

On real time teaching in non computer science
curricula

Ramon Costa-Castelló

IOC-DT-P-2005-3
Gener 2005

1

On Real Time Teaching in Non Computer Science

Curricula
Ramon Costa-Castelló

Abstract— This work describes the topics taught on a real-

time programming course. This course is part of the Degrees

in Electronics, Mechanical Engineering and Automatic Control,

and thus most students do not have a background in operating

systems and related topics. This prevents us from using methods

that are traditionally employed in teaching real-time topics to

computer science students. The paper presents the specifics of

the topics, methods and materials used on this course.

Index Terms— Real Time System, Automation Software, Real

Time Operating Systems.

I. I NTRODUCTION

Today, most automation-related devices are designed by

means of digital technology. These technologies include PLCs

(Programmable Logic Controllers), DSPs (Digital Signal Pro-

cessors) and microcontrollers, which most electronic engi-

neering students are familiar with. Although most of these

devices have software libraries and development environments,

their programming may be considered low-level. This kind of

programming, however, is usually very time-consuming and

can only be taken on in large productions or in cases in

which a lot of computing effort is needed (e.g. DSPs). As the

prices of powerful computers, such as PCs, fall and the market

requirements that they must fulfil are extended, other ways of

developing automation software are needed. The development

Ramon Costa-Castelló is with the Institut d’Organizacío i Control de

Sistemes Industrials, Universitat Polit̀ecnica de Catalunya, Barcelona, Spain.

E-mail: ramon.costa-castello@ieee.org

of software for such systems requires skills and knowledge

that exceed what is foreseen in generic engineering curricula.

Automation software has several characteristics that should

be taken into account, the most important of these being

concurrency (capability of simultaneously executing several

programs) and time constraints. Although these requirements

can be implemented using low-level programming schemes,

such as cyclic executive or interruptive schemes, the use

of higher level development techniques reduces development

time and increases reliability. Real-Time Operating Systems

(RTOSs) are a special family of operating systems (OSs) that

are designed to allow tasks to fulfil their time constraints.

This kind of tool is becoming very popular in the automation

industry. Unfortunately, these tools are based on conceptsand

ideas that students outside of computer science (CS)/computer

engineering (CE) curricula [1] are not familiar with. In order to

minimize the problems students may have when dealing with

these kinds of technologies, from the 1997-1998 academic year

onwards, the School of Industrial Engineering of Barcelona

(ETSEIB) has been offered a course that addresses topics

related to Real-Time Systems (RTSs). This course is directed

at last-year engineering students who are following generic

courses that may include electrical, electronic and mechanical

engineering. Although they may have studied elementary

programming subjects, most of them do not have a background

in OSs and other relevant topics in CS. This paper presents the

specifics of the topics, methods and materials of this course,

2

the content of which is the result of several previous courses

and analyses that the students see applied during the course.

II. FRAMEWORK

Before following this course, engineering students at the

ETSEIB follow at least two courses in basic computer science

and programming, in which they learn basic programming

methods such assequential search, up-bottom design, recur-

sive design, divide and conquerand basic data structures.

This is the only experience in computer science that can be

assumed in all the students. Their background knowledge does

not include OO (object-oriented programming), UML (Unified

Modelling Language) [2] or other tools employed in software

engineering. On the other hand, most students are familiar with

aspects of digital systems, such as timers.

Although in previous courses most algorithmic concepts are

presented by means of an algorithmic language, in practical

work the C programming language is used; therefore, knowl-

edge of C can be taken for granted. Additionally, some of

the students use this language in courses in microprocessor

programming1.

This framework limits the ways in which the concepts may

be taught to students and conditions the goals of the course.

For students to get the most out of it, the content and methods

must be designed taking this framework into account.

The course’s theory part is worth 3 credits, while the

practical sessions are worth 1.5 credits, and they comprise

ten lectures and seven laboratory sessions, all of these lasting

two hours each. Due to the limited duration of the course, it

is important to concentrate on relevant topics related to Real-

Time Systems (RTS), without using complex tools that may be

difficult for the students to grasp. Although the students who

take the course do not develop OSs or RTOSs, they will have

1These courses may be taken at the same time as, or before, the course in

question, depending on the curricular path followed by the student

to use these tools; therefore, they need qualitative knowledge

of their operation and associated problems.

III. G OALS

Although several topics, such as real-time scheduling design

methodologies [3], the design of drivers [4], object-oriented

programming techniques[5], and security and reliability [6]

are of great relevance to real-time systems, time restrictions

and the students’ academic background mean that many of

these topics cannot be tackled during the course. The course

is focused on those fundamental concepts and their implemen-

tation principles [7].

The most important goal of the course is to provide students

with the fundamental concepts that allow them to implement

simple real-time applications in the field of automation. These

concepts are related to concurrency and time constraints.

Although concurrency may be a very complex matter, the

course’s characteristics do not allow it to be studied in great

detail. Concepts that are considered of great relevance are

scheduling criteria and mutual exclusion access. In addition to

these qualitative concepts, the quantitative tools that allow one

to determine whether a given system will be able to execute all

the necessary tasks whilst fulfilling time and data consistency

constraints are deemed an important topic for engineering

students (schedulability analysis [8])

In their professional lives, graduates will use tools to

implement RTSs, which are presented in this course. RTOSs,

as is the case with most technologies, are far from being ideal

components, so it is important for students to learn what the

main differences between ideal and real RTOSs are. As the

effect of the most relevant of these technical phenomena can

easily be included in schedulability analyses, it is important

to show how this can be done in order to improve students’

understanding of the phenomena.

Additionally, during their professional lives, students will

3

1) Introduction

2) Concurrency

a) Task Concept

b) Shared Resources

c) Scheduling

i) Time sharing

ii) Real Time Schemes

3) OS Basics

a) Functions

b) Memory Management

c) Device Drivers

d) RTOS parameters

e) API

4) High Level methods

Fig. 1. Syllabus outline

need to choose between different RTOSs, so it is important

to teach the students the criteria that they might employ in

choosing between them. Students are also shown the problems

that they may encounter when using a traditional OS to

implement applications with real-time constraints.

When students have completed the course, they should be

able to implement simple automation applications by means of

RTOSs and they should also understand how these components

behave.

IV. SYLLABUS

Theory concepts are taught to the students by means of

traditional lectures. In the following, the content of the syllabus

(Fig. 1) and how this is organised as lectures is described.

Although bibliographic aspects will be introduced in section

VI, details are given on the basic reference work for each

particular topic.

In order to spark the students’ interest, the examples used

will be related to automation, including filter, controllerand

state machine implementation2. The experience shows that

this type of example especially motivates the students, and

allows theory concepts from other courses to be linked to

implementations in the real world.

1) Introduction{4 hours}

time

running

waiting

C (computation time)

D (Deadline time)

T (period)

Activation time

Fig. 2. Periodic task Ideal execution Chronogram.

The most important needs and characteristics of real-

time systems are presented in this part [8, chapter 1].

Particular emphasis is placed on the parameters and

time constraints used to define periodic and aperiodic

tasks (Figure 2). An example that has been useful

for the students concerns control task implementation.

According to the theory [9], a certain algorithm must be

executed periodically and the activation time should be

kept stable. Most implementations will introduce some

variations in the ideal activation time (e.g. jitter). In

order to allow for these variations and for it to agree

with the theory, a deadline which is around 10-15% of

the period is permitted in the control community., It is

then possible to obtain the periodic task parameters and

formulation directly from this desired behaviour.

2) Concurrency{12 hours}.

2It is important to note that the specific topics of each implementation have

been studied by students as part of previous courses and are therefore not dealt

with on this course.

4

In this subject, we explain fundamental concepts related

to the simultaneous execution of several programs and

the benefits of describing the behaviour of a system by

means of several programs, rather than building just one

program to do the entire job. For example, when the

control of a car is centralized, there are several tasks

for each component, rather than a single program that

controls everything.

This topic is divided into the following subtopics:

a) Task Concept [10, Chapter 4].

new

ready running

finished

waiting

exit

time, I/O wait

admitted

time,I/O event

scheduler

scheduler

Fig. 3. Basic Task States and Transitions Between Them.

A task is defined as a program in execution. The

different states in which the task may be are

presented in this section (Figure 3). A qualitative

interpretation of each of these states and transition

analyses are also presented.

b) Shared Resources [10, Chapter 6]

..... Analog
Multiplexer

P
ro

g
ra

m
m

a
b

le
G

a
in

A
D

 C
o

n
v
e

rt
e

r

Channel
Selection

Gain
Selection

Conversion
trigger

A
n

a
lo

g
 I

n
p

u
ts

C

h
a

n
n

e
ls

Digital

Output

Fig. 4. AD/DA Card Logic Scheme.

The need for coordinating the different tasks run-

ning on a system is introduced. The shared re-

source concept is analyzed, and the need formutual

exclusionis presented. An example that has been

used for several years is a system in which two

tasks are implementing two independent control

loops and both tasks are using the same AD/DA

card. Like most low-cost AD/DA cards, it has

several input channels that share the conversion

elements (Figure 4). As a consequence, in order

to ensure data consistency, it is necessary for the

different tasks to use the card one after the other.

In order to address this problem, thesemaphore

concept is introduced.

c) Scheduling

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

C=2

T=5

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

C=3

T=10

xxxx
xxxx
xxxx
xxxx
xxxx

C=1

T=5

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxx

xxxxxxxxxxxxxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxx
xxxxx
xxxxx
xxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

xxxxxxxx
xxxxxxxx
xxxxxxxx
xxxxxxxx

Distribution in time

Tasks characteristics

Sequential Equivalent Program

xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

Fig. 5. Distribution in time to implement virtual concurrency.

Scheduling policies are a key concept in traditional

real-time courses [11] [3]. Although most of the

students enrolled on the course do not know much

about OSs or schedulers, it is important to teach

them about the role of the scheduler in real-time

systems. In order to illustrate this concept properly,

a system composed of three tasks is presented,

and how these three tasks are divided into parts

that are sequentially executed is explained. On

the basis of this simple example, the concept of

5

cyclic executive[8] is introduced and the concept

of virtual concurrency is visualized [Fig. 5].

The most important scheduling policies are intro-

duced in a qualitative way. To make this presen-

tation more effective and more attractive to the

students, a simulator is used in the lectures. There

are several simulators that can be used without

cost; some of them areRTsim[11], Cheddar[12],

andRTA [13].

In this topic, the following subtopics are addressed:

i) Time Sharing Schemes [10, Chapter 5]

The goals of a time-sharing scheme are pre-

sented; in particular, aRound-Robinscheme

is analyzed. The difficulty of predicting the

time response in this scheme is emphasized.

Additionally, the role of priorities in this kind

of scheme is discussed, and a range of reading

material in which real OS scheduler behaviour

is described is recommended to the students

[14, Chapter 10] [15] [16].

ii) Real Time Schemes [8, Chapter 13]

The most relevant schedulers used in real-

time systems are presented in two parts: how

time is divided up between the tasks and how

schedulability can be studied.

A) Static Priorities

Priority assignment methods are presented

(RMPA, DMPA). The load concept and the

main schedulability results are introduced.

How task interaction may affect schedula-

bility is analyzed; in particular, thepriority

inversionproblem is described. In order to

present this problem clearly, the well-known

pathfinder[17] problem may be used. The

immediate ceiling priorityprotocol is pre-

sented, and its definition and analysis tools

are described.

B) Dynamic Priorities

Basic concepts related to dynamic priority

scheduling schemes (EDF, LSF) are pre-

sented. Special emphasis is placed on the

differences between dynamic and static pri-

ority schemes.

3) Basic concepts of OSs{12 hours}

In previous topics, an ideal framework was assumed. The

goal of this part is to present technologic concepts that

play an important role when an OS is used to implement

a RTS.

In this topic, we discuss a set of technologies that are

currently used in computer architectures that improve a

system’s performance but make estimating the computer

execution time more difficult. These concepts include

pipelining, memory hierarchies (cache, swapping) and

DMA transfers among other things. All these concepts

are described qualitatively by means of examples.

a) OS Funcionalities [10, Chapter 3].

Hardware

Programs

OS

Fig. 6. OS role in a modern computer system.

The OS is presented as an abstraction layer over

the hardware. The most important functionalities

are described. The most important architecture

approaches in OSs are described in a qualitative

http://beast.dcce.ibilce.unesp.br/~aleardo/cursos/str/str.html
 http://beru.univ-rest.fr/~singhoff/publi.html
ftp://ftp.dit.upm.es/str/software/rta/

6

way, and the relevance of these architectures when

embedding the OS is analyzed.

In order to analyze the differences between a tradi-

tional OS and an RTOS, concepts likereentrancy

andpreemptivityare introduced to justify the need

for special OSs in the implementation of RTSs.

b) Memory Management [10, Chapters 8,9].

Virtual memory and memory protection concepts

are presented. The problems introduced by virtual

memory in time determinism and the usefulness

of memory protection when addressing a secure

system are emphasized.

c) Device Drivers.

The role of the device driver is presented. As part

of the real-time implementation chain, the device

driver must be time-deterministic [18] [19][20].

d) RTOS Parameters [8, Chapter 16].

time

scheduler
Context
Switch

Context
SwitchTask Execution

Fig. 7. Real Chronogram.

There are several differences between the ideal

time response and the time response obtained in a

real system, as the latter includes phenomena like

latency and context change (Figure 7). All these

parameters are defined and analyzed for several

real RTOSs. Additionally, the issue of how these

parameters might be included in a schedulability

analysis is addressed.

The difference between a thread and a process is

also defined[10].

e) Application Programmers Interface (API).

The system’s call concept is presented, and the

benefits of using a standard API for different

OSs are discussed. POSIX real-time extensions are

briefly presented [21].

4) High level Methodologies{2 hours}

The capabilities and functions offered by high-level

development tools such as ADA[22] or JAVA-RT[23]

are presented. The implicit handling of time and shared

resources are presented as desirable tools.

V. L ABORATORY EXPERIMENTS

A. Experimental platform

During the first years of the course, a high-level language

was used to illustrate theory concepts. Specifically, the ADA

language and a free GNAT compiler were used. Experience

showed that students spent most of their time dealing with the

language’s syntax instead of on real-time concepts. In addition,

this platform only allowed the students to implement soft real-

time systems. To circumvent these problems, we decided to

use the C language3. This language must be combined with an

RTOS in order to develop an RTS, and there are several ways

of doing this. As the university laboratories are equipped with

general-purpose operating systems (GNU/Linux), a solution

that would enable us to combine this OS with a real-time one

was needed. There are several projects that allow GNU/Linux

to be combined with a hard real-time environment, the most

relevant being RTAI and RTLinux. Both projects were initially

based on a Ms.C. project carried out by Michael Barabanov

under the supervision of Victor Yodaiken in 1997.

In 1998, V. Yodaiken founded a company (FSMLABS) with

the purpose of harnessing the development and the industrial

use of RTLinux. One of the consequences of this was the

introduction of a software patent of the main concepts used

in RTLinux. This patent received a great deal of criticism

from within the community, which had until then developed

3All of the students have used this language in previous courses.

http://www.adahome.com
http://www.gnat.com
http://www.aero.polimi.it/%7ertai/
http://www.rtlinux.com
 http://www.fsmlabs.com/

7

and used RTLinux following a GPL licensing approach. Part

of this community decided to initiate a new project called

RTAI (Real-Time Application Interface). This new project

was headed by Paolo Mantegazza from the Politecnico di

Milano. Although this project initially used part of RTLinux’s

original source code, this project is currently based on ADEOS

(Adaptive Domain Environment for Operating Systems), a

nanokernel distributed under a GPL licence. RTAI is actively

supported by a number of contributors who develop new kernel

versions and new applications to run over it.

RTLinux has been divided in two main projects: RTLinux-

Pro and RTLinuxFree. RTLinuxPro is developed by FSMLAB

under a commercial licence, while RTLinuxFree is an open-

source version of RTLinux. RTLinuxFree is licensed under

GPL and the RTLinux Open Patent Licence and is community-

supported. One of the main contributors to RTLinuxFree is the

Technical University of Valencia. As an example, two projects

that are relevant from an academic point of view are the

porting of an ADA compiler [24] and the development of a

stand-alone version that can be used without GNU/Linux over

it[25].

As in the course described, only basic concepts are taught.

Both approaches offer the necessary functionality and perfor-

mance. Due to historical reasons, RTLinuxFree is used on the

course. In practice, most example codes used in the laboratory

experiments may run directly on RTAI.

From a practical point of view, the most significant draw-

back in using RTLinuxFree is that it implements a PSE51

POSIX profile [26]. This profile has no memory protection

and, as a consequence, an improper use of the pointer may

make the machine crash. RTLinuxFree uses the GNU/Linux

modules, so students must be briefly introduced to them.

1) Teaching by example

a) Periodic Tasks.

b) Time handling. Computation Time.

c) Multitasking.

d) Shared Resources.

2) Project sessions

a) Design.

b) Implementation and test

Fig. 8. Lab experiments outline

B. Contents

The laboratory experiments are divided into two blocks.

In the first (first to fourth session), ateaching by example

approach is used, while in the second block, a project approach

is used (fifth to seventh sessions). An outline of the sessions

is presented in Figure 8.

In everyteaching by examplesession, a new set of concepts

is introduced. Each session builds on the preceding one. The

implementation of the concepts is presented by means of a set

of very simple programs. Each program is presented as a fully

functional source code that the student must compile, run and

study in keeping with a set of predefined goals. Each code

includes one or two syntactic errors, which force the student

to analyze the code.

Additionally, a set of changes that modify the program’s be-

haviour is proposed to the student. By modifying the program

semantically and syntactically, the students gain experience in

dealing with these new concepts and their implementation. A

key factor is that students do not spend time designing the

program from scratch.

At the end of each laboratory session, the student is asked

to write a report . Writing this report forces the students to

review the concepts learned during the session and analyze a

set of important facts.

The following topics are addressed in theteaching by

http://www.aero.polimi.it/%7ertai/
https://gna.org/projects/adeos/
http://rtportal.upv.es/

8

examplelaboratory sessions:

P1 Periodic Tasks.

Three different ways of implementing periodic tasks are

presented:Busy waiting, relative delays and absolute

delays. The same codes are executed in Linux and

RTLinux, which allows the students to compare the

behaviour of a traditional OS and an RTOS. During

the programs’ execution, the mouse and other tasks are

used to analyze the system’s sensitivity to this kind of

disturbance.

To illustrate this topic, a square waveform generation

program is used. This waveform is sent to the parallel

port and the PC speaker simultaneously, so that the

student can analyze the performance by watching the

parallel port through the oscilloscope or by listening to

the speaker.

P2 Time handling. Computation Time (C)

Time is a critical concept in real-time systems. For

this reason, time representation, time resolution, time

stamps and the estimation of the execution time are

studied during this session. The goal of the session is

to develop programs that measure the time the CPU

needs to execute a certain predefined code. This is done

by using the OS’s timers combined with a double loop

technique and by using the oscilloscope combined with

the introduction of marks in the source code (the parallel

port is used as a mark).

This experiment is of great relevance because it presents

methods for measuring the information needed for the

schedulability analysis presented in the lectures.

P3 Multitasking.

In this experiment, students analyze the execution of

three independent tasks. All three tasks generate outputs

that can be observed by the students, so that they can

see them being simultaneously executed. The commands

that are needed to handle priorities are introduced in this

session.

Students are asked to analyze the schedulability of the

complete system.

P4 Shared Resources.

The use of semaphores to implement mutual exclusion

is presented, and all related commands for handling

and customising semaphores are introduced in this ex-

periment. The example presented in the lectures is

implemented (2b section)

Once the students have learnt the basic real-time concepts

and the way of implementing them, a real problem is presented

to them. All proposed problems require the use of several real-

time concepts seen in the previous block. The project includes

designing and implementing the software and analysing the

time response. By way of example, in the 2003-2004 academic

year, the following problems have been proposed:

1) Servo Control System Implementation.

The students are asked to implement a position control

for a DC motor. The controller is composed of two con-

trol loops: one for velocity and the other for positioning

at two different rates. Both control loops use the same

AD/DA card and need to share information in order to

implement the system.

2) Distance Measuring.

A Sharp GP2D02 sensor is used to estimate the distance.

In order to interface this sensor with the computer, a

predefined waveform containing time constraints must

be generated through an IO card. Once this estimation

is obtained, the goal is to filter it in order to obtain a

clean measure.

3) Velocity control.

The velocity measurement is obtained by means of

an encoder. The interface with the encoder is made

following a protocol with time constraints through the

9

parallel port. Once the measurement is obtained, it must

be filtered and used to close a velocity control loop.

These small projects help the students to deal with the different

concepts and the way they are implemented. Many other

projects could be used [27]; the only constraints are that they

should be solvable in a few sessions and that they should touch

upon different aspects of RTSs.

VI. M AIN BIBLIOGRAPHY

Since the work by Halang [28], many interesting books on

real-time systems have appeared in English. Most of these

books may be used as textbooks, although unfortunately none

of them exactly matches this course’s syllabus.

One of the books that is most widely used in real-time

teaching is by Burns & Wellings [8]. It includes most top-

ics, such as concurrent programming, real-time scheduling,

fault-tolerance and programming languages. Additionally, it

includes a great quantity of teaching material. Unfortunately,

this book is addressed to students of CS/CE, so it may be

hard to follow for students on this course. To overcome this

problem, it is used in combination with another classic bookin

the field of OSs. This book, by Silberschatz, Galvin & Gagne

[10], introduces the most important concepts in OSs. Addi-

tionally, it offers a great quantity of teaching material. During

the course, several chapters of this book are recommended as

an introduction to several basic OS topics. The specific ways

in which these books are used are described in the Syllabus

section (IV section).

In addition to these basic books, several other books have

been used and may be recommended as complementary to the

basic ones. A classic book, such as the one by Laplante [29],

offers a comprehensive overview of fundamental hardware-

and software-related topics. Scheduling policies and analysis

methodologies are covered in a great quantity of books, such

as the ones by Butazzo [30], Krishna Shin [31], Stankovic et

al.[32] and Liu [33]. All these books may be of great interest

to teachers of these subjects, but they may be out of reach for

students who are not in a CS/CE environment.

Other books that may be useful to students and lecturers

alike are those that relate control systems to real-time systems.

In this area, books by Bennet [34] and Svrcek et al. [35] have

been particularly useful to the author.

Finally, books on specific topics, such as POSIX[21],

ADA[22], JAVA-RT[23] or UML[2], may be of great interest

to students and lecturers alike, particularly when they need to

implement a specific application by using one of these tools.

VII. C OMPLEMENTARY INFORMATION SOURCES

Today, the Internet is an information source that can-

not be ignored. In the area of real-time systems, there are

a great number of websites that can be used to support

teaching activities. In order to guide students’ steps in this

area, several websites are initially recommend to them, some

of which include online magazines (e.g. Embedded.com,

Dedicated Systems), RTOS websites (ex. QNX, VxWorks,

MaRTE OS, ECOS) and documentation web pages (e.g.

OCERA project, Real Time and Embedded Guide). This in-

formation allows the students to come into contact with real

components and information. One of the course’s main goals

is for students to understand the information available of their

own accord, so it is important to determine whether they really

do understand the information available and to obtain feedback

from them in this respect.

Some of this material might also be of great interest to the

lecturers, in that it will help them to keep up to date on these

technologies. A number of examples may be obtained from

these sources in order to update lectures.

VIII. D ISCUSSION

In recent years, the course has been attended by about 40-

50 students per year. In general, the students’ response to the

http://www.cs.york.ac.uk/rts/RTSBookThirdEdition.html
http://cs-www.cs.yale.edu/homes/avi/os-book/osc/index.html
http://www.embedded.com/
http://www.dedicated-systems.com/
http://www.qnx.com/
http://www.windriver.com/
http://marte.unican.es/
http://sources.redhat.com/ecos/
http://bernia.disca.upv.es/~iripoll/rt-linux/rtlinux-tutorial/
http://people.mech.kuleuven.ac.be/~bruyninc/rthowto/

10

lectures has been positive, especially when theory concepts

are illustrated by means of the practical examples presented

in this paper. These examples are, in my opinion, a key issue

that introduces students to the most important concepts, and

is particularly important for those students with a background

in electrical engineering or electronics. Another key issue is

presenting RTOSs as a real technology that is far from perfect;

although this requires the introduction of OS basics, it allows

students to qualitatively understand several concepts that are

of great relevance in practical RTSs. Topics introduced in the

lectures are evaluated by means of a traditional exam; this

exam is broken down into two parts, a theory section, in which

short questions about relevant concepts are introduced, and a

practical section in which a case must be studied. Using this

approach, up to 80% of students pass the exam and reach a

good understanding of what an RTS is.

As previously explained in the section on V-B, the labora-

tory sessions are divided into two parts: teaching by example

and the project. This approach allows the lecturer to introduce

the necessary tools in a short period of time, and the use of

these new tools combined with the use of real components

(e.g. sensors, actuators, etc.) is effective in sparking students’

interest. During the first part, it is important for the lecturer

to constantly interact with the students in helping them to

understand the new commands. In the second part, the students

are grouped in pairs, so that they can discuss the different

approaches; at this stage, it is important for the lecturer to

discuss the students’ proposals with them. We have found

that most groups manage to successfully finish their project

on schedule, although in order to this, the projects must be

built like ”puzzles”, using previous sessions as the building

parts. Typically, the size of the code developed by the students

is less than 100 lines. This way of proceeding allows the

student to focus their thoughts on the relevant concepts instead

of spending time on coding. The approach proposed allows

the students to gain confidence in their knowledge of basic

implementation tools, so that they eventually reach the stage

when they are ready to implement simple RTSs.

IX. CONCLUSIONS

This paper describes the content of a course that deals with

real-time systems, which is included in generic engineering

curricula. The way in which traditional methods and syllabus

used in CS/CE curricula are adapted to the generic engineering

curricula is presented. The specific topics addressed and the

methodologies used are described, and the examples used to

illustrate the most relevant topics are presented. Detailsof the

course are taken from 1998 to the present.

Our experience of teaching the course, as presented in

this paper, may serve as a model for similar courses of-

fered in other engineering programs. Additional information

about this course can be obtained in the course webpage:

http://www.ioc.upc.es/usuaris/RamonCosta/SITR/.

REFERENCES

[1] A. Kornecki, “Real-time systems course in undergraduate cs/ce pro-

grams,” IEEE Transactions on Education, vol. 40, no. 4, p. 9pp,

November 1997.

[2] B. P. Douglass,Real-Time UML: Developing Efficient Objects for

Embedded Systems, 2nd ed. Addison-Wesley Pub Co, October 27 1999.

[3] G. Martinovic, L. Budin, and Z. Hocenski, “Undergraduate teaching

of real-time scheduling algorithms by developed software tool,” IEEE

Transactions on Education, vol. 46, no. 1, p. 185=196, February 2003.

[4] A. Kornecki, H. Wojcicki, L. Peltier, J. Zalewski, and N.Kruszynska,

“Teaching device drivers technology in a real-time systems curriculum,”

in Proceedings on Real-Time Systems Education III, Poznan, Poland,

21th November 1998, pp. 42–48.

[5] J. De La Puente, A. Alonso, M. Garcia-Valls, and J. Ruiz, “Teaching

real-time systems at dit/upm,” inProceedings on Real-Time Systems

Education III, Poznan, Poland, 21th November 1998, pp. 117 – 122,

available in ftp://ftp.dit.upm.es/str/software/rta/.

[6] N. G. Leveson,Safeware : system safety and computers. Boston:

Addison-Wesley, cop., 1995.

[7] W. Halang, “Teaching device drivers technology in a real-time systems

curriculum,” in Proceedings on Real-Time Systems Education III, Poz-

nan, Poland, 21th November 1998, pp. 156 – 159.

http://www.ioc.upc.es/usuaris/RamonCosta/SITR/
ftp://ftp.dit.upm.es/str/software/rta/

11

[8] A. Burns and A. Wellings.,Real-Time Systems and Programming

Languages 3/e. Ada 95, Real-Time Java and Real-Time POSIX. Alan

Burns and Andy Wellings, third edition ed. Addison Wesley Longmain,

March 2001.

[9] B. C. Kuo, Digital Control Systems, second edition ed. Oxford

University Press, 2002.

[10] A. Silberschatz, P. B. GalvinList, and G. Gagne,Operating System

Concepts, sixth edition ed. John Wiley & Sons, Inc, June 2001.

[11] A. Manacero, M. Miola, and V. Nabuco, “Teaching real-time with a

scheduler simulator,” inFrontiers in Education Conference. 31st Annual,

vol. 2, Reno, NV, 10-13 October 2001, pp. 15–19, available inonline.

[12] F. Singhoff, J. Legrand, L. Nana, and L. Marcé., “Cheddar : an open

and flexible real time scheduling framework,” 2004, availableonline.

[13] J. A. de la Puente,RTA, Technical University of Madrid (DIT/UPM),

1998, available online.

[14] D. P. Bovet and M. Cesati,Understanding the Linux Kernel. O’Reilly,

October 2000.

[15] M. Russinovich, “Inside the windows nt scheduler,

part 1,” Windows & .NET Magazine, July 1997,

http://www.winntmag.com/Articles/Index.cfm?IssueID=22&ArticleID=302.

[16] ——, “Inside the windows nt scheduler, part

1,” Windows & .NET Magazine, August 1997,

http://www.winntmag.com/Articles/Print.cfm?ArticleID=303.

[17] M. B. Jones, “What really happened on mars?” 1997,

http://research.microsoft.com/%7embj/MarsPathfinder/.

[18] R. Krten, “Device drivers & real-time systems,”Dr. Dobb’s Journal, pp.

34–39, October 1998.

[19] W. Hassan, “Writing real-time device drivers for telecomswitches, part

1,” Linux Journal, September 2001,http://www.linuxjournal.com/print.php?sid=4771.

[20] ——, “Writing real-time device drivers for telecom switches, part 2 of

2,” Linux Journal, November 2001,http://www.linuxjournal.com/print.php?sid=5438.

[21] B. Gallmeister,POSIX.4 Programming for the Real World, 1st ed.

O’Reilly & Associates, Inc., January 1995.

[22] A. Burns and A. Wellings,Concurrency in Ada. Cambridge University

Press, November 1997.

[23] P. C. Dibble,Real-Time Java platform programming, 1st ed. Prentice

Hall PTR, March 2002.

[24] M. M. Tello, J. Real, I. Ripoll, and A. Crespo, “Running ada on real-

time linux,” Lecture Notes in Computer Science, vol. 2655, pp. 322–333,

2003.

[25] V. Esteve, I. Ripoll, and A. Crespo, “Stand-alone rtlinux-gpl,” in Fifth

Real-Time Linux Workshop, 2003, pp. 149–154.

[26] Portable Application Standards Committee of the IEEE Computer

Society, “IEEE Standard for Information Technology - Standardized

Application Environment Profile-POSIX. Realtime Application Support

(AEP),” iEEE Std 1003.13-1998. ISBN 0-7381-0178-8.

[27] M. Moallem, “A laboratory testbed for embedded computer control,”

IEEE Transacion on Education, vol. (To Appear), 2004.

[28] W. A. Halang, “A curriculum for real-time computer and control systems

engineering,”IEEE Transactions on Education, vol. 33, no. 2, pp. 171–

178, May 1990.

[29] P. A. Laplante,Real-Time Systems Design and Analysis : An Engineer’s

Handbook. IEEE Press, January 1997.

[30] G. C. Buttazzo, Hard Real-Time Computing Systems. Predictible

Scheduling Algorithms and Applications, ser. The Kluwer International

Series in Engineering and Computer Science, J. A. Stankovic,Ed.

Kluwer Academic Publishers, 2002.

[31] C. Krishna and K. G. Shin,Real-Time Systems, W. McGraw-Hill, Ed.,

1997.

[32] J. Stankovic, M. Spuri, K. Ramamritham, and G. C. Butttazzo, Deadline

Scheduling for Real-Time Systems. EDF and Related Algorithms, ser.

THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND

COMPUTER SCIENCE. Boston: Kluwer Academic Publishers, 1998,

vol. 460.

[33] J. W. S. Liu,Real-Time Systems, 1st ed. Prentice Hall, June 2000.

[34] S. Bennett, Real-Time Computer Control, second edition ed., ser.

Prentice Hall International Series in Systems and Control Engineering,

M. Grimble, Ed. Prentice Hall, 1994.

[35] W. Y. Svrcek, D. P. Mahoney, and B. R. Young,A Real-time approach

to process control, Solutions Manual. John Wiley & sons, cop, June

2000.

http://beast.dcce.ibilce.unesp.br/~aleardo/cursos/str/str.html
http://beru.univ-brest.fr/~singhoff/publi.html
ftp://ftp.dit.upm.es/str/software/rta/
http://www.winntmag.com/Articles/Index.cfm?IssueID=22&ArticleID=302
http://www.winntmag.com/Articles/Print.cfm?ArticleID=303
http://research.microsoft.com/%7embj/Mars_Pathfinder/
http://www.linuxjournal.com/print.php?sid=4771
http://www.linuxjournal.com/print.php?sid=5438

	Introduction
	Framework
	Goals
	Syllabus
	Laboratory Experiments
	Experimental platform
	Contents

	Main Bibliography
	Complementary Information Sources
	Discussion
	Conclusions
	References

