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Abstract

This article deals with scheduling anomalies in real-
time systems. We present MONANO, a POSIX user-level
library allowing applications to dynamically detect a
pre-identified set of real-time scheduling anomalies.

The MONANO library is based on the modelling of ar-
chitecture and runtime constraints. MONANO monitors
during the runtime the timing behavior of the applica-
tion and deduces properties needed to identify schedul-
ing anomalies.

We present also a benchmark to evaluate our approach.
The benchmark is composed of several programs imple-
menting the most frequent real-time scheduling anoma-
lies.

Keywords: Real-Time Scheduling Anomalies, Real-Time
System, RTEMS, Cheddar.

1 Introduction
This article focuses on scheduling anomalies in real-time
systems. In real-time systems, tasks may have deadlines
to meet. As defined by Luis Almeida in [1], a scheduling
anomaly refers to a counter-intuitive phenomenon in which
increasing the system resources or relaxing the application
constraints can lead to missed deadline. While deadline can
be verified at software design time, scheduling anomalies may
arise at runtime depending on the dynamic behavior of the
application.

[Problem Statement] In a previous work [2], we have pro-
posed a model of scheduling anomalies composed of software
architecture and runtime constraints. Architecture constraints,
called static constraints, can be verified prior to execution.
However, even after their verification, scheduling anomalies
may occur at execution time and deadlines can be actually
missed. We called dynamic constraints the conditions that
may raise scheduling anomalies at runtime. To actually de-
tect and properly handle scheduling anomalies, we have to
monitor such dynamic constraints.

[Contribution of this article] In this article, we propose
MONANO, a user-level monitoring library which can be used
by an application to check dynamic constraints. This library
is POSIX compliant. We are experimenting it on the RTEMS
operating systems.

In case of an arising scheduling anomaly, MONANO signals
the anomaly and allows the application to run specific actions
to recover the anomaly. Specific actions can be any operation
allowing the application to adapt itself as mixed-criticality
theory promotes it [3]. We also provide MONANO with a
benchmark implementing most of the real-time scheduling
anomalies identified in the literature. We are using this bench-
mark to validate MONANO. The benchmark may also be
used in any research activities related to real-time scheduling
anomalies.

The remainder of this article presents background about
scheduling anomalies in section 2. MONANO and its com-
panion benchmark are introduced in section 3. Related works
and the conclusion are finally presented respectively in sec-
tion 4 and 5.

2 Background
In this section, we first present with an example what a
scheduling anomaly is. Then, we introduce the overall ap-
proach we previously proposed in [2].
2.1 Scheduling anomalies
As defined in [1], a scheduling anomaly refers to a counter-
intuitive phenomenon in which increasing the system re-
sources or relaxing the application constraints can make the
application unschedulable.

Let us illustrate a scheduling anomaly with an example
from [4]. This example is composed of three periodic tasks
scheduled with a non-preemptive fixed-priority scheduler.
Each task τi is defined by a 5-tuples with its release time
ri(τi), its WCET (Worst Case Execution Time) Ci(τi), its
deadline Di(τi), its period Ti(τi) and its fixed priority πi(τi).
Following this notation, the tasks of figure 1 have the parame-
ters given in Table 1 :

Figure 1 presents two schedules of such task set: (a) when the
tasks are executed during all their WCET, i.e. each task has
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Figure 1: Anomaly when reducing task execution time

Tasks ri(τi) Ci(τi) Di(τi) Ti(τi) πi(τi)
τ1 0 1 3 3 1
τ2 0 2 6 6 2
τ3 0 4 12 12 3

Table 1: Task parameters

an execution time equal to its WCET, (b) when the execution
times of the task are shortest than their WCET, which is the
usual case when running such application. All task deadlines
are met in figure 1 (a) while a deadline of τ1 is missed in
figure 1 (b). In figure 1 (b), we can notice that at time 1, τ2
runs during 1 unit of time while its WCET is about 2 units
of time. This real execution time shortest than its WCET,
implies that τ3 executes immediatly after τ2 at time 2 and
cannot be interrupted since the system is a non-preemptive
one. Then, when τ1 is released at time 3, although it is a
higher priority task, it has to wait for τ3 completion at time 6
before starting to work. This finally leads to a missed deadline
for τ1.

Scheduling anomalies were identified and classified by the
community in seven types according to how they may occur.
Table 2 summarizes them.

Num Types
1 Reducing the task execution time [5,6,7,8,9,10,11]
2 Changing task priorities [5]
3 Weakening task precedence constraints [5, 6]
4 Increasing processor speed [10]
5 Delaying the execution of the tasks [10]
6 Increasing task period [12, 13, 14]
7 Increasing the number of processors of the execu-

tion platform [5]

Table 2: Types of scheduling anomalies

2.2 Modeling scheduling anomalies
Each above scheduling anomalies arises under specific condi-
tions. Such conditions can be modeled as constraints related
to the architecture of the real-time system and its behavior at
runtime.

In [2], we proposed to model scheduling anomalies according
to two types of complementary constraints: static constraints
and dynamic constraints. Static constraints are only related

to the architecture design specification. They can be verified
prior to execution. We have identified 9 static constraints
related to the execution platform and 8 related to the task
models. Dynamic constraints are related to particular events
that actually raise scheduling anomalies. The verification of
such dynamic constraints can only be done at runtime. We
have identified the dynamic constraints of each scheduling
anomaly described in table 2.

2.3 Proposed anomaly analysis

Figure 2: Analysis approach

As shown in figure 2, we propose in [2] a two-step analysis
process to detect scheduling anomalies:

1. First, at design time, static constraints are verified with
Cheddar [15]. When static constraints hold, it means
that scheduling anomalies may occur when dynamic
constraints hold at runtime.

2. Second, at runtime, to assess scheduling anomaly, a
second analysis is required to check dynamic constraints.
In the sequel, we describe MONANO, a monitoring user-
level library to verify such dynamic constraints.

3 MONANO monitoring service design
and its companion benchmark

This section presents MONANO, a user-level library written
in C. Currently, it is implemented on top of RTEMS (Figure 3)
but the library is POSIX compliant, then it could be used on
many POSIX real-time operating systems. To verify MO-
NANO, we implemented a benchmark based on ROSACE to
raise scheduling anomalies identified in the literature. This
benchmark is also briefly described in the sequel.
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Figure 3: MONANO user-level POSIX library

3.1 In a nutshell
MONANO provides services to create and monitor periodic
threads.

MONANO requires application code instrumentation : pro-
grammers have to call MONANO services in their programs
to monitor the timing behavior of their threads.

MONANO relies on POSIX to create threads, to sched-
ule threads, to implement periodic releases and to monitor
threads.

MONANO maintains a static as well as a dynamic view of
each monitored thread. MONANO API requires applications
to specify the static view of the threads before starting them.

The detection of scheduling anomalies relies on an oracle
capable of evaluating the dynamic constraints at runtime. To
detect scheduling anomalies during runtime, the oracle checks
if dynamic constraints hold for each thread. Dynamic con-
straints are expressed on runtime events that are either moni-
tored by MONANO or pointed out by the application itself.
The monitoring is stopped when the threads are completed.

As described in [2], runtime events that may occur during
a thread lifetime and that are part of dynamic constraints
leading to scheduling anomalies are priority, precedence or
period changes, departure or completion of thread periodic
job, or processor speed change.

Regarding scheduling anomaly detection, the interaction be-
tween the application and MONANO relies on a specific
callback. During its initialization, the application may regis-
ter a callback that is called by MONANO when an anomaly is
detected. The anomaly type together with the involved thread
are passed as the callback arguments.

This callback is generated by an oracle integrated into MO-
NANO implementing dynamic constraints leading to schedul-
ing anomalies.

3.2 Application Programming Interface
Figure 4 shows a diagram that depicts the main API ele-
ments. The library is composed of two parts: the MO-
NANO manager and views of the application threads. A
thread view consists in a pthread_monano_t associated with
a pthread_monano_attr_t struct type instance.

pthread_monano_attr_t stores, for each thread, a set of at-
tributes that are classic static task parameters in real-time
scheduling theory. Parameters maintained for each thread are

Figure 4: MONANO design

1 #include "monano.h"
2
3 struct pthread_monano_t my_monano;
4 struct pthread_monano_attr_t my_attr;
5 pthread_monano_id_t id;
6
7 void * my_callback(int anomaly_number,

pthread_monano_id_t tid) {
8 printf ("Anomaly %d is detected in thread number

%d\n", anomaly_number, tid);
9 exit (0) ;

10 }
11
12 void * a_periodic_thread(void * arg) {
13 pthread_monano_signal_departure_time( & my_monano, id);
14 /* Run its periodic program */
15 ...
16 pthread_monano_signal_end_time( & my_monano, id);
17 return NULL;
18 }
19
20 void * POSIX_Init(void * argument) {
21 struct timespec period, wcet, ...;
22 int priority = ...;
23
24 pthread_monano_attr_setperiod( & my_attr, period);
25 pthread_monano_attr_setwcet( & my_attr, wcet);
26 pthread_monano_attr_setpriority( & my_attr, priority ) ;
27 pthread_monano_register_anomaly_callback( & my_monano,

my_callback);
28
29 pthread_monano_periodic_thread_create( & my_monano, &

my_attr, a_periodic_thread, & id, NULL);
30 return NULL;
31 }

Figure 5: MONANO program example
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namely, the wcet, the deadline, the period which are set as
POSIX timespec structs. The priority is also set as an inte-
ger. MONANO also maintains dynamic parameters of each
thread such as the last release time and the last completion
time of the thread. Notice that MONANO is only currently
supporting periodic threads.

The MONANO manager is in charge of creating threads and
of detecting scheduling anomalies. The manager provides
2 functions to respectively create threads and register the
callback C function that is called when a scheduling anomaly
occurs.

Functions allowing the application to send events to MO-
NANO are named pthread_monano_signal in the figure 4.

3.3 MONANO program example
Figure 5 shows a MONANO example program. Lines
24 to 26 setup the static parameters of the MONANO
thread to create and line 27 registers the callback that is
run when a scheduling anomaly occurs. In this example,
the function my_callback is called in case of a schedul-
ing anomaly. After such initialization steps, the program
creates the MONANO periodic threads and starts to run.
If an anomaly occurs, then the callback my_callback is
called and the RTEMS application is stopped with the exit
function. Notice that the code of the thread notifies two
events to MONANO: when the thread starts to run (with the
pthread_monano_signal_departure_time function) and when
it completes (with the pthread_monano_signal_end_time
function).

3.4 Benchmark to investigate scheduling anomalies
in real-time systems

The first goal of the benchmark is to enforce situations in
which scheduling anomalies arise. The second goal is to
serve as an extensible example to verify the correctness and
the usability of MONANO itself.

In the literature, there is today no benchmark gathering pro-
grams that raise the more frequent known scheduling anoma-
lies for real-time systems. In this section, we present the
MONANO benchmark that contributes to fulfill such a need.

As explained previously, detecting scheduling anomalies re-
quires verifying if both static and dynamic constraints hold
for a given application. The different services implemented
in MONANO intend to verify them.

Scheduling anomalies may arise both in uniprocessor and
multiprocessor architectures. Several scenarios can lead to a
type of scheduling anomaly. We have 19 scenarios for the 7
types of scheduling anomalies identified in both uniprocessor
and multiprocessor systems. However in this article, we only
focus on uniprocessor systems and then, the benchmark only
handles the 5 anomalies occuring in uniprocessor systems.
The 5 uniprocessor anomalies occur in 9 scenarios. Each
scenario is implemented by a program in the benchmark.

The current MONANO benchmark only implements the dy-
namic constraints (DC) related to one of the 5 uniprocessor
anomalies:

• constraint D1 becomes true when MONANO detects
that the thread execution time is reduced (see scheduling
anomaly 1 in Table 2).

• constraint D2 becomes true when MONANO detects that
a thread has changed its current priority (see scheduling
anomaly 2 in Table 2).

• constraint D3 becomes true when MONANO detects
that a thread dependency was not met (see scheduling
anomaly 3 in Table 2).

• constraint D4 becomes true when MONANO detects
that the processor speed has changed (see scheduling
anomaly 4 in Table 2).

• and the constraint D5 becomes true when MONANO
detects that a thread execution is delayed (see scheduling
anomaly 5 in Table 2).

To implement the MONANO benchmark, we adapted
ROSACE, an open-source avionic control command soft-
ware developed by [16] in C. First, ROSACE was adapted
to run on RTEMS with the POSIX API. Second, we imple-
mented 9 different versions of ROSACE corresponding to the
9 uniprocessor scheduling anomaly scenarios. Each of these 9
programs is a ROSACE program modified to comply with the
static and the dynamic constraints of the related scheduling
anomaly.

Table 3 summarizes, for the 9 programs their static constraints
and their dynamic constraints that the program implements.

DC Programs Static constraints

D1

P1 Threads may have precedence con-
straints

P2 Non-preemptive scheduling
P3 Deadline Monotonic scheduling

Threads may access shared resources
P4 EDF scheduling

Threads are asynchronously released
Threads may be suspended

D2 P5 Threads are independent
D3 P6 Threads may have precedence con-

straints

D4 P7 Threads are asynchronously released
Threads may access shared resources

P8 Deadline Monotonic scheduling
Threads are asynchronously released
Threads may access shared resources

D5 P9 Threads may access shared resources
Threads may be suspended

Table 3: Static and dynamic constraints of each program of the
benchmark

We have implemented the 9 programs on a uniprocessor pre-
emptif fixed priority scheduling RTEMS target. One may
notice that some of the programs of Table 3 require a dif-
ferent scheduling policy (e.g. program P4 requires a EDF
scheduling). Furthermore, ROSACE is implemented by a set
of threads that communicate by flow of data. One may notice
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also that in Table 3 some of the programs are not compliant
with this ROSACE implementation (.e.g program P9 uses
shared resources to thread communications).

To experiment all types of scheduling anomalies on the same
RTEMS/POSIX operating system and with the same appli-
cation baseline (ROSACE), we have implemented in the 9
programs specific mechanisms to enforce all static constraints.
For example, with programs 4 and 9, scheduling anomalies
will occur when threads are suspended while the original
ROSACE program does not suspend any thread. To imple-
ment suspended threads and to actually raise the correspond-
ing scheduling anomalies, threads of programs 4 and 9 are
blocked on a counting POSIX semaphore. Table 4 gives a
short description of what we have implemented to make static
constraints compliant with ROSACE and RTEMS.

Constraints Implementation
Precedence con-
straints

Communication implemented with a
counting semaphore initialized to 0.

Deadline mono-
tonic scheduling

Priority assignment with
setschedparam according to the
deadline

Shared resources Implemented by POSIX mutexes
Non-preemptive
scheduling

Non-preemptive scheduling enforced
with a mutex shared by all threads

Threads asyn-
chronously
released

Release times are delayed with
nanosleep

Suspended
threads

Threads are suspended with nanosleep

Table 4: Implementation of the static constraints on POSIX/u-
niprocessor RTEMS

The static and the dynamic constraints rely on various data
that are either given at application startup by the program-
mer or measured by MONAO during execution or computed
at runtime by MONANO. Table 5 gives for each scheduling
anomaly data that are either monitored by MONANO or either
computed by MONANO. Let consider S = {τ1, ..., τn}, a set
of n periodic threads as defined in section 2.1 and monitored
by MONANO. Table 5 presents each data continuously up-
dated by MONANO during runtime and if they are computed
or measured :

• start_time(τi) and end_time(τi) are respectively the
start time and the end time of each job of τi.

• execution_time(τi) is the real execution time of a each
job of τi.

• blocking_time(τi) is the computed blocking time of τi
on the shared resources.

• preemption_time(τi) is the amount of time τi is pre-
empted by threads with a higher priority level.

• suspending_time(τi) is the amount of time τi has de-
cided to suspend itself.

• priority(τi) is the current priority of τi.

• dependencies_list stores the real execution order of the
threads that are constrained by thread precedencies.

• processor_speed is the current processor speed.

DC Measured data Computed data
D1 start_time(τi),

end_time(τi)
execution_time(τi),
blocking_time(τi),
preemption_time(τi)

D2 priority(τi)
D3 Threads execu-

tion order in
dependencies_list

Missed precedency con-
straints

D4 Current processor
speed

D5 start_time(τi),
end_time(τi)

suspending_time(τi)

Table 5: Metrics monitored on POSIX/uniprocessor RTEMS by
MONANO

4 Related work
Previous research on scheduling anomalies has mostly fo-
cused on identifying and presenting different types of schedul-
ing anomalies in both uniprocessor and multiprocessor sys-
tems [5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

However, detecting anomalies also requires to detect events
occuring when scheduling anomalies are raised. Many works
have investigated how to monitor events in real-time sys-
tems and some of them could be applied to detect scheduling
anomalies.

First, monitoring tools devoted to stream-based systems were
developed by the community. For example, Copilot [17, 18]
monitors systems by regularly capturing values (called sam-
ples) of variables of the system. The overall values of a given
variable constitute a data stream on which verifications can
be applied. As Copilot, RTLola [19, 20] also operates on data
streams and monitors them. However, in the case of RTLola,
the software components charged to monitor are generated
from a specification written in a formal language. Stream-
LAB [21] is another framework example using RTLola for
monitoring purposes.

R2U2(Realizable, Responsive, Unobtrusive Unit) [22, 23]
is focusing on the monitoring of security properties for Un-
manned Aerial Systems (UAS) built on FPGA. The objective
is to detect security attacks.

Hili [24] proposed a model-based approach to monitor real-
time systems during their runtime. The approach provides a
means to integrate and configure various monitors.

Yibing [25] identifies variations between predicted behavior
and monitored behavior. The method is using a digital twin.

Finally, Reinier [26] proposed MuSADET, a tool that looks
for timing anomalies in event traces for real-time systems.
The framework classifies anomalies with metrics between
event arrivals.
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As seen above, many authors have carried out technics for
monitoring real-time systems during their execution, but with-
out, most of the time, focusing specifically on the detection
of scheduling anomalies.

In the contrary, we propose in this article a monitoring tool
specifically devoted to detecting scheduling anomalies of a
real-time system during runtime.

5 Conclusion
This article focuses on scheduling anomalies in real-time sys-
tems. The context in which an anomaly may occur have been
studied and presented in [2]. In [2], a model of scheduling
anomalies composed of software architecture and runtime
constraints has been proposed. From this model, we proposed
in this article a monitoring tool called MONANO which is
able to detect runtime constraints leading to real-time schedul-
ing anomalies. We are experimenting MONANO in Ched-
dar [15]. MONANO comes with a benchmark prototyped in
RTEMS. We are currently running experiments to evaluate
MONANO performance and intrusivity.

To fully evaluate MONANO, the ability to handle false posi-
tive and false negative anomalies is necessary to avoid inap-
propriate callback invocations. For now, false positive and
false negative anomalies are not taken into account. A false
positive result would occurs if an analysis gives an invalid
positive result ( an anomaly is detected whereas it should not
be detected), and a false negative result would occurs if an
analysis gives a invalid negative result (an anomaly is not
detected whereas it should be detected). In the current state of
our work, we are not able to provide such an analysis. In our
future work, we plan to experiment with more use cases to
improve dynamic anomaly analysis to include false positive
and false negative detection.

For this article, we focused on uniprocessor systems. We
also expect to improve the MONANO tool by integrating the
detection of scheduling anomalies in multiprocessor systems.

Finally, another future work would be to investigate how MO-
NANO could be used to monitor other real-time properties.

6 Artefact
MONANO and its companion benchmark are available
at http://beru.univ-brest.fr/svn/CHEDDAR/
trunk/src/framework/scheduling_anomalies
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