----------------------------------------------------------- --------------------- ------------------------------------------------------------------------------ -- Cheddar is a GNU GPL real time scheduling analysis tool. -- This program provides services to automatically check performances -- of real time architectures. -- -- Copyright (C) 2002-2010, by Frank Singhoff, Alain Plantec, Jerome Legrand -- -- The Cheddar project was started in 2002 by -- the LISyC Team, University of Western Britanny. -- -- Since 2008, Ellidiss technologies also contributes to the development of -- Cheddar and provides industrial support. -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA -- -- -- Contact : cheddar@listes.univ-brest.fr -- ----------------------------------------------------------------------------- -- Last update : -- $Rev: 523 $ -- $Date: 2012-09-26 15:09:39 +0200 (Wed, 26 Sep 2012) $ -- $Author: fotsing $ ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ with Xml_Tag; use Xml_Tag; with double_util; use double_util; with Translate; use Translate; with Ada.Numerics.Aux; use Ada.Numerics.Aux; with unbounded_strings; use unbounded_strings; package body Scheduler.Dynamic_Priority.Llf is procedure Initialize (A_Scheduler : in out Llf_Scheduler) is begin Reset (A_Scheduler); A_Scheduler.parameters.scheduler_type := Least_Laxity_First_Protocol; end Initialize; function Copy (A_Scheduler : in Llf_Scheduler) return Generic_Scheduler_Ptr is Ptr : Llf_Scheduler_Ptr; begin Ptr := new Llf_Scheduler; Ptr.parameters := A_Scheduler.parameters; Ptr.Previously_Elected := A_Scheduler.Previously_Elected; return Generic_Scheduler_Ptr (Ptr); end Copy; procedure Do_Election (My_Scheduler : in out Llf_Scheduler; Si : in out Scheduling_Information; Result : in out Scheduling_Sequence_Ptr; Msg : in out Unbounded_String; Current_Time : in Natural; Processor_Name : in Unbounded_String; Address_Space_Name : in Unbounded_String; My_Dependencies : in Tasks_Dependencies_Ptr; With_Offsets : in Boolean; With_Precedencies : in Boolean; With_Resources : in Boolean; Event_To_Generate : in Time_Unit_Event_Type_Boolean_Table; Elected : in out Tasks_Range; No_Task : in out Boolean) is Smallest_Laxity : Natural := Natural'Last; Laxity : Natural; I : Tasks_Range := 0; begin loop if (Si.Tcbs (I).Tsk.cpu_name = Processor_Name) then if (Si.Tcbs (I).assigned_core_unit = empty_string or Si.Tcbs (I).assigned_core_unit = My_Scheduler.corresponding_core_unit) then Laxity := Dynamic_Priority_Tcb_Ptr (Si.Tcbs (I)).Dynamic_Deadline - Si.Tcbs (I).Rest_Of_Capacity; if (Si.Tcbs (I).Wake_Up_Time <= Current_Time) and (Laxity < Smallest_Laxity) and (Si.Tcbs (I).Rest_Of_Capacity /= 0) then if (With_Offsets = False) or Check_Offset (Si.Tcbs (I), Current_Time) then if (With_Precedencies = False) or Check_Precedencies (Si, My_Dependencies, Current_Time, Si.Tcbs (I)) then Smallest_Laxity := Laxity; Elected := I; end if; end if; end if; end if; end if; I := I + 1; exit when Si.Tcbs (I) = null; end loop; if Smallest_Laxity = Natural'Last then No_Task := True; else No_Task := False; -- last time unit : compute dynamic deadline for periodic task -- if (Si.Tcbs (Elected).Rest_Of_Capacity = 1) and (Si.Tcbs (Elected).Tsk.task_type = Periodic_Type) then Dynamic_Priority_Tcb_Ptr (Si.Tcbs (Elected)).Dynamic_Deadline := Dynamic_Priority_Tcb_Ptr (Si.Tcbs (Elected)).Dynamic_Deadline + Periodic_Task_Ptr (Si.Tcbs (Elected).Tsk).period; end if; end if; end Do_Election; procedure Utilization_Factor_Feasibility_Test (My_Scheduler : in Llf_Scheduler; My_Tasks : in Tasks_Set; Processor_Name : in Unbounded_String; Result : in out Unbounded_String) is Bound : Double := 0.0; Utildi : Double := 0.0; Msg : Unbounded_String := empty_string; begin Start_Time_Control (My_Tasks, Processor_Name); Offset_Control (My_Tasks, Processor_Name); case Get_Preemptive (My_Scheduler) is when preemptive => Utildi := Processor_Utilization_Over_Deadline (My_Tasks, Processor_Name); Bound_On_Processor_Utilization (My_Scheduler, My_Tasks, Processor_Name, Bound, Msg); Result := Result & Lb_Utilization_Bound1 (Current_Language); Result := Result & Lb_Llf (Current_Language); if Utildi <= Bound then Result := Result & Lb_Sched_Explanation1 (Current_Language); Result := Result & Start_Fact_Bound & format (Utildi) & End_Fact_Bound; Result := Result & Lb_Sched_Explanation12 (Current_Language); Result := Result & Start_Fact_Bound & format (Bound) & End_Fact_Bound; else Result := Result & Lb_Sched_Explanation2 (Current_Language); Result := Result & Start_Fact_Bound & format (Utildi) & End_Fact_Bound; Result := Result & Lb_Sched_Explanation22 (Current_Language); Result := Result & Start_Fact_Bound & format (Bound) & End_Fact_Bound; end if; Result := Result & Start_Ref & To_Unbounded_String (" (") & Lb_See (Current_Language) & To_Unbounded_String ("[7]).") & End_Ref & unbounded_lf; when not_preemptive => Result := Result & Lb_Pb_Sched_Unknown (Current_Language) & unbounded_lf; end case; end Utilization_Factor_Feasibility_Test; end Scheduler.Dynamic_Priority.Llf;