
Multi-Objective Optimization and Obstacle
Avoidance Strategies for Remotely Operated

Vehicles Path Planning

Ivana Kalajžić

August 2024

Abstract:
This paper explores the optimization of path planning for Remotely Op-
erated Vehicles through the development of a multi-objective optimization
model and the implementation of obstacle avoidance strategies.
Key words:
Route Optimization, Weighted Sum Method, Dijkstra Algorithm, Dynamic
Trajectory Adjustment

1

Contents

1 Introduction 1

2 Introduction to Optimization 3

2.1 Definition and Basic Contepts 3

2.2 Linear Programming . 4

2.3 Multi-objective Optimization 7

2.3.1 Multi-objective Optimization Problem 7

2.3.2 Multi-objective Optimization Solutions 9

2.3.3 Weighted Sum Method 11

2.4 Mathematical Model . 12

2.4.1 Data . 13

2.4.2 Decision Variables 14

2.4.3 Objective Function 14

2.4.4 Constraints . 16

3 Obstacle Avoidance Using Dijkstra Algorithm 17

3.1 Problem Definition . 17

3.2 Dijkstra’s Algorithm . 21

2

CONTENTS 3

3.3 Implementation of Dijkstra Algorithm to Obstacle Avoid-
ance Problem . 25

3.3.1 Experiment . 32

4 Conclusion 34

Chapter 1

Introduction

Remotely Operated Vehicles (ROVs) have revolutionized underwater explo-
ration and operations, playing a pivotal role in various industries, including
marine research, oil and gas, and underwater construction. These machines
are equipped with advanced sensors and technologies, enabling them to nav-
igate complex underwater environments, perform inspections, and carry out
tasks that would be hazardous or impossible for human divers. The im-
pact of ROVs extends beyond mere operational efficiency; they contribute
significantly to environmental monitoring, resource management, and the
advancement of scientific knowledge about marine ecosystems.

As ROVs are deployed in increasingly challenging environments, the
need for effective navigation and obstacle avoidance mechanisms becomes
paramount. These vehicles often operate in dynamic settings where unex-
pected obstacles, such as underwater waste or marine life, can pose signif-
icant risks to their mission objectives. Therefore, developing robust algo-
rithms and optimization models that allow ROVs to adapt their trajectories
in real-time is essential for ensuring safe and efficient operations. The inte-
gration of obstacle avoidance strategies not only enhances the operational
capabilities of ROVs but also minimizes the risk of damage to both the
vehicle and the surrounding environment.

Optimization of path planning plays a crucial role in enhancing the per-
formance of ROVs. At its core, optimization involves finding the best solu-
tion to a problem within a defined set of constraints and objectives. In the
case of ROVs, this means determining the most efficient path that the vehi-
cle can take while avoiding obstacles and full-filling operational constraints
such as energy consumption and mission timelines. The optimization pro-
cess can be complex, as it must account for multiple objectives, including

1

CHAPTER 1. INTRODUCTION 2

minimizing travel distance while prioritizing completion of different tasks
and minimizing risk caused by environmental changes.

Multi-objective optimization (MOO) techniques are particularly rele-
vant in this context, as they allow for the simultaneous consideration of
conflicting objectives. For instance, an ROV may need to balance the
trade-off between minimizing travel time and maximizing the quality of
data collected during its mission or minimizing travel distance while max-
imizing number of tasks that need to be completed. The weighted sum
method is one approach that can be employed to tackle such multi-objective
problems. By assigning weights to each objective, decision-makers can pri-
oritize their goals and explore various trade-offs, ultimately leading to more
informed and effective operational strategies.

In the process of finding path for avoiding the obstacle, the applica-
tion of optimization techniques becomes even more critical. ROVs must be
equipped with algorithms that enable them to detect obstacles in real-time
and adjust their paths accordingly. This requires a dynamic optimization
model that can process incoming data from sensors and imaging systems,
allowing the ROV to make quick decisions about its trajectory. The Di-
jkstra Algorithm is one of the well-known path-finding algorithm that can
be adapted for use in ROVs to identify the shortest and safest route while
avoiding detected obstacles.

Chapter 2

Introduction to Optimization

2.1 Definition and Basic Contepts

Optimization is a fundamental concept that pervades various fields, from
engineering and economics to logistics and machine learning. The essence
of optimization is to find the best possible solution to a problem given
a set of constraints and objectives. Formally, an optimization problem
involves determining the optimal value of a function within a given domain.
This section provides a general overview of optimization, followed by a
more detailed discussion of linear programming, a specific and widely used
optimization technique.

Optimization problems can be broadly categorized into several types
based on the nature of the objective function, the constraints, and the
decision variables. The major categories include linear, nonlinear, integer,
combinatorial, and dynamic optimization.

We begin by defining the most generalized form of the optimization
problem.

Definition 2.1.1. An optimization problem can be expressed as:

min
x∈X

f(x)

where f(x) is the objective function to be minimized, and X is the feasible
region defined by a set of constraints. The feasible region X is the set of
all x that satisfy the constraints of the problem.

3

CHAPTER 2. INTRODUCTION TO OPTIMIZATION 4

An optimization problem typically involves either minimizing or max-
imizing an objective function. This means that sometimes our goal is to
find not just the lowest value but also the highest value of the objective
function, which requires maximizing it.

To address both types of problems in a consistent way, we can use a
simple mathematical principle:

max f(x)⇔ min(−f(x))

This principle shows that any problem where we need to maximize a
function can be turned into a minimization problem by taking the negative
of the function, and vice versa. Therefore, most optimization problems are
commonly formulated as minimization problems for simplicity and conve-
nience.

2.2 Linear Programming

Linear programming (LP) is a powerful mathematical method for deter-
mining the best outcome in a mathematical model whose requirements are
represented by linear relationships. It has numerous applications in various
industries, including manufacturing, transportation, finance, telecommuni-
cations, and military planning.

Definition 2.2.1. A linear programming problem is formulated as:

min
x∈Rn

cTx

subject to:
Ax ≤ b

x ≥ 0

where c is an n-dimensional vector of coefficients for the objective func-
tion, A is an m × n matrix of coefficients for the constraints, b is an
m-dimensional vector of constraint bounds, and x is the vector of decision
variables.

As we can see from definition above, in linear programming, both the
objective function and the constraints are linear. This means that the

CHAPTER 2. INTRODUCTION TO OPTIMIZATION 5

objective function, which is to be either maximized or minimized, is a
linear combination of decision variables. Similarly, the constraints, which
define the feasible region, are linear equations or inequalities involving the
decision variables. The feasible region, defined by the intersection of linear
constraints, forms a convex polytop. This convexity implies that any local
optimum is also a global optimum, which is a significant advantage in
finding the best solution efficiently. Linear programming benefits from
a well-established theoretical foundation and efficient algorithms, such as
the Simplex method and interior-point methods, which make solving these
problems relatively straightforward [1].

Example 2.2.1 (Production Optimization). Amanufacturer produces two
different products X1 and X2 using three machines M1, M2, and M3. Each
machine can be used only for a limited amount of time. The production
times of each product on each machine vary: product X1 requires 1 hour on
machine M1, 1 hour on machine M2, and 3 hours on machine M3; product
X2 requires 1 hour on machine M1, 4 hours on machine M2, and 1 hour
on machine M3. Machine M1 has a maximum working time of 10 hours,
machine M2 is restricted to 20 hours, and machine M3 is limited to 12
hours to ensure optimal operation and avoid excessive wear. The objective
is to maximize the combined time of utilization of all three machines.

Every production decision must satisfy the constraints on the available
time. In particular, we have:

x1 + x2 ≤ 10

x1 + 4x2 ≤ 20

3x1 + x2 ≤ 12

where x1 and x2 denote the production levels. The combined production
time of all three machines is:

f(x1, x2) = 3x1 + 6x2.

Thus, the problem in compact notation has the form:

maximize cTx

subject to Ax ≤ b

x ≥ 0,

CHAPTER 2. INTRODUCTION TO OPTIMIZATION 6

where

cT = [3, 6],

x =

[
x1

x2

]
,

A =

1 1
1 4
3 1

 ,

b =

1020
12

 .

Definition 2.2.2. Any vector x that yields the minimum value of the
objective function cTx over the set of vectors satisfying the constraints
Ax = b,x ≥ 0, is said to be an optimal feasible solution.

Definition 2.2.3. An m-element subset B of {1, . . . , n} is said to be a ba-
sis (with respect to matrix A) if the columns of A indexed by the elements
in B are linearly independent.

We say that x∗ ∈ Rn is a basic solution to the system Ax = b if there
exists a basis B such that

(i) Ax∗ = b;

(ii) x∗
j = 0 for all j /∈ B.

Definition 2.2.4. An optimal feasible solution that is basic is said to be
an optimal basic feasible solution.

Theorem 2.2.1 (Fundamental Theorem of LP). Consider a linear pro-
gram in standard form.

(i) If there exists a feasible solution, then there exists a basic feasible
solution;

(ii) If there exists an optimal feasible solution, then there exists an opti-
mal basic feasible solution.

CHAPTER 2. INTRODUCTION TO OPTIMIZATION 7

2.3 Multi-objective Optimization

In recent years, the field of multi-objective optimization has gained sig-
nificant attention across various domains, including engineering, logistics,
finance, and environmental management. Multi-objective optimization in-
volves the simultaneous optimization of two or more objectives, which is a
common scenario in real-world applications.

2.3.1 Multi-objective Optimization Problem

As in a single-objective optimization problem, the multi-objective opti-
mization problem may contain a number of constraints which any feasible
solution (including all optimal solutions) must satisfy. Thus, any multi-
objective optimization problem can be represented by the following general
mathematical model:

min f(x) = [f1(x), f2(x), . . . , fm(x)]
T

subject to gi(x) ≥ 0, i = 1, 2, . . . , p

hj(x) = 0, j = 1, 2, . . . , q

x
(min)
i ≤ xi ≤ x

(max)
i , i = 1, 2, . . . , n

x = [x1, x2, . . . , xn]
T ∈ Q

where m is the number of objective functions, Q is the n-dimensional
search space defined by the lower bounds x(min) = [x

(min)
1 , x

(min)
2 , . . . , x

(min)
n]T

and upper bounds x(max) = [x
(max)
1 , x

(max)
2 , . . . , x

(max)
n]T of decision variables

x. The constraints gi(x) ≥ 0 and hj(x) = 0 represent p inequality con-
straints and q equality constraints, respectively. If p = q = 0, the problem
simplifies to an unconstrained multi-objective optimization problem.

Example 2.3.1 (Multi-Objective Production Optimization). A manufac-
turer produces two different products X1 and X2 using three machines M1,
M2, and M3. Each machine can be used only for a limited amount of time.
Production times of each product on each machine are given in Table 1.
The objective is to maximize the combined production time of utilization
of all three machines as well as to maximize the profit generated by the
production of these products.

CHAPTER 2. INTRODUCTION TO OPTIMIZATION 8

Machine X1 (hours) X2 (hours)
M1 2 3
M2 4 1
M3 3 2

Table 2.1: Production times for X1 and X2 on machines M1, M2, and M3

The time constraints for each machine are as follows:

2x1 + 3x2 ≤ 15 (Machine M1 time constraint)

4x1 + x2 ≤ 10 (Machine M2 time constraint)

3x1 + 2x2 ≤ 12 (Machine M3 time constraint)

The combined production time of all three machines is given by the
function:

f1(x1, x2) = 2x1 + 3x2 + 4x1 + x2 + 3x1 + 2x2 = 9x1 + 6x2

The profit generated by producing these products is given by:

f2(x1, x2) = 5x1 + 7x2

Thus, the problem in compact notation has the form:

maximize [f1(x), f2(x)]
T

subject to Ax ≤ b

x1, x2 ≥ 0,

where:
f1(x1, x2) = 9x1 + 6x2,

f2(x1, x2) = 5x1 + 7x2

A =

2 3
4 1
3 2

 ,

b =

1510
12

 ,

x =

[
x1

x2

]

CHAPTER 2. INTRODUCTION TO OPTIMIZATION 9

2.3.2 Multi-objective Optimization Solutions

In multi-objective optimization problems, the challenge lies in defining the
solutions. From a mathematical standpoint, there is not a single solution
but rather a set of solutions. In 1951, Koopmans introduced the concept
of Pareto efficiency, which describes the solution set under partial order
rather than total order. A solution is considered Pareto optimal if no
other solution can improve one objective without degrading another. This
concept is crucial in decision-making processes where multiple criteria must
be considered.

Definition 2.3.1 (Feasible Solution). A solution vector x ∈ Q is defined
as a feasible solution if it satisfies all the inequality and equality constraints
for i = 1, 2, . . . , p and j = 1, 2, . . . , q. Otherwise, it is an infeasible solution.

All feasible solutions constitute the feasible domain U , and all infeasible
solutions constitute the infeasible domain U ′. Clearly, U ∪ U ′ = Q, where
U ⊆ Q and U ′ ⊆ Q.

In other words, feasible solution is one that meets all the constraints
imposed by the problem. The feasible domain is the set of all such solutions,
while the infeasible domain is the set of solutions that do not meet the
constraints.

In the decision variable space (space of all possible values of decision
variables), a solution a is said to dominate another solution b if a is no
worse than b in all objectives and strictly better in at least one objective.

Definition 2.3.2 (Decision Variable Domination). For two vectors a =
[a1, a2, . . . , an]

T and b = [b1, b2, . . . , bn]
T in the decision variable space, a is

said to dominate b (denoted as a ≺ b) if:

(i) ∀i ∈ {1, 2, . . . ,m} fi(a) ≤ fi(b)

(ii) ∃j ∈ {1, 2, . . . ,m} fj(a) < fj(b)

In the objective function space, a point g dominates another point h
if g is no worse than h in all objectives and strictly better in at least one
objective.

CHAPTER 2. INTRODUCTION TO OPTIMIZATION 10

Definition 2.3.3 (Objective Function Domination). For two vectors g =
[g1, g2, . . . , gm]

T and h = [h1, h2, . . . , hm]
T in the objective function space,

g is said to dominate h (denoted as g ≺ h) if:

(i) ∀i ∈ {1, 2, . . . ,m}, gi ≤ hi

(ii) ∃j ∈ {1, 2, . . . ,m}, gj < hj

Definition 2.3.4 (Pareto Optimal Solution). A vector x∗ = [x∗
1, x

∗
2, . . . , x

∗
n]

T ∈
Q is a Pareto optimal solution if:

∀x ∈ Q, x ̸= x∗ ⇒ f(x) ̸≺ f(x∗)

The set of all Pareto optimal solutions is called the Pareto optimal set,
denoted as PS∗.

In other words, a Pareto optimal solution is one where no other solu-
tion in the feasible domain can improve any objective without causing a
degradation in at least one other objective. The set of all Pareto optimal
solutions is known as the Pareto optimal set, denoted as PS∗.

Definition 2.3.5 (Pareto Optimal Front). The Pareto optimal set repre-
sented in the objective function space is called the Pareto optimal front,
denoted as:

PF∗ = {f(x) |x ∈ PS∗}

The Pareto optimal front is the set of objective vectors corresponding to
the Pareto optimal solutions. It represents the trade-offs between different
objectives in the objective function space.

Multi-objective optimization methods aim to find solutions that are as
close as possible to the Pareto optimal front and are uniformly distributed.
Such methods should exhibit good convergence and diversity. Addition-
ally, the solutions should be numerous to ensure a wide range of options
for decision-makers. Once the Pareto optimal set is found, decision-makers
can select the final solution based on specific optimization problems or per-
sonal preferences. A diverse and extensive set of solutions allows for better
comparison and selection according to various criteria and preferences.

CHAPTER 2. INTRODUCTION TO OPTIMIZATION 11

2.3.3 Weighted Sum Method

One of the most widely used approaches to tackle multi-objective optimiza-
tion problems is the weighted sum method.

This method transforms the multi-objective problem into a single-objective
problem by assigning weights to each objective function, reflecting their rel-
ative importance. The weighted sum of the objectives is then optimized,
allowing for the exploration of different trade-offs by varying the weights.
This approach is particularly appealing due to its simplicity and ease of
implementation.

However, it has its limitations, such as the potential to miss non-
convex regions of the Pareto front and the challenge of selecting appropriate
weights that accurately represent the decision-maker’s preferences.

Mathematically, general formulation of the weighted sum method for a
multi-objective optimization problem can be expressed as follows:

min f(x) =
M∑

m=1

wmfm(x)

subject to gj(x) ≥ 0, j = 1, 2, . . . , J

hk(x) = 0, k = 1, 2, . . . , K

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2, . . . , n

where:

(i) x is the vector of decision variables.

(ii) fm(x) is the m-th objective function.

(iii) wm is the weight assigned to them-th objective function, with wm ≥ 0
and

∑M
m=1 wm = 1.

(iv) gj(x) are the inequality constraints.

(v) hk(x) are the equality constraints.

(vi) x
(L)
i and x

(U)
i are the lower and upper bounds on the decision vari-

ables.

The weights wm are user-supplied and represent the priority or impor-
tance of each objective function.

CHAPTER 2. INTRODUCTION TO OPTIMIZATION 12

One of the key strengths of this method lies in its simplicity and flexibil-
ity. The weighted sum method is straightforward and easy to implement. It
converts a multi-objective problem into a single-objective problem, which
can be solved using standard optimization techniques. Furthermore, by
adjusting the weights, decision-makers can explore different trade-offs be-
tween the objectives. This allows for a customized approach depending on
the relative importance of each objective.

On the other hand, choosing appropriate weights to obtain a desired
Pareto-optimal solution can be challenging. The solution is sensitive to
the choice of weights, and inappropriate weights may lead to sub-optimal
solutions. Additionally, in cases where the objective space is non-convex,
the weighted sum method may fail to find certain Pareto-optimal solutions.
This is because the method relies on linear combinations of the objectives,
which may not capture the true trade-offs in a non-convex space [2].

2.4 Mathematical Model

In this section we are designing a model to determine the optimal route
for a Remotely Operated Vehicle (ROV) in an offline setting, considering
various factors that influence the route choice.

The ROV’s mission entails visiting a series of stations, each with a spe-
cific priority for visitation, while taking into account the distance between
stations and the associated environmental risks. The objective is to mini-
mize the total distance traveled, prioritize stations based on their urgency
(with 1 being the highest priority and 5 the lowest) and precedence, and
manage risks related to certain stations. This must be accomplished within
a set of constraints to ensure an efficient and feasible route.

By employing the weighted sum method, we combine these objectives
into a single, flexible objective function. The constants α, β, and γ play
a crucial role in balancing the different objectives, allowing for a tailored
approach depending on the specific mission requirements.

The model’s design is not only practical but also adaptable, with the
ability to adjust the weights to explore different trade-offs and optimize
the ROV’s route according to the decision-maker’s preferences. This foun-
dation paves the way for further refinement and application in real-world
scenarios, where the balance between these competing objectives is critical
to the success of ROV missions.

CHAPTER 2. INTRODUCTION TO OPTIMIZATION 13

By minimizing the total distance, prioritizing stations with higher ur-
gency, and considering the risks associated with environmental conditions,
this model provides a comprehensive and flexible tool for offline ROV route
optimization.

2.4.1 Data

To build our model, we first need to define and formalize the data that will
be used. Let us assume we have gathered the necessary information and
now introduce the notation that will represent the data:

(i) B: set of all stations.

(ii) S = |B| <∞: total number of stations.

(iii) N : minimum number of stations to visit (0.5 S).

(iv) dij: distance between station i and station j.

(v) pi: priority of station i, lower values indicate higher priority.

(vi) P : set of precedence ordered pairs (i, j) such that beacon i must be
visited before beacon j

(vii) ri: the risk of extreme weather conditions at station i

CHAPTER 2. INTRODUCTION TO OPTIMIZATION 14

Figure 2.1: Example of data: Search area with station ranked by
visitation priority

2.4.2 Decision Variables

The decision variables xij and ui are essential components of the model,
with each serving a distinct purpose in the optimization process:

(i) xij: binary variable indicating if the route goes from station i to
station j.

(ii) ui: auxiliary variables for sub-tour elimination.

2.4.3 Objective Function

Using the weighted sum method, the objective function in the model is
expressed as:

α
∑
i∈B

∑
j∈B

dij · xij + β
∑
i∈B

∑
j∈B

pi · xij + γ
∑
i∈B

∑
j∈B

ri · xij

Here is an explanation of each part of the objective function:

Term

∑
i∈B

∑
j∈B

dij · xij

CHAPTER 2. INTRODUCTION TO OPTIMIZATION 15

focuses on minimizing the total distance in the route. Here, dij rep-
resents the distance between station i and station j, and xij is a binary
variable indicating whether the route from i to j is taken (1 if taken, 0
otherwise).
Term

∑
i∈B

∑
j∈B

pi · xij

incorporates the priority or urgency of each station into the optimiza-
tion. Here, pi represents the priority of station i, with lower values indicat-
ing higher priority. The product pi · xij thus reflects the priority Finally,
term

∑
i∈B

∑
j∈B

ri · xij

accounts for additional factors represented by ri, which include various
risks associated with visiting station i. The product ri · xij incorporates
these risks into the route planning, ensuring that the model considers po-
tential challenges or disadvantages when determining the optimal path.
Stations situated in environmentally sensitive or hazardous areas might
have higher ri values to account for potential environmental impacts or
challenges.

The formulation of objective function effectively combines the three
objectives—minimizing distance, prioritizing important stations, and min-
imizing risk—into a single objective. The constants α, β, and γ can be
adjusted to achieve the desired balance between these competing objec-
tives, with the constraint that their sum must equal one. This adjustment
allows for an analysis of how their values impact the overall objective func-
tion value.

CHAPTER 2. INTRODUCTION TO OPTIMIZATION 16

2.4.4 Constraints

Constraints are given by:∑
i∈B

∑
j∈B

xij ≥ N (2.1)∑
j∈B

xij ≤ 1 ∀i ∈ B (2.2)∑
i∈B

xij ≤ 1 ∀j ∈ B (2.3)

ui − uj + S · xij ≤ S − 1 ∀i, j ∈ B, i ̸= j (2.4)

ui ≥ 0 ∀i ∈ B (2.5)

xij ∈ {0, 1} ∀i, j ∈ B (2.6)

pi ∈ {1, 2, 3, 4, 5} ∀i ∈ B (2.7)

ui ≤ uj ∀(i, j) ∈ P (2.8)

• (1): Visit at least 50% of the stations

• (2): Each visited station must be exited exactly once

• (3): Each visited station must be entered exactly once

• (4): Sub-tour elimination

• (5): This constraint ensures that the values of are appropriate for
eliminating sub-tours

• (6): constraint on the variable’s values

• (7): constraint on the variable’s values

• (8): ensures that the auxiliary variable for station i is less than or
equal to that of station j, effectively enforcing the visit order

Chapter 3

Obstacle Avoidance Using
Dijkstra Algorithm

Now, we are addressing the problem of obstacle avoidance for a remotely
operated vehicle in a 3D underwater environment. In the context of re-
motely operated vehicles (ROVs) performing underwater navigation, an
effective online obstacle avoidance mechanism is crucial for maintaining
safe and efficient travel. This process is particularly significant when the
ROV, which follows a pre-planned offline path, encounters unexpected ob-
stacles in its environment. The essence of this problem is to dynamically
adjust the ROV’s trajectory to navigate around such obstacles while en-
suring that the detour is minimal and sensible and that ROV returns to
the planned path. This mechanism becomes active when the ROV detects
an obstacle, which is identified through image processing techniques.

3.1 Problem Definition

The ROV is tasked with following a predetermined path that optimally vis-
its various stations or waypoints. However, the path planning conducted
offline does not account for unforeseen obstacles that might suddenly ap-
pear in the ROV’s path during its operation. To address this, the ROV
must employ an obstacle avoidance mechanism that can adapt to real-time
changes in the environment.

The ROV is equipped with image-capturing technology that provides
continuous visual data of its surroundings. At discrete intervals, denoted
as ∆t, the ROV updates its memory with new image data. The image

17

CHAPTER 3. OBSTACLE AVOIDANCE USING DIJKSTRA ALGORITHM18

processing system analyzes these images to detect the presence of obsta-
cles. If an obstacle is detected, it is represented as a polygon with n sides,
which approximates the shape and extent of the obstacle. This polygonal
representation allows for a more precise definition of the obstacle’s location
and dimensions.

The operational procedure involves the following steps:

1. The ROV relies exclusively on images captured from its onboard sen-
sors to perceive its surroundings. At discrete time intervals, denoted
as ∆t, the ROV updates its environmental memory with new data
acquired through these images.

Figure 3.1: Data is gathered from image processing and used for obstacle
avoidance strategies

2. When an image procesing indicates the presence of an obstacle, the
ROV initiates an obstacle avoidance protocol. This involves analyz-
ing the captured image to identify and locate the obstacle. The result
of this analysis is a polygon with n sides that approximates the ob-
stacle’s shape and position in the environment. Vertices of the n -
sided polygon are 3-dimensional points that are input data of graph
search algorithm for obstacle avoidance. Meaning, at each time step
∆t, a graph G(V,E) is updated where:

(i) V represents the set of vertices (3D coordinates) of the polygons.

(ii) E represents the edges, which are the Euclidean distances be-
tween these vertices.

Since the positions of the vertices are updated at each time step, the
graph is dynamic and needs to be reconstructed continually.

CHAPTER 3. OBSTACLE AVOIDANCE USING DIJKSTRA ALGORITHM19

Figure 3.2: Polygon with sides that approximates the obstacle’s shape

To ensure accurate obstacle avoidance, we need to address the fact
that not every vertex of the polygon will be used as a node in the
graph due to limitations in the captured image. Specifically, the
image may not encompass the entirety of the obstacle, leading to
incomplete data. Vertices of the polygon located along the periphery
of the captured image are particularly problematic. These vertices
suggest that the captured image does not cover the entire extent of
the obstacle, indicating that the obstacle likely extends beyond the
edges of the captured picture.

Therefore, these vertices that are on or closed to the periphery of the
captured image are disregarded in the graph construction process.
This is because including them could lead to an inaccurate represen-
tation of the obstacle’s shape and position. When vertices on the edge
of the image are included, there is a risk that the polygon’s bound-
aries are not correctly aligned with the actual obstacle. Since these
edge vertices are likely to be outside the true obstacle’s boundary,
their inclusion could cause the graph to misrepresent the obstacle’s
location and shape.

CHAPTER 3. OBSTACLE AVOIDANCE USING DIJKSTRA ALGORITHM20

Figure 3.3: Vertices of the polygon located close to the periphery of the
captured image are disregarded

The primary concern with incorporating such edge vertices is that it
may lead to a situation where the ROV’s path planning algorithm
does not accurately avoid the obstacle. Specifically, if the edges as-
sociated with these vertices extend beyond the actual edge of the
image, the ROV might be directed towards areas where the obstacle
is actually present but not captured. Consequently, this could result
in potential collisions between the ROV and the obstacle, undermin-
ing the effectiveness of the obstacle avoidance strategy. Therefore,
to ensure a safe and accurate navigation, these peripheral vertices
are excluded from the graph to prevent any misleading conclusions
about the obstacle’s extent and to maintain a reliable path planning
system.

3. Upon detecting an obstacle, the ROV’s path is no longer aligned with
the originally planned route. Consequently, a graph search algorithm
is employed to determine a new path around the obstacle. The search
begins at the point where the ROV strays from the pre-planned tra-
jectory, establishing this point as the start node in the graph for
recalculating the path.

4. Once the ROV has successfully navigated around the obstacle and
no further obstacles are detected, it resumes its journey towards the
subsequent waypoint as defined in the original path plan.

CHAPTER 3. OBSTACLE AVOIDANCE USING DIJKSTRA ALGORITHM21

Figure 3.4: Obstacle avoidance process

3.2 Dijkstra’s Algorithm

Dijkstra’s algorithm is a fundamental algorithm in computer science, named
after Dutch computer scientist Edsger W. Dijkstra, who first published it
in 1959. It is used to find the shortest path from a starting node (often
referred to as the ”source” node) to all other nodes in a weighted graph.

Dijkstra’s algorithm has several notable characteristics that make it par-
ticularly effective in solving specific types of problems. The algorithm em-
ploys a greedy approach, meaning it makes the optimal choice at each step
with the goal of finding the global optimum. This characteristic ensures
that once the shortest path to a node is identified, it remains unchanged,
contributing to the algorithm’s overall efficiency.

Another critical aspect of Dijkstra’s algorithm is its requirement for
non-negative edge weights. The algorithm assumes that once a path to
a node has been established with a certain cost, no shorter path will be
discovered later. Negative weights would undermine this assumption, po-
tentially leading to incorrect results and making the algorithm unsuitable
for graphs with such weights.

The time complexity of Dijkstra’s algorithm varies depending on the
data structures used. In its simplest form, when implemented with arrays,
the algorithm has a time complexity of O(V 2), where V represents the
number of nodes. However, by utilizing more advanced data structures
like Fibonacci heaps, the time complexity can be reduced to O(V log V +
E), where E denotes the number of edges. This improvement makes the
algorithm more suitable for larger graphs.

Dijkstra’s algorithm has a wide range of applications across various
fields. In computer networks, it plays a crucial role in network routing pro-
tocols, determining the shortest path for data to travel across routers. In
Geographic Information Systems (GIS), the algorithm is integral to map-

CHAPTER 3. OBSTACLE AVOIDANCE USING DIJKSTRA ALGORITHM22

ping software, helping to find the shortest path between locations, such as in
GPS navigation systems. The algorithm is also widely used in robotics and
artificial intelligence for path-finding, enabling robots to navigate through
environments efficiently. Additionally, in telecommunications, Dijkstra’s
algorithm is employed to optimize the routing of signals across complex
networks, ensuring efficient communication pathways [3].

Dijkstra’s Algorithm steps:

1. Set the distance to all nodes as∞ except for the starting node, which
is set to 0.

2. Mark all nodes as non-visited, including the starting node.

3. While there are non-visited nodes:

(a) Set the non-visited node with the smallest current distance as
the current node C.

(b) For each neighbor N of the current node C:

i. Calculate the potential new distance through C as:

New Distance = Current Distance of C+Weight of Edge C–N

ii. If this new distance is smaller than the current distance of
N , update the distance of N .

(c) Mark the current node C as visited.

4. Repeat the process from step 3 until the destination node is marked
as visited.

CHAPTER 3. OBSTACLE AVOIDANCE USING DIJKSTRA ALGORITHM23

Example 3.2.1 (Finding the Shortest Path using Dijkstra’s Algorithm).
To illustrate how Dijkstra’s Algorithm functions, let’s consider the following
example.

To find the shortest path from the start vertex (0) to all other vertices
in the provided weighted graph using Dijkstra’s Algorithm, we perform the
following steps.

First, initialize the distance table by setting the distance to all nodes
as ∞, except for the starting node (vertex 0), which is set to 0. This gives
the initial distances as follows:
Distance to 0: 0,
Distance to 1: ∞,
Distance to 2: ∞,
Distance to 3: ∞,
Distance to 4: ∞,
Distance to 5: ∞.
All nodes are initially marked as non-visited.

We then proceed by iterating through the non-visited nodes, selecting
the node with the smallest current distance as the current node and up-
dating the distances to its neighbors. The process continues until all nodes
are visited.

In the first iteration, the current node is vertex 0 because it has the
smallest distance (0). We update the distances of its neighbors (vertices
1, 2, and 3). The new distance to vertex 1 is calculated as 0 + 8 = 8, to
vertex 2 as 0 + 5 = 5, and to vertex 3 as 0 + 6 = 6. The updated distances

CHAPTER 3. OBSTACLE AVOIDANCE USING DIJKSTRA ALGORITHM24

after this iteration are:

Distance to 1: 8, Distance to 2: 5, Distance to 3: 6.

Vertex 0 is then marked as visited.

In the second iteration, vertex 2 becomes the current node as it has
the smallest distance among non-visited nodes (5). We then update the
distances of its neighbors (vertices 0, 1, 3, and 4). The new distance to
vertex 4 is calculated as 5+8 = 13. Since the current distances to vertices 1
and 3 are smaller than their potential new distances, they are not updated.
The updated distance to vertex 4 becomes 13:

Distance to 4: 13.

Vertex 2 is marked as visited.

In the third iteration, vertex 3 is chosen as the current node, having
the smallest distance among non-visited nodes (6). The distance to its
neighbor, vertex 5, is updated to 6 + 3 = 9. The updated distances are:

Distance to 5: 9.

Vertex 3 is marked as visited.

Next, vertex 1 is selected as the current node because it has the small-
est distance among non-visited nodes (8). We update the distance to its
neighbor, vertex 4, to 8+4 = 12, which is smaller than the current distance
of 13. Thus, the distance to vertex 4 is updated:

Distance to 4: 12.

Vertex 1 is marked as visited.

In the fifth iteration, vertex 5 is the current node with a distance of
9. However, all its neighbors are already visited, so no further updates are
necessary. Vertex 5 is marked as visited.

Finally, in the sixth iteration, vertex 4 is selected as the current node
with a distance of 12. Again, all its neighbors are already visited, so no
further updates are needed. Vertex 4 is marked as visited.

At this point, all nodes have been visited, and the shortest distances
from vertex 0 to all other vertices have been determined.

CHAPTER 3. OBSTACLE AVOIDANCE USING DIJKSTRA ALGORITHM25

The final shortest distances from vertex 0 to all other vertices are:
Distance to 0: 0,
Distance to 1: 8,
Distance to 2: 5,
Distance to 3: 6,
Distance to 4: 12,
Distance to 5: 9.

3.3 Implementation of Dijkstra Algorithm

to Obstacle Avoidance Problem

In the context of real-time underwater navigation, efficiently avoiding ob-
stacles is crucial for the safe operation of ROVs. The dynamic nature of the
underwater environment demands a robust algorithm capable of recalculat-
ing paths as new obstacles are detected. Dijkstra’s algorithm, renowned for
its effectiveness in finding the shortest paths in a graph, is particularly well-
suited for this task. By integrating Dijkstra’s algorithm with the ROV’s
obstacle detection system, we can ensure that the vehicle can dynamically
adjust its path, avoiding obstacles while minimizing detours. The follow-
ing section details the implementation of Dijkstra’s algorithm specifically
tailored to address the obstacle avoidance problem in a 3D underwater
environment.

The first step in the obstacle avoidance process involves updating the
graph that represents the ROV’s environment. As described in problem
definition, this graph consists of vertices corresponding to points in 3D
space and edges representing the Euclidean distances between these points.
The vertices are updated dynamically based on the images captured by the
ROV, which are processed to detect obstacles. When a new set of points
is identified, representing the vertices of an obstacle, the graph needs to be
updated to incorporate these points.

The updateGraph algorithm begins by connecting all the vertices of the
newly detected obstacle to each other. This is done by iterating through the
list of new vertices and calculating the Euclidean distances between every
pair of vertices, thereby adding the corresponding edges to the graph. The
graph is undirected, meaning that the distance from point u to point v is
the same as the distance from v to u, which is why the distance is stored
symmetrically in the graph matrix.

CHAPTER 3. OBSTACLE AVOIDANCE USING DIJKSTRA ALGORITHM26

Vertices from the current update are connected in a way that every
vertex, except for the last one, is connected to the subsequent one and
every vertex, except the first one, is connected to the previous one. Finally,
first and the last vertex are connected. After connecting the vertices of
the current update, the algorithm proceeds to connect these new vertices
with the vertices of the previous update. This ensures that the graph
remains fully connected, accounting for all obstacles that the ROV has
encountered so far. By continually updating the graph in this manner,
the algorithm maintains an accurate and up-to-date representation of the
ROV’s environment, which is crucial for the pathfinding process.

CHAPTER 3. OBSTACLE AVOIDANCE USING DIJKSTRA ALGORITHM27

Algorithm 1 Update Graph

Require: graph matrix of size MAX POINTS × MAX POINTS

Require: points array of all points
Require: setSize array of input sizes
Require: inputNumber number of updates
Require: totalPoints size of array points
1: for u← totalPoints - setSize[inputNumber] +1 to totalPoints

do ▷ Connect all nodes in the current update with each other
2: if u > then totalPoints - setSize[inputNumber] +1 ▷

Connect to the previous node (if not the first node)
3: graph[u][u-1] ← euclideanDistance(points[u],

points[u-1])

4: graph[u-1][u] ← graph[u][u-1] ▷ Graph is undirected
5: end if
6: if u < totalPoints then ▷ Connect to the following node (if not

the last node)
7:

8: graph[u][u+1] ← euclideanDistance(points[u],

points[u+1])

9: graph[u+1][u] ← graph[u][u+1] ▷ Graph is undirected
10: end if
11: end for
12: for u ← totalPoints - setSize[inputNumber]

- setSize[inputNumber - 1] to totalPoints -

setSize[inputNumber] do
13: for v ← totalPoints - setSize[inputNumber] +1 to

totalPoints do
14: graph[u][v] ← euclideanDistance(points[u],

points[v]) ▷ Connect all nodes in the current update with previous
update

15: graph[v][u] ← graph[u][v] ▷ Graph is undirected
16: end for
17: end for

Once the graph is updated with the new obstacle information, the next
step is to compute the shortest path from the ROV’s current location to its
next target, bypassing any detected obstacles. This is accomplished using
Dijkstra’s algorithm, which is well-suited for finding the shortest path in a
weighted graph where the weights represent distances.

The algorithm starts by initializing the distance to all nodes in the
graph as infinite, except for the starting node, which is set to zero. This
initialization reflects the fact that initially, the shortest path to any node is

CHAPTER 3. OBSTACLE AVOIDANCE USING DIJKSTRA ALGORITHM28

unknown, except for the starting node itself. A set called sptSet (Shortest
Path Tree Set) is used to keep track of the nodes that have been processed,
ensuring that each node is only processed once.

The core of Dijkstra’s algorithm is its greedy approach: at each step, the
algorithm selects the unprocessed node with the smallest known distance
from the starting node and explores its neighbors. For each neighbor, the
algorithm calculates the potential new distance by adding the distance from
the current node to the weight of the edge connecting the current node to
the neighbor. If this new distance is shorter than the currently known
distance to the neighbor, the algorithm updates the neighbor’s distance
and records the current node as its predecessor.

The process repeats until all nodes have been processed or until the
destination node is reached. The result is a list of distances from the
starting node to all other nodes in the graph, with the shortest path to
each node being determined by following the recorded predecessors back
from the destination node to the starting node.

CHAPTER 3. OBSTACLE AVOIDANCE USING DIJKSTRA ALGORITHM29

Algorithm 2 Dijkstra Algorithm

Require: graph matrix of size MAX POINTS × MAX POINTS

Require: totalPoints number of nodes in the graph
Require: currentLocation source node
Require: inputSet array of goal nodes
1: Initialize distances as array of size totalPoints with all elements set

to ∞
2: distances[currentLocation] ← 0 ▷ Distance to the source is zero
3: Initialize sptSet as array of size totalPoints with all elements set to

false

4: Initialize previous as array of size totalPoints with all elements set
to null

5: for count ← 0 to totalPoints - 1 do
6: u ← vertex with minimum dist not in sptSet

7: sptSet[u] ← true ▷ Mark vertex u as processed
8: if u is in inputSet then
9: break ▷ Stop if we reach a goal node
10: end if
11: for v ← 0 to totalPoints - 1 do
12: if not sptSet[v] and graph[u][v] ̸= 0 and distances[u]

̸=∞ and distances[u] + graph[u][v] < distances[v] then
13: distances[v] ← distances[u] + graph[u][v]

14: previous[v] ← u ▷ Track the predecessor of v
15: end if
16: end for
17: end for
18: Initialize goalNode as node in inputSet with the minimum distances

19: Initialize path as an empty list
20: currentNode ← goalNode ▷ Start with the goal node found
21: while currentNode is not null do
22: insert(currentNode, path) ▷ Insert currentNode at the

beginning of the path
23: currentNode ← previous[currentNode]

24: end while
25: return path ▷ Return the list of nodes forming the shortest path to a

goal node

CHAPTER 3. OBSTACLE AVOIDANCE USING DIJKSTRA ALGORITHM30

In a dynamic environment, where the ROV continually encounters new
obstacles, the graph and shortest path need to be updated regularly. The
graph-update algorithm combines the graph updating and shortest path
calculation into a single process, allowing the ROV to adjust its path in
real-time as it navigates through the underwater environment.

The algorithm begins by initializing the graph with the ROV’s current
location and then enters a loop where it continuously reads input from
the ROV’s sensors. Each time a new obstacle is detected, the graph is
updated with the new obstacle points, and Dijkstra’s algorithm is invoked
to recalculate the shortest path from the ROV’s current location to the
next target. The newly calculated path is then used to guide the ROV
around the obstacle.

If no new obstacles are detected, the algorithm reinitializes its data
structures, preparing for the next iteration. This reinitialization is crucial
because it ensures that the algorithm does not retain outdated information
from previous iterations, which could lead to incorrect path calculations.

By dynamically updating the graph and recalculating the shortest path,
the algorithm ensures that the ROV can adapt to changes in its environ-
ment and navigate around obstacles in an efficient manner. This approach
leverages the strengths of Dijkstra’s algorithm in finding the shortest path
while also accounting for the dynamic nature of the underwater environ-
ment, where obstacles can appear unexpectedly at any time.

CHAPTER 3. OBSTACLE AVOIDANCE USING DIJKSTRA ALGORITHM31

Algorithm 3 Dynamic Graph Update and Shortest Path Calculation

Require: Initial 3D point currentLocation ▷ Point where ROV
deviates from pre-planned trajectory and a source node of the graph

Require: Array of 3D points inputSet
Initialize points as a null array of size MAX POINTS ▷ Array to hold
the points from the inputs

2: Initialize graph as a null matrix of size MAX POINTS × MAX POINTS

Initialize setSize as a null array of size MAX POINTS ▷ Array to hold
the sizes of each input set

4: Initialize inputNumber as integer ▷ Counter for the number of
non-empty inputs
Initialize totalPoints as integer

6: totalPoints ← 1
setSize[0] ← 1

8: inputNumber ← 0
while True do

10: Read inputSet

Remove noncompliant points from inputSet

12: Read currentLocation

points[0] ← currentLocation

14: if inputSet is not empty then
inputNumber ← inputNumber+ 1

16: setSize[inputNumber] ← number of points in inputSet

Update points with inputSet

18: totalPoints ← totalPoints + setSize[inputNumber]

Call updateGraph(graph, points, setSizes,

inputNumber, totalPoints)

20: Call dijkstra(graph, totalPoints, currentLocation)

newPath[MAX POINTS] ← dijkstra(graph, totalPoints,

currentLocation)

22: Print newPath
end if

24: Reinitialize all data structures ▷ No obstacle or avoidance process
is done

points[0] ← currentLocation

26: totalPoints ← 1
setSize[0] ← 1

28: inputNumber ← 0
sleep(∆ t)

30: end while

CHAPTER 3. OBSTACLE AVOIDANCE USING DIJKSTRA ALGORITHM32

3.3.1 Experiment

The algorithm from the section before is now tested on synthetic data,
which consists of 3D point that represent current location of the ROV
and multiple sets of points that mimic the vertices of the polygon that
approximates the obstacle in captured pictures, as explained before.

Input:

{0.0, 0.0, 0.0}
{ ∅,
{ {1, 3, 0}, {1, -3, 0}, {1.5, 1, 3}, {1.5, -2, 2.5} },
{ {7, 6, 3.5}, {7.5, -2.7, 5.5}, {7.5, 2, 5}, {7, -6.7, -3.1} },
{ {12.1, 2, 7.3}, {12.4, 3.6, 5.5}, {13, -4.6, 5.4} },
∅}

Here we label input points and visualize the data and graph.
O=(0.0,0.0,0.0),
A=(1,3,0),
B=(1,-3,0),
C=(1.5,1,3),
D=(1.5,-2,2.5),
F=(7,6,3.5),
G=(7.5,-2.7,5.5),
H=(7.5,2,5),
J=(7,-6.7,-3.1),
K=(12.1,2,7.3),
L=(13, -4.6, 5.4),
I=(12.4, 3.6, 5.5).

Figure 3.5: Data represented in 3D space

CHAPTER 3. OBSTACLE AVOIDANCE USING DIJKSTRA ALGORITHM33

Figure 3.6: Floor plan of data

Output:

(0.00, 0.00, 0.00)
(1.00, 3.00, 0.00)
(7.00, 6.00, 3.50)
(12.10, 2.00, 7.30)
Time taken: 0.000058 seconds

Chapter 4

Conclusion

In summary, the integration of optimization techniques into the operational
framework of Remotely Operated Vehicles (ROVs) is essential for enhanc-
ing their effectiveness and safety in complex underwater environments. As
ROVs continue to play a vital role in various industries, the development of
sophisticated optimization models that address multi-objective challenges
and obstacle avoidance strategies will be crucial for their future success.

The ability to navigate dynamically changing environments while bal-
ancing multiple objectives is a testament to the power of optimization in
real-world applications. By employing methods such as the weighted sum
approach, decision-makers can tailor ROV operations to meet specific mis-
sion goals, ensuring that these vehicles can adapt to unforeseen challenges
while maximizing their operational efficiency.

Moreover, the implementation of advanced obstacle avoidance algo-
rithms, such as those based on Dijkstra’s Algorithm, highlights the im-
portance of real-time data processing and decision-making in the field of
robotics. As technology continues to advance, the potential for ROVs to
operate autonomously and efficiently in complex underwater scenarios will
only increase, paving the way for new discoveries and innovations.

Ultimately, the ongoing research and development in optimization tech-
niques for ROVs not only enhance their operational capabilities but also
contribute to the broader understanding of marine environments. By ensur-
ing that ROVs can navigate safely and effectively, we can unlock new oppor-
tunities for exploration, conservation, and resource management, thereby
making a lasting impact on our understanding of the underwater world.

34

Bibliography

[1] Edwin K.Chong, Stanidlaw H. Zak, An Introduction to Optimization,
John Wiley & Sons, Inc., 2001, pages 255-271

[2] Sebastien Verel, An Introduction to Multiobjective Optimization, 2020

[3] What is Dijkstra’s Algorithm? Introduction to Dijkstra’s
Shortest Path Algorithm, last updated: 09 May, 2024, URL:
https://www.geeksforgeeks.org/introduction-to-dijkstras-shortest-
path-algorithm/, last checked: 2024-08-21

35

	Introduction
	Introduction to Optimization
	Definition and Basic Contepts
	Linear Programming
	Multi-objective Optimization
	Multi-objective Optimization Problem
	Multi-objective Optimization Solutions
	Weighted Sum Method

	Mathematical Model
	Data
	Decision Variables
	Objective Function
	Constraints

	Obstacle Avoidance Using Dijkstra Algorithm
	Problem Definition
	Dijkstra’s Algorithm
	Implementation of Dijkstra Algorithm to Obstacle Avoidance Problem
	Experiment

	Conclusion

