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Motivations: control system

Controller

System
Vs Va

System

sensors

System

actuators

Crisp
Input

Crisp
Output

Fuzzy approach

- knowledge & experience

« Natural » control

- Not accurate

uncertainly

but acceptable !! 

Ø

Classical approach

- Mathematical function

- Not always possible

Ø

e.g.: camera control 

distance & light   (Vs)
è focus & aperture (Va)
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Fuzzy controller: an example

Mesured distance d è Sensors

d

Speed

if Distance is far then Speed is high

if Distance is close then Speed is low
Distance

s

Fuzzy controller

Actuators ç speed: s

Remarks:

- « natural » language Rules
- far ? close ? high ? low ?
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Fuzzy controller: structure

Fuzzyfication module

Crisp Input Values (Vs)

è Fuzzy input sets

Ø

Four main parts

Knowledge base (expert)

If-Then Fuzzy “natural” rules

and Fuzzy sets  

Ø

Defuzzyfication module

Fuzzy output sets

èCrisp output Values (Va)   

Ø

Crisp
Output

System
Vs Va

System

sensors

System

actuators

Crisp

Input
DefuzzyfierFuzzyfier

Fuzzy Logic

inference

Fuzzy

number
sets

Fuzzy

result
sets

Fuzzy

sets

Fuzzy

rules

Fuzzy controller

Knowledge Base

Fuzzy Inference engine

Knowledge base

Fuzzy input sets

è Human like reasonning

è Fuzzy output sets

Ø

&

(real) (real)
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Road map

Fuzzy Logic: a (very) short history

Fuzzy reasoning: - a need of fuzzy sets

- warnings

- applications

Fuzzy sets: - representation

- fuzzy operators and modifiers

- fuzzyfication

- defuzzyfication

Fuzzy logic inference

- example of knowledge base

- a larsen controller

- a mamdani controller

- very important remarks

Exercices

Page 6

Page 7

Page 10

Page 26

Page 45



6

Fuzzy Logic: a short history

1974: Abe Mamdani (London University) proposed a fuzzy

steam engine control (first « industrial » application)
Ø

Ø

Ø

1965: Lotfi Zadeh (Berkeley University) defined the 

Fuzzy set theory è core concepts of fuzzy logic

1973: Lotfi Zadeh proposed to apply fuzzy logic

to system control

Ø

Ø

1985: First general public products (Japan): Cameras, 

washing machines, etc. with « Fuzzy Logic Inside »

1990’s: Widespread usage (daily life products….)

è WARP: Weight Associative Rule Processor



7

Fuzzy reasoning:

a need of fuzzy sets

Classical set

0

1

Classical logic

è No covid-19

Let us consider a patient with a temperature 38.9 OC

and the rule : If Fever is high then Sickness is Covid-19

39

T(oC)

high fever

Fuzzy set

0

0.2

0.4

0.6

0.8

1

Fuzzy logic

è Possibly (0.9) Covid-19

39

T(oC)

high fever

38

Classical logic do not consider

uncertainly of the real world 
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Fuzzy logic considers

uncertainly of the real world 

Fuzzy reasoning:

warnings

Fuzzy Logic approach is:

- different from a classical scientific method (a priori)

- more pragmatic than deterministic

è Do not be too cartesian to use fuzzy logic

è Be intuitive (“expert”/human reasoning)

è Accept non-perfect results...
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Fuzzy reasoning:

applications

A wide range of applications

Ø Decision making (Business, defense, etc.)

Ø Diagnosis (medical area, fault detection, etc.)

Ø Database interface (fuzzy objects & fuzzy queries)

Ø Pattern recognition (medical, defense, autonomous cars, etc.)

Ø Robotics (robot arm & flexible link control, etc.)

Ø Industrial Process Control (cement kiln heat control, etc.)

Ø Daily life product control (air conditioning, camera, etc.)

Ø Etc.
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Fuzzy sets:

the main concept !

Crisp
Output

System
Vs Va

System

sensors

System

actuators

Crisp

Input
DefuzzyfierFuzzyfier

Fuzzy Logic

inference

Fuzzy

number
sets

Fuzzy

result
sets

Fuzzy

sets

Fuzzy

rules

Knowledge Base

(real) (real)
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Fuzzy Classical sets:

representation

Classical set theory:

A = {x2,x4}

Universe of discourse

A subset of E (A ⊂ E)

Let µA the membership function of set A 

∀ x ∈ E, )* + ∈ {-, .}
µA x = 10, if x ∉ A1, if x ∈ A

Too precise

for reasoning !!

1 Old

Age

80
0

Classical set

example

µA x : membership (value) of x for set A

E = {x1,x2 ,x3,x4,x5}

µA x1 = 0µA x2 = 1
…

A

x1

x4

x3

x2 x5

E
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Fuzzy sets:

representation

Fuzzy set therory: E Universe of discourse

A subset of E (A ⊂ E)

Let µA the membership function of A 

∀ x ∈ E, )* + ∈ [-, .]

Uncertainly

for reasoning !!

1 Old

Age
80

0

Fuzzy set

example

70

0.2
0.4
0.6
0.8

µA x : membership degree of x for set A

If µA x =0.5, x belongs to A with a

membership degree of 50%

µA x x ∈ A

1 yes

0 no

]0;0.3[ possibly no

[0.3;0.6[ cannot say

[0.6;1[ possibly yes

Possible interpretation
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Fuzzy sets:

representation

Examples:

1 Small

0

0

1

0.2
0.4
0.6
0.8

ℝ

Large1 Small

0
0

1

0.2
0.4
0.6
0.8

ℝ

1 Large

0

0

1

0.2
0.4
0.6
0.8

ℝ

Fuzzy set Small Fuzzy set large

2-set fuzzy partition of ℝ

0.25

Let us consider X=0.25

µSmall X = 0.75

µLarge X = 0.25

è X is Small at 75%

X is Large at 25%
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Fuzzy sets:

mostly used representations

1

0
0.2
0.4
0.6
0.8

down_ramp(x1,x2)

x1 x2

1

0
0.2
0.4
0.6
0.8

up_ramp(x1,x2)

x1 x2

1

0
0.2
0.4
0.6
0.8

triangle(x1,x2,x3)

x1 x2 x3

1

0
0.2
0.4
0.6
0.8

trapeze(x1,x2,x3,x4)

x1 x2 x3 x4

Remark 1:

due to computation,

smooth shapes

are very less used

1

0
0.2
0.4
0.6
0.8

x1 x2

Remark 2:

classical sets are special

cases of fuzzy sets
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Fuzzy sets:

fuzzy operators

Fuzzy operators define relation between sets 

è Intersection (and), union (or), complement (not), etc.

Triangular norm and co-norms are used…

Definition 1, a triangular norm

is a function ∗: [0,1] x [0,1]è [0,1]

Some t-norm properties:

Limit: 0∗a = a∗0 = 0 ; 1∗a = a∗1 = a

Commutativity: a∗b = b∗a

Associativity: (a∗b)∗c = a∗(b∗c)

t-norme examples:

min: min(a,b) ;  

product: a . B ;

etc.

Definition 2, a triangular co-norm

is a function ∔: [0,1] x [0,1]è [0,1]

Some t-conorm properties:

Limit: 0∔a = a∔0 = a;1∔a = a∔1 = 1

Commutativity: a∔b = b∔a

Associativity: (a∔b)∔c = a∔(b∔c)

t-conorm examples:

max: max(a,b) ;

sum: a ⨁ b = min(1,a+b) ;

etc.
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Fuzzy sets:

intersection (and)

∀ x ∈ E, µA B x = min(µA x , µ. x )∩

If t-norm ∗ ≡min then A ∩ B: 

Other t-norms can also be chosen….

1

0

0.2

0.4

0.6

0.8

A
B

A ∩ B 

Example

x2

Classical sets

B

A

x1

x4

x3

x5E

A∩B

∀ 2 ∈ 3
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Fuzzy sets:

union (or)

Other t-conorms can also be chosen….

∀ x ∈ E, µA B x = max(µA x , µ- x )∪

If t-conorm ∔≡ max then A ∪ B: 

1

0

0.2

0.4

0.6

0.8

A
B

A ∪B 

Example

x2

Classical sets

B

A

x1

x4

x3

x5E

A∪B

∀ 1 ∈ 2
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Fuzzy sets:

complement (not)

A: ∀ x ∈ E, µA x = 1 − µA x

1

0

0.2

0.4

0.6

0.8

A

A

Example

Classical sets

A

x1

x3

x5E

A

x2

x4

∀ , ∈ -

Used to describe a set negation
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Fuzzy sets:

intersection & complement

1

0

0.2

0.4

0.6

0.8

A

A

Remark:with fuzzy sets, A ∩ A = ∅ ?

∀ 0 ∈ 2

è 3 ∩ 3 ≠ ∅

Classical sets

A

x1

x3

x5
E

A

x2

x4

A ∩ A = ∅
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Fuzzy sets:

union & complement

1

0

0.2

0.4

0.6

0.8

A

A

∀ " ∈ $

è % ∪ % ≠ E

Classical sets

A

x1

x3

x5
E

A

x2

x4

A ∪ A = E Remark:with fuzzy sets, A ∪ A = E ?
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Fuzzy sets:

modifier (very)

2

1

0

0.2

0.4

0.6

0.8

A

very A

Example

∀ " ∈ $

Used to describe a more specific set

∀ x ∈ E, () " ∈ [+, ,]Remember:
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Fuzzy sets:

modifier (few)

few A: ∀ x ∈ E, µfew A x = µA x

1

0

0.2

0.4

0.6

0.8

A

few A

Example

∀ - ∈ .

Used to describe a less specific set

∀ x ∈ E, /0 - ∈ [2, 3]Remember:
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Fuzzy sets:

fuzzyfication/defuzzyfication

Crisp
Output

System
Vs Va

System

sensors

System

actuators

Crisp

Input
DefuzzyfierFuzzyfier

Fuzzy Logic

inference

Fuzzy

number
sets

Fuzzy

result
sets

Fuzzy

sets

Fuzzy

rules

Knowledge Base

(real) (real)
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Fuzzy sets:

fuzzyfication

Fuzzyfication

module   

Crisp value

(real number)

from a sensor

Fuzzy set

(fuzzy number)

Let us consider: - x , mesured value by the sensor

- σ, measurement standard deviation

1

0
0.2
0.4
0.6
0.8

x-σ x   x+σ

2σ

Imprecise data

1

0
0.2
0.4
0.6
0.8

x

Accurate data

= 0 è Singletonσ

1

0
0.2
0.4
0.6
0.8

x-σ x   x+σ

2σ

Imprecise data

Which fuzzy set can represent a real number x ?
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Fuzzy sets:

defuzzyfication

Defuzzyfication

module   

Crisp value

(real number)

for an actuator

Which real number x better represents a fuzzy set ?

Fuzzy set

Two major defuzzyfication methods

x x

Let Result

an inference output 

fuzzy set

1

0
0.2
0.4
0.6
0.8

Result center of gravity

1

0
0.2
0.4
0.6
0.8

Result

max_average

1

0
0.2
0.4
0.6
0.8

Result
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Fuzzy logic inference:

the second main concept !

Crisp
Output

System
Vs Va

System

sensors

System

actuators

Crisp

Input
DefuzzyfierFuzzyfier

Fuzzy Logic

inference

Fuzzy

number
sets

Fuzzy

result
sets

Fuzzy

sets

Fuzzy

rules

Knowledge Base

(real) (real)
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Fuzzy logic inference:

example of knowledge base

Large1 Small

0

0

1

0.2
0.4
0.6
0.8

ℝ

Fuzzy input sets
LargeZ 1SmallZ

0

0

5

0.2
0.4
0.6
0.8

ℝ

1-1 4 6

Fuzzy output sets

if X is Small then Z is SmallZ (Rule 1)

if X is Large then Z is LargeZ (Rule 2)

Fuzzy rules:

Fuzzy controllerX ∈ ℝ Z ∈ ℝ ?



∪
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Fuzzy logic inference: example

of a (larsen:  ) controller

FuzzyfierX:
0.25

1

0
0.2
0.4
0.6
0.8

ℝ

X=0.250

Knowledge baseFuzzy

number
set

µSmall X = 0.75

µLarge X = 0.25

X: Small at 75%

X: Large at 25%

LargeZ 1

0

5

0.2
0.4
0.6
0.8

ℝ

4 6

Z2: Result Rule 2

1SmallZ

0

0
0.2
0.4
0.6
0.8

ℝ

1-1

Z1: Result Rule 1

∀ 4 ∈ ℝ,789 4 = :. ;< ∗ 7>?@AA8 4

∀ 4 ∈ ℝ,78B 4 = :. B< ∗ 7C@DEF8 4

è Rule 1: true at 75%

Rule 2: true at 25%

1 Small

0

0

1

0.2
0.4
0.6
0.8

ℝ

X=0.25

Large

è

è

Defuzzyfier
Z: 
1.25

center

also:=max (   ) defuzz:=center 

also (   ):
max

center of gravity

larsen

0

ℝ

1-1 54 6

Z: Fuzzy Result Z1    Z2

Fuzzy Logic inference

implication:=larsen (product )

Rules
activation

degrees

Large1 Small

0

0

1

0.2
0.4
0.6
0.8

ℝ

LargeZ 1SmallZ

0

0

5

0.2
0.4
0.6
0.8

ℝ

1-1 4 6

Rule 1 : if X is Small then Z is SmallZ
Rule 2 : if X is Large then Z is LargeZ
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Fuzzy logic inference: example

of a (larsen:  ) controller

function

Controller1.fuz

For(X=0;X<=1.0;X=X+0.1)
{

For(Y=0;Y<=1.0;Y=Y+0.1)
{

X
Y

}
}

Fuzzy controller Z
Controller1.fuz

surface
Z

X
Y

configuration                      // A larsen controller

{
and :=  min; // min, product
or := max; // max, sum

defuzz := center; // center, max_average
implication := larsen;        // larsen, mamdani
also := max; // max, sum

}

linguistic
{

// Input sets: Linguistic values for X and Y (Y not used)
Small := down_ramp(0.0, 1.0);
Large := up_ramp(0.0, 1.0);

// Output sets: Linguistic values Z

SmallZ := triangle(-1, 0,1);
LargeZ := triangle(4,5,6);

}

rules
{
if X is Small then Z is SmallZ;

if X is Large then Z is LargeZ;
}

C
ontroller1.fuz



30

Fuzzy logic inference: example
of a (larsen:  ) controller

surface

Z

X

Y

Terminal

student@student ~/Desktop/FuzzyLogic/FuzzyFonction $ ./function Controller1.fuz



∪
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Fuzzy logic inference: example

of a (mamdani: min) controller

FuzzyfierX:
0.25

1

0
0.2
0.4
0.6
0.8

ℝ

X=0.250

Knowledge baseFuzzy

number
set

µSmall X = 0.75

µLarge X = 0.25

X: Small at 75%

X: Large at 25%

∀ 4 ∈ ℝ,789 4 = :;<(>. ?@, 7A:BCC8 4)

∀ 4 ∈ ℝ,78E 4 = :;<(>. E@, 7FBGHI8 4 )

è Rule 1: true at 75%

Rule 2: true at 25%

1 Small

0

0

1

0.2
0.4
0.6
0.8

ℝ

X=0.25

Large

è

è

Defuzzyfier
Z: 
1.59

center

also:=max (   ) defuzz:=center 

also (   ):
max

center of gravity

mamdani

Fuzzy Logic inference

implication:=mamdani (min)

Rules
activation

degrees

Large1 Small

0

0

1

0.2
0.4
0.6
0.8

ℝ

LargeZ 1SmallZ

0

0

5

0.2
0.4
0.6
0.8

ℝ

1-1 4 6

Rule 1 : if X is Small then Z is SmallZ
Rule 2 : if X is Large then Z is LargeZ

1SmallZ

0

0
0.2
0.4
0.6
0.8

ℝ

1-1

Z1: Result Rule 1

LargeZ 1

0

5

0.2
0.4
0.6
0.8

ℝ

4 6

Z2: Result Rule 2

0

ℝ

1-1 54 6

Z: Fuzzy Result Z1    Z2
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Fuzzy logic inference: example

of a (mamdani: min ) controller
configuration                      // A mamdani controller

{
and :=  min; // min, product
or := max; // max, sum

defuzz := center; // center, max_average
implication := mamdani;   // larsen, mamdani
also := max; // max, sum

}

linguistic
{

// Input sets: Linguistic values for X and Y (Y not used)
Small := down_ramp(0.0, 1.0);
Large := up_ramp(0.0, 1.0);

// Output sets: Linguistic values Z

SmallZ := triangle(-1, 0,1);
LargeZ := triangle(4,5,6);

}

rules
{
if X is Small then Z is SmallZ;

if X is Large then Z is LargeZ;
}

For(X=0;X<=1.0;X=X+0.1)
{

For(Y=0;Y<=1.0;Y=Y+0.1)
{

X
Y

}
}

Fuzzy controller Z
Controller2.fuz

function

Controller2.fuz

Z

X
Y

surface

C
ontroller2.fuz
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Fuzzy logic inference: example
of a (mamdani: min ) controller

Terminal

student@student ~/Desktop/FuzzyLogic/FuzzyFonction $ ./function Controller2.fuz

surface

Z

X

Y
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Fuzzy logic inference:

very important remarks (1)

larsen vs mamdani

Large1 Small

0
0

1

0.2
0.4
0.6
0.8

ℝ

LargeZ 1SmallZ

0

0

5

0.2
0.4
0.6
0.8

ℝ

1-1 4 6

if X is Small then Z is SmallZ (Rule 1)

if X is Large then Z is LargeZ (Rule 2)

X= 0.25

Example:

µSmall X = 0.75

µLarge X = 0.25

è Rule 1 true at 75%
Rule 2 true at 25%

LargeZ 1SmallZ

0

0

5

0.2
0.4
0.6
0.8

ℝ

1-1 4 6

mamdani

min

LargeZ 1SmallZ

0

0

5

0.2
0.4
0.6
0.8

ℝ

1-1 4 6

larsen:

product (  )

Implication:

implication:=larsen; implication:=mamdani;

Triangles remain but re
duced

Triangles are lost è
tra

peze
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Fuzzy logic inference:

very important remarks (2)

center vs max_average

if X is Small then Z is SmallZ (Rule 1)

if X is Large then Z is LargeZ (Rule 2)

Example:

LargeZ 1SmallZ

0

0

5

0.2
0.4
0.6
0.8

ℝ

1-1 4 6

Larsen:

Product (  )

Defuzzyfication:

defuzz:=center; 

è center of gravity

è 1.25

defuzz:=max_average;

è only one maxima in 0

è 0
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Fuzzy logic inference:

very important remarks (3)

center & max_average

if X is Small then Z is SmallZ (Rule 1)

if X is Large then Z is LargeZ (Rule 2)

Example:

LargeZ 1SmallZ

0

0

5

0.2
0.4
0.6
0.8

ℝ

1-1 4 6

Larsen:

Product (  )

Defuzzyfication:

defuzz:=center; 

è For an open surface, 

impossible to compute

the center of gravity

defuzz:=max_average;

è For an open surface, 

impossible to compute

the average of maxima

For output fuzzy sets (here SmallZ and LargeZ):

Do not use ramps (open fuzzy sets) !
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Fuzzy logic inference:

very important remarks (4.1)

max vs sum

if X is Small then Z is SmallZ (Rule 1)

if X is Large then Z is LargeZ (Rule 2)

Example: Larsen:

Product (  )

Ø In a fuzzy controller, all the rules are evaluated (no priority)

Ø For a specific output variable (here Z), their results are merged

Ø Usually the results are merge with a t-conorm (max or sum)

Ø t-conorms properties: associativity + commutativity

è rules evaluation order not important !

Merging rules results:
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Fuzzy logic inference:

very important remarks (4.2)

max vs sum

if X is Small then Z is SmallZ (Rule 1)

if X is Large then Z is LargeZ (Rule 2)

Example: Larsen:

Product (  )

Merging rules results:

1

0

0

5

0.2
0.4
0.6
0.8

ℝ

1-1 4 6

1

0

0
0.2
0.4
0.6
0.8

ℝ

1-1

1

0

5

0.2
0.4
0.6
0.8

ℝ

4 6

also:=max;

Z1: result Rule 1

Z2: result Rule 2

1

0

0

5

0.2
0.4
0.6
0.8

ℝ

1-1 4 6

1

0

0
0.2
0.4
0.6
0.8

ℝ

1-1

1

0

5

0.2
0.4
0.6
0.8

ℝ

4 6

also:=sum;

Z1: result Rule 1

Z2: result Rule 2

with max: 
max(a,b)

with sum:
a ⨁ b =

min(1,a+b)

Here,

same

results

but.. Z: Z1 also Z2 (.  ) Z: Z1 also Z2 (.  )
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Fuzzy logic inference:

very important remarks (4.3)
max vs sumMerging rules results:

1

0

0

5

0.2
0.4
0.6
0.8

ℝ

1-1 4 6

1

0

0
0.2
0.4
0.6
0.8

ℝ

1-1

also:=max;

Z1: result Rule 1

1

0

0

5

0.2
0.4
0.6
0.8

ℝ

1-1 4 6

1

0

0
0.2
0.4
0.6
0.8

ℝ

1-1

also:=sum;

Z1: result Rule 1

with max: 
max(a,b)

with sum:
a ⨁ b =

min(1,a+b)

Z: Z1 also Z2 (.  ) Z: Z1 also Z2 (.  )

1

0

0
0.2
0.4
0.6
0.8

ℝ

1-1

Z2: result Rule 2 1

0

0
0.2
0.4
0.6
0.8

ℝ

1-1

Z2: result Rule 2

With sum:
If 2 rules give the same result

è amplified controller response

In some

cases,

could be

different !
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Fuzzy logic inference:

very important remarks (5.1)

if X is Small then Z is SmallZ (Rule 1)

if X is Large then Z is LargeZ (Rule 2)

Till now:

Hi Vincent, your rules seem very simple…

Could I express more complex rules such as

- if X is Small and Y is Small then Z is SmallZ ?

- if X is Small  or Y is Small then Z is SmallZ ?
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Fuzzy logic inference:

very important remarks (5.2)

How to evaluate : if X is Small and Y is Small then Z is SmallZ ?

Large1 Small

0
0

1

0.2
0.4
0.6
0.8

ℝ

LargeZ 1SmallZ

0

0

5

0.2
0.4
0.6
0.8

ℝ

1-1 4 6X
0.25

µSmall X = 0.75

µLarge X = 0.25

è Rule « if X is Small and Y is Small then Z is SmallZ » true at ?? %

Y

0.75

Let us consider the case with X=0.25 and Y=0.75 

µSmall Y = 0.25

µLarge Y = 0.75

Page 16, we saw that and is an intersection expressed by a t-norm ∗

If we consider the t-norm ∗ ≡ min

è Rule « if X is Small and Y is Small then Z is SmallZ » true at

min(µSmall X , µSmall Y ) = min(0.75,0.25) = 0.25 è 25 %
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Fuzzy logic inference:

very important remarks (5.3)

How to evaluate : if X is Small or Y is Small then Z is SmallZ ?

Large1 Small

0
0

1

0.2
0.4
0.6
0.8

ℝ

LargeZ 1SmallZ

0

0

5

0.2
0.4
0.6
0.8

ℝ
1-1 4 6X

0.25

µSmall X = 0.75
µLarge X = 0.25

è Rule « if X is Small or Y is Small then Z is SmallZ » true at ?? %

Y

0.75

Let us consider the case with X=0.25 and Y=0.75 

µSmall Y = 0.25
µLarge Y = 0.75

Page 16, we saw that or is an union expressed by a t-conorm ∔

If we consider the t-conorm ∔≡ max

è Rule « if X is Small or Y is Small then Z is SmallZ » true at

max(µSmall X , µSmall Y ) = max(0.75,0.25) = 0.75 è 75 %
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Fuzzy logic inference:

very important remarks (6)

if X is Small then Z is SmallZ (Rule 1)

if X is Large then Z is LargeZ (Rule 2)

Till now:

Could we use not, very, few ?

- if X is not Small and Y is very Small then Z is SmallZ ?

- if X is few Small  or Y is Small then Z is SmallZ ?

Could we use rules such as:

Yes !!!

è not (see page 18 )

è very (see page 21) 

è few (see page 22)

It is also possible to combine conclusions with and…
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Fuzzy logic inference:

very important remarks (7)

For a specific output variable V, 

if no rule is active (i.e all the activation degrees are near 0)

èThe final output set if « flat » near 0

è Impossible to defuzz !

è By default, the controller will respond 0

Rule 1: if  cond_1 then V is Set1

Rule 2: if  cond_2 then V is Set2

Set2 1Set1

0

0

5

0.2
0.4
0.6
0.8

ℝ

1-1 4 6

1Set1

0

0
0.2
0.4
0.6
0.8

ℝ

1-1

V1: result of Rule 1
Set2 1

0

5

0.2
0.4
0.6
0.8

ℝ

4 6

V2: result of Rule 2
Set2 1Set1

0

0

5

0.2
0.4
0.6
0.8

ℝ

1-1 4 6

V1     V2 : final result

Im
possib

le
 to

 d
efu

zz
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Exercices: Surface1.fuz

Z

X Y

12

0.5

12

0.5

Z

X

1. Copy Controller1.fuz to Surface1.fuz

2. Modify Surface1.fuz to obtain that surface

3. Try now defuzz:=max_average;

4. Return to defuzz:=center;
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Z

X Y

12

0.5

12

0.5

Z

X

1. Copy Surface1.fuz to Surface2.fuz

2. Modify Surface2.fuz to obtain that surface

(here, change SmallZ only)

3. Change now LargeZ in the same proportion.

Normally, you obtain the previous surface

Exercices: Surface2.fuz
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Exercices: Surface3.fuz

Z

X Y

12

0.5

1. Copy Surface1.fuz to Surface3.fuz

2. Modify Surface3.fuz to obtain that surface
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Exercices: a fuzzy Robot

Terminal

student@student ~/Desktop/FuzzyLogic/FuzzyRobot $ ./robot map0.des direction.fuz

Help when mouse pointer inside
this green/black/blue window :

-----------------------------------

's' : start robot
'g' : new goal

'v' : view detection
'i' : informations (distances,...)

'c' : fuzzy controller informations
'a' : autoscale

’  ' : pause
'h' : help

'q' : quit
----------------------------------- 2000

2000

The smallest distance
between goal and robot: 100

60 40
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Exercices: a fuzzy Robot
various informations 60 40

Input variables (i.e. sensors):
DistGoal: distance to the goal

DirecGoal: orientation to the goal
ObstFront: distance to a front obstacle

ObstBack: distance to a back obstacle
ObstRight: distance to a right obstacle

ObstLeft: distance to a left obstacle
InSlin: current linear speed

InSang; current angular speed

Informations about the robot:
- The robot is oriented

- The maximum angular speed 
is 100O.s-1

Acceleration: 70O.s-2

- The maximum linear speed is

is 150 cm s-1.
Acceleration: 70cm.s-2

- The robot receives commands
10 times per second

Output variables

(i.e. actuators):
Slin: linear speed

Sang: angular speed

ObstRight

O
b
st

B
a
ck

O
b
st

F
ro

n
t

ObstLeft

D
istG

oal
DirecGoal
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Exercices: a fuzzy Robot
manage rotation: direction.fuz

configuration                      // A larsen controller

{
and :=  min; // min, product
or := max; // max, sum

defuzz := center; // center, max_average
implication := larsen;        // larsen, mamdani
also := max; // max, sum

}

Linguistic
{ 
// Linguistic Values for DirecGoal (Input variable)

onRight := rampe_bas(-90.0,0);
inFront := triangle(-90.0,0.0,90.0);
onLeft := rampe_haut(0.0,90.0); 

// Linguistic Values for Sang (Output variable)
turnRight := triangle(-200.0,-100.0,0.0);
straightOn := triangle(-100.0,0,100.0);

turnLeft := triangle(0.0,100.0,200.0);
}

Rules

{
// Orientation to the goal only
if DirecGoal is inFront then Sang is straightOn;

if DirecGoal is onLeft then Sang is turnLeft;
if DirecGoal is onRight then Sang is turnRight;
}

-90 0

1

0

0.2

0.4

0.6

0.8

inFront

90

onRight onLeft

Angle (O)

For DirecGoal an Input variable (sensor)

-100 0

1

0

0.2

0.4

0.6

0.8

straightOn

100

onRight turnLeft

Angular
Speed (O.s-1)

For Sang an Output variable (actuator)

The robot must now go to the goal !!

è Manage Linear speed Slin

-200 200


