
Algorithmic basics:
Presentation and Comparison of
the main Sorting Algorithms
according to their Complexity

 Valérie-Anne Nicolas

vnicolas@univ-brest.fr

 2

Motivation: why study sorting algorithms?

➢ Data sorting is a common feature in software engineering (e.g.
to ease processing, to display the evolution of a data over the
years, the ranking of a sporting event...)

➢ To prepare data so that more efficient algorithms can be used
(e.g. dichotomic search instead of sequential search)

➢ For educational purposes, to illustrate many algorithmic
concepts: complexity, design paradigms (iterative, recursive,
divide and conquer), data structures...

Sorting problem: find a permutation of a linear collection of elements
such that elements are in increasing (or decreasing) order

➢ order relation is needed (over elements or keys)
➢ arrays are the most appropriate underlying data structure

(random access vs list sequential access)

 V.A. Nicolas

 3

Sorting algorithms

 Internal sorting algorithms

→ When data to be sorted fits into main memory

 External sorting algorithms
– When data to be sorted is stored on an external memory device (for

example a disk), because it is too large to fit into main memory

– The cost of data access (swap) is very disadvantageous

→ Merge sort

 Complexity: order of approximation with the big O notation
(worst, best, average cases)
– Number of comparisons

– Number of swaps

– Space complexity (« in place » or not...)

 V.A. Nicolas

 4

Overview of main sorting algorithms

 Internal sorting algorithms comparisons swaps space

 Basic selection based algorithms

 Bubble sort (and Shaker sort) O(n2) O(n2) O(1)

 Selection sort O(n2) O(n) O(1)

 Basic insertion based algorithms

 Sequential insertion sort O(n2) O(n2) O(1)

 Binary insertion sort O(n log
2
(n)) O(n2) O(1)

 Advanced selection based algorithms

 Quick sort (or Hoare sort) O(n2) O(n2) O(log2(n))

 Heap sort O(n log2(n)) O(n log2(n)) O(1)

 External sorting algorithm: Merge sort O(n log2(n)) O(n log2(n)) O(n)

 V.A. Nicolas

 5

Selection based sorting algorithms

Aim: to sort an array in increasing order.

Principle of selection based sorting algorithms:
– select one element (in general the smallest),
– put it in its final place,
– then sort out the rest of the elements.

 V.A. Nicolas

 6

Bubble sort

Principle: The smaller (lighter) elements are brought up to
the top (beginning) of the array, like bubbles.

Method:
1. Scan the array starting from the end (the bottom),

2. exchange two successive elements each time they are not
 in the right order,

3. repeat steps 1 and 2 until all the elements are sorted.

Thus, at the end of the first run, the first (minimum) element of the

array is in its place. At the end of the second run, the second

(minimum) element of the array is in its place. And so on...

 V.A. Nicolas

 7

Bubble sort: illustration

12

7

9

14

15

3

3

12

7

9

14

15

3

7

12

9

14

15

3

7

9

12

14

15

3

7

9

12

14

15

3

7

9

12

14

15

0

5 5

1

5 5 5

2

3

4

→ Here, 5 steps are needed → But 4 steps when optimised

 V.A. Nicolas

 8

Iterative version of Bubble sort

void BubbleSort (t_elt T[], int n) {

 int i, j; // t_elt is the type of the elements in the array

 t_elt x; // n is the size of the array T

 for (i=0; i<n-1; i++)

 for (j=n-1; j> i; j--)

 if (T[j] < T[j-1])

{ x = T[j];

 T[j] = T[j-1];

 T[j-1] = x; }

 }

Complexity: O(n2)

comparisons and swaps

 V.A. Nicolas

 9

Recursive version of Bubble sort

void BubbleSortRec (t_elt T[], int l, int r) {
 int j;
 t_elt x;
 if (l < r)

 { for (j=r; j>l; j--)
 if (T[j] < T[j-1])

 { x = T[j];
 T[j] = T[j-1];

 T[j-1] = x; }
 BubbleSortRec(T,l+1,r);

 }
 }

Initial call:
 BubbleSortRec(T,0,n-1)

 V.A. Nicolas

 10

Optimised Bubble sort
(Recursive version)

void BubbleSortRec2 (t_elt T[], int l, int r) {
 int j, b; // boolean b
 t_elt x;
 if (l < r)

{ b = 1; // b = true
 for(j=r; j>l; j--)

 if (T[j] < T[j-1])
 { x = T[j];
 T[j] = T[j-1];

 T[j-1] = x;
 b = 0; } // b = false

 if (!b) BubbleSortRec2(T,l+1,r);
}

 }

→ Checks if the array is
sorted before continuing

Complexity: O(n2)

comparisons and swaps

Initial call:
 BubbleSortRec2(T,0,n-1)

 V.A. Nicolas

 11

Optimised Bubble sort
(Iterative version)

void BubbleSort2 (t_elt T[], int n) {
 int i=0, j, b=0; // boolean b = false
 t_elt x;
 while ((i < n-1) && (b == 0)) {
 b = 1; // b = true

 for (j=n-1; j> i; j--)
 if (T[j] < T[j-1])
 { x = T[j];

 T[j] = T[j-1];
 T[j-1] = x;

 b = 0; } // b = false
 i++;
 }
 }

→ Checks if the array is sorted
 before continuing

 V.A. Nicolas

 12

Shaker sort

 Shaker sort is an alternative optimised version of Bubble sort, to
optimise the case where a large value is at the beginning of the array.

Typical very expensive case by simple Bubble sort:

Principle of Shaker sort: The array is scanned alternately from bottom
to top and from top to bottom.

9

2

3

4

2

9

3

4

2

3

9

4

2

3

4

9

0

3

 V.A. Nicolas

 13

Shaker sort: illustration

15

7

9

2

5

14

2

15

7

9

5

14

2

7

9

5

14

15

2

5

7

9

14

15

2

5

7

9

14

15

2

5

7

9

14

15

End of sorting → Here, 4 steps instead of 5 due to an optimised version

0

5

 V.A. Nicolas

 14

Iterative version of Shaker sort

void ShakerSort (t_elt T[], int n) {
 int i=0, j, b=0; // boolean b = false
 t_elt x;
 while ((i < n-1) && (b == 0)) {
 b = 1; // b = true
 if ((i % 2) == 0) // bottom-up traversal

 { for (j=(n-1-(i/2)); j>(i/2); j--)
 if (T[j] < T[j-1])
 { x = T[j]; T[j] = T[j-1]; T[j-1] = x; b = 0; } }

 else
 for (j=i/2+1; j<(n-1-i/2); j++) // top-down traversal

 if (T[j] > T[j+1])
 { x = T[j]; T[j] = T[j+1]; T[j+1] = x; b = 0; }

 i++;
 }
}

Complexity: O(n2)

comparisons and swaps

 V.A. Nicolas

 15

Recursive version of Shaker sort

void ShakerSortRec (t_elt T[], int l, int r) {
 int j, b; // boolean b
 t_elt x;
 if (l < r) {
 b = 1; // b = true
 if ((l % 2) == 0)

 { for (j=r; j>l; j--)
 if (T[j] < T[j-1]) { x = T[j]; T[j] = T[j-1]; T[j-1] = x; b = 0; }

 if (!b) ShakerSortRec(T,l+1,r); }
 else
 { for (j=l; j<r; j++)

 if (T[j+1] < T[j]) { x = T[j]; T[j] = T[j+1]; T[j+1] = x; b = 0; }
 if (!b) ShakerSortRec(T,l,r-1); }

 }
}

Initial call:
 ShakerSortRec(T,0,n-1)

 V.A. Nicolas

 16

Selection sort

Method:
 Find the minimum element of the array and exchange it

with the first element of the array.
 Next, find the minimum element of the rest of the array

and exchange it with the second element.
 And so on...

 This method aims to reduce the number of swaps

compared to Bubble sort.

 V.A. Nicolas

 17

Selection sort: illustration

12 9 7 14 15 3

3 9 7 14 15 12

3 7 9 14 15 12

3 7 9 14 15 12

3 7 9 12 15 14

3 7 9 12 14 15

min

0 5

 V.A. Nicolas

 18

Iterative version of Selection sort

void SelectionSort (t_elt T[], int n) {
 int i, k, min;
 t_elt x;
 for(i=0; i<n-1; i++) {
 min = i;
 for(k=i+1; k<n; k++)
 if (T[k] < T[min]) min = k;
 x = T[min];
 T[min] = T[i];
 T[i] = x;
 }
}

Complexity:

O(n) swaps,

O(n2) comparisons

 V.A. Nicolas

 19

Recursive version of Selection sort

void SelectionSortRec (t_elt T[], int l, int r) {
 int min, k;
 t_elt x;
 if (l < r)

 { min = l;
 for(k=l+1; k<=r; k++)

 if (T[k] < T[min]) min = k;
 x = T[min];
 T[min] = T[l];
 T[l] = x;

 SelectSortRec(T,l+1,r);
 }

}

Initial call:
 SelectionSortRec(T,0,n-1)

 V.A. Nicolas

 20

Insertion based sorting algorithms

Principle of insertion based sorting algorithms:
 sort the beginning of the array,

 then insert the not yet sorted elements.

Thus, the first elements of the array are successively sorted.
 At step number i, the (i+1)th element is inserted in its place

among the i previous elements which are already sorted
between them, if necessary.

 This is the card player method.

 There are several types of insertion sorts depending on
the method used to find the insertion position: sequential
or binary search.

 V.A. Nicolas

 21

Insertion sort: illustration

12 9 7 14 15 3

9 12 7 14 15 3

7 9 12 14 15 3

7 9 12 14 15 3

3 7 9 12 14 15

7 9 12 14 15 3

0 5

 V.A. Nicolas

 22

Iterative version of (Sequential) Insertion sort

void InsertionSort (t_elt T[], int n) {
 int i, k;
 t_elt x;
 for(i=1; i<n; i++)
 if (T[i-1] > T[i])
 { k = i-1;
 x = T[i];
 while ((k >= 0) && (T[k] > x))
 { T[k+1] = T[k];
 k = k-1; }
 T[k+1] = x;
 }
}

Complexity: O(n2)

comparisons and swaps

 V.A. Nicolas

 23

Recursive version of (Sequential) Insertion sort

void InsertionSortRec (t_elt T[], int i) {
 int k;
 t_elt x;
 if (i > 0) { InsertionSortRec(T,i-1);
 if (T[i-1] > T[i])
 { k = i-1;
 x = T[i];
 while ((k >= 0) && (T[k] > x))
 { T[k+1] = T[k]; k = k-1; }
 T[k+1] = x;
 }
 }
} Initial call: InsertionSortRec(T,n-1)

 V.A. Nicolas

 24

Iterative version of Binary Insertion sort

void BinaryInsertionSort (t_elt T[], int n)
{
 int i, j, k;
 t_elt x;
 for(i=1; i<n; i++)
 if (T[i-1] > T[i])
 { k = rank(T, 0, i-1, T[i]);
 x = T[i];
 for(j= i-1 ; j>=k ; j--)
 { T[j+1] = T[j]; }
 T[k] = x;
 }
}

Complexity: O(n2) swaps

and O(n log2(n)) comparisons

int rank (t_elt T[], int l, int r, t_elt x)
{
 int m;
 while (l != r) {
 m = (l+r)/2 ;
 if (x < T[m]) { r = m; }
 else { l = m+1; }
 }
 return l;
}

 V.A. Nicolas

 25

Recursive version of Binary Insertion sort

void BinaryInsertionSortRec (t_elt T[n], int i) {
 int j, k;
 t_elt x;
 if (i>0)
 { BinaryInsertionSortRec(T,i-1);
 if (T[i-1] > T[i])
 { k = rankRec(T, 0, i-1, T[i]);
 x = T[i];
 for(j= i-1 ; j>=k ; j--)
 { T[j+1] = T[j]; }
 T[k] = x;
 }
 }
}

int rankRec (t_elt T[], int l, int r, t_elt x)
{
 int m;
 if (l == r) { return l; }
 else { m = (l+r)/2 ;
 if (x < T[m])

 { return rankRec(T,l,m,x); }
 else
 { return rankRec(T,m+1,r,x); }
 }
}

Initial call:
BinaryInsertionSortRec(T,n-1)

 V.A. Nicolas

 26

Quick sort

Quick sort is a dichotomous recursive algorithm and a
generalized selection based sorting algorithm: an element is put
in its definitive place, but which is not necessarily the first one.

Method:
1. Choose a pivot element,

2. divide the array to be sorted into two sub-arrays T1 and T2 such
that the elements of T1 are less than or equal to the pivot, and
the elements of T2 are greater than the pivot,

3. sort each of the sub-arrays T1 and T2 according to the same
method (restart from step 1 until the size of the processed
(sub-)array is equal to 1),

4. finally, replace the pivot between the two sorted sub-arrays.

 V.A. Nicolas

 27

Quick sort: illustration

101 213 20 123 47 79 195

47 79 20 101 123 213 195

20 47 79 101 123 213 195

20 47 79 101 123 195 213

20 47 79 101 123 195 213

Pivot 0 6

3

66

0 6

0 6

0 6

0 6

3

3

3

1 4

2 4

542

1

1

Here, the pivot is
chosen as the
first element of
the array.

 V.A. Nicolas

 28

Quick sort algorithm

void QuickSort (t_elt T[], int l, int r) {

 int k;

 if (l < r)

{ k = partition(T,l,r);

 QuickSort(T,l,k-1);

 QuickSort(T,k+1,r);

}

}

Initial call: QuickSort(T,0,n-1)

// Partition T in T1 and T2 :
// - T1 : l → k, elts ≤ pivot,
// and T1[k] = pivot
// - T2 : k+1 → r, elts > pivot

 V.A. Nicolas

 29

Quick sort: function partition

int partition (t_elt T[], int l, int r) {
 int i = l+1, k = r; // T[l] is the pivot
 t_elt x;
 while (i <= k) {
 while (T[k] > T[l]) k = k-1;

 while (i <= r && T[i] <= T[l]) i = i+1;
 if (i < k) { x = T[i]; T[i] = T[k]; T[k] = x;
 i = i+1;

 k = k-1;}
 }
 x = T[l];
 T[l] = T[k];
 T[k] = x;
 return k;
}

Complexity: O(n)

comparisons and swaps

 V.A. Nicolas

 30

Complexity of the Quick sort algorithm

• Complexity of QuickSort in number of recursive calls:
the calls to QuickSort represent a binary tree:

– If the tree is balanced, the number of recursive calls is O(log2(n))

– If the tree is totally unbalanced, the number of recursive calls is
O(n).

➔ Hence the importance of the choice of the pivot to try to obtain
each time two sub-arrays of equivalent size. The choice of this
pivot must however remain simple (random, median value...).

• Overall complexity of QuickSort in number of
comparisons and swaps:
➔O(n log2(n)) if the tree is balanced and O(n2) at worst.

 V.A. Nicolas

 31

Heap Sort

Method based on a specific data structure, called heap, where
are kept the result of the comparisons made at each step.

• Definition: heap
A heap is a partially ordered (almost) complete binary tree.

• Definition: (almost) complete binary tree
It is a binary tree with all levels complete, except possibly the last
one, in which case the missing leaves are the rightmost ones.

7

8 2

9

7

8 2

9 6 3

7

8 2

9 5 6 3

Not almost
complete

 V.A. Nicolas

 32

Properties of a Heap

• Property: heap partial order
In a heap, the value (key) of each node is less than or equal to
the values of its children. The elements of the tree must
therefore be part of a set with a total order.

 → The minimum element of the tree is always at its root.

3 5 9 6 8 11 10 12 18 14 3

5 9

6 8 11 10

12 18 14

Example of a heap:

 V.A. Nicolas

 33

Typical representation of a Heap

 Definition: heap
A heap is a partially ordered (almost) complete binary tree.
represented as an array T[0..max] such that:

– The root element is in T[0]

– T[(i-1)/2] is the parent node of T[i],  i>0

– T[2*i +1] and T[2*i +2] are the left and right children, if they exist,
of T[i],  i ≥ 0

– If p is the size of the tree (≤ max+1) and p=2*(i+1), T[i] has a
single (left) child T[p-1]

– If i ≥ p/2 then T[i] is a leaf.

3 5 9 6 8 11 10 12 18 14

 V.A. Nicolas

 34

Heap sort: principle

 Heap sort is done in two steps:
1. Construction of a heap by successively adding to it all the

elements of the array to be sorted
2. Extraction of the minimum of the heap (then reorganisation

of the heap) until it is empty

 Notes:
 All is done in the array (no extra memory needed)
 At the end of the algorithm, T is sorted in descending order

("backwards")

 Complexity:
 O(n log2(n)) comparisons and swaps

 V.A. Nicolas

 35

Operations on the Heap data structure:
adding a new element to a heap

• Method:
1. Add a leaf to the last level of the tree,

2. put the new element in that leaf (attention, the tree is
no longer necessarily partially ordered),

3. reorganisation: the new value is moved up the tree (by
exchange with its parent) until it is in its final place.

• Complexity:
O(log2(p)) if p is the size of the treee (heap).

 V.A. Nicolas

3

5 9

6

8

11 10

12 18 14

4

3

5

9

6

8

11 10

12 18 14

4

 36

Adding to a heap: illustration

43

5 9

6 8 11 10

12 18 14

3

5 9

6 8 11 10

12 18 14 4

 V.A. Nicolas

 37

Reorganisation after adding
of an element to a heap

void BottomUpReordering (t_elt T[], int p) {

 int i = p; // p = size of the heap

 t_elt x;

 while ((i > 0) && (T[i] < T[(i-1)/2]))

 { x = T[i];

 T[i] = T[(i-1)/2];

 T[(i-1)/2] = x;

 i = (i-1)/2; }

}

The new element is in T[p]

Complexity: O(log2(p))

comparisons and swaps

 V.A. Nicolas

 38

Operations on the Heap data structure:
removing the minimum element of a heap (the root)

• Method:
1. Extract the value of the root,

2. replace the value of the root by the value of the last leaf
(attention, the tree is no longer necessarily partially
ordered),

3. reorganisation: this value is moved down the tree (by
swapping with its smallest child) until it is in its final
place.

• Complexity:
O(log2(p)) if p is the size of the heap.

 V.A. Nicolas

5

9

6

8

11 10

12 18 14

4

5 9

6 8 11 10

12 18 14

4

 39

Deletion from a heap: illustration

Min = 3
3

5

9

6

8

11 10

12 18 14

4

5

9

6

8

11 10

12 18 14

4

 V.A. Nicolas

 40

Reorganisation after deletion
of the minimum element of a heap

void TopDownReordering (t_elt T[], int p) {

 int i = 0, c; // p = size of the remaining heap
 t_elt x;
 while (i < p/2)
 { if (p == (2*(i+1)) || (T[2*i + 1] < T[2*i +2]))
 c = 2*i + 1;
 else c = 2*i +2;
 if (T[i] > T[c])

 { x = T[i];
 T[i] = T[c];
 T[c] = x;
 i = c; }

 else i = p;
 }
}

T[0] = element to be moved

Complexity: O(log2(p))

comparisons and swaps

 V.A. Nicolas

41

Heap sort algorithm

void HeapSort (t_elt T[], int n) {

 int p;

 t_elt min;

 for(p = 1; p < n; p++)

 BottomUpReordering(T,p);

 for(p = n-1; p > 0; p--)

 { min = T[0];

 T[0] = T[p];

 TopDownReordering(T,p);

 T[p] = min; }

}

Complexity: O(n log2(n))
comparisons and swaps

 V.A. Nicolas

42

Heap sort: illustration

12 7 9 14 15 3 15 14 12 9 7 3

12

7

7

12 9

14 15 3

7

12 3

14 15 9

3

12 7

14 15 9

a
b

c
d

e

a e

Build the heap Extract elements

min

a

12 7

14 15

12

7

14 15

9

9

9

12

14

9

15
min

12

14

9

15

min

12 15

14

15

12

14

min e

15

14

14

15

min

 V.A. Nicolas

 43

Overview of main sorting algorithms

 Internal sorting algorithms comparisons swaps space

 Basic selection based algorithms

 Bubble sort (and Shaker sort) O(n2) O(n2) O(1)

 Selection sort O(n2) O(n) O(1)

 Basic insertion based algorithms

 Sequential insertion sort O(n2) O(n2) O(1)

 Binary insertion sort O(n log
2
(n)) O(n2) O(1)

 Advanced selection based algorithms

 Quick sort (or Hoare sort) O(n2) O(n2) O(log2(n))

 Heap sort O(n log2(n)) O(n log2(n)) O(1)

 External sorting algorithm: Merge sort O(n log2(n)) O(n log2(n)) O(n)

 V.A. Nicolas

 44

Conclusion

➢ Optimal complexity in number of comparisons: O(n log2n)

➢ Stable algorithms except Selection sort, Quick sort and Heap sort
➢ Small size arrays: basic algorithm → Insertion sort (also well suited when

the array is already partially sorted)
➢ Bigger size arrays: advanced algorithm → Heap sort, Quick sort ; Quick

sort is in general faster than Heap sort (average complexity is O(n log2n))

➢ Very large arrays: external algorithm → Merge sort (parallelizable…)

➢ Many other (specific) sorting algorithms. Here were presented comparison
sorts, but there is also non comparison sorts (e.g. counting sorts...)

➢ Laboratory session: Merge sort and experimental evaluation of
sorting algorithm complexities

 V.A. Nicolas

 45

Merge sort

Merge sort is an external sorting algorithm.

It is a dichotomous algorithm aimed at reducing the number of
data moves in order to limit the memory loadings.

Method: To sort an array of size n:

1. Divide the array into two sub-arrays of rough size n/2 (first and
second half),

2. sort the two sub-arrays independently (by recursive calls to Merge
sort),

3. merge the two sorted sub-arrays.

Merge sort is not an « in place » algorithm: its space complexity

is O(n), however comparisons and swaps are optimal in O(n log2(n)).

 V.A. Nicolas

 46

Merge sort: illustration

Divide

Merge

 V.A. Nicolas

