
Algorithmic basics:  
Presentation and Comparison of 
the main Sorting Algorithms 
according to their Complexity

  Valérie-Anne Nicolas   
        

vnicolas@univ-brest.fr



 2

Motivation: why study sorting algorithms?

➢ Data sorting is a common feature in software engineering (e.g. 
to ease processing, to display the evolution of a data over the 
years, the ranking of a sporting event...)

➢ To prepare data so that more efficient algorithms can be used 
(e.g. dichotomic search instead of sequential search)

➢ For educational purposes, to illustrate many algorithmic 
concepts: complexity, design paradigms (iterative, recursive, 
divide and conquer), data structures...

Sorting problem: find a permutation of a linear collection of elements 
such that elements are in increasing (or decreasing) order

➢ order relation is needed (over elements or keys)
➢ arrays are the most appropriate underlying data structure 

(random access vs list sequential access)
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Sorting algorithms

 Internal sorting algorithms

→ When data to be sorted fits into main memory

 External sorting algorithms
– When data to be sorted is stored on an external memory device (for 

example a disk), because it is too large to fit into main memory 

– The cost of data access (swap) is very disadvantageous

→ Merge sort 
 

 Complexity: order of approximation with the big O notation 
(worst, best, average cases)
– Number of comparisons

– Number of swaps

– Space complexity (« in place »  or not...)

  V.A. Nicolas
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Overview of main sorting algorithms

 Internal sorting algorithms                       comparisons        swaps        space

  Basic selection based algorithms

 Bubble sort (and Shaker sort)                        O(n2)                O(n2)           O(1)

 Selection sort                                                 O(n2)                O(n)            O(1)

  Basic insertion based algorithms

 Sequential insertion sort                                 O(n2)                O(n2)           O(1)

 Binary insertion sort                                 O(n log
2
(n))           O(n2)            O(1)

 Advanced selection based algorithms

 Quick sort  (or Hoare sort)                              O(n2)                O(n2)        O(log2(n))

 Heap sort                                                   O(n log2(n))    O(n log2(n))      O(1)

  External sorting algorithm: Merge sort          O(n log2(n))    O(n log2(n))      O(n)

  V.A. Nicolas
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Selection based sorting algorithms

Aim: to sort an array in increasing order.

Principle of selection based sorting algorithms:
– select one element (in general the smallest), 
– put it in its final place, 
– then sort out the rest of the elements.

  V.A. Nicolas
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Bubble sort

Principle: The smaller (lighter) elements are brought up to 
the top (beginning) of the array, like bubbles.

Method: 
1.  Scan the array starting from the end (the bottom),

2.  exchange two successive elements each time they are not  
 in the right order,

3.  repeat steps 1 and 2 until all the elements are sorted.

Thus, at the end of the first run, the first (minimum) element of the 

array is in its place. At the end of the second run, the second 

(minimum) element of the array is in its place. And so on...

  V.A. Nicolas
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Bubble sort: illustration
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Iterative version of Bubble sort

void BubbleSort (t_elt T[], int n) { 

    int i, j;                     // t_elt is the type of the elements in the array

    t_elt x;                   // n is the size of the array T

    for (i=0; i<n-1; i++)

   for (j=n-1; j> i; j--) 

 if (T[j] < T[j-1]) 

{ x = T[j];

                T[j] = T[j-1];

  T[j-1] = x;   }

  }

Complexity: O(n2) 

comparisons and swaps

  V.A. Nicolas
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Recursive version of Bubble sort

void BubbleSortRec (t_elt T[], int l, int r) {
     int j;
     t_elt x;
     if (l < r)  

    { for (j=r; j>l; j--) 
    if (T[j] < T[j-1]) 

                      { x = T[j];
                        T[j] = T[j-1];

               T[j-1] = x; }
 BubbleSortRec(T,l+1,r);

    }
   } 

Initial call: 
 BubbleSortRec(T,0,n-1)

  V.A. Nicolas
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Optimised Bubble sort 
(Recursive version)

void BubbleSortRec2 (t_elt T[], int l, int r) { 
     int j, b;           // boolean b 
     t_elt x;
     if (l < r)  

{   b = 1;                 // b = true 
                 for(j=r; j>l; j--) 

         if (T[j] < T[j-1]) 
                              { x = T[j];
                                T[j] = T[j-1];

              T[j-1] = x; 
                                b = 0;  }     // b = false 

    if (!b) BubbleSortRec2(T,l+1,r);
}

   } 

→ Checks if the array is 
sorted before continuing

Complexity: O(n2) 

comparisons and swaps

Initial call: 
 BubbleSortRec2(T,0,n-1)
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Optimised Bubble sort 
(Iterative version)

void BubbleSort2 (t_elt T[], int n) { 
    int i=0, j, b=0;              // boolean b = false
    t_elt x;
    while ((i < n-1) && (b == 0)) {
           b = 1;                 // b = true

      for (j=n-1; j> i; j--) 
     if (T[j] < T[j-1]) 
   { x = T[j];

                     T[j] = T[j-1];
   T[j-1] = x;

                     b = 0; }    // b = false 
           i++;
       }
  }

→ Checks if the array is sorted 
     before continuing

  V.A. Nicolas
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Shaker sort

  Shaker sort is an alternative optimised version of Bubble sort, to 
optimise the case where a large value is at the beginning of the array. 

Typical very expensive case by simple Bubble sort: 

Principle of Shaker sort: The array is scanned alternately from bottom
to top and from top to bottom.
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Shaker sort: illustration
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Iterative version of Shaker sort

void ShakerSort (t_elt T[], int n) { 
   int i=0, j, b=0;              // boolean b = false
   t_elt x;
   while ((i < n-1) && (b == 0)) {
        b = 1;                      // b = true
        if ((i % 2) == 0)                             // bottom-up traversal

       { for (j=(n-1-(i/2)); j>(i/2); j--) 
       if (T[j] < T[j-1]) 
                   { x = T[j]; T[j] = T[j-1]; T[j-1] = x; b = 0; } }

        else 
            for (j=i/2+1; j<(n-1-i/2); j++)       // top-down traversal

     if (T[j] > T[j+1]) 
                { x = T[j]; T[j] = T[j+1]; T[j+1] = x; b = 0; }

         i++;
    } 
}

Complexity: O(n2) 

comparisons and swaps

  V.A. Nicolas
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Recursive version of Shaker sort

void ShakerSortRec (t_elt T[], int l, int r) { 
   int j, b;              // boolean b 
   t_elt x;
   if (l < r) {
        b = 1;                      // b = true
        if ((l % 2) == 0)

            { for (j=r; j>l; j--) 
                if (T[j] < T[j-1])    { x = T[j]; T[j] = T[j-1]; T[j-1] = x; b = 0; }

                   if (!b)  ShakerSortRec(T,l+1,r); }
        else 
                 { for (j=l; j<r; j++) 

             if (T[j+1] < T[j])    { x = T[j]; T[j] = T[j+1]; T[j+1] = x; b = 0; }
              if (!b)  ShakerSortRec(T,l,r-1); }

    }
}

Initial call: 
 ShakerSortRec(T,0,n-1)

  V.A. Nicolas
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Selection sort

Method: 
  Find the minimum element of the array and exchange it 

with the first element of the array.
  Next, find the minimum element of the rest of the array 

and exchange it with the second element.
  And so on...

  This method aims to reduce the number of swaps

compared to Bubble sort. 

  V.A. Nicolas
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Selection sort: illustration
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Iterative version of Selection sort

void SelectionSort (t_elt T[], int n) { 
   int i, k, min;
   t_elt x;
   for(i=0; i<n-1; i++) { 
       min = i;
       for(k=i+1; k<n; k++) 
             if (T[k] < T[min])  min = k;  
       x = T[min];
       T[min] = T[i];
       T[i] = x; 
   }
}

Complexity: 

O(n) swaps, 

O(n2) comparisons
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Recursive version of Selection sort

void SelectionSortRec (t_elt T[], int l, int r) { 
  int min, k;
  t_elt x;
  if (l < r)  

 { min = l;
   for(k=l+1; k<=r; k++)

 if (T[k] < T[min])  min = k; 
       x = T[min];
       T[min] = T[l];
       T[l] = x; 

   SelectSortRec(T,l+1,r);
 }

}

Initial call: 
    SelectionSortRec(T,0,n-1)

  V.A. Nicolas
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Insertion based sorting algorithms

Principle of insertion based sorting algorithms:
 sort the beginning of the array, 

 then insert the not yet sorted elements. 

Thus, the first elements of the array are successively sorted. 
  At step number i, the (i+1)th element is inserted in its place 

among the i previous elements which are already sorted 
between them, if necessary. 

 This is the card player method.

 There are several types of insertion sorts depending on 
the method used to find the insertion position: sequential 
or binary search.

  V.A. Nicolas



 21

Insertion sort: illustration
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Iterative version of (Sequential) Insertion sort

void InsertionSort (t_elt T[], int n) { 
   int i, k;
   t_elt x;
   for( i=1; i<n; i++) 
       if (T[i-1] > T[i])
                { k = i-1; 
                  x = T[i]; 
                  while ((k >= 0) && (T[k] > x))
                             { T[k+1] = T[k]; 
                                k = k-1; }
                  T[k+1] = x; 
                }
}

Complexity: O(n2) 

comparisons and swaps
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Recursive version of (Sequential) Insertion sort

void InsertionSortRec (t_elt T[], int i) { 
   int k;
   t_elt x;
   if (i > 0) { InsertionSortRec(T,i-1);
                   if (T[i-1] > T[i])
                        { k = i-1; 
                          x = T[i]; 
                          while ((k >= 0) && (T[k] > x))
                                      { T[k+1] = T[k]; k = k-1; }
                          T[k+1] = x; 
                        }
                }
} Initial call: InsertionSortRec(T,n-1)
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Iterative version of Binary Insertion sort

void BinaryInsertionSort (t_elt T[], int n) 
{ 
   int i, j, k;
   t_elt x;
   for( i=1; i<n; i++) 
       if (T[i-1] > T[i])
                { k = rank(T, 0, i-1, T[i]); 
                  x = T[i]; 
                  for( j= i-1 ; j>=k ; j--)
                       { T[j+1] = T[j]; }
                  T[k] = x; 
                }
}

Complexity: O(n2) swaps 

and O(n log2(n)) comparisons

int rank (t_elt T[], int l, int r, t_elt x) 
{ 
   int m;
   while ( l != r ) {
       m = (l+r)/2 ;
       if (x < T[m])   { r = m; } 
       else { l = m+1; } 
   }
   return l;
}

  V.A. Nicolas



 25

Recursive version of Binary Insertion sort

void BinaryInsertionSortRec (t_elt T[n], int i) { 
   int j, k;
   t_elt x;
   if ( i>0)
     { BinaryInsertionSortRec(T,i-1); 
       if (T[i-1] > T[i])
                { k = rankRec(T, 0, i-1, T[i]); 
                  x = T[i]; 
                  for( j= i-1 ; j>=k ; j--)
                       { T[j+1] = T[j]; }
                  T[k] = x; 
                }
     }
}

int rankRec (t_elt T[], int l, int r, t_elt x) 
{ 
   int m;
   if ( l == r ) { return l; }
   else { m = (l+r)/2 ;
             if (x < T[m])   

     { return rankRec(T,l,m,x); } 
             else 
                 { return rankRec(T,m+1,r,x); } 
           }
}

Initial call: 
BinaryInsertionSortRec(T,n-1)

  V.A. Nicolas
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Quick sort

Quick sort is a dichotomous recursive algorithm and a 
generalized selection based sorting algorithm: an element is put 
in its definitive place, but which is not necessarily the first one.

Method: 
1. Choose a pivot element, 

2. divide the array to be sorted into two sub-arrays T1 and T2 such 
that the elements of T1 are less than or equal to the pivot, and 
the elements of T2 are greater than the pivot, 

3. sort each of the sub-arrays T1 and T2 according to the same 
method (restart from step 1 until the size of the processed 
(sub-)array is equal to 1), 

4. finally, replace the pivot between the two sorted sub-arrays.

  V.A. Nicolas
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Quick sort: illustration
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Quick sort algorithm

void QuickSort (t_elt T[], int l, int r) { 

   int k;

   if (l < r) 

{ k = partition(T,l,r);

  QuickSort(T,l,k-1);

  QuickSort(T,k+1,r);

}

}

Initial call: QuickSort(T,0,n-1)

// Partition T in T1 and T2 :
//  - T1 : l → k, elts ≤ pivot,
//            and T1[k] = pivot
//  - T2 : k+1 → r, elts > pivot

  V.A. Nicolas
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Quick sort: function partition

int partition (t_elt T[], int l, int r) { 
   int i = l+1, k = r;                              // T[l] is the pivot
   t_elt x;
   while (i <= k) { 
        while (T[k]  > T[l])   k = k-1; 

   while (i <= r && T[i] <= T[l])   i = i+1; 
   if (i < k)  { x = T[i]; T[i] = T[k]; T[k] = x; 
               i = i+1;

                k = k-1;}
   }
   x = T[l];
   T[l] = T[k];
   T[k] = x;
   return k; 
}

Complexity: O(n) 

comparisons and swaps
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Complexity of the Quick sort algorithm

• Complexity of QuickSort in number of recursive calls: 
the calls to QuickSort represent a binary tree: 

– If the tree is balanced, the number of recursive calls is O(log2(n)) 

– If the tree is totally unbalanced, the number of recursive calls is 
O(n). 

➔ Hence the importance of the choice of the pivot to try to obtain 
each time two sub-arrays of equivalent size. The choice of this 
pivot must however remain simple (random, median value...). 

• Overall complexity of QuickSort in number of 
comparisons and swaps: 
➔O(n log2(n)) if the tree is balanced and O(n2) at worst. 

  V.A. Nicolas
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Heap Sort

Method based on a specific data structure, called heap, where 
are kept the result of the comparisons made at each step.
 

• Definition: heap
A heap is a partially ordered (almost) complete binary tree. 

• Definition: (almost) complete binary tree
It is a binary tree with all levels complete, except possibly the last 
one, in which case the missing leaves are the rightmost ones.
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Properties of a Heap

• Property: heap partial order
In a heap, the value (key) of each node is less than or equal to 
the values of its children. The elements of the tree must 
therefore be part of a set with a total order. 

 → The minimum element of the tree is always at its root. 
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Example of a heap: 
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Typical representation of a Heap

 Definition: heap
A heap is a partially ordered (almost) complete binary tree. 
represented as an array T[0..max] such that:

– The root element is in T[0] 

– T[(i-1)/2] is the parent node of T[i],  i>0

– T[2*i +1] and T[2*i +2] are the left and right children, if they exist, 
of T[i],  i ≥ 0 

– If p is the size of the tree (≤ max+1) and p=2*(i+1), T[i] has a 
single (left) child T[p-1]

– If i ≥ p/2 then T[i] is a leaf. 

3 5 9 6 8 11 10 12 18 14
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Heap sort: principle

 Heap sort is done in two steps:
1. Construction of a heap by successively adding to it all the 

elements of the array to be sorted
2. Extraction of the minimum of the heap (then reorganisation 

of the heap) until it is empty  

 Notes: 
 All is done in the array (no extra memory needed) 
 At the end of the algorithm, T is sorted in descending order 

("backwards")

 Complexity: 
 O(n log2(n)) comparisons and swaps 

  V.A. Nicolas
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Operations on the Heap data structure: 
adding a new element to a heap

• Method:
1.  Add a leaf to the last level of the tree, 

2.  put the new element in that leaf (attention, the tree is 
no longer necessarily partially ordered),

3.  reorganisation: the new value is moved up the tree (by 
exchange with its parent) until it is in its final place.

• Complexity: 
O(log2(p)) if p is the size of the treee (heap).

  V.A. Nicolas
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Adding to a heap: illustration
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Reorganisation after adding 
of an element to a heap

void BottomUpReordering (t_elt T[], int p) { 

   int i = p;                     // p = size of the heap

   t_elt x;

   while ((i > 0) && (T[i] < T[(i-1)/2])) 

       { x = T[i];

         T[i] = T[(i-1)/2];

         T[(i-1)/2] = x;  

          i = (i-1)/2; }

}

The new element is in T[p]

Complexity: O(log2(p)) 

comparisons and swaps
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Operations on the Heap data structure: 
removing the minimum element of a heap (the root)

• Method:
1.  Extract the value of the root,

2.  replace the value of the root by the value of the last leaf 
(attention, the tree is no longer necessarily partially 
ordered),

3.  reorganisation: this value is moved down the tree (by 
swapping with its smallest child) until it is in its final 
place. 

• Complexity: 
O(log2(p)) if p is the size of the heap.

  V.A. Nicolas



5

9

6

8

11 10

12 18 14

4

5 9

6 8 11 10

12 18 14

4

 39

Deletion from a heap: illustration
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Reorganisation after deletion 
of the minimum element of a heap

void TopDownReordering (t_elt T[], int p) { 

   int i = 0, c;                // p = size of the remaining heap
   t_elt x;
   while (i < p/2)
       {   if (p == (2*(i+1)) || (T[2*i + 1] < T[2*i +2]))  
                    c = 2*i + 1; 
           else  c = 2*i +2; 
           if (T[i] > T[c]) 

              { x = T[i];
                T[i] = T[c];
                T[c] = x;  
                 i = c; }

           else  i = p; 
        }
} 

T[0] = element to be moved

Complexity: O(log2(p)) 

comparisons and swaps

  V.A. Nicolas



41

Heap sort algorithm

void HeapSort (t_elt T[], int n) { 

   int p;

   t_elt min;

   for(p = 1; p < n; p++)  

       BottomUpReordering(T,p);   

   for(p = n-1; p > 0; p--)  

      { min = T[0];

        T[0] = T[p];

        TopDownReordering(T,p); 

        T[p] = min; }

} 

Complexity: O(n log2(n)) 
comparisons and swaps 
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Heap sort: illustration
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Overview of main sorting algorithms

 Internal sorting algorithms                       comparisons        swaps        space

  Basic selection based algorithms

 Bubble sort (and Shaker sort)                        O(n2)                O(n2)           O(1)

 Selection sort                                                 O(n2)                O(n)            O(1)

  Basic insertion based algorithms

 Sequential insertion sort                                 O(n2)                O(n2)           O(1)

 Binary insertion sort                                 O(n log
2
(n))           O(n2)            O(1)

 Advanced selection based algorithms

 Quick sort  (or Hoare sort)                              O(n2)                O(n2)        O(log2(n))

 Heap sort                                                   O(n log2(n))    O(n log2(n))      O(1)

  External sorting algorithm: Merge sort          O(n log2(n))    O(n log2(n))      O(n)

  V.A. Nicolas
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Conclusion 

➢ Optimal complexity in number of comparisons: O(n log2n)

➢  Stable algorithms except Selection sort, Quick sort and Heap sort
➢  Small size arrays: basic algorithm → Insertion sort (also well suited when 

the array is already partially sorted)
➢  Bigger size arrays: advanced algorithm → Heap sort, Quick sort ; Quick 

sort is in general faster than Heap sort (average complexity is O(n log2n))

➢  Very large arrays: external algorithm → Merge sort (parallelizable…)

➢  Many other (specific) sorting algorithms. Here were presented comparison 
sorts, but there is also non comparison sorts (e.g. counting sorts...)

➢  Laboratory session: Merge sort and experimental evaluation of 
sorting algorithm complexities
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Merge sort

Merge sort is an external sorting algorithm. 

It is a dichotomous algorithm aimed at reducing the number of 
data moves in order to limit the memory loadings.  

Method: To sort an array of size n: 

1. Divide the array into two sub-arrays of rough size n/2 (first and 
second half),

2. sort the two sub-arrays independently (by recursive calls to Merge 
sort),

3. merge the two sorted sub-arrays.

Merge sort is not an « in place » algorithm: its space complexity 

is O(n), however comparisons and swaps are optimal in O(n log2(n)).

  V.A. Nicolas
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Merge sort: illustration

Divide

Merge
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