



### An introduction to Fuzzy Logic

#### An "easy & natural" way to control a system

Vincent Rodin

- Lab-STICC, UMR 6285, CNRS,
  - Computer Science Dept,
  - University of Brest, France

ropaka unija o do fondova EU"

May 2022, vincent.rodin@univ-brest.fr





### Motivations: control system





- Classical approach
  - Mathematical function
  - Not always possible
- Fuzzy approach
  - knowledge & experience
    - → « Natural » control
  - Not accurate
    - uncertainly but acceptable !!





### Fuzzy controller: an example











#### Fuzzy controller: structure







#### Road map



Page 6 Fuzzy Logic: a (very) short history Page 7 Fuzzy reasoning: - a need of fuzzy sets - warnings - applications Fuzzy sets: - representation Page 10 - fuzzy operators and modifiers - fuzzyfication - defuzzyfication Page 26 Fuzzy logic inference example of knowledge base - a larsen controller - a mamdani controller - very important remarks **Page 45 Exercices** 





ab

- 1965: Lotfi Zadeh (Berkeley University) defined the Fuzzy set theory core concepts of fuzzy logic
- 1973: Lotfi Zadeh proposed to apply fuzzy logic to system control
- > 1974: Abe Mamdani (London University) proposed a fuzzy steam engine control (first « industrial » application)
- 1985: First general public products (Japan): Cameras, washing machines, etc. with « Fuzzy Logic Inside »
- > 1990's: Widespread usage (daily life products....)
   > WARP: Weight Associative Rule Processor



#### Fuzzy reasoning: a need of fuzzy sets





Let us consider a patient with a **temperature 38.9** <sup>o</sup>C and the rule : **If Fever is high then Sickness is Covid-19** 

Classical logic → No covid-19

U

> > Fuzzy logic → Possibly (0.9) Covid-19

Classical logic do not consider uncertainly of the real world





#### Fuzzy reasoning: warnings



Fuzzy Logic approach is:

- different from a classical scientific method (a priori)
- more pragmatic than deterministic





#### **Fuzzy reasoning:** applications





A wide range of applications

- Decision making
- Diagnosis
- Database interface >

(Business, defense, etc.)

(medical area, fault detection, etc.)

(fuzzy objects & fuzzy queries)

- Pattern recognition (medical, defense, autonomous cars, etc.)
- Robotics (robot arm & flexible link control, etc.)
- Industrial Process Control
- Daily life product control
- ➢ Etc.

- - (cement kiln heat control, etc.)

(air conditioning, camera, etc.)







Europska unija

#### Fuzzy sets: the main concept !









#### Fuzzy Classical sets: representation



Classical set theory:  $E = \{x_1, x_2, x_3, x_4, x_5\}$  Universe of discourse

A





 $A = \{x_2, x_4\}$  A subset of E (A \subset E)

Let  $\mu_A$  the membership function of set A

$$x \in E, \ \boldsymbol{\mu}_{A}(\mathbf{x}) \in \{\mathbf{0}, \mathbf{1}\}$$
$$\mu_{A}(\mathbf{x}) = \begin{cases} 0, & \text{if } \mathbf{x} \notin A\\ 1, & \text{if } \mathbf{x} \in A \end{cases}$$

 $\mu_A(x)$  : membership (value) of x for set A





## Fuzzy sets: representation



ab S

12

Uncertainly

for reasoning !!

Fuzzy set therory: E Universe of discourse A subset of E (A  $\subset$  E)

| Possible interpretation |              |  |
|-------------------------|--------------|--|
| $\mu_A(\mathbf{x})$     | x ∈ A        |  |
| 1                       | yes          |  |
| [0.6;1[                 | possibly yes |  |
| [0.3;0.6[               | cannot say   |  |
| ]0;0.3[                 | possibly no  |  |
| 0                       | no           |  |

Let  $\mu_A$  the membership function of A

 $\forall x \in E, \ \mu_A(x) \in [0, 1]$ 

0.8

0.6

0.4

0.2

 $\mu_A(x)$  : membership degree of x for set A

Age

80

If  $\mu_A(x)=0.5$ , x belongs to A with a membership degree of 50%

Old

Fuzzy set example





## Fuzzy sets: representation



Examples:





13 **CITS** 



**EUROPSKI STRUKTURN** 

urooska unli

#### **Fuzzy sets:** mostly used representations









#### Fuzzy sets: fuzzy operators



Fuzzy operators define relation between sets
➔ Intersection (and), union (or), complement (not), etc.

#### Triangular norm and co-norms are used...

| <b>Definition 1</b> , a triangular norm is a function ∗: [0,1] × [0,1] → [0,1]                                                 | <b>Definition 2</b> , a triangular co-norm<br>is a function $\div$ : $[0,1] \times [0,1] \rightarrow [0,1]$                                                 |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Some t-norm properties:<br>Limit: 0*a = a*0 = 0; 1*a = a*1 = a<br>Commutativity: a*b = b*a<br>Associativity: (a*b)*c = a*(b*c) | Some t-conorm properties:<br>Limit: $0 + a = a + 0 = a$ ; $1 + a = a + 1 =$<br>Commutativity: $a + b = b + a$<br>Associativity: $(a + b) + c = a + (b + c)$ |
| t-norme examples:<br><b>min</b> : min(a,b) ;<br><b>product</b> : a ● B ;<br>etc.                                               | t-conorm examples:<br><b>max</b> : max(a,b) ;<br><b>sum</b> : a ⊕ b = min(1,a+b) ;<br>etc.                                                                  |





#### Fuzzy sets: intersection (and)





 $A \cap B : \forall x \in E, \ \mu_{A \cap B}(x) = \mu_A(x) * \mu_B(x)$ If t-norm  $* \equiv \min$  then  $A \cap B$ :  $\forall x \in E, \ \mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x))$ 







#### Fuzzy sets: union (or)



ab









17



#### Fuzzy sets: complement (not)





$$\overline{A}$$
:  $\forall x \in E$ ,  $\mu_{\overline{A}}(x) = 1 - \mu A(x)$ 

Used to describe a set negation





ab-STICC

CINIS

#### Fuzzy sets: intersection & complement





Université

B

de bretagne

Remark: with fuzzy sets,  $A \cap \overline{A} = \emptyset$ ?

$$\bullet \mathbf{A} \cap \mathbf{\bar{A}} \neq \emptyset$$





19

ab-STICC

CINIS



#### Fuzzy sets: union & complement





Remark: with fuzzy sets, A  $\cup \overline{A} = E$  ?

$$A \cup \overline{A} \neq E$$







20



#### Fuzzy sets: modifier (very)



ab-STICC

CINIS

very A: 
$$\forall x \in E$$
,  $\mu_{very A}(x) = \mu_A(x)^2$ 

Used to describe a more specific set





#### Fuzzy sets: modifier (few)



few A: 
$$\forall x \in E$$
,  $\mu_{\text{few }A}(x) = \sqrt{\mu_A(x)}$ 

Used to describe a less specific set



Lab-STICC

#### Fuzzy sets: fuzzyfication/defuzzyfication









Université

B

de bretagne O occidentale GIT





#### Fuzzy sets: defuzzyfication





Which real number x better represents a fuzzy set ?





Europska unija

#### Fuzzy logic inference: the second main concept !









### Fuzzy logic inference: example of knowledge base









# Fuzzy logic inference: example of a (larsen: •) controller







## Fuzzy logic inference: example of a (larsen: •) controller



Terminal student@student ~/Desktop/FuzzyLogic/FuzzyFonction \$ ./function Controller1.fuz







#### Université B de bretagne O occidentale

# Fuzzy logic inference: example of a (mamdani: min) controller









# Fuzzy logic inference: example of a (mamdani: min ) controller



33





### **Fuzzy logic inference:** very important remarks (1)



ab-STICC





### Fuzzy logic inference: very important remarks (2)



#### **Defuzzyfication:** center vs max\_average

Example:

if X is Small then Z is SmallZ (Rule 1)

if X is Large then Z is LargeZ (Rule 2)

Larsen: Product (•)







### Fuzzy logic inference: very important remarks (3)



#### **Defuzzyfication:** center & max\_average

Example: if X is Small then Z is SmallZ (Rule 1)

if X is Large then Z is LargeZ (Rule 2)

Larsen: Product (•)

#### For output fuzzy sets (here SmallZ and LargeZ): Do not use ramps (open fuzzy sets) !







### Fuzzy logic inference: very important remarks (4.1)



**Merging rules results:** 

max vs sum

- Example:if X is Small then Z is SmallZ (Rule 1)Larsen:if X is Large then Z is LargeZ (Rule 2)Product (•)
- In a fuzzy controller, all the rules are evaluated (no priority)
- For a specific output variable (here Z), their results are merged
- Usually the results are merge with a t-conorm (max or sum)
- t-conorms properties: associativity + commutativity
   Tules evaluation order not important !







#### Fuzzy logic inference: very important remarks (4.3)

U

de bretagne







### Fuzzy logic inference: very important remarks (5.1)



Till now:

if X is Small then Z is SmallZ (Rule 1) if X is Large then Z is LargeZ (Rule 2)





EUROPSKI STRUKTURNI

### Fuzzy logic inference: very important remarks (5.2)



How to evaluate : if X is Small and Y is Small then Z is SmallZ?

Let us consider the case with X=0.25 and Y=0.75



→ Rule « if X is Small and Y is Small then Z is SmallZ » true at ?? %

Page 16, we saw that and is an intersection expressed by a t-norm \* If we consider the t-norm  $* \equiv \min$ 

→ Rule « if X is Small and Y is Small then Z is SmallZ » true at min(µ<sub>Small</sub>(X), µ<sub>Small</sub>(Y)) = min(0.75,0.25) = 0.25 → 25 %





### Fuzzy logic inference: very important remarks (5.3)



How to evaluate : if X is Small or Y is Small then Z is SmallZ ?

Let us consider the case with X=0.25 and Y=0.75



→ Rule « if X is Small or Y is Small then Z is SmallZ » true at ?? %

Page 16, we saw that or is an union expressed by a t-conorm  $\dotplus$ If we consider the t-conorm  $\dotplus$  = max

→ Rule « if X is Small or Y is Small then Z is SmallZ » true at  $max(\mu_{Small}(X), \mu_{Small}(Y)) = max(0.75, 0.25) = 0.75 \rightarrow 75 \%$ 







### Fuzzy logic inference: very important remarks (6)



Till now: if X is Small then Z is SmallZ (Rule 1) if X is Large then Z is LargeZ (Rule 2) Could we use *not*, *very*, *few* ? Could we use rules such as:

- if X is *not* Small *and* Y is *very* Small then Z is SmallZ ?

- if X is *few* Small *or* Y is Small then Z is SmallZ



→ few (see page 22)

It is also possible **to combine** conclusions with *and*...







#### Fuzzy logic inference: very important remarks (7)



For a specific output variable V, if no rule is active (i.e all the activation degrees are near 0)  $\rightarrow$  The final output set if « flat » near 0 Set1 Set2 → Impossible to defuzz ! 8.0 0.6  $\rightarrow$  By default, the controller will respond 0 0.4 0.2  $\mathbb{R}$ Rule 1: if cond\_1 then V is Set1 5 0 4 Rule 2: if cond\_2 then V is Set2 V1 UV2 : final result V1: result of Rule 1 V2: result of Rule 2 Set1 Set2 Set1 Set2













urooska unli

#### **Exercices:** a fuzzy Robot







## Exercices: a fuzzy Robot various informations



#### Informations about the robot:

- The robot is oriented
- The maximum angular speed is 100<sup>o</sup>.s<sup>-1</sup> Acceleration: 70<sup>o</sup>.s<sup>-2</sup>
- The maximum linear speed is is 150 cm s<sup>-1</sup>. Acceleration: 70cm.s<sup>-2</sup>
- The robot receives commands 10 times per second

Input variables (i.e. sensors):

DistGoal: distance to the goal DirecGoal: orientation to the goal ObstFront: distance to a front obstacle ObstBack: distance to a back obstacle ObstRight: distance to a right obstacle ObstLeft: distance to a left obstacle InSlin: current linear speed InSang; current angular speed







## Exercices: a fuzzy Robot manage rotation: direction.fuz



