

means of several programs, rather than building just one

program to do the entire job. For example, when the

control of a car is centralized, there are several tasks

for each component, rather than a single program that

controls everything.

This topic is divided into the following subtopics:

a) Task Concept [10, Chapter 4].

scheduler

time, /O event @

time, I/O wait

Fig. 3. Basic Task States and Transitions Between Them.

Analog Inputs

Channels

A task is defined as a program in execution. Ther,ge characteristics

The need for coordinating the different tasks run-
ning on a system is introduced. The shared re-
source concept is analyzed, and the needrfotual
exclusionis presented. An example that has been
used for several years is a system in which two
tasks are implementing two independent control
loops and both tasks are using the same AD/DA
card. Like most low-cost AD/DA cards, it has
several input channels that share the conversion
elements (Figure 4). As a consequence, in order
to ensure data consistency, it is necessary for the
different tasks to use the card one after the other.
In order to address this problem, tlsemaphore

concept is introduced.

¢) Scheduling

T=5
—

C=2 ==

T=5
Distribution in time l
_— B B
T=10 l
o-s B i

different states in which the task may be are
presented in this section (Figure 3). A qualitative

interpretation of each of these states and transition

Fig. 5.

Sequential Equivalent Program

Distribution in time to implement virtual concurrency.

analyses are also presented.

b) Shared Resources [10, Chapter 6]

> £
—_— 3 5 .
Analog “é . 2 Digital
""" Multiplexer 5 S
P g5° o Output
—— & : 9(
1 5 5
5 H H
: Gain Conversion
Channel Selection trigger
Selection

Fig. 4. ADI/DA Card Logic Scheme.

Scheduling policies are a key concept in traditional
real-time courses [11] [3]. Although most of the
students enrolled on the course do not know much
about OSs or schedulers, it is important to teach
them about the role of the scheduler in real-time
systems. In order to illustrate this concept properly,
a system composed of three tasks is presented,
and how these three tasks are divided into parts
that are sequentially executed is explained. On

the basis of this simple example, the concept of

cyclic executivi8] is introduced and the concept
of virtual concurrency is visualized [Fig. 5].

The most important scheduling policies are intro-
duced in a qualitative way. To make this presen-
tation more effective and more attractive to the
students, a simulator is used in the lectures. There
are several simulators that can be used without
cost; some of them ar@Tsim[11], Cheddar[12],

and RTA[13].

In this topic, the following subtopics are addressed:

i) Time Sharing Schemes [10, Chapter 5]
The goals of a time-sharing scheme are pre-
sented; in particular, @®ound-Robinscheme
is analyzed. The difficulty of predicting the
time response in this scheme is emphasized.
Additionally, the role of priorities in this kind
of scheme is discussed, and a range of reading
material in which real OS scheduler behaviour
is described is recommended to the students
[14, Chapter 10] [15] [16].

i) Real Time Schemes [8, Chapter 13]
The most relevant schedulers used in real-
time systems are presented in two parts: how
time is divided up between the tasks and how

schedulability can be studied.

A) Static Priorities
Priority assignment methods are presented
(RMPA, DMPA). The load concept and the
main schedulability results are introduced.

How task interaction may affect schedula-

sented, and its definition and analysis tools
are described.

B) Dynamic Priorities
Basic concepts related to dynamic priority
scheduling schemes (EDF, LSF) are pre-
sented. Special emphasis is placed on the
differences between dynamic and static pri-

ority schemes.

3) Basic concepts of OSEL2 hourg

In previous topics, an ideal framework was assumed. The
goal of this part is to present technologic concepts that
play an important role when an OS is used to implement
a RTS.

In this topic, we discuss a set of technologies that are
currently used in computer architectures that improve a
system’s performance but make estimating the computer
execution time more difficult. These concepts include

pipelining, memory hierarchies (cache, swapping) and
DMA transfers among other things. All these concepts

are described qualitatively by means of examples.

a) OS Funcionalities [10, Chapter 3].

Programs

(O8]

Hardware

Fig. 6. OS role in a modern computer system.

bility is analyzed; in particular, theriority

inversionproblem is described. In order to
present this problem clearly, the well-known
pathfinder[17] problem may be used. The

immediate ceiling priorityprotocol is pre-

The OS is presented as an abstraction layer over
the hardware. The most important functionalities
are described. The most important architecture

approaches in OSs are described in a qualitative

http://beast.dcce.ibilce.unesp.br/~aleardo/cursos/str/str.html
 http://beru.univ-rest.fr/~singhoff/publi.html
ftp://ftp.dit.upm.es/str/software/rta/

Fig. 7.

b)

d)

way, and the relevance of these architectures when benefits of using a standard API for different
embedding the OS is analyzed. OSs are discussed. POSIX real-time extensions are
In order to analyze the differences between a tradi- briefly presented [21].

tional OS and an RTOS, concepts likeentrancy 4) High level Methodologieg2 hourg

and preemptivityare introduced to justify the need The capabilities and functions offered by high-level
for special OSs in the implementation of RTSs. development tools such as ADA[22] or JAVA-RT[23]
Memory Management [10, Chapters 8,9]. are presented. The implicit handling of time and shared

Virtual memory and memory protection concepts resources are presented as desirable tools.

are presented. The problems introduced by virtual
memory in time determinism and the usefulness V. LABORATORY EXPERIMENTS
of memory protection when addressing a secug Experimental platform

system are emphasized. During the first years of the course, a high-level language

Device Drivers. was used to illustrate theory concepts. Specifically, theédAAD

The role of the device driver is presented. As paf&nguage and a free GNAT compiler were used. Experience

of the real-time implementation chain, the deV'C%howed that students spent most of their time dealing with th

driver must be time-deterministic [18] [19][20]. language’s syntax instead of on real-time concepts. Irtiadgli

RTOS Parameters [8, Chapter 16]. this platform only allowed the students to implement soétire

time systems. To circumvent these problems, we decided to

scheduler| Switch Task Execution Switch

Context Context use the C languadeThis language must be combined with an

RTOS in order to develop an RTS, and there are several ways

time

of doing this. As the university laboratories are equippéith w

general-purpose operating systems (GNU/Linux), a saiutio

Real Chronogram.

e)

that would enable us to combine this OS with a real-time one
There are several differences between the ide&ps needed. There are several projects that allow GNU/Linux
time response and the time response obtained ifcabe combined with a hard real-time environment, the most
real system, as the latter includes phenomena likglevant being RTAI and RTLinux. Both projects were initfal
latency and context change (Figure 7). All thesbased on a Ms.C. project carried out by Michael Barabanov
parameters are defined and analyzed for sevekdider the supervision of Victor Yodaiken in 1997.
real RTOSs. Additionally, the issue of how these In 1998, V. Yodaiken founded a company (FSMLABS) with
parameters might be included in a schedulabilitthe purpose of harnessing the development and the industria
analysis is addressed. use of RTLinux. One of the consequences of this was the
The difference between a thread and a processifgroduction of a software patent of the main concepts used
also defined[10]. in RTLinux. This patent received a great deal of criticism
Application Programmers Interface (API). from within the community, which had until then developed

The system’s call concept is presented, and theAll of the students have used this language in previous esurs

http://www.adahome.com
http://www.gnat.com
http://www.aero.polimi.it/%7ertai/
http://www.rtlinux.com
 http://www.fsmlabs.com/

and used RTLinux following a GPL licensing approach. Part 1) Teaching by example

of this community decided to initiate a new project called a) Periodic Tasks.

RTAI (Real-Time Application Interface). This new project b) Time handling. Computation Time.
was headed by Paolo Mantegazza from the Politecnico di c) Multitasking.

Milano. Although this project initially used part of RTLini$ d) Shared Resources.

original source code, this project is currently based on S3E 2) Project sessions

(Adaptive Domain Environment for Operating Systems), a a) Design.

nanokernel distributed under a GPL licence. RTAI is activel b) Implementation and test

supported by a number of contributors who develop new kernel

. o . Fig. 8. Lab experiments outline
versions and new applications to run over it.

B. Contents

RTLinux has been divided in two main projects: RTLinux- The laboratory experiments are divided into two blocks.

Pro and RTLinuxFree. RTLinuxPro is developed by FSMLAI.?»n the first (first to fourth session), teaching by example

under a commercial licence, while RTLinuxFree is an opela—pproach is used, while in the second block, a project aghroa

source version of RTLinux. RTLinuxFree is licensed und% used (fifth to seventh sessions). An outline of the session

GPL and the RTLinux Open Patent Licence and is communit;,é- presented in Figure 8.
supported. One of the main contributors to RTLinuxFree és th In everyteaching by examplsession, a new set of concepts
Technical University of Valencia. As an example, two prog';ecis introduced. Each session builds on the preceding one. The
that are relevant from an academic point of view are tWﬁmlementa‘tion of the concepts is presented by means of a set
porting of an ADA compiler [24] and the development of bt very simple programs. Each program is presented as a fully
stand-alone version that can be used without GNU/Linux OVR[hctional source code that the student must compile, rgh an
it[25]. study in keeping with a set of predefined goals. Each code
includes one or two syntactic errors, which force the sttden
As in the course described, only basic concepts are tau%t-analyze the code.
Both approaches offer the necessary functionality ancoperf additionally, a set of changes that modify the program’s be-
mance. Due to historical reasons, RTLinuxFree is used on viour is proposed to the student. By modifying the program
course. In practice, most example codes used in the lalipratgemantically and syntactically, the students gain expegén
experiments may run directly on RTAI dealing with these new concepts and their implementation. A
key factor is that students do not spend time designing the
From a practical point of view, the most significant drawprogram from scratch.
back in using RTLinuxFree is that it implements a PSE51 At the end of each laboratory session, the student is asked
POSIX profile [26]. This profile has no memory protectioo write a report . Writing this report forces the students to
and, as a consequence, an improper use of the pointer meyiew the concepts learned during the session and analyze a

make the machine crash. RTLinuxFree uses the GNU/Lingrt of important facts.

modules, so students must be briefly introduced to them. The following topics are addressed in theaching by

http://www.aero.polimi.it/%7ertai/
https://gna.org/projects/adeos/
http://rtportal.upv.es/

examplelaboratory sessions:

P1 Periodic Tasks.

P2 Time handling. Computation Time (C)

P3

Three different ways of implementing periodic tasks are
presented:Busy waiting relative delays and absolute
delays. The same codes are executed in Linux and34
RTLinux, which allows the students to compare the
behaviour of a traditional OS and an RTOS. During
the programs’ execution, the mouse and other tasks are
used to analyze the system’s sensitivity to this kind of

disturbance.

that are needed to handle priorities are introduced in this
session.

Students are asked to analyze the schedulability of the
complete system.

Shared Resources.

The use of semaphores to implement mutual exclusion
is presented, and all related commands for handling
and customising semaphores are introduced in this ex-
periment. The example presented in the lectures is

implemented (2b section)

To illustrate this topic, a square waveform generation Once the students have learnt the basic real-time concepts

program is used. This waveform is sent to the parallépd the way of implementing them, a real problem is presented
port and the PC speaker simultaneously, so that tfethem. All proposed problems require the use of severdl rea
student can analyze the performance by watching tHE'e concepts seen in the previous block. The project iregud

parallel port through the oscilloscope or by listening t§€Signing and implementing the software and analysing the

the speaker.

Time is a critical concept in real-time systems. For 1)
this reason, time representation, time resolution, time
stamps and the estimation of the execution time are
studied during this session. The goal of the session is
to develop programs that measure the time the CPU
needs to execute a certain predefined code. This is done
by using the OS’s timers combined with a double loop
technique and by using the oscilloscope combined with 2)
the introduction of marks in the source code (the parallel
port is used as a mark).

This experiment is of great relevance because it presents
methods for measuring the information needed for the
schedulability analysis presented in the lectures.
Multitasking.

In this experiment, students analyze the execution of3)
three independent tasks. All three tasks generate outputs
that can be observed by the students, so that they can

see them being simultaneously executed. The commands

year,

time response. By way of example, in the 2003-2004 academic

the following problems have been proposed:

Servo Control System Implementation.

The students are asked to implement a position control
for a DC motor. The controller is composed of two con-
trol loops: one for velocity and the other for positioning
at two different rates. Both control loops use the same
AD/DA card and need to share information in order to
implement the system.

Distance Measuring.

A Sharp GP2D02 sensor is used to estimate the distance.
In order to interface this sensor with the computer, a
predefined waveform containing time constraints must
be generated through an IO card. Once this estimation
is obtained, the goal is to filter it in order to obtain a
clean measure.

Velocity control.

The velocity measurement is obtained by means of
an encoder. The interface with the encoder is made

following a protocol with time constraints through the

parallel port. Once the measurement is obtained, it mwat[32] and Liu [33]. All these books may be of great interest

be filtered and used to close a velocity control loop. to teachers of these subjects, but they may be out of reach for

These small projects help the students to deal with therdifte Students who are not in a CS/CE environment.

concepts and the way they are implemented. Many otherOther books that may be useful to students and lecturers
projects could be used [27]; the only constraints are tha thalike are those that relate control systems to real-timtesys
should be solvable in a few sessions and that they should toli@ this area, books by Bennet [34] and Svrcek et al. [35] have

upon different aspects of RTSs. been particularly useful to the author.

Finally, books on specific topics, such as POSIX[21],

VI. MAIN BIBLIOGRAPHY ADA[22], JAVA-RT[23] or UML[2], may be of great interest
Since the work by Halang [28], many interesting books otr? students and lecturers alike, particularly when theydrtee
real-time systems have appeared in English. Most of thégéplement a specific application by using one of these tools.

books may be used as textbooks, although unfortunately none VIl. COMPLEMENTARY | NFORMATION SOURCES

of them exactly matches this course’s syllabus. . . .
Today, the Internet is an information source that can-

One of the books that is most widely used in real-time . .
not be ignored. In the area of real-time systems, there are

teaching is by Burns & Wellings [8]. It includes most top- .
g y gs [8] pa great number of websites that can be used to support

ics, such as concurrent programming, real-time schedulin . o .)
prog 9 d tgachlng activities. In order to guide students’ steps is th

fault-tolerance and programming languages. Additionatly . i
area, several websites are initially recommend to themesom

includes a great quantity of teaching material. Unfortahyat
g a y ¢ ha of which include online magazines (e.g. Embedded.com,

this book is addressed to students of CS/CE, so it may B%dicated Systems), RTOS websites (ex. ONX, VxWorks

hard to follow for students on this course. To overcome thﬁaRTE 0S, ECOS) and documentation web pages (e.q

blem, iti di binati ith another classic bimok .) . o
problem, 115 Lsed in combination With another classic bimo OCERA project, Real Time and Embedded Guide). This in-

the field of . Thi k il hat Ivi
€ field of OSs 's book, by Silberschatz, Galvin & Gagn]%rmation allows the students to come into contact with real

[10], introduces the most important concepts in OSs. Addi-
components and information. One of the course’s main goals

tionally, it offers a great quantity of teaching materialrin) . . .
y 9 q y g 9 is for students to understand the information availablehefrt

the course, several chapters of this book are recommended as o .
own accord, so it is important to determine whether theylyeal

an introduction to several basic OS topics. The specific ways
P P go understand the information available and to obtain faeklb

in which these books are used are described in the Syllagyosm them in this respect

section (IV section).
() Some of this material might also be of great interest to the

In addition to these basic books, several other books ha}\é%turers, in that it will help them to keep up to date on these

n nd m recommen mplementar h . .
been used and may be recommended as complementa ytotécﬁnologms. A number of examples may be obtained from

ic ones. A classic book, such as the on Laplante [2 .
basic ones. A classic book, such as the one by Laplante [t?]ése sources in order to update lectures.
offers a comprehensive overview of fundamental hardware-
and software-related topics. Scheduling policies andyaisl VIII. DiscussioN
methodologies are covered in a great quantity of books, suchHn recent years, the course has been attended by about 40-

as the ones by Butazzo [30], Krishna Shin [31], Stankovic BD students per year. In general, the students’ responseto t

http://www.cs.york.ac.uk/rts/RTSBookThirdEdition.html
http://cs-www.cs.yale.edu/homes/avi/os-book/osc/index.html
http://www.embedded.com/
http://www.dedicated-systems.com/
http://www.qnx.com/
http://www.windriver.com/
http://marte.unican.es/
http://sources.redhat.com/ecos/
http://bernia.disca.upv.es/~iripoll/rt-linux/rtlinux-tutorial/
http://people.mech.kuleuven.ac.be/~bruyninc/rthowto/

10

lectures has been positive, especially when theory cosceffite students to gain confidence in their knowledge of basic
are illustrated by means of the practical examples predentmplementation tools, so that they eventually reach thgesta
in this paper. These examples are, in my opinion, a key isswben they are ready to implement simple RTSs.

that introduces students to the most important concept$, an

. . .) IX. CONCLUSIONS
is particularly important for those students with a back

. e This paper describes the content of a course that deals with
in electrical engineering or electronics. Another key ésssi

presenting RTOSs as a real technology that is far from pkarferceal_t'me systems, which is included in generic enginggrin

although this requires the introduction of OS basics, itvad curricula. The way in which traditional methods and sylisbu

students to qualitatively understand several conceptsa used in CS/CE curricula are adapted to the generic engirgeeri

of great relevance in practical RTSs. Topics introducechn tcurrlcula is presented. The specific topics addressed and th

. . .methodologies used are described, and the examples used to
lectures are evaluated by means of a traditional exam; this

exam is broken down into two parts, a theory section, in whiéﬂ”s”ate the most relevant topics are presented. Detéilse

short questions about relevant concepts are introduce&ﬁaanCOurse are taken from 1998 to the present.

. Our experience of teaching the course, as presented in
practical section in which a case must be studied. Using this P 9 P

hi | f imil f-
approach, up to 80% of students pass the exam and reacth Isé paper, may serve as a model for similar courses o

good understanding of what an RTS is. fered in other engineering programs. Additional inforroati

about this course can be obtained in the course webpage:

As previously explained in the section on V-B, the Iaborehttp'//www ioc.upc.es/usuaris/RamonCosta/SITR/

tory sessions are divided into two parts: teaching by exampl
and the project. This approach allows the lecturer to intoed REFERENCES

the necessary tools in a short period of time, and the use @ff A. Kornecki, “Real-time systems course in undergraduaté&e pro-
these new tools combined with the use of real components 9'aMs:" IEEE Transactions on Educationvol. 40, no. 4, p. 9pp,
) o) November 1997.

(e.g. sensors, actuators, etc.) is effective in sparkindesits [2] B. P. Douglass,Real-Time UML: Developing Efficient Objects for
interest. During the first part, it is important for the leeu Embedded Systennd ed. Addison-Wesley Pub Co, October 27 1999.
to constantly interact with the students in helping them td®l G Martinovic, L. Budin, and Z. Hocenski, “Undergradaateaching
of real-time scheduling algorithms by developed softward,"td&EE
understand the new commands. In the second part, the ssudent Transactions on Educationol. 46, no. 1, p. 185=196, February 2003.
are grouped in pairs, so that they can discuss the differef] A. Kornecki, H. Wojcicki, L. Peltier, J. Zalewski, and NKruszynska,
approaches; at this stage, it is important for the lectuoer t Teaching device drivers technology in a real-time systemmsaum,
in Proceedings on Real-Time Systems EducationRtznan, Poland,

21th November 1998, pp. 42—-48.
that most groups manage to successfully finish their proje¢t] J. De La Puente, A. Alonso, M. Garcia-Valls, and J. Ruifgdching

discuss the students’ proposals with them. We have found

real-time systems at dit/'upm,” iRroceedings on Real-Time Systems

Education Il Poznan, Poland, 21th November 1998, pp. 117 — 122,

on schedule, although in order to this, the projects must be

built like "puzzles”, using previous sessions as the bunidi available in ftp://ftp.dit.upm. es/str/software/rta/.

parts. Typically, the size of the code developed by the stisde [6] N. G. Leveson,Safeware : system safety and computersBoston:

is less than 100 lines. This way of proceeding allows the Addison-Wesley, cop., 1995.
)] [7] W. Halang, “Teaching device drivers technology in a féiae systems
student to focus their thothtS on the relevant concepteads curriculum,” in Proceedings on Real-Time Systems EducationPitiz-

of spending time on coding. The approach proposed allows nan, Poland, 21th November 1998, pp. 156 — 159.

http://www.ioc.upc.es/usuaris/RamonCosta/SITR/
ftp://ftp.dit.upm.es/str/software/rta/

11

[8] A. Burns and A. Wellings.,Real-Time Systems and Programming27] M. Moallem, “A laboratory testbed for embedded computentod,”

El

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[29]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

Languages 3/e. Ada 95, Real-Time Java and Real-Time PO%X. A
Burns and Andy Wellingshird edition ed. Addison Wesley Longmain, [28]
March 2001.
Oxford

[29]

B. C. Kuo, Digital Control Systemssecond edition ed.
University Press, 2002.
A. Silberschatz, P. B. GalvinList, and G. Gagr@perating System

John Wiley & Sons, Inc, June 2001, [30]

Conceptssixth edition ed.
A. Manacero, M. Miola, and V. Nabuco, “Teaching reah& with a
scheduler simulator,” iffrontiers in Education Conference. 31st Annual

vol. 2, Reno, NV, 10-13 October 2001, pp. 15-19, availablerifine.

F. Singhoff, J. Legrand, L. Nana, and L. Marc“Cheddar : an open (31]
and flexible real time scheduling framework,” 2004, availatufiine.

J. A. de la PuenteRTA Technical University of Madrid (DIT/UPM), (32]
1998, available online.

D. P. Bovet and M. Cesati/nderstanding the Linux Kernel O'Reilly,
October 2000.

the

.NET

“Inside windows nt

&

M. scheduler,

1997,

Russinovich,
[33]

(34]

part 1" Windows Magazine July

http://www.winntmag.com/Articles/Index.cfm?IssuelZ2&Articlel D=302.

windows nt

NET

the
&

, “Inside scheduler, part

1 Windows Magazine August 1997,

http://www.winntmag.com/Articles/Print.cfm?Article|D63. [35]

M. B. Jones, “What really happened on mars?” 1997,
http://research.microsoft.cofi7embj/MarsPathfinder/.

R. Krten, “Device drivers & real-time system®t. Dobb’s Journa] pp.
34-39, October 1998.

W. Hassan, “Writing real-time device drivers for telecemitches, part
1,” Linux Journal September 200 ytp:/mww.linuxjournal.com/print. php?sid=4771

——, “Writing real-time device drivers for telecom switeh, part 2 of
2,” Linux Journa) November 200 Lytp:/mww.iinuxjournal.com/print.php?sid=5438

B. Gallmeister,POSIX.4 Programming for the Real Worldst ed.
O'Reilly & Associates, Inc., January 1995.

A. Burns and A. WellingsConcurrency in Ada Cambridge University
Press, November 1997.

P. C. Dibble,Real-Time Java platform programmingst ed. Prentice
Hall PTR, March 2002.

M. M. Tello, J. Real, I. Ripoll, and A. Crespo, “Runningla on real-
time linux,” Lecture Notes in Computer Scieneel. 2655, pp. 322—-333,
2003.

V. Esteve, |. Ripoll, and A. Crespo, “Stand-alone iiagpl,” in Fifth
Real-Time Linux Worksho2003, pp. 149-154.

Portable Application Standards Committee of the IEEE Catep
Society, “IEEE Standard for Information Technology - Stamwlized
Application Environment Profile-POSIX. Realtime ApplicatiSupport

(AEP),” iIEEE Std 1003.13-1998. ISBN 0-7381-0178-8.

IEEE Transacion on Educatiovol. (To Appear), 2004.

W. A. Halang, “A curriculum for real-time computer and ¢mi systems
engineering,lEEE Transactions on Educatipwol. 33, no. 2, pp. 171—
178, May 1990.

P. A. LaplanteReal-Time Systems Design and Analysis : An Engineer’s
Handbook IEEE Press, January 1997.

G. C. Buttazzo,Hard Real-Time Computing Systems. Predictible
Scheduling Algorithms and Applicatiognser. The Kluwer International
Series in Engineering and Computer Science, J. A. Stankdlc,
Kluwer Academic Publishers, 2002.

C. Krishna and K. G. ShinReal-Time System¥V. McGraw-Hill, Ed.,
1997.

J. Stankovic, M. Spuri, K. Ramamritham, and G. C. Butttaixeadline
Scheduling for Real-Time Systems. EDF and Related Algusitker.
THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND
COMPUTER SCIENCE. Boston: Kluwer Academic Publishers, 1998
vol. 460.

J. W. S. Liu,Real-Time Systemdst ed. Prentice Hall, June 2000.
S. Bennett, Real-Time Computer Controlsecond edition ed., ser.
Prentice Hall International Series in Systems and Contra@jif&ering,
M. Grimble, Ed. Prentice Hall, 1994.

W. Y. Svrcek, D. P. Mahoney, and B. R. Youn§,Real-time approach
to process control, Solutions Manual John Wiley & sons, cop, June

2000.

http://beast.dcce.ibilce.unesp.br/~aleardo/cursos/str/str.html
http://beru.univ-brest.fr/~singhoff/publi.html
ftp://ftp.dit.upm.es/str/software/rta/
http://www.winntmag.com/Articles/Index.cfm?IssueID=22&ArticleID=302
http://www.winntmag.com/Articles/Print.cfm?ArticleID=303
http://research.microsoft.com/%7embj/Mars_Pathfinder/
http://www.linuxjournal.com/print.php?sid=4771
http://www.linuxjournal.com/print.php?sid=5438

	Introduction
	Framework
	Goals
	Syllabus
	Laboratory Experiments
	Experimental platform
	Contents

	Main Bibliography
	Complementary Information Sources
	Discussion
	Conclusions
	References

