
Speci�cation of Schedulability Assumptions to Leverage

Multiprocessor Analysis?

Stéphane Rubinia,∗, Valérie-Anne Nicolasa, Frank Singho�a, Alain Planteca,
Hai Nam Trana, Pierre Dissauxb

aUniv Brest, Lab-STICC, CNRS, UMR 6285, F-29200 Brest, France
bEllidiss Technologies, 24 quai de la douane, F-29200 Brest, France

Abstract

In order to ease the early veri�cation of uniprocessor real-time systems, the tool
Cheddar provides a service that guarantees the applicability of a schedulability
analysis method for a given architecture model. This veri�cation service uses a
catalog of design patterns.

In this article, we propose to extend these patterns to multiprocessor ar-
chitectures. Designing such extension is a challenge because the knowledge of
both the software and the hardware architectures are essential to decide on the
schedulability of a task set in that context. Indeed, parallel execution of tasks
involves hardware resource sharing, that has in turn an e�ect on the task execu-
tion times. Currently, no general method is able to assess the schedulability of
a high-performance multicore system with a limited level of pessimism, except
if assumptions or usage restrictions are set to simplify the system analysis.

So, the research community is developing multiple schedulability tests based
on various assumptions which constrain the task models and their execution
platforms. In this article, we propose a framework based on Prolog that allows
engineers to verify the conditions to apply a test are met. Prolog facts model
the software and hardware architecture, and the inference engine checks whether
these facts conform to a design pattern associated to a given veri�cation method.

The design pattern compliance framework is integrated with the Cheddar
tool. Three examples of multiprocessor analyses illustrate the proposal. A scal-
ability analysis shows the tool is able to verify the compliance of architectures
composed of 600 tasks and 60 cores, in less than 140s on a desktop computer.

?Cheddar has been supported by Univ. of Brest, Ellidiss Technologies, Brest Métropole,
CR de Bretagne, CD du Finistère, Campus France PESSOA programs number 27380SA and
37932TF, MOSAR (Horizon 2020 grant agreement No 821996) and Thales.

∗Corresponding author
Email addresses: Stephane.Rubini@univ-brest.fr (Stéphane Rubini),

Valerie-anne.Nicolas@univ-brest.fr (Valérie-Anne Nicolas),
Frank.Singhoff@univ-brest.fr (Frank Singho�), Alain.Plantec@univ-brest.fr (Alain
Plantec), Hai-Nam.Tran@univ-brest.fr (Hai Nam Tran), dissaux@ellidis.com (Pierre
Dissaux)

Preprint submitted to Elsevier Received: date / Accepted: date

1. Introduction

In [1], the NIST has shown that 70% of the anomalies during the engineering
of critical real-time systems are detected lately, leading to a high increase of
their production cost. In such context, early veri�cation of timing constraints
with schedulability analysis can contribute to reduce this cost overhead. Many
models and methods of schedulability have been proposed. However, due to
the diversity and the rapid evolution of the runtime environments, due to the
variability of the task models to deal with, schedulability analysis remains a
di�cult problem.

The Cheddar project [2] aims to facilitate the application of schedulability
analysis in the engineering practices of critical real-time systems. As part of
the Cheddar project, the software framework of the same name aims at help-
ing engineers to apply this analysis. For this purpose, it implements several
scheduling algorithms, feasibility tests, simulation engines and various features
to perform system architecture explorations.

The Cheddar tool notably relies on a catalog of design patterns and in-
tegrates a service to check the compliance of an architectural model to these
patterns [3]. A design pattern is a set of constraints on the software architec-
ture; these constraints derive from the assumptions that must be met to apply a
schedulability analysis. Using a design pattern therefore allows the designer to
make sure that a schedulability analysis is adequate for the architecture she/he
wants to check and then, that the analysis results are sound.

Problem statement. More and more often the engineering of critical real-time
systems harnesses numerous processors. For example, an airplane or a car can
embed from several tens upto hundreds of interconnected computers [4]. Some
of their functions may need more computing and communication capabilities
that a single processor can supply [5]. In such new execution platforms, hard-
ware shared resources imply new interference on the software components. Such
interference lead to new delays that have to be taken into account during schedu-
lability analysis. Then, schedulability analysis of such systems is a major chal-
lenge to enable them on real critical real-time systems, and today few methods
have been proposed to leverage their use.

Contributions. This article presents a software framework whose purpose is to
guide the activities of real-time scheduling early veri�cations and analyses on
multiprocessor1 systems. The framework is based on a set of design patterns.
In particular, the design patterns discriminate the systems according to the
deployment of tasks on the available computing units, but also according to
the additional hardware resources these computing units use. The extension

1We choose the term "multiprocessor" in the article, in the sense that a multiprocessor
system is a system that includes several computing units. The computing units may share
some hardware resources. We use the term "multicore" when we want to emphasis that the
multiprocessor system is implemented on a single silicon chip.

2

of the Cheddar tool in that way requires more than a simple update of the
design patterns, because the modeling of the runtime environment may require
to express detailed features about the underlying hardware architecture.

We propose to express the software and hardware architecture of the system
to verify as a set of Prolog facts, and the design patterns as Prolog rules that can
be checked on the set of facts that models the system. The approach allows for
easily appending new patterns. This ability is mandatory in a research context
characterized by a high variability of the assumptions made in the di�erent
contributions.

Initially de�ned for uniprocessor platforms, the features of Cheddar are ex-
tended to deal with multiprocessor systems, possibly integrated onto a single
silicon chip. However, this article does not propose new analysis methods, but
rather attempts to de�ne a scalable framework for hosting di�erent scheduling
analysis methods which are useful in a system engineering process.

Outline of the article. Next section, we remind the notion of design pattern
and its application in the �eld of schedulability analysis, as it was implemented
in the Cheddar tool version for uniprocessor environments. In Section 3, we
introduce the overall approach proposed in this article, also based on design
patterns, in order to select appropriate schedulability analysis methods for mul-
tiprocessor systems. The end of this section focuses on the modeling of the
multiprocessor runtime environments. Section 4 presents some design patterns
for multiprocessor real-time systems and how they have been prototyped inside
the Cheddar framework. Section 5 addresses the validation of the approach
through examples and a scalability study, before concluding in Section 6.

2. Previous Work

The object oriented design community has widely adopted the design pattern
concept, especially since [6]. A design pattern is a well established and docu-
mented solution to a recurring problem in a given context. Sanz [7] and Pont [8]
have advocated the use of a speci�c catalog of patterns for the design of real-
time systems, covering both functional and non-functional requirements. Soft-
ware engineers may not master all the aspects of a complex embedded design,
that requires skills in hardware, control system algorithms, reliability etc. The
reuse of known well accepted solutions decreases the design time, and should
also improve the quality of the design.

In the �eld of embedded systems, the specialization of the execution plat-
form is high. Physical and/or cost constraints, and the ongoing interaction with
various environments, explain that the hardware is often dedicated to a prod-
uct. The design of such systems requires to take care of both their software
parts, their hardware parts and the mapping of the �rst on the second. The Ar-
chitecture Description Languages (AADL [9] and UML/Marte [10]) have been
proposed at that end among other things.

The design pattern approach we advocate is an application of the work
initiated with the Ravenscar pro�le [11], which is a set of restrictions on Ada

3

programs to ease veri�cation and validation activities. This approach has been
applied on various systems, and for various properties such as performance,
safety or security [12, 13, 14]; sometimes it has even been extended by the
concept of contracts [15].

To the best of our knowledge, very few studies have proposed to apply a
pattern-based approach on the veri�cation and validation of multiprocessor em-
bedded systems when it comes to taking into account the shared hardware
resources beyond the processing units themselves.

Transportation systems, including avionics, are one of the application do-
mains where schedulability analysis is mandatory. Currently, there is no estab-
lished certi�cation procedure that applies to the use of multicore systems in civil
aircraft. However, certi�cation authorities lead an exploratory work on the sub-
ject. In [16], the CAST (Certi�cation Authorities Software Team) exposes some
work tracks, and indicates that memory cache sharing in multicore processors
is a key point of the problem. The design pattern modeling that we propose
focuses in particular on this point.

More generally, several scheduling analysis tools for multiprocessor systems
have been proposed in recent years, e.g. storm [17], RealtssMP [18], Yartiss [19],
SimSo [20] or MAST [21]. Some propose to study shared hardware resources
and the interference to which they can lead. However, these tools do not pro-
vide mechanisms to ensure that the analyzed models are consistent with the
applicability assumptions of schedulability analysis methods.

2.1. Applying Design Patterns in the Schedulability Analysis Domain

In this part, we present the concept of design patterns used as reference
designs for helping the schedulability analysis activities. Then, we give examples
of patterns that have been previously implemented in the Cheddar tool.

Each schedulability analysis method requires that the architecture model
to analyze complies with a set of assumptions called applicability constraints.
The greater the number of applicability constraints or the number of usable
schedulability analysis methods are, the harder it is for a designer to choose the
schedulability method to apply. Each schedulability method may have di�erent
characteristics in terms of result accuracy (exact or pessimistic), sustainability
or scalability [12], which increase again the complexity of the choice.

Design patterns can help in choosing a schedulability method. Indeed, a
design pattern speci�es the applicability constraints of an analysis method. For
the designer, the problem is then to ensure that the architectural model she/he
wishes to check is compliant with a design pattern.

Fig. 1 summarizes the relations between the design patterns, the schedula-
bility analysis methods, and the architectures to verify.

2.1.1. Formalization of Design Patterns for Schedulability Analysis

In [3], Gaudel formalizes the concept of design pattern previously used in
Cheddar. The following sets together de�ne a design pattern:

4

Figure 1: Relations between design patterns, schedulability analysis methods,
and architectures. We note that a given architecture may not be compliant
with any model or that no analysis method may be applicable. However a
schedulability analysis method may be applicable to an architecture whereas no
design pattern is usable to guarantee its applicability.

1. Environmental constraints. This set of constraints characterizes the
runtime environment. It describes the hardware part of the architecture
model and the software for the exploitation of its resources (operating
system, device drivers etc). In his work, Gaudel focuses on a uniprocessor
environment described by the applicability constraints of Table 1.

Env1 The runtime environment has a single processing unit.
Env2 The scheduling policy can be: EDF, LLF or �xed-priority.
Env3 The preemptive level of the scheduler must be explicit.
Env4 The scheduler does not use quantum.
Env5 There is no hierarchical scheduling.

Table 1: This table (from [22]) describes a uniprocessor runtime environment.
The left column contains the identi�er of the constraint. The right column
describes the constraint in natural language.

2. Communication and synchronization constraints. This second set
of constraints characterizes the software part of the architectural model
to analyze.
These constraints focus on concurrency, and speci�cally on task commu-
nication and synchronization. Task is the main concept used by schedula-
bility analysis. A task is characterized by a set of timing parameters [23].
Among these timing parameters, most come from the requirement of the
design of the system and do not depend on the runtime environment.
For example, the deadline speci�es the time beyond which the execution
of a job may disrupt the expected behavior of the system. Others, and
speci�cally the maximum time required for a job execution (or Worst Case
Execution Time) of a task, are related to the runtime environment.
Five sets of communication and synchronization constraints have been
de�ned in [24, 12], and then formalized in [3]. These sets are described
later in this section.

5

3. Schedulability analysis methods. Each pattern describes an associa-
tion between schedulability analysis methods and a type of architecture
whose characteristics comply with the applicability constraints of the anal-
ysis methods. The analysis methods are feasibility tests such as processor
utilization factor tests, simulations on the feasibility interval, worst case
response time analysis.

In the next section, we recall the main sets of communication and synchro-
nization constraints allowing the Cheddar tool to perform scheduling analyses
automatically.

2.1.2. Task Communication and Synchronization Models

Five models of communication and synchronization between tasks have been
proposed in [12, 22]. These models have been speci�ed with aadl [9], a standard
architecture language used in avionics, or with Cheddar-ADL [25] that is the
native architecture description language of the Cheddar tool. Each of these
models expresses an usual method of synchronization and communication that
can be found in languages, standards or operating systems used by the actors of
the real-time domain. Below, the parenthesized name associated to each model
is de�ned for the purpose of later reference in this article.

1. Synchronous data-�ow (log_sync). This �rst model corresponds to
a common synchronization and/or communication in aadl: communica-
tions between thread components via data ports in immediate mode. With
aadl, a thread component models a control �ow, i.e. a thread consists
of a sequential instruction sequence scheduled together with the other
threads deployed on the runtime environment. When two aadl threads
communicate by a data port, every thread reads and writes the data at
times speci�ed by the aadl standard. Data writing and reading times are
known and the runtime environment handles the synchronization issues
involved for sharing this information without data loss.

2. Ravenscar (log_rav). In this model, tasks can exchange data asyn-
chronously via shared memory. The accesses to shared memory are pro-
tected by a priority inversion avoidance protocol, i.e. pcp [26]. The tasks
must respect several additional constraints that we do not detail here for
the sake of brevity. All of these constraints come from the Ravenscar
pro�le of the 2012 Ada standard [27].

3. Blackboard (log_bb). This is a readers/writers model. Readings and
writings are done asynchronously and only the last written value can be
read. This set of constraints models a synchronization/communication
mechanism de�ned in the arinc653 standard [28].

4. Queued bu�er (log_qb). This model expresses a producer/consumer
synchronization where the messages are produced and consumed according
to a fifo order. Queued bu�er also models a synchronization/communi-
cation mechanism de�ned in the arinc653 avionic standard.

5. Unplugged (log_upg). This last model assumes that tasks are inde-
pendent, i.e. they are not synchronized and they do not share any data.

6

In other words, each task can be scheduled as early as it is ready (periodic
wake up in the case of a periodic task) without any other condition than
the availability of a computing unit.

Cheddar automates the conformity veri�cation of an architectural model to
a design pattern [3]. In this article, we propose an extension of the Cheddar
design patterns, especially by de�ning execution environment models in order
to take into account the actual hardware in a multiprocessor context.

3. Scheduling Analysis on Actual Runtime Environments

With the growing number of transistors implanted on silicon chips, complex
integrated runtime environments are now available for digital system designers.
The wide commercial o�er of multicore processors, manycore processors, or
heterogeneous MultiProcessor System-on-Chip (MPSoCs) illustrates this trend.

One of the major issues, raised by the shift from single-core to multicore
processors, is the variability of the task parameter "capacity" depending on the
schedule of the system as a whole. Hence, the usual two-phase process, wcet
analysis followed by scheduling analysis, can produce very pessimistic results
if all the potential interference is taken into account in the task capacity. The
answer to this problem implies evaluating the e�ective interference with regards
to the possible schedulings, or mitigating the interference at the runtime level.

In this context, there is a strong need for modeling the runtime environment
to support accurate scheduling analyses. Especially identifying non-functional
interference related to the concurrent usage of hardware resources is a critical
issue to ensure the analysis results are sound and accurate. We describe this in-
terference as non-functional, in the sense that it is not expressed in the software
architecture model of the system, i.e. as application dependencies between the
software tasks.

3.1. The Overall Approach

The overall approach we propose is shown Fig. 2.
Three models, the schedulability analysis model, the runtime interference

model and the design patterns, constitute the inputs of the process, and each
of them is related to a di�erent area of expertise:

� The software engineers build the schedulability analysis model i.e.
software tasks, functional dependencies and computing units;

� The hardware engineers are able to identify the usage interference from the
hardware speci�cation of the execution platform, and write the runtime
interference model;

� The scheduling theory expert implements new methods in the scheduling
analysis tool. The expert knows the design rules allowing for these analysis
methods to be applied to hardware/software systems [29], and maintains
a design pattern catalog. Especially, the design pattern speci�es the

7

Figure 2: Scheduling Analysis Method Selection Process

hardware architecture and/or the interference that the analysis method
implemented in the Cheddar tool is able to take into account.

From these inputs, the Design Pattern Compliance Checker program, called
dp_check in the sequel, produces a list of design patterns the system architecture
complies with. Next, this allows for selecting a list of analysis methods that can
be applied to the system.

Notice that the scheduling analysis by itself is driven only by the speci�cation
issued from the scheduling analysis model.

The Prolog Mapping program generates a Prolog model from the relevant
information of the schedulability analysis model used as Cheddar tool con�gu-
ration; this information includes the list of the tasks, the list of the execution
units, the scheduling parameters and protocols, the allocations of tasks on the
execution units, and various parameters that in�uence the scheduling analysis.
Beyond this mapping, it detects whether the software architecture conforms to
one of the software design pattern described in Section 2.1.2.

The process assumes the consistency of the entity or attribute names ex-
tracted from the scheduling analysis model and those coming from the interfer-
ence model; the hardware entities are considered to be the same if they have
the same name in both models.

The Prolog Mapping program is written in Ada, and reuses already existing
functions from the Cheddar framework to parse the Scheduling Analysis Model
and search the software design patterns.

Implementing a new method into the scheduling analysis tool, might require
additional parameters (e.g. the number of memory accesses of a task and their
duration); in this case, the Prolog mapping program might need to be updated

8

to re�ect these new parameters as Prolog facts.
The dp_check program is a Prolog implementation based on Prolog facts and

inference rules. Then, the set of facts is obtained by merging this Prolog model
and the runtime interference model. The inference rules are the predicates dpi
de�ned for each DPi design pattern (see Sections 4.3 and 4.4) and its constraints
in the design pattern catalog. The dp_check main predicate sequentially checks
the compliance of the system with all the design patterns speci�ed in the catalog.

3.2. Runtime Environment Interference Model

A runtime environment can be modeled by a set of entities, whose attributes
clarify the interference within the hardware architecture that could lead towcet
variability.

Here, a runtime environment is made of Processing Element and Resource
entities, as well as their relations that could lead to potential interference.

Processing Element. A Processing Element (pe) is a hardware component al-
lowing for the execution of a sequential �ow of execution.

A pe can be a core in a multicore processor or MPSoC architecture, a single-
core processor, a hardware thread or a dedicated operator (a hardware task).

Resource. A Resource (r) is an additional hardware component required, di-
rectly or indirectly, by some pes for executing their �ow of execution. A resource
is said to be shared when several pes use it; a shared resource may lead to func-
tional or non-functional (e.g. temporal) interference between the pes that use
it. For example, an instance of r can model a memory cache, a bus, a Network-
On-Chip (NoC).

Fig. 3 presents the model describing the interference between entities in a
runtime environment.

Figure 3: Interference Model of the Runtime environments

When the use of a hardware shared resource does not imply any interference,
the relations between the pes and this shared resource may be left out of the
runtime environment model. For example, if a shared cache is partitioned to
avoid con�icts when accessing to it, it is not mandatory to model the relations
between this hardware resource and the related pes.

9

Fig. 4 shows four typical examples of runtime environment models. Fig. 4(a)
comprises two independent pes (pe1 and pe2): these computing units, that do
not use any shared resources, or that use hardware resources without inter-
ference, do not lead to a wcet variability. This model has been extensively
investigated in schedulability analysis with identical processors [30].

In Fig. 4(b), we now have a hardware resource shared by two pes. A possible
example for this model is the share of a memory bus (r1) required by pe1 and
pe2.

Figure 4: Examples of runtime environment interference

Fig. 4(c) exposes a third example where several shared and private hardware
resources are used by pe1 and pe2. Here, r3 models a level 2 cache shared
between all the pes, and r1 and r2 respectively model the level 1 caches of pe1
and pe2.

Finally, Fig. 4(d) also presents two pes with shared and private resources.
The hardware resource r1 can model a level 1 cache for pe1, while r2 can model
a communication bus shared by pe1 and pe2.

From the previous models, one can classify the di�erent pes according to
the non-functional interference that they may undergo during task execution.
Table 2 shows predicates that de�ne whether a pe belongs to a given interference
scheme.

A set of attributes, presented in the next section, characterizes the pe and
r entities. Each attribute is speci�ed using a relation of the form:

attribute_relation(e, val)
where e represents an entity or a set of entities. The relation is True if the

value of the attribute of the entity e is the value val, False otherwise. In the
sequel, we use the term attribute at place of attribute relation for the readability
of the text.

3.3. Attributes of the Runtime Environment Entities

These attributes (pre�xed by A_) specify the intrinsic properties of a run-
time environment entity, that is either a resource r or a processing element pe.

10

Name Semantics

HA_independent(PE) True if the pe does not use any hardware re-
sources whose sharing could cause interference be-
tween tasks.

HA_isolation(PE) True if the pe does not use any hardware resources
whose sharing could produce interference impossible
to predict/prevent at the system runtime level.

HA_bounded(PE) True if the pe does not use any hardware resources
whose sharing can produce interference which a pri-
ori cannot be bounded in time.

HA_dependent(PE) True if the pe uses hardware resources whose sharing
can produce unbounded time interference.

Table 2: PE interference models

They characterize the associated entity regardless of its context of use in the
system.

We can distinguish di�erent kinds of attributes. Some attributes provide
information about the hardware entity type ; an entity can provide a comput-
ing, a storing or a communication mean. The A_type attribute of an entity
E then de�nes its category C using the relation: A_type(E,C) with C ∈
{processing,memory, interconnect}

Other attributes specify the implementation, structural, and temporal char-
acteristics of the entity. The tables 3, 4 and 5 provide a list of attributes
classi�ed according to the type of entity to which they apply. Obviously this
list is not exhaustive and can be extended for a particular analysis method.

Attributes are used at two levels while de�ning a design pattern. Some take
part in the selection of a speci�c analysis method, and others in the settings
of the selected method. For example, A_mem_cache_associativity allows to
check whether a method based on direct-mapped cache is appropriate, or in
the case of methods dealing with any type of cache, is used to calculate data
placement in the cache.

3.4. Access Attributes

Access attributes (pre�xed by AM_) de�ne when and how hardware entities
access resources r. Modeling the architecture of the runtime environment is
useful for identifying potential interference due to hardware resource sharing.
However, a hardware resource can be a part of an entity that can be used
independently with the other parts of such entity. Furthermore, access to the
resource by the pes can be timely isolated. In these both cases, accesses to the
hardware resource are not likely to create interference. If the system design does
not prohibit concurrent access, the design pattern must express how the access
con�ict is handled.

The two �rst attributes of the table below models relations use shown in
the Fig. 3. The next three attributes represent respectively the time intervals

11

Attribute name (pre-
�x A_mem_ is omit-
ted for brevity)

Semantics

type(R,V) entity r sub-type (memory, memory bank, data
cache, instruction cache. . .)
V ∈ {memory, bank, DCache, ICache, ID-
Cache, hierarchy}

cache_associativity(R,V) cache associativity
V is an integer ≥ 1

cache_replacement_policy associative cache replacement policy
(R,V) V ∈ {LRU, LRR, random}

cache_miss_time(R,V) cache line loading time (or Block Reload Time)
in case of miss
V is a time in ns

cache_size(R,V) cache or cache partition full size
V is a number of bytes

cache_line_size(R,V) size of a cache line
V is a number of bytes

cache_level(R,V) cache level with respect to the processor
V is an integer ≥ 1

cache_coherency(R,V) writing strategy, coherency protocol
V ∈ {copy_back, write_through}

memory_access_time(R,V) access time to a memory word
V is a time in ns

Table 3: Examples of attributes applied to "memory" resources

Attribute name Semantics

A_proc_type(PE,V) entity sub-type (processor or MPSoC core, physical
thread, physical processor, specialized operator)
V ∈ {core, processor, thread, dedicated}

A_proc_isa(PE,V) supported instruction set
V is a label

A_proc_speed(PE,V) speed, or speed range in case of DVFS control (Dy-
namic Voltage and Frequency Scaling), possibly rel-
ative to the pes supporting the same isa.
V is a range [operation/s, operation/s] or scalar

Table 4: Examples of attributes applied to "processing" resources

12

Attribute name Semantics

A_conn_type(R,V) communication entity sub-type (bus, Network-
on-Chip, star, peer-to-peer. . .)
V ∈ {bus, NoC, star, p2p}

A_conn_throughput(R,V) maximum transfer rate on a bus
V is a throughput in words/s

A_conn_latency(R,V) maximum latency of a transfer once the bus is
available
V is a time in ns

Table 5: Examples of attributes applied to "interconnect" resources

during which a pe is allowed to access a hardware resource, the partition of the
hardware resource allocated to the pe, and in case of access con�ict, the used
arbitration policy.

Attribute name Semantics

AM_PE_use(PE,R) pe is authorized to use a set r of hardware re-
sources

AM_R_use(R1, R2) r1 is authorized to use/access a set r2 of hard-
ware resources

AM_time(PE,R,V) V is the set of time intervals where the pe is
authorized to access the hardware resource r

AM_space(PE,R,V) V is a subpart or a partition of r to which pe

is allowed to access
AM_arbitration V is an arbitration policy in case

({PE,. . . ,PE},R,V) of concurrent accesses of a set of pes to r.

For example, the following logic formula characterizes a set of two processing
units pe1 and pe2, accessing a bus according to a tdm frame:
AM_time(PE1, Bus, V 1) ∧AM_time(PE2, Bus, V 2) ∧ (V 1 ∩ V 2 = ∅)

Note that the access attributes do not provide the same information as the
attributes describing the scheduling of software tasks on pes. A task may be
active on a pe while the pe is stuck waiting for a hardware resource. Conversely,
a pe may have an exclusive access to a hardware resource while no software task
requires access to this resource.

3.5. Deployment Attributes

Deployment attributes (pre�xed by DM_) indicate how hardware resources
are allocated to software entities. As in aadl [9], they de�ne either an e�ective
assignment, or an allowed assignment.

13

Attribute name Semantics

DM_PE_actual(T,V) V is the PE where task T is actually executed
DM_PE_allowed(T,V) V is the set of PEs authorized to perform task T

Even if a task is allowed to run on several pes, a job of this task is only
processed by a single pe at a given time, i.e. the task code is not parallelized.

A priori, a task running on a pe can use the overall set of hardware re-
sources accessible by this pe in its environment. The deployment attributes of a
task allow one to de�ne this set explicitly, and therefore to restrict it if necessary.

Attribute name Semantics

DM_R_actual(T,V) V is the set of hardware resources actually used
by task T

DM_R_allowed(T,V) V is the set of hardware resources whose access
is authorized to task T

The deployment of tasks on shared hardware entities is speci�ed by a schedul-
ing policy that governs the time intervals during which the entity is assigned
to the task. The DM_PE_scheduling and DM_R_scheduling deployment
attributes de�ne the parameters of the scheduling policy.

Attribute name Semantics

DM_PE_scheduling(PE,T,V) V is the set of parameters that de�nes
the scheduling policy of a task T on a PE

DM_R_scheduling(R,T,V) V is the set of parameters that de�nes
the scheduling policy of a task T during its
access to a resource R

E�ective access to a shared resource r at time t �rst depends on the schedul-
ing on a pe of the task requesting its access, and second by allowing this pe to
use the resource r. In other words, we assume here a hierarchical scheduling,
most often managed at very dissimilar time scales. For example, in the case of
a dual-core processor with shared memory, the memory read instruction of a
task executes without waiting (1) if the task is scheduled on a core and (2) if
the memory bus arbitration allows it to access the memory.

3.6. Updating Cheddar Tool Design Patterns

In the previous sections, we proposed a runtime environment model in order
to clarify interference within these environments. We now describe how the
design patterns of the Cheddar tool are adapted so that they can be applied to
multiprocessor runtime environments. In this context, a design pattern is now
made of:

1. Attributes characterizing an intrinsic functionality of a hardware
entity, pe or r resources, in the runtime environment (Section 3.3).

2. A hardware architecture model, possibly supplemented with ac-
cess attributes. These models allow us to exhibit non-functional inter-
ference between hardware entities (Section 3.4).

14

3. Deployment attributes which indicate how the software entities (i.e.
the tasks) are deployed on the pes and resources r (Section 3.5).

4. Synchronization and communication constraints between tasks.
In the rest of the document, we consider the models Synchronous data-
�ow, Ravenscar, Blackboard, Queued bu�er andUnplugged (see Section 2.1.2).

5. And �nally a set of scheduling methods that can be applied to systems
complying with the constraints of the items (1), (2), (3) and (4).

In the next section, we use these modeling elements to de�ne runtime envi-
ronments as design patterns.

4. Patterns for Multiprocessor Scheduling Analysis

In this section, we list the analysis methods available in the Cheddar tool and
that are applicable in the multiprocessor context. The conditions of their use
are speci�ed by a design pattern expressed according to the previously de�ned
attributes.

4.1. Multiprocessor Analysis Functions Implemented in Cheddar

Prior to the redesign of the design pattern checking, the move to multi-
processor systems of the Cheddar analyzer required several updates to support
multiprocessor scheduling protocols.

First, we completed the modeling language used to express the architecture
of the system to be analyzed. We add new entities that represent the multiple
execution units, and their basic characteristics (the relative speed for instance).
It was also mandatory to extend the communication/synchronization features
to support the software interaction between the tasks assigned to di�erent pro-
cessors. Moreover, some properties have been appended to structurally account
for the memory hierarchy (level 1 and 2 caches) which is signi�cant in multi-
processor systems.

A second work was the re-factoring of the Cheddar event-driven scheduling
simulation engine. Indeed, the parallel activity of the processors raised issues
for a correct computation of the future simulation state. The simulator also had
to be able to manage the task/job migrations.

To quantify the amount of work done for updating Cheddar, notice that the
multiprocessor shift required the creation of about twenty new entities, and as
many new types in its internal data structure. These changes impacted both the
simulation engine and the Cheddar input language, but were mandatory to sup-
port multiprocessor simulations and to con�gure the multiprocessor feasibility
tests.

Cheddar analysis functions for multiprocessor real-time systems can be clas-
si�ed in three categories.

The �rst category is based on simulation. It consists to producing a simula-
tion of the task set scheduling on the feasibility interval [31], and then, to com-
puting various performance metrics (worst case response time, worst case block-
ing time, absence of deadlock, priority inversion, number of preemption, number

15

of context switching etc). To date, the available simulation algorithms apply
multiprocessor global or partitioned scheduling, with classical algorithms (�xed-
priority, edf, llf etc) or speci�c algorithms such as edzl or Proportionate-Fair.
Simulations can be con�gured via parameters related to the scheduling policy
(preemption level, quantum) or to the studied architecture entities (jitter, o�set,
and more generally, on the task model and shared resource access protocol).

The second category of analysis methods is based on the use of feasibility
tests. In the context of multiprocessor or distributed architectures, the available
methods mainly compute task worst response times on tree or linear transac-
tions [32, 33, 34, 35, 36] or processor utilization rates [30]. Some tools can
also calculate various data to extend the worst case response times, e.g. the
Cache-Related Preemption Delay (crpd) [37], or the shared resource blocking
time.

Finally, the last category of methods contains architecture exploration tools.
In a multiprocessor or distributed context, they can be, for example, partition-
ing methods, methods assigning various task parameters for taking into account
hardware resources (e.g. priority allocation according to the crpds), or distri-
bution and communication precedence constraints.

Speci�cally, the scheduling analysis methods that are already implemented
in the Cheddar tool and that consider hardware interference are the following:

� For the cache usage interference, the computation of crpd is included in
simulation, feasibility tests, and priority assignment algorithms for �xed
priority preemptive scheduler [38]; the crpd quanti�cation uses various
state-of-the-art methods like UCB-only, ECB-only, or multiset [37].

� For the interference between messages, the ECTM model computes the
communication times inside a Store-and-Forward or a wormhole Network-
on-Chip and deals with direct interference between messages [39]. The
arbitration policy of the NoC routers must avoid the indirect interference.

� For the memory access interference, the feasibility test proposed in [40]
is implemented. This test applies on a multiprocessor architecture with
a shared DRAM memory, and a prede�ned allocation of the tasks on
memory banks.

Thus, to sum up, the Cheddar tool implements about 80 scheduling protocols
if we consider the variation of the algorithms with the job migration policy.

4.2. Design Pattern Structuring

De�ning a design pattern implies to model constraints on di�erent system
layers. In order to simplify their formalization, we de�ne several sets of con-
straints, possibly reusable, to express the patterns.

The constraint sets that are used in the rest of this article are presented in
Fig. 5. The level to which they occur is underlined by their name pre�x:

LOG Synchronization and communication constraints of tasks

16

DEP Deployment constraints

EXE Interference between hardware entities and hardware resource access con-
straints

FEA Hardware entity constraints

Figure 5: Current Constraint Set Structuring based on System Layers.

We now de�ne these sets of constraints where T denotes the set of tasks of
the system to be analyzed, P the set of pes and R the set of resources.

Compatible tasks (DEP_COMP).
This set constrains task deployment by requiring that the tasks are compati-
ble with a set of pes. This compatibility must be seen as in terms of system
design (i.e. an a�nity task-pe), and not in terms of strict software-hardware
concordance, even if the �rst implies the second.

∀t, s ∈ T,
∃ two single sets of PEs vt, vs ⊂ P \

(DM_PE_allowed(t, vt) ∧DM_PE_allowed(s, vs)
∧ (‖vt‖ ≥ 1) ∧ (‖vs‖ ≥ 1)
∧ ((vt = vs) ∨ (vt ∩ vs = ∅)))

This formula stands for the fact that if a task is compatible with a set vt
of pes (following the relation DM_PE_allowed), another task is compatible
with the same set or, otherwise, with another set vs that must be disjoint of the
�rst one.

Task partitioning by PE (DEP_PART).

The set of tasks is partitioned on the processing elements, and the task
scheduling on each pe must be managed by the same algorithm.

17

∀t, s ∈ T,
∃!pt, ps ∈ P \

(DM_PE_actual(t, pt) ∧DM_PE_actual(s, ps) ∧
(∃ two single scheduling policies vt, vs \

(DM_PE_scheduling(pt, t, vt)
∧ DM_PE_scheduling(ps, s, vs)
∧ (pt = ps ⇒ vt = vs))))

Task partitioning by PE set (DEP_GLOB).
The pe sets de�ned by the deployment must be the same, or otherwise, disjoint.
All the tasks of the system to be analyzed must be deployed on at least one pe.
Within a pe set, a unique scheduling policy must be used.

∀t, s ∈ T,
∃ two single sets of PEs vt, vs ⊂ P \

(DM_PE_allowed(t, vt) ∧DM_PE_allowed(s, vs)
∧ (‖vt‖ ≥ 1) ∧ (‖vs‖ ≥ 1)
∧ ((vt = vs) ∨ (vt ∩ vs = ∅))
∧ ((vt = vs)⇒

(∀p, q ∈ vt, ∃ a single scheduling policy x \
(DM_PE_scheduling(p, t, x) ∧DM_PE_scheduling(q, s, x))))

Note that DEP_GLOB ⇒ DEP_COMP because DEP_GLOB checks in
addition that a unique scheduling policy is used within the pe set. Obviously,
the tasks must be compatible with all the pes belonging to the set managed by
the global scheduling.

Note also that, for a model speci�ed without DM_PE_allowed attribute,
DEP_PART⇒DEP_GLOB. Actually, DEP_PART usesDM_PE_actual(t, pt)
from which we can deduce DM_PE_allowed(t, {pt}) (used in DEP_GLOB)
for any task t. Thus, a global scheduling on a singleton set of pes is a partition
scheduling (obviously, again).

Independent multiple PEs (EXE_INDE).
A runtime environment that complies with this set guarantees that the temporal
and functional behavior of the pes that perform a task, is independent of the
status of other pes, in the absence of functional interference between the tasks.

∀t ∈ T,
∃ a single set of PEs vt ⊂ P \

(DM_PE_allowed(t, vt)
∧ (∀p ∈ vt, HA_independent(p))
∧ (∀p ∈ P, (DM_PE_actual(t, p)⇒ HA_independent(p))))

Dependent multiple PEs (EXE_DEP).
This constraint set de�nes a hardware architecture where the activity of a pe

18

temporally interferes with those of the others pes. The impact of the interfer-
ence may be di�cult to accurately bound except with a dedicated scheduling
analysis method that also considers the task model.

∃t ∈ T \
(∃ a set of PEs vt ⊂ P, ∃p ∈ vt \

DM_PE_allowed(t, vt) ∧ HA_dependent(p))
∨ (∃p ∈ P \ DM_PE_actual(t, p) ∧HA_dependent(p))

Identical PEs (FEA_ID).
The pes are only characterized from the point of view of their performances in
terms of execution speed, and type of code they can execute. The execution
speed can possibly be de�ned relatively to the others pes.

Let S = Allowed ∪Actual
with Allowed =

⋃
t∈T {v \ DM_PE_allowed(t, v)}

and Actual =
⋃

t∈T {p \ DM_PE_actual(t, p)},
∀p, q ∈ S,
(((∃s \ A_PE_speed(p, s) ∧A_PE_speed(q, s))
∨ ¬(∃s \ A_PE_speed(p, s)) ∨ ¬(∃s \ A_PE_speed(q, s)))

∧
((∃i \ A_PE_isa(p, i) ∧A_PE_isa(q, i))
∨ ¬(∃i \ A_PE_isa(p, i)) ∨ ¬(∃i \ A_PE_isa(q, i)))

If the speed or type attribute does not exist for a pe, it is by default consid-
ered identical to the others pes.

If speed and type are not de�ned for any pes, then these are considered as
abstract entities providing prede�ned computing power units, to put in relation
with the analyzed task model con�guration.

PE with private instruction cache (FEA_IC).
These pes contain a direct-mapped level 1 private instruction cache.

Let S = Allowed ∪Actual
with Allowed =

⋃
t∈T {v\ DM_PE_allowed(t, v)}

and Actual =
⋃

t∈T {p \ DM_PE_actual(t, p)},
∀p ∈ S,
∃!r ∈ set of resources R \

(AM_PE_use(p, {r})
∧A_mem_type(r, Icache)
∧A_mem_cache_associativity(r, 1)
∧A_mem_cache_miss_time(r, constant_value)

)

PEs sharing a DRAM memory through a cache (FEA_DRAM).
These pes share a Last Level Cache (LLC). The cache miss processing causes

19

block exchanges with a dram memory, which allows by bank accesses. The
data/instructions of each tasks are stored on a known set of memory banks.

Let S = AllowedS ∪ActualS
with AllowedS =

⋃
t∈T {v \ DM_PE_allowed(t, v)}

and ActualS =
⋃

t∈T {p \ DM_PE_actual(t, p)},
Let U = AllowedU ∪ActualU
with AllowedU =

⋃
t∈T {v \ DM_R_allowed(t, v)}

and ActualU =
⋃

t∈T {p \ DM_R_actual(t, p)},
(∀u ∈ U,A_mem_type(u, bank))
∧

(∃! r ∈ set of resources R \
(∀p ∈ S, AM_PE_use(p, {r}))
∧ A_mem_type(r, IDcache)
∧ (∃ a set of resources B \ AM_R_use(r,B) ∧ U ⊆ B))

4.3. Design Patterns and Achievable Analyses

In what follows, we specify �ve design patterns based on the previously
de�ned set of constraints, and respectively named dp1, dp2, dp3, dp4 and dp5.

DP1. A runtime environment compliant with this pattern allows a group of
tasks to run on a group of identical and independent pes. The task groups and
pe groups are disjoint.

DP1 := (LOG_UPG ∨ LOG_SY NC) ∧
DEP_COMP (T, PE) ∧
EXE_INDE(T, PE) ∧
FEA_ID(T)

Observing this pattern permits the use of the task set partitioning methods
available in Cheddar. Several independent task set partitioning heuristics are
implemented: Best Fit, First Fit, Next Fit, Small Task and General Task [41,
42].

DP2. A runtime environment consistent with this pattern de�nes a single pe
for the execution of each task, and a scheduling policy for each pe. The pes are
independent and identical.

DP2 := (LOG_UPG ∨ LOG_RAV ∨ LOG_SY NC) ∧
DEP_PART (T, PE) ∧
EXE_INDE(T, PE) ∧
FEA_ID(T)

This pattern de�nes a partitioned multiprocessor system. Depending on
the compliance of the software architecture, this pattern allows to apply many
Cheddar implemented analysis methods.

For example, if the architecture to check complies with LOG_RAV, LOG_
SYNC or LOG_UPG, we can compute worst case response times [43].

20

DP3. A runtime environment compliant with this pattern allows a group of
tasks to run on a group of identical and independent pes. The task groups and
pe groups are disjoint. All pes in a group are managed by the same scheduling
policy.

DP3 := (LOG_UPG ∨ LOG_RAV ∨ LOG_SY NC) ∧
DEP_GLOB(T, PE) ∧
EXE_INDE(T, PE) ∧
FEA_ID(T)

This pattern speci�es a multiprocessor system with a global scheduling. Var-
ious algorithms are available in Cheddar to dynamically control the task schedul-
ing on a set of pes. Some are adaptations of classical algorithms used in unipro-
cessor environments (rm, dm, edf . . .), and others have been speci�cally de-
veloped for multiprocessor systems (edzl, Proportionate-Fair, llref. . .) [44].

Note that dp3⇒ dp1 for architectures compliant with LOG_UPG or LOG_SYNC
(which are the only architectures compatible with dp1, and because DEP_GLOB
⇒ DEP_COMP).

DP4. A runtime environment consistent with this pattern de�nes a single pe
for the execution of each system task, and a temporal scheduling policy for each
pe. The pes are independent, identical, and contain a direct-mapped level 1
private instruction cache.

DP4 := (LOG_UPG ∨ LOG_SY NC) ∧
DEP_PART (T, PE) ∧
EXE_INDE(T, PE) ∧
FEA_ID(T) ∧ FEA_IC(T)

Compliance with this pattern grants access to methods that, in Cheddar,
take into account the crpd (Cache Related Preemption Delay), i.e. the simula-
tion with crpd [45], the computation of interference between tasks due to the
instruction cache [46], and the extension of the optimal algorithm proposed by
Audsley [47] for priority assignment.

Note that dp4⇒ dp2 for architectures compliant with LOG_UPG or LOG_SYNC
(which are the only architectures compatible with dp4). dp4 is more constrain-
ing than dp2 as it also checks FEA_IC.

DP5. The hardware side of the systems represented by this pattern is symmet-
rical multiprocessor systems. The cores share a llc (Last-Level Cache) and a
dram memory organized in bank. A single channel connects the cache and the
memory controller. Tasks are partitioned on pes.

21

DP5 := (LOG_UPG ∨ LOG_SY NC) ∧
DEP_PART (T, PE) ∧
EXE_DEP (T, PE) ∧
FEA_ID(T) ∧
FEA_DRAM(T,R)

Currently, in the Cheddar tool, only one feasibility test based on the work
of Kim et al [40], is available to analyze architectures conforming to this design
pattern.

4.4. Design Pattern Implementation

In this section, we present a Prolog implementation of the design patterns
and the Design Pattern Checking Algorithm (dp_check) to test the compliance
of an architecture model with the di�erent design patterns de�ned in Section 4.3.
These design patterns are speci�ed as �rst order logic formulas involving predi-
cates for task communication and synchronization modeling (see Section 2.1.2)
and predicates representing sets of constraints for runtime environment model-
ing (see Section 4.2). Actually, these sets of constraints are themselves speci�ed
as �rst order logic formulas using predicates associated with the di�erent run-
time environment model attributes (see Sections 3.3, 3.4 and 3.5).

Prolog is a logic programming language based on the �rst order logic paradigm
[48]. Therefore, the design pattern implementation in Prolog is a straightfor-
ward translation of their speci�cation. Here, we use the Prolog implementation
provided by the ECLiPSe tool2.

Here after is the Prolog ECLiPSe implementation of the predicate for the
dp1 design pattern.

dp1 := sw_archi (A) ,
member(A, [log_upg , log_sync]) ,
t a sk s (LTasks) ,
process ing_elements (LPE) , ! ,
dep_comp(LTasks ,LPE) , ! ,
exe_inde (LTasks ,LPE) , ! ,
fea_id (LTasks) , ! .

The predicates processing_elements(LPE) and tasks(LTasks) respectively
de�ne the set of pes LPE available in the runtime environment, and the set of
tasks LTasks of the analyzed architecture model. The predicate sw_archi(A)

allows to check the task communication and synchronization model of the soft-
ware part of the architecture model. For sake of conciseness, we here only give
the details of the dep_comp(LTasks,LPE) predicate used in the dp1 pattern.
The predicates exe_inde(LTasks,LPE) and fea_id(LTasks) are presented in
Appendix Appendix A. The predicates that implement the dp2, dp3, dp4

2https://www.eclipseclp.org/

22

and dp5 patterns are constructed in the same way, and can also be found in
Appendix Appendix A.

dep_comp ([] ,_) .
dep_comp ([T] ,LPE) :=

dm_PE_allowed(T , [C|LC]) , ! ,
(f o r each (P , [C|LC]) , param(LPE) do member(P,LPE) , !) , ! .

dep_comp ([T1 |LT] ,LPE) :=
dm_PE_allowed(T1 , LP1) , ! ,
LP1 = [_|_] ,
(f o r each (P, LP1) , param(LPE) do member(P,LPE) , !) , ! ,
(f o r each (T2 ,LT) , param(LP1) do

dm_PE_allowed(T2 , LP2) , ! ,
(subt rac t (LP1 , LP2 , []) ,
subt rac t (LP2 , LP1 , [])

;
i n t e r s e c t i o n (LP1 , LP2 , [])) , !

) , ! ,
dep_comp(LT,LPE) .

Finally, we introduce the dp_check algorithm to test the compliance of an
architecture model with the di�erent design patterns:

Algorithm dp_check(system_model) {
system_model_load(system_model)
for dp ∈ {dp1, dp2, dp3, dp4, dp5}

if dp then system_model is dp compliant}

5. Validation: Examples and Study of the Scalability of the Approach

In the �rst part of this section, we show how the proposal can be applied
through examples, and next we evaluate the scalability of the proposed tools,
i.e. how the tools are able to deal with models of various sizes.

5.1. Analysis Examples

We illustrate our approach with 3 examples of multiprocessor systems. We
explain for each example how the model is able to describe the hardware ar-
chitecture and run a schedulability analysis. The �rst example is a multipro-
cessor architecture without any hardware shared resource, managed by a global
scheduling policy. The second shows how our model can handle shared resources
as cache units. Finally, the third example addresses shared memory accesses.

5.1.1. Example 1: Global Scheduling

Here we present the analysis of a software architecture made of four periodic
tasks t0, t1, t2 and t3, scheduled on a runtime environment including two pro-
cessors c0 and c1. Both processors are identical and independent. The software

23

architecture complies with LOG_UPG. Here is a Prolog set of facts to represent
these �rst characteristics of the system architecture:

sw_archi (log_upg) .
t a sk s ([t0 , t1 , t2 , t3]) .
process ing_elements ([c0 , c1]) .

The facts below represent the attributes characterizing the hardware part of
the runtime environment:

a_type (c0 , p r o c e s s i ng) . a_type (c1 , p r o c e s s i ng) .
am_PE_use(c0 , []) . am_PE_use(c1 , []) .
ha_independent (c0) . ha_independent (c1) .
a_proc_type (c0 , p ro c e s s o r) . a_proc_type (c1 , p ro c e s s o r) .
a_proc_isa (c0 , i 386) . a_proc_isa (c1 , i 386) .
a_proc_speed (c0 , 100000000) . a_proc_speed (c1 , 100000000) .

The designer of this architecture has chosen a (Proportionnate-Fair) global
scheduling policy. The Prolog set of facts below represents the deployment rules.
These rules show that the designer allows software tasks to run on any processors
and de�ne the computing resource sharing protocol, i.e. the scheduling policy.

dm_PE_allowed(t0 , [c0 , c1]) . dm_PE_allowed(t1 , [c0 , c1]) .
dm_PE_allowed(t2 , [c0 , c1]) . dm_PE_allowed(t3 , [c0 , c1]) .
dm_PE_scheduling (c0 , t0 , sched (p f a i r , preemptive , timeUnMig)) .
// + l a s t l i n e repeated 3 t imes (f o r t1 , t2 , t3)
dm_PE_scheduling (c1 , t0 , sched (p f a i r , preemptive , timeUnMig)) .
// + l a s t l i n e repeated 3 t imes (f o r t1 , t2 , t3)

As shown by the execution of the dp_check algorithm de�ned in Section 4.4,
the architecture model actually complies with the dp3 pattern and it is there-
fore possible to use Cheddar to simulate task execution from these hypotheses
(see Figure 6). Moreover with this example, we can verify that dp3 ⇒ dp1;
obviously, the processors targeted by the global scheduling policy and the task
codes must be compatible.

?= dp_check (' example1_model ') .
Yes (0 . 00 s cpu)

example1_model i s DP1 compliant
example1_model i s DP3 compliant

5.1.2. Example 2: Instruction Cache Impact on Scheduling

For this second example, we seek to analyze a real-time system implemented
on a dual-core runtime environment (c0 and c1). The program instructions are
stored in a shared memory, and each processor has a level 1 private instruc-
tion cache. The Figure 7 schematizes the expected runtime environment. The

24

Figure 6: PFair global scheduling, on two identical processors. The four �rst
time-lines show when the associated tasks are executing, while the two last ones
represent the processor allocation.

Scratchpad Memories (spm) are used to record data and task execution context.
So the shared memory only stores the instructions. The bandwidth of the mem-
ory bus is fairly allocated to both cores by a tdm (Time Division Multiplexing)
bus frame constituted of two slots of equal duration.

Figure 7: Runtime environment. Scratch Pad Memories are dedicated to data
and context storage.

The list of attributes which characterizes this architecture, and which will
be used to set some scheduling analysis parameters, is given below.

process ing_elements ([c0 , c1]) .
r e s ou r c e s ([i c0 , i c 1]) .
a_type (c0 , p r o c e s s i ng) . a_type (c1 , p r o c e s s i ng) .
a_type (ic0 ,memory) . a_type (ic1 ,memory) .

25

a_proc_type (c0 , p ro c e s s o r) . a_proc_type (c1 , p ro c e s s o r) .
a_proc_isa (c0 , sparc_V8) . a_proc_isa (c1 , sparc_V8) .
a_proc_speed (c0 , 100000000) . a_proc_speed (c1 , 100000000) .
am_PE_use(c0 , [i c 0]) . am_PE_use(c1 , [i c 1]) .
a_type (mb0 , i n t e r connec t) .
a_conn_type (mb0 , bus) .
a_mem_type(ic0 , ICache) .
a_mem_cache_size (ic0 , 1 0 2 4) .
a_mem_cache_line_size (ic0 , 1 6) .
a_mem_cache_level (ic0 , 1) .
a_mem_cache_associativity (ic0 , 1) .
a_mem_cache_miss_time(ic0 , 1 0 0 0) . // =500+500, see below
// + the same 6 prev ious l i n e s but f o r i c 1

The interference related to hardware resource sharing is then de�ned. The
cores use the same memory to store their instructions and access it by the same
bus (mb0). The e�ective access to the memory being dependent on the access to
the bus, the model represents the access rules to the latter only, that is to say, its
tdm frame. The additional blocking time that can su�er the cache to process a
miss depends on the duration of the slot assigned to the other processor. As this
time is static and known, it is possible to infer that the interference duration
is bounded if the number of misses is bounded too (HA_isolation interference
pattern).

As the implicit interference arrives at the time of the cache misses, it is pos-
sible to include it in the miss processing time, and to use the HA_independent
interference pattern. In other words, for this architecture, we are able to ab-
stract the interference related to the memory bus. Note that this updated time
must also be taken into account when calculating task wcet.

ha_independent (c0) .
ha_independent (c1) .
am_time(c0 , mb0 , i n t e r v a l (0 , 5 00 , 1 000)) .
am_time(c1 , mb0 , i n t e r v a l (500 , 500 , 1000)) .

The interval term de�nes a time slot by three parameters, respectively its
start, its duration and its period. Hence, in the �rst clause of the am_time pred-
icate interval(0,500,1000) means the set of time intervals {[0+1000.k, 500+
1000.k[| k ≥ 0}.

For this example, the software architecture consists of four tasks, called t0,
t1, t2 and t3. Their code and their memory location are known which allows
us to compute the values of added crpd during simulation when preemptions
occur [45]. The software architecture complies with LOG_UPG. The designer
has chosen to assign the tasks t0 and t1 to the �rst processor, and the tasks t2
and t3 to the second one, as shown in the next deployment model:

sw_archi (log_upg) .
t a sk s ([t0 , t1 , t2 , t3]) .

26

dm_PE_actual (t0 , c0) . dm_PE_allowed(t0 , [c0]) .
dm_PE_actual (t1 , c0) . dm_PE_allowed(t1 , [c0]) .
dm_PE_actual (t2 , c1) . dm_PE_allowed(t2 , [c1]) .
dm_PE_actual (t3 , c1) . dm_PE_allowed(t3 , [c1]) .
dm_PE_scheduling (c0 , t0 , sched (fp , preemptive)) .
dm_PE_scheduling (c0 , t1 , sched (fp , preemptive)) .
dm_PE_scheduling (c1 , t2 , sched (fp , preemptive)) .
dm_PE_scheduling (c1 , t3 , sched (fp , preemptive)) .

As expected, the execution of the DP_check algorithm on this second ex-
ample shows that this model complies with the dp4 design pattern (and also
with dp1, dp2 and dp3). The schedulability analysis can be performed by a
simulation with crpd. Figure 8 shows the simulation result produced by the
Cheddar tool.

Moreover, on this example compliant with LOG_UPG, we can verify that
dp4⇒ dp2. As this second example model is speci�ed withoutDM_PE_allowed
attribute, we can thus verify that dp2 ⇒ dp3. And consequently dp3 ⇒ dp1

also holds.

Figure 8: Partitioned scheduling, on two processors (each one with a private
instruction cache). Red rectangles represent the additional time due to inter-
ference when using the instruction cache in case of preemption. In the case of
processor c1, no preemption is observed between tasks t2 and t3.

5.1.3. Example 3: Memory Sharing Impact on Scheduling

In this last example, we reproduce an example of schedulability analysis of
a multiprocessor architecture with shared memory units leading to interference
at task execution time [40]. Again, we show we can model both the hardware
and software parts. The correctness of those models is assessed by showing that
the schedulability test proposed by [40] can be applied.

From the hardware side, we have a 4 core processor sharing 3 banks of
memory (Fig. 9). Core 0 may access to any memory bank while any other core
i (with i > 0) only access to one memory bank (see the DM_R_actual and
DM_PE_actual attributes page 28). The list of attributes which characterizes

27

this architecture, and which will be used to set some schedulability analysis
parameters, is given below as a Prolog set of facts:

Figure 9: Runtime environment. The processor's cores access a DRAM through
a shared cache.

process ing_elements ([c0 , c1 , c2 , c3]) .
a_type (c0 , p r o c e s s i ng) . a_type (c1 , p r o c e s s i ng) .
a_type (c2 , p r o c e s s i ng) . a_type (c3 , p r o c e s s i ng) .
r e s ou r c e s ([mc , b0 , b1 , b2]) .
a_type (mc, memory) .
a_type (b0 ,memory) .
a_type (b1 ,memory) .
a_type (b2 ,memory) .
a_mem_type(mc , IDCache) . // LLC
a_mem_type(b0 , bank) .
a_mem_type(b1 , bank) .
a_mem_type(b2 , bank) .
am_PE_use(c0 , [mc]) . am_PE_use(c1 , [mc]) .
am_PE_use(c2 , [mc]) . am_PE_use(c3 , [mc]) .
am_R_use(mc , [b0 , b1 , b2]) .
ha_dependent (c0) . ha_dependent (c1) .
ha_dependent (c2) . ha_dependent (c3) .

Some speci�c timing parameters con�gure the test, for example the worst-
case service time for consecutive DRAM row-hit requests; the value of these
parameters is provided as entries in the schedulability analysis model. Even
if dedicated Prolog attributes could easily represent them in the interference
model, the interest to adopt these attributes at that level must be considered
on case-by-case basis depending on the reusability of the parameters. Thus, in
this analyze example, the timing parameters of the DRAM controller are not
represented in the interference model, and then the DP checker might not detect

28

an discrepancy between the execution platform and some assumptions on which
the schedulability analysis is based.

The software architecture is modeling a subset of the parsec benchmark [49],
composed of 9 independent periodic tasks. To model memory interference, a task
is de�ned to generate memory accesses. We assume all task codes and memory
locations are known. The software architecture complies with LOG_UPG.

parsec tasks are mapped on cores c1 to c3. Core c0 is running the task
interference which is responsible for generating contentions on the memory
banks. This deployment is shown with the following model:

sw_archi (log_upg) .
t a sk s ([i n t e r f e r e n c e , b l a ck s cho l e s , x264 , vips , swaptions ,

f e r r e t , canneal , bodytrack , freqmine , f l u idan imate]) .
a_proc_type (c0 , p ro c e s s o r) .
a_proc_type (c1 , p ro c e s s o r) .
a_proc_type (c2 , p ro c e s s o r) .
a_proc_type (c3 , p ro c e s s o r) .
dm_PE_actual (i n t e r f e r e n c e , c0) .
dm_PE_actual (b l a ck s cho l e s , c1) .
dm_PE_actual (x264 , c1) .
dm_PE_actual (vips , c1) .
dm_PE_actual (swaptions , c2) .
dm_PE_actual (f e r r e t , c2) .
dm_PE_actual (canneal , c2) .
dm_PE_actual (bodytrack , c3) .
dm_PE_actual (freqmine , c3) .
dm_PE_actual (f lu idan imate , c3) .
dm_PE_allowed(i n t e r f e r e n c e , [c0 , c1 , c2 , c3]) .
dm_PE_allowed(b l a ck s cho l e s , [c1 , c1 , c2 , c3]) .
// and so on f o r a l l the ta sk s
dm_R_actual (i n t e r f e r e n c e , [b0 , b1 , b2]) .
dm_R_actual (b l a ck s cho l e s , [b0]) .
dm_R_actual (x264 , [b0]) .
dm_R_actual (vips , [b0]) .
dm_R_actual (swaptions , [b1]) .
dm_R_actual (f e r r e t , [b1]) .
dm_R_actual (canneal , [b1]) .
dm_R_actual (bodytrack , [b2]) .
dm_R_actual (freqmine , [b2]) .
dm_R_actual (f lu idan imate , [b2]) .
dm_PE_scheduling (c0 , i n t e r f e r e n c e , sched (fp , preemptive)) .
dm_PE_scheduling (c1 , b l a ck s cho l e s , sched (fp , preemptive)) .
dm_PE_scheduling (c1 , x264 , sched (fp , preemptive)) .
dm_PE_scheduling (c1 , vips , sched (fp , preemptive)) .
dm_PE_scheduling (c2 , swaptions , sched (fp , preemptive)) .
dm_PE_scheduling (c2 , f e r r e t , sched (fp , preemptive)) .

29

dm_PE_scheduling (c2 , canneal , sched (fp , preemptive)) .
dm_PE_scheduling (c3 , bodytrack , sched (fp , preemptive)) .
dm_PE_scheduling (c3 , freqmine , sched (fp , preemptive)) .
dm_PE_scheduling (c3 , f lu idan imate , sched (fp , preemptive)) .

As expected, the execution of the DP_check algorithm on this third example
shows that this system model complies with the dp5 design pattern, and the
Cheddar tool is able to assess the schedulability of this model. As an example,
worst case response times of the parsec tasks are shown in Fig. 10.

Figure 10: Partitioned scheduling, on 4 cores with shared memory banks. Task
worst case response times shown in this �gure include delays due to the shared
memory.

5.2. Scalability of the Approach

In order to validate the scalability of the approach, we de�ned and generated
three samples of larger multiprocessor architectures, including some counter ex-
amples (to mimic modeling errors). The three scalabilty validation samples are
built as generalizations of the 5.1.1 example for the two �rst samples, and the
5.1.2 example for the third sample, with larger number of tasks and pes.

The three samples thus respectively illustrate three kinds of architecture
with the following constraints:

� global scheduling with compatible tasks (DEP_COMP), task partitioning
by pe sets (DEP_GLOB), and the deployment de�nes only one pe set for
all the tasks, i.e. all the tasks are allowed on all the pes;

� global scheduling with compatible tasks (DEP_COMP), pe set task par-
titioning (DEP_GLOB) and the deployment de�nes several disjoint pe
sets, i.e. each task is associated to a set of pes;

� partitioned scheduling (DEP_PART), independent pes (EXE_INDE) and
each processor has a level 1 private instruction cache and access to shared

30

memory, i.e. the temporal and functional behavior of the pes that per-
form a task is independent of the status of other pes, in the absence of
functional interference explicitly modeled.

We ran the dp_check algorithm on the Prolog architecture model samples
in order to verify the compliance with the �ve design patterns (dp1, dp2, dp3,
dp4 and dp5) while measuring execution time. For each item of the samples,
the given execution times are calculated by averaging the execution times over
10 executions (for times lower than 2s), or 3 otherwise. We ran this experiment
on a standard laptop with an i7-8665U Processor (Intel Core 8th, 4 cores, HT,
4.8Ghz, 16Go 2400MHz DDR4 RAM).

Hereafter are presented the obtained results in terms of:

� full dp_check time execution (including architecture model loading and
compiling, and dp1 to dp5 compliance checking);

� compliance checking time execution for each design pattern (dp1 to dp5);

� size of the Prolog architecture model (Lines of Code);

� detection of erroneous models.

5.2.1. Sample 1: Global Scheduling

The �rst sample architecture models are built by extending the example
5.1.1, using a larger number of tasks and pes. It is therefore a multiprocessor
system without any hardware shared resource and a Proportionnate-Fair global
scheduling. The software architecture is made of periodic tasks scheduled on a
runtime environment including several processors, and complies with LOG_UPG.
All processors are identical and independent. All tasks are allowed to execute
on all pes. As con�rmed by the execution of our dp_check algorithm, the
architecture model actually complies with dp1 and dp3 patterns.

The �rst experiment measures the impact of the number of tasks on the
execution time of DP_cheker and on the size of the Prolog model. The results
are shown Fig. 11.

The second experiment is nearly the same except we analyze the e�ect of
the number of processors (Fig. 12).

Finally, for a last experiment on this sample (Fig. 13), we make the assump-
tion that the system designer adapts the number of processors she/he uses, to
the complexity of her/his software architecture in term of number of tasks. So,
the ratio between the number of tasks and the numbers of pes is set to 10.

These 3 experiments show that:

� The execution time of the checker remains under 2s for models that man-
age upto 200 tasks on 20 processors following a global scheduling policy.

� On the design patterns we check, the execution time grows faster with the
number of pes than with the number of tasks.

31

(a) Execution Time (b) LoC

Figure 11: Execution Time and Prolog Model LoC depending on the number of
tasks. The number of PEs is set to 20, whereas the number of tasks varies from
20 to 600. In the drawing, the curves for dp2, dp4 and dp5 overlap.

(a) Execution Time (b) LoC

Figure 12: Execution Time and Prolog Model LoC depending on the number of
processors. The number of tasks is set to 300, whereas the number of processors
varies from 1 to 80. In the drawing, the curves for dp2, dp4 and dp5 overlap.

� The execution times of each individual design pattern dpi are measured
as a part of the overall execution of dp_check. Hence, these times do not
take into account the initial time related to the loading of the model (i.e.
timedp_check = timeload + Σitimedpi

). The load time timeload is about 3s
when the size of the test model is larger than 20000 Lines of Code.

� The detection of non-compliant patterns takes less time than the detection
of the other ones. This property is interesting in the perspective of a large
catalog of design patterns that contains many specialized patterns.

5.2.2. Sample 2: Global Scheduling on Multiple pe Sets

The second sample architecture models are also built from the example 5.1.1.
The only di�erence with the �rst sample is that the deployment de�nes several
disjoint pe sets instead of a single one. Thus, each task is associated to a set of k
pes. In this sample, the architecture models are built for k = 4, with Task_Nb
(ranging from 10 to 1500) tasks and PE_Nb (ranging from 10 to 375) pes.

As shown by the execution of our dp_check algorithm, the model actually
complies with dp1 and dp3 patterns.

32

(a) Execution Time (b) LoC

Figure 13: Execution Time and Prolog Model LoC depending on the number of
tasks and processors. The ratio between the number of tasks and the number of
processors is �xed to around 10 (but the actual load of each processor depends
of the global scheduling algorithm). In the drawing, the curves for dp2, dp4
and dp5 overlap.

Fig. 14 shows the execution time of the checker in function of the number
of tasks. With respect to the previous sample, the number of pes that may
execute a task is reduced, and therefore the number of DM_PE_scheduling
attributes in the model. Reducing the number of such attributes is important,
because the checking process to assess the consistency of the scheduling pol-
icy takes a signi�cant time. For instance, the execution time for the couple
(Tasks_Nb, PE_Nb) = (300, 80) is 28, 7s for a global scheduling policy of all
pes (Fig. 12a), and only 0.3s if we apply the same policy on multiple sets of 4
pes.

Figure 14: Execution time depending on the number of tasks. In the drawing,
the curves for dp1 and dp3 on the one hand, and dp2, dp4 and dp5 on the
other hand, overlap.

33

5.2.3. Sample 3: Instruction cache impact on scheduling

The last sample architecture models are built from the 5.1.2 example. In this
sample, the architecture presented Section 5.1.2 has been scaled from a dual-
processor to a multiprocessor architecture (with a PE_Nb processor number
ranging from 1 to 100). The software architecture consists of Task_Nb (ranging
from 10 to 1000) tasks and complies with LOG_UPG. In the sample, the archi-
tecture models are built with Task_Nb = 10 × PE_Nb in order to assign to
each processor a group of 10 tasks. Each processor has a level 1 private instruc-
tion cache and access to shared memory. The bandwidth of the memory bus is
fairly allocated to all processors by a tdm bus frame constituted of equal dura-
tion slots. Thus, the temporal and functional behavior of the pes that perform
a task is independent of the status of other pes, in the absence of functional
interference explicitly modeled in the system.

The curves drawn Fig. 15 show that the time to check the 5 considered
patterns remains less than 20s even on software architectures composed of 1000
tasks and 100 processors.

Figure 15: Execution Time. The number of processors is equal to the number
of tasks divided by 10. In the drawing, the curves for all the patterns overlap.

5.2.4. Erroneous Model Detection

Finally, we generated erroneous models by corrupting instances of the pre-
vious samples. Inconsistent deployment attributes (e.g. DM_PE_allowed
and/or DM_PE_scheduling facts) have been included in the biggest models
of each sample used for this evaluation. The checker detects the badly formed
models in the same range of time than the correct models (28.97s in the worst
case for our tries).

To sum up, we expect the temporal behavior of our proposal is adapted to
the scale of the real-time systems we want to analyze. The growing of the ex-
ecution time when the checker veri�es the compliance of a model to numerous
design patterns remains to investigate. However, as noted earlier, the time for

34

checking non-compliant models was lower or similar to the time for checking
compliant models during our experiments, and this observation suggests a mod-
erate increase of execution time in function of the number of design patterns.

6. Conclusion

With the rapid spread of multicore runtime environments, being able to verify
temporal behavior of systems running in these environments, is a major chal-
lenge for the real-time schedulability analysis community.

Today, the Cheddar tool includes several schedulability analysis methods (by
simulation, by feasibility tests), and several design space exploration methods,
adapted to multiprocessor architectures.

However, using these analysis methods remains di�cult. Indeed, a tool like
Cheddar may o�er many analysis methods, each requiring that the system to
be analyzed complies with several applicability assumptions. Moreover, the
multiprocessor context enforces to integrate a model of the hardware execution
support to explain the interference due to hardware resources. This interference
is di�cult to exhibit and understand by the scheduling analysis tool user.

The purpose of this article is to formalize the applicability constraints of the
analysis methods implemented in Cheddar, and in particular the interference
due to the runtime environment hardware resources.

From this formalization, we developed a tool implemented in the Prolog
language, that checks the compliance of an application model (including the
speci�cation of the runtime environment), with a catalog of design patterns.
The outcome is a list of analysis methods that can be applied on the input
system. Today, 5 design patterns are available and recognized by the tool, but
the way we express the constraints on the system allows for a rather simple
extension by appending new Prolog inference rules. Our approach has been
applied on 3 representative examples, and also on large automatically generated
systems. The checking time is short enough to deal with the complexity of the
current real-time applications.

To spread more thoroughly these proposals, we consider to include these de-
sign pattern checking approach within the AADL Inspector product3 which al-
ready incorporates the Cheddar tool and lmp (Logic Model Processing) [50, 51].
lmp is currently used for integrating Cheddar into AADL Inspector and ex-
presses the descriptive elements of the studied architecture. Adapting our Pro-
log implementation of dp_check to lmp may provide design pattern veri�cation
capabilities to AADL Inspector.

7. Artefact

All experiment data and programs presented in this paper are available at
http://beru.univ-brest.fr/svn/CHEDDAR/trunk/artefacts/DPCHECK22.

3https://www.ellidiss.com/aadl-inspector-1-6

35

Programs and scripts written to produce these experimental data are avail-
able at http://beru.univ-brest.fr/svn/CHEDDAR/trunk/src.

References

[1] G. Tassey, The economic impacts of inadequate infrastructure for software
testing, Tech. rep., National Institute of Standards and Technology (NIST)
(2002).

[2] F. Singho�, J. Legrand, L. Nana, L. Marcé, Cheddar: a �exible real-time
scheduling framework, ACM SIGAda Ada Letters 24 (4) (2004) 1�8 (De-
cember 2004).

[3] V. Gaudel, F. Singho�, A. Plantec, S. Rubini, P. Dissaux, J. Legrand, An
Ada design pattern recognition tool for AADL performance analysis, ACM
SIGAda Ada Letters 31 (3) (2011) 61�68 (November 2011).

[4] S. Fürst, Challenges in the design of automotive software, in: Proceedings
of the Conference on Design, Automation & Test in Europe (DATE), Euro-
pean Design and Automation Association, IEEE, 2010, pp. 256�258 (Mar
2010).

[5] S. Saidi, R. Ernst, S. Uhrig, H. Theiling, B. D. de Dinechin, The shift to
multicores in real-time and safety-critical systems, in: Proceedings of the
10th International Conference on Hardware/Software Codesign and System
Synthesis, IEEE Press, 2015, pp. 220�229 (2015).

[6] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements
of Reusable Object-Oriented Software, Addison-Wesley, Reading, Mass.,
1994 (1994).
URL http://www.worldcat.org/search?qt=worldcat_org_all&q=

0201633612

[7] R. Sanz, J. Zalewski, Pattern-based control systems engineering, IEEE
Control Systems 23 (3) (2003) 43�60 (2003).

[8] M. J. Pont, Control system design using real-time design patterns, in: pro-
ceeding of the UKACC International Conference on Control, IET, 1998,
pp. 1078�1083 (1998).

[9] P. H. Feiler, B. A. Lewis, S. Vestal, The SAE architecture analysis & design
language (AADL) a standard for engineering performance critical systems,
in: Proceedings of the Conference on Computer Aided Control System
Design, of the International Conference on Control Applications, and of
the International Symposium on Intelligent Control, IEEE, 2006, pp. 1206�
1211 (2006).

36

[10] M. Z. Iqbal, S. Ali, T. Yue, L. Briand, Experiences of applying uml/-
marte on three industrial projects, in: R. B. France, J. Kazmeier, R. Breu,
C. Atkinson (Eds.), Model Driven Engineering Languages and Systems,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, p. 642�658 (2012).

[11] P. Amey, B. Dobbing, Static analysis of ravenscar programs, in: ACM
SIGAda Ada Letters, Vol. 23, ACM, 2003, pp. 58�64 (2003).

[12] A. Plantec, F. Singho�, P. Dissaux, J. Legrand, Enforcing applicability of
real-time scheduling theory feasibility tests with the use of design-patterns,
in: Proceedings of the 4th international conference on Leveraging ap-
plications of formal methods, veri�cation, and validation-Volume Part I,
Springer-Verlag, 2010, pp. 4�17 (2010).

[13] M. De Sanctis, C. Trubiani, V. Cortellessa, A. Di Marco, M. Flamminj, A
model-driven approach to catch performance antipatterns in ADL speci�-
cations, Information and Software Technology 83 (2017) 35�54 (2017).

[14] A. Motii, B. Hamid, A. Lanusse, J.-M. Bruel, Guiding the selection of secu-
rity patterns for real-time systems, in: Proceedings of the 21st International
Conference on Engineering of Complex Computer Systems (ICECCS),
IEEE, 2016, pp. 155�164 (2016).

[15] G. Brau, J. Hugues, N. Navet, A contract-based approach to support goal-
driven analysis, in: Proceedings of the IEEE 18th International Symposium
on Real-Time Distributed Computing (ISORC), IEEE, 2015, pp. 236�243
(2015).

[16] Multi-core processors (rev 0), position paper (CAST32a), Tech. rep., Cer-
ti�cation Authorities Software Team (2016).

[17] R. Urunuela, A.-M. Déplanche, Y. Trinquet, STORM: a simulation tool
for real-time multiprocessor scheduling evaluation, in: Proceedings of the
15th IEEE conference on Emerging Technologies and Factory Automation
(ETFA), IEEE, 2010, pp. 1�8 (2010).

[18] A. Díaz-Ramírez, D. K. Orduño, P. Mejía-Alvarez, A multiprocessor real-
time scheduling simulation tool, in: Proceeedings of the 22nd Interna-
tional Conference on Electrical Communications and Computers (CONI-
ELECOMP), IEEE, 2012, pp. 157�161 (2012).

[19] Y. Chandarli, F. Fauberteau, D. Masson, S. Midonnet, M. Qamhieh,
Yartiss: A tool to visualize, test, compare and evaluate real-time scheduling
algorithms, in: Proceedings of the 3rd International Workshop on Analy-
sis Tools and Methodologies for Embedded and Real-time Systems (WA-
TERS), 2012, pp. 21�26 (2012).

[20] M. Chéramy, P.-E. Hladik, A.-M. Déplanche, Simso: A simulation tool to
evaluate real-time multiprocessor scheduling algorithms, in: Proceedings of

37

the 5th International Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS), 2014 (2014).

[21] M. G. Harbour, J. G. García, J. P. Gutiérrez, J. D. Moyano, MAST: Model-
ing and analysis suite for real time applications, in: Proceedings of the 13th

Euromicro Conference on Real-Time Systems (ECRTS), 2001, pp. 125�134
(2001).

[22] V. Gaudel, Applicabilité des méthodes d'analyse et interopérabilité des out-
ils de développement pour systèmes embarqués temps-réel critiques, Ph.D.
thesis, Université de Bretagne Occidentale, Brest, France, (in french) (De-
cember 2014).

[23] F. Cottet, J. Delacroix, C. Kaiser, Z. Mammeri, Scheduling in Real-Time
Systems, Wiley Online Library, 2002 (2002).

[24] P. Dissaux, F. Singho�, Stood and cheddar: AADL as a pivot language for
analysing performances of real time architectures, in: Proceedings of the
European Real Time System conference. Toulouse, France, Vol. 32, 2008
(2008).

[25] C. Fotsing, F. Singho�, A. Plantec, V. Gaudel, S. Rubini, S. Li, H. N.
Tran, L. Lemarchand, P. Dissaux, J. Legrand, Cheddar architecture de-
scription language, Tech. rep., Lab-STICC,Université de Bretagne Occi-
dentale (2014).

[26] L. Sha, R. Rajkumar, J. P. Lehoczky, Priority inheritance protocols: An
approach to real-time synchronization, IEEE Transactions on Computers
39 (9) (1990) 1175�1185 (Sep. 1990).

[27] A. Burns, B. Dobbing, G. Romanski, The ravenscar tasking pro�le for high
integrity real-time programs, in: Proceedings of the 1998 Ada-Europe In-
ternational Conference on Reliable Software Technologies, Springer-Verlag,
London, UK, 1998, pp. 263�275 (1998).

[28] W. Barnes, ARINC 653 and why is it important for a safety-critical RTOS,
Boards & Solutions (2004) 16 (2004).

[29] C. Maiza, H. Rihani, J. M. Rivas, J. Goossens, S. Altmeyer, R. I. Davis,
A survey of timing veri�cation techniques for multi-core real-time systems,
Tech. Rep. TR-2018-9, Verimag Research Report (2018).

[30] J. Goossens, Ordonnancement temps réel multiprocesseur (in french), in:
N. Navet (Ed.), Systèmes temps réel T. 2 - Ordonnancement, réseaux et
qualité de service, Traité IC2, Information - Commande - Communication,
Hermès - Lavoisier, 2006, Ch. 2, p. 336 (2006).

[31] J. Goossens, E. Grolleau, L. Cucu-Grosjean, Periodicity of real-time sched-
ules for dependent periodic tasks on identical multiprocessor platforms,
Real-time systems 52 (6) (2016) 808�832 (2016).

38

[32] N. C. Audsley, K. Tindell, A. Burns, The end of the line for static cyclic
scheduling?, in: Proceedings fo the Fifth Euromicro Workshop on Real-
Time Systems, IEEE, 1993, pp. 36�41 (jun 1993).

[33] K. Tindell, Adding time-o�sets to schedulability analysis, Tech. rep., Uni-
versity of York, Department of Computer Science (1994).

[34] K. Tindell, J. Clark, Holistic schedulability analysis for distributed hard
real-time systems, Microprocessing and microprogramming 40 (2-3) (1994)
117�134 (1994).

[35] J. C. Palencia, M. G. Harbour, Schedulability analysis for tasks with static
and dynamic o�sets, in: Proceedings of the 19th IEEE Real-Time Systems
Symposium, IEEE, 1998, pp. 26�37 (1998).

[36] S. Li, F. Singho�, S. Rubini, M. Bourdellès, Scheduling analysis of tasks
constrained by TDMA: Application to software radio protocols, Journal of
Systems Architecture 76 (2017) 58�75 (2017).

[37] S. Altmeyer, R. I. Davis, C. Maiza, Improved cache related pre-emption
delay aware response time analysis for �xed priority pre-emptive systems,
Real-Time Systems 48 (5) (2012) 499�526 (2012).

[38] H. N. Tran, S. Rubini, J. Boukhobza, F. Singho�, Feasibility interval and
sustainable scheduling simulation with crpd on uniprocessor platform, Jour-
nal of Systems Architecture 115 (2021) 102007 (2021).

[39] M. Dridi, F. Singho�, S. Rubini, J.-P. Diguet, Ectm: A network-on-chip
communication model to combine task and message schedulability analysis,
Journal of Systems Architecture 114 (2021) 101931 (2021).

[40] H. Kim, D. De Niz, B. Andersson, M. Klein, O. Mutlu, R. Rajkumar,
Bounding memory interference delay in cots-based multi-core systems, in:
2014 IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS), IEEE, 2014, pp. 145�154 (2014).

[41] Y. Oh, S. H. Son, Tight performance bounds of heuristics for a real-time
scheduling problem, Tech. Rep. CS-93-24, University of Virginia, Dept. of
Computer Science (1993).

[42] A. Burchard, J. Liebeherr, Y. Oh, S. H. Son, Assigning real-time tasks
to homogeneous multiprocessor systems, Tech. rep., University of Virginia,
Dept. of Computer Science (1994).

[43] M. Joseph, P. Pandya, Finding response times in a real-time system, The
Computer Journal 29 (5) (1986) 390�395 (1986).

[44] R. I. Davis, A. Burns, A survey of hard real-time scheduling for multipro-
cessor systems, ACM computing surveys (CSUR) 43 (4) (2011) 35 (2011).

39

[45] H. N. Tran, F. Singho�, S. Rubini, J. Boukhobza, Cache-aware real-
time scheduling simulator: implementation and return of experience, ACM
SIGBED Review 13 (1) (2016) 22�28 (2016).

[46] H. N. Tran, Cache memory aware priority assignment and scheduling simu-
lation of real-time embedded systems, Ph.D. thesis, Université de Bretagne
Occidentale, Brest, France (Jan 2017).

[47] N. C. Audsley, Optimal priority assignment and feasibility of static priority
tasks with arbitrary start times, in: Technical Report YCS 164, Dept.
Computer Science, University of York, UK, 1991 (1991).

[48] A. Colmerauer, P. Roussel, History of programming languages�II, ACM,
New York, NY, USA, 1996, Ch. The Birth of Prolog, pp. 331�367 (1996).

[49] C. Bienia, S. Kumar, J. P. Singh, K. Li, The parsec benchmark suite: Char-
acterization and architectural implications, in: Proceedings of the 17th in-
ternational conference on Parallel architectures and compilation techniques,
2008, pp. 72�81 (2008).

[50] P. Dissaux, B. Hall, Merging and processing heterogeneous models, in: Pro-
ceedings of the 8th European Congress on Embedded Real Time Software
and Systems (ERTSS), 2016 (2016).

[51] P. Dissaux, P. Farail, Model veri�cation: Return of experience, in: Pro-
ceedings of the 6th European Congress on Embedded Real-Time Software
and System conference (ERTSS), 2014 (2014).

Appendix A. Annexe

Prolog implementations of the design patterns dp2, dp3, dp4 and dp5:

dp2 := sw_archi (A) ,
member(A, [log_upg , log_rav , log_sync]) ,
t a sk s (LTasks) ,
process ing_elements (LPE) , ! ,
dep_part (LTasks ,LPE) , ! ,
exe_inde (LTasks ,LPE) , ! ,
fea_id (LTasks) , ! .

dp3 := sw_archi (A) ,
member(A, [log_upg , log_rav , log_sync]) ,
t a sk s (LTasks) ,
process ing_elements (LPE) , ! ,
dep_glob (LTasks ,LPE) , ! ,
exe_inde (LTasks ,LPE) , ! ,
fea_id (LTasks) , ! .

40

dp4 := sw_archi (A) ,
member(A, [log_upg , log_sync]) ,
t a sk s (LTasks) ,
process ing_elements (LPE) , ! ,
dep_part (LTasks ,LPE) , ! ,
exe_inde (LTasks ,LPE) , ! ,
fea_id (LTasks) , ! ,
f ea_ic (LTasks) , ! .

dp5 := sw_archi (A) ,
member(A, [log_upg , log_sync]) ,
t a sk s (LTasks) ,
process ing_elements (LPE) , ! ,
dep_part (LTasks ,LPE) , ! ,
exe_dep (LTasks ,LPE) , ! ,
fea_id (LTasks) , ! ,
r e s ou r c e s (LR) , ! ,
fea_dram (LTasks ,LR) , ! .

Prolog implementations of the "constraint sets" checkers:

dep_part ([] ,_) .
dep_part ([T] ,LPE):=

dm_PE_actual (T,P) ,
member(P,LPE) , ! ,
dm_PE_scheduling (P,T,_) , ! .

dep_part ([T1 |LT] ,LPE) :=
dm_PE_actual (T1 ,P) ,
member(P,LPE) , ! ,
dm_PE_scheduling (P,T1 , S) , ! ,
(f o r each (T2 ,LT) , param(P, S) do

(dm_PE_actual (T2 ,P) => dm_PE_scheduling (P,T2 , S)
;
true)
) , ! ,

dep_part (LT,LPE) .

dep_glob ([] ,_) .
dep_glob ([T] ,LPE):=

dm_PE_allowed(T , [C|LC]) ,
dm_PE_scheduling (C,T, S) ,
(f o r each (P , [C|LC]) , param(LPE,T, S) do

member(P,LPE) , ! ,
dm_PE_scheduling (P,T, S) , !

) , ! .
dep_glob ([T1 |LT] ,LPE) :=

41

dm_PE_allowed(T1 , LP1) , ! ,
LP1 = [P1 |_] ,
dm_PE_scheduling (P1 ,T1 , S1) , ! ,
(f o r each (P, LP1) , param(LPE,T1 , S1) do

member(P,LPE) , ! ,
dm_PE_scheduling (P,T1 , S1) , !

) , ! ,
(f o r each (T2 ,LT) , param(LP1 , P1 , S1) do

dm_PE_allowed(T2 , LP2) ,
(subt rac t (LP1 , LP2 , []) ,
subt rac t (LP2 , LP1 , []) ,
dm_PE_scheduling (P1 ,T2 , S1)
;
i n t e r s e c t i o n (LP1 , LP2 , []))

) , ! ,
dep_glob (LT,LPE) .

exe_inde (LT,_) :=
(f o r each (T,LT) do

dm_PE_allowed(T,LP) , ! ,
LP = [_|_] ,
(f o r each (P,LP) do ha_independent (P)) , ! ,
(dm_PE_actual (T,P) => ha_independent (P) ; true) , !) .

exe_dep ([T] ,_) :=
dm_PE_allowed(T,LP) ,
LP = [_|_] ,
member(P,LP) ,
ha_dependent (P) , ! .

exe_dep ([T] ,LP) :=
dm_PE_actual (T,P) ,
member(P,LP) ,
ha_dependent (P) , ! .

exe_dep ([T|_] ,_) :=
dm_PE_allowed(T,LP) ,
LP = [_|_] ,
member(P,LP) ,
ha_dependent (P) , ! .

exe_dep ([T|_] ,LP) :=
dm_PE_actual (T,P) ,
member(P,LP) ,
ha_dependent (P) , ! .

exe_dep ([_|LT] ,LP) :=
exe_dep (LT,LP) .

42

fea_id (LT) :=
build_set_DM_PE_allowed_actual (LT, LPaa) , ! ,
(find_a_PE_speed (_, S , LPaa) =>

(fo r each (P, LPaa) , param(S) do
(a_PE_speed(P, S2) => S=S2 ; true))

;
true) , ! ,

(find_a_PE_isa (_, I , LPaa) =>
(fo r each (P, LPaa) , param(I) do

(a_PE_isa(P, I2) => I=I2 ; true))
;
true) , ! .

f ea_ic (LT) :=
build_set_DM_PE_allowed_actual (LT, LPaa) , ! ,
(f o r each (P, LPaa) do
am_PE_use(P , [R]) ,
a_mem_type(R, instruct ion_cache_type) ,
a_mem_cache_associativity (R, 1) ,
a_mem_cache_miss_time(R,_) , !) .

fea_dram (LT,LR) :=
build_set_DM_PE_allowed_actual (LT, LP_allowed_actual) , ! ,
build_set_DM_R_allowed_actual (LT, LR_allowed_actual) , ! ,
(f o r each (R, LR_allowed_actual) do a_mem_type(R, bank)) , ! ,
LP_allowed_actual = [P1 | LP_allowed_actual2] ,
am_PE_use(P1 , [R]) , ! ,
member(R,LR) , ! ,
a_mem_type(R, idCache) , ! ,
(f o r each (P, LP_allowed_actual2) , param(R) do
am_PE_use(P , [R])) , ! ,

am_R_use(R,B) , ! ,
(f o r each (R, LR_allowed_actual) , param(B) do

member(R,B)) , ! .

43

