------------------------------------------------------------------------------ ------------------------------------------------------------------------------ -- Cheddar is a GNU GPL real-time scheduling analysis tool. -- This program provides services to automatically check schedulability and -- other performance criteria of real-time architecture models. -- -- Copyright (C) 2002-2020, Frank Singhoff, Alain Plantec, Jerome Legrand, -- Hai Nam Tran, Stephane Rubini -- -- The Cheddar project was started in 2002 by -- Frank Singhoff, Lab-STICC UMR 6285, Université de Bretagne Occidentale -- -- Cheddar has been published in the "Agence de Protection des Programmes/France" in 2008. -- Since 2008, Ellidiss technologies also contributes to the development of -- Cheddar and provides industrial support. -- -- The full list of contributors and sponsors can be found in AUTHORS.txt and SPONSORS.txt -- -- This program is free software; you can redistribute it and/or modify -- it under the terms of the GNU General Public License as published by -- the Free Software Foundation; either version 2 of the License, or -- (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -- GNU General Public License for more details. -- -- You should have received a copy of the GNU General Public License -- along with this program; if not, write to the Free Software -- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA -- -- -- Contact : cheddar@listes.univ-brest.fr -- ------------------------------------------------------------------------------ -- Last update : -- $Rev$ -- $Date$ -- $Author: singhoff $ ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ with Text_IO; use Text_IO; with Unchecked_Deallocation; with Ada.Numerics; with Ada.Numerics.Discrete_Random; package body sets is procedure reset (my_set : in out set; free_object : in Boolean := False) is begin if free_object then free (my_set); end if; my_set.number_of_elements := 0; end reset; procedure free (my_set : in out set) is begin for I in 0 .. my_set.number_of_elements - 1 loop free (my_set.container (I)); end loop; end free; procedure free (my_set : in out set_ptr; free_object : in Boolean := True) is procedure Free_Pointer is new Unchecked_Deallocation ( set'Class, set_ptr); begin if free_object then for I in 0 .. my_set.number_of_elements - 1 loop free (my_set.container (I)); end loop; end if; Free_Pointer (my_set); end free; procedure Free_Container (My_Set : in out Set) is procedure Free is new Unchecked_Deallocation (Element_table, Element_Table_Ptr); begin Free(My_Set.Container); end Free_Container; procedure initialize (my_set : in out set) is begin my_set.container := new element_table; reset (my_set); end initialize; procedure add (my_set : in out set; a_element : in element) is begin if (my_set.number_of_elements = element_range (max_element)) then raise full_set; end if; my_set.container (my_set.number_of_elements) := a_element; my_set.number_of_elements := my_set.number_of_elements + 1; end add; procedure delete (my_set : in out set; elements : in set; free_object : in Boolean := False) is begin if (my_set.number_of_elements = 0) then raise empty_set; end if; for I in 0 .. elements.number_of_elements - 1 loop delete (my_set, elements.container (I), free_object); end loop; end delete; procedure delete (my_set : in out set; a_element : in element; free_object : in Boolean := False) is Found : Boolean := False; begin if (my_set.number_of_elements = 0) then raise empty_set; end if; for I in 0 .. (my_set.number_of_elements - 1) loop if (a_element = my_set.container (I)) then if free_object then free (my_set.container (I)); end if; my_set.container (I) := my_set.container (my_set.number_of_elements - 1); my_set.number_of_elements := my_set.number_of_elements - 1; Found := True; exit; end if; end loop; if not Found then raise element_not_found; end if; end delete; procedure next_element (my_set : in set; my_iterator : in out iterator) is begin if (my_set.number_of_elements = 0) then raise empty_set; end if; my_iterator.current := my_iterator.current + 1; end next_element; procedure Previous_Element (My_Set : in Set; My_Iterator : in out Iterator) is begin if (My_Set.Number_Of_Elements = 0) then raise Empty_Set; end if; My_Iterator.Current := My_Iterator.Current - 1; end Previous_Element; procedure current_element (my_set : in set; return_element : out element; my_iterator : in iterator) is begin if (my_set.number_of_elements = 0) then raise empty_set; end if; return_element := my_set.container (my_iterator.current); end current_element; procedure get_element_number (my_set : in set; return_element : out element; position : in element_range) is begin if (my_set.number_of_elements <= position or position < 0) then raise invalid_argument; end if; return_element := my_set.container (position); end get_element_number; function get_number_of_elements (my_set : in set) return element_range is begin return (my_set.number_of_elements); end get_number_of_elements; function is_empty (my_set : in set) return Boolean is begin return (my_set.number_of_elements = 0); end is_empty; function is_last_element (my_set : in set; my_iterator : in iterator) return Boolean is begin return (my_iterator.current = (my_set.number_of_elements - 1)); end is_last_element; function is_first_element (my_set : in set; my_iterator : in iterator) return Boolean is begin return (my_iterator.current = 0); end is_first_element; procedure reset_iterator (my_set : in set; my_iterator : in out iterator) is begin my_iterator.current := 0; end reset_iterator; procedure Reset_Tail_Iterator (My_Set : in Set; My_Iterator : in out Iterator) is begin My_Iterator.Current := My_Set.number_of_elements-1; end Reset_Tail_Iterator; procedure sort (my_set : in out set; order : order_function) is Temp : element; begin for I in 0 .. my_set.number_of_elements - 1 loop for J in 0 .. (my_set.number_of_elements - 2) loop if not order (my_set.container (J), my_set.container (J + 1)) then Temp := my_set.container (J); my_set.container (J) := my_set.container (J + 1); my_set.container (J + 1) := Temp; end if; end loop; end loop; end sort; procedure select_and_copy (src : in set; dest : in out set; must_select : select_function) is Tmp : element; begin for I in 0 .. src.number_of_elements - 1 loop if must_select (src.container (I)) then Tmp := copy (src.container (I)); add (dest, Tmp); end if; end loop; end select_and_copy; function select_and_copy (src : in set; must_select : in select_function) return set is Dest : set; Tmp : element; begin for I in 0 .. src.number_of_elements - 1 loop if must_select (src.container (I)) then Tmp := copy (src.container (I)); add (Dest, Tmp); end if; end loop; return Dest; end select_and_copy; procedure select_and_copy (src : in set; dest : in out set; must_select : select_function_parameterizable; parameter : element) is Tmp : element; begin for I in 0 .. src.number_of_elements - 1 loop if must_select (src.container (I), parameter) then Tmp := copy (src.container (I)); add (dest, Tmp); end if; end loop; end select_and_copy; function select_and_copy (src : in set; must_select : select_function_parameterizable; parameter : element) return set is Dest : set; Tmp : element; begin for I in 0 .. src.number_of_elements - 1 loop if must_select (src.container (I), parameter) then Tmp := copy (src.container (I)); add (Dest, Tmp); end if; end loop; return Dest; end select_and_copy; procedure duplicate (src : in set; dest : in out set) is Tmp : element; begin dest.number_of_elements := src.number_of_elements; for I in 0 .. src.number_of_elements - 1 loop Tmp := copy (src.container (I)); dest.container (I) := Tmp; end loop; end duplicate; function xml_string (my_set : in set_ptr) return Unbounded_String is begin return xml_string (my_set.all); end xml_string; function xml_root_string (My_Set : in set_ptr) return Unbounded_String is begin return xml_root_string (My_Set.all); end xml_root_string; function xml_root_string (My_Set : in set) return Unbounded_String is str : Unbounded_String := To_Unbounded_String (""); begin for I in 0 .. My_Set.number_of_elements - 1 loop str := str & xml_string (My_Set.container (I)); end loop; return str; end xml_root_string; function xml_string (my_set : in set) return Unbounded_String is str : Unbounded_String := To_Unbounded_String (""); begin for I in 0 .. my_set.number_of_elements - 1 loop str := str & xml_ref_string (my_set.container (I)); end loop; return str; end xml_string; procedure put (my_set : in set_ptr) is begin put (my_set.all); end put; procedure put (my_set : in set) is begin Put_Line ("Number of elements : " & my_set.number_of_elements'Img); New_Line; for I in 0 .. my_set.number_of_elements - 1 loop put (my_set.container (I)); New_Line; end loop; end put; function get_random_element (my_set : in set) return element is P : element_range; begin P := Random (G) mod my_set.number_of_elements; return my_set.container (P); end get_random_element; procedure swap (my_set : in out set; i : in Iterator; j : in Iterator) is Temp : element; begin Temp := my_set.container (j.current); my_set.container (j.current) := my_set.container (i.current); my_set.container (i.current) := Temp; end swap; begin Reset (G); end sets;