Work-In-Progress: Could Tensorflow applications
benefit from a mixed-criticality approach?

Alan Le boudec+*, Frank Singhoff*, Hai Nam Tran®, and Stephane Rubini*,
Sebastien Levieux™, Alexandre Skrzyniarz+

+ Thales DMS, Brest, France
*Univ. Brest, Lab-STICC, CNRS, UMR 6285, F-29200 Brest, France
alan.le-boudec@thalesgroup.com, singhoff@univ-brest.fr,
rubini@univ-brest.fr, hai-nam.tran@univ-brest.fr,
alexandre.skrzyniarz@fr.thalesgroup.com

Abstract. In this article, we investigate the interest in applying a mixed-
criticality approach to schedule convolutional neural network (CNN)
applications on multicore architectures. We deal with software composed
of real-time interactive applications and CNNs that have different criticality
levels. A classical means to schedule software with various criticality
levels is to apply partitioning methods to enforce spatial and temporal
isolation, which may be inefficient if application execution times have
a high level of variability. In that case, applying a mixed-criticality
approach may improve resource usage. We conducted a measurement
campaign to assess the variability of CNN execution time and investigate
whether this kind of application could benefit from a mixed-criticality
approach. The results show that the execution times of the chosen CNN
application vary with an average execution time of 109 ms and a worst
case of 252 ms. Furthermore, they indicate a potential save of computing
resources up to 73% when applying a mixed-criticality approach instead
of partitioning methods.

Keywords: Real-time Scheduling, Mixed-criticality, CNN.

1 Introduction

[Context]

This article focuses on real-time applications embedding Al algorithms. Let’s
assume a video surveillance system where Al algorithms are run to detect objects
in images acquired by cameras. Once the objects are identified, users may focus
on one of them and perform authentication. Such a system involves applications
that analyze sensor data with AI algorithms and interactive applications that
handle user actions. We assume those applications have different criticality levels:
analysis applications may have a higher level of criticality than interactive ones.
They have both to meet timing constraints such as deadlines, and we must
schedule them in order to enforce that the higher their criticality level is, the
higher the probability of meeting the deadline is.

2 A. Le Boudec et al.

To schedule these applications, a classic way [5] is to apply a partitioning
approach leading to a spatial and temporal isolation of the applications according
to their criticality. Unfortunately, this approach leads to over-reservation and
wastes computing resources [15]. An alternative method is to use a mixed-
criticality approach [3] where the tasks are adapted at runtime according to
the available resources. In a mixed-criticality approach, each task may have
several execution time budgets, each reflecting a safety level that will be used
during scheduling and schedulability analysis to maximize the number of met
deadlines of the tasks. Such an approach contributes also to minimizing the waste
of computing resources.

[Problem Statement)]

Mixed-criticality scheduling theory aims to design efficient resource management
of systems that exhibit non-determinism, variability, and uncertainty during
runtime [2]. While variability and uncertainty due to multiprocessor architectures
are widely accepted, less work has investigated the level of variability and non-
determinism due to CNN applications. Evaluating the variability of CNN application
execution times may motivate the use of mixed-criticality approaches instead of
partitioning for such kinds of applications.

[Contribution]

In this article, we investigate the timing behavior of a set of tasks running
CNN applications on a multiprocessor architecture. CNN applications are implemented
with Tensor flow. By a measurement campaign, we evaluate the variability and
uncertainty of their execution times. We quantify how such applications could
benefit from a mixed-criticality approach.

The article is organized as follows. Section 2 presents the background of our
work. Section 3 discusses the measurement campaign and analyses the results.
Section 4 provides a brief overview of related works. Finally, section 5 concludes
the article.

2 Background

In this section, we introduce the mixed-criticality approach and define the CNN
models used in this article.

2.1 Mixed-Criticality Approach

The concept of mixed-criticality has been introduced when software and hardware
became more complex and less predictable from a temporal point of view [4].

In a mixed-criticality system, high and low-criticality tasks share the same
computing units without resource reservation. In contrary of a spatial and temporal
isolation solution, mixed-criticality systems promote the adaptation of low-criticality
tasks when resource starvation is detected for high-criticality tasks.

A key aspect of mixed-criticality described by [4] is that task parameters,
such as the worst-case execution time (WCET), that become dependent on the
criticality level of the task and may reflect the level of safety the task belongs

Title Suppressed Due to Excessive Length 3

to. The Vestal’s [15] model was one of the first mixed-criticality approaches. In
his work, the author shows that applying a mixed-criticality approach allowed
to increase of 20% the resource usage of the system.

2.2 Convolutional Neural Networks

Convolutions
Feature maps
Layers
Levels

Fig.1: U-NET architecture

The architecture of CNNs is inspired by visual perception [8]. CNN are
composed of full-connected neurons organized in layers able to learn hierarchical
representations [9]. CNNs apply deep learning to analyze images, classify visuals,
or perform computer vision tasks.

Figure 1 shows a specific CNN architecture called a U-NET [14]. A U-NET
is a CNN model designed for image processing. It is made of a set of levels. Each
level may have one or several layers. When a layer is used to apply a filter on an
image, it is called a feature map. Figure 1 shows a 9-level U-NET with 64 feature
maps. The first level in the left corner of the figure has 2 layers. This work is
being carried out in an industrial context in which the CNNs are U-NET. Then,
in this article, we restrict the analysis to U-NET only.

3 Approach and Experiments

In this section, we present the results of our experiments. The objective of them is
to estimate the CNN execution time variability and its level of non-determinism.

3.1 Platform and Experiment Conditions

We run our experiments on a multicore platform with 2 processors Intel Xeon
Gold with 18 computing cores, giving us 72 virtual cores and 256 GO RAM.
This platform hosts a UNIX system Debian 11. We run a U-NET written in
python [12]. This implementation uses the Tensorflow library [1]. Each Tensorflow
application was run in isolation (i.e. no other application was run during the

4 A. Le Boudec et al.

experiment). We arbitrarily run this Python program 100 times for each U-NET
model. We use 32 U-NET models, each had a given number of levels and feature
maps. The number of levels is ranging from 1 to 4, and the number of feature
maps is ranging from 8 to 64 in increments of 8.

3.2 Results

Tt

1

U-Net 1 level and 64 feature maps U-Net 2 Levels and 40 feature maps U-Net 3 levels and 48 feature maps

Fig.2: Distribution of the execution times. x: execution times; y: data
distribution

The programs are run in the SCHED_OTHERS scheduling policy with a priority
level of 0. First, we let Tensorflow automatically creates threads to run the
program and maps them on the cores of the platform. In that case, we notice
that all cores were used and 65 threads were launched.

Figure 2 shows the execution time of the U-NET models for this first experiment.
Each histogram presents the density distribution of the execution times for one
U-NET model, i.e. each bar in the figures is the percentage of similar execution
time values. Note that only few samples are represented in figure 2 and 3. All
measures can be found in the URL given in the artefact section.

In this figure, we can see that most of values are around the median and that
very few of them are far from it. In the case of a U-NET with 2 levels and 40
feature maps, the standard deviation is 26,5 with an average execution time of
141 ms and the worst-case execution time is 373 ms. It confirms the variability in
the execution times. Furthermore, if the resource reservation is made according
to this worst-case execution time, it leads to a waste of 62% of the computing
resource.

The variability of the execution time comes either from 1) the program itself.
It may come from the computations in the nodes of the U-NET; 2) either from
the execution model of Tensorflow. It may come from how Tensorflow maps
and schedules the threads making the U-NET computations; 3) from the shared
resources of the multicore platform. In this last case, it may come from task
migration or the unpredictability related to the memory cache units.

Title Suppressed Due to Excessive Length

U-Net 1 level and 64 feature maps

U-Net 2 levels and 40 feature maps

U-Net 3 levels and 48 feature maps

Dvwion oy

v butn NG

U-Net 4 levels and 40 feature maps

U-Net 2 levels and 24 feature maps

U-Net 3 levels and 24 feature maps

Fig. 3: Distribution of the execution times without thread migration. x: execution

times; y: data distribution

In a second experiment, we aim to reduce the execution time variability
due to Tensorflow parallelization and due to the multicore platform. For such
purposes, we now forbid thread migration between the cores by the use of a
thread affinity mechanism. Again, we run the 32 U-Net models (each 100 times)

with those new constraints and we get the results shown in figure 3.

If we take our example of U-NET with 2 levels and 40 feature maps of
the first experiment, the standard deviation is now of 20 ms with an average
execution time of 166 ms and a worst-case execution time of 369 ms. We obtain
a waste of computing resources of 55%. Without migration, we notice for this
example a reduction of the waste of computing resources from 62% to 55%. To
conclude, forbidding migration reduces execution time variability but does not

make Tensorflow programs fully predictable from a timing point of view.

Now, we evaluate the gap between the worst-case execution time and the
average execution time for all U-NET models. This gap represents the amount
of resources that a mixed-criticality approach may save if applied on U-NET
applications in the best case. This gap is shown in the figure 4.

The gap is calculated by subtracting the worst-case execution time and the
average execution time itself computed without the worst-case execution time.
This gives us the potential saving in computing resources when applying a mixed-
criticality approach instead of a resource reservation made on the worst-case

execution times.

6 A. Le Boudec et al.

Potential gains (%)

10
s II |IIII | ||| plaonloarn. 1
4 5 6 7 8

12 3 € 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Scenario

Fig. 4: Potential computing resource saving depending on U-NET scenario

Figure 4 shows the gap for a set of U-NET sorted by their number of neurons.
This gap ranges from 0 to 73%. In the best case, a gap of 73% means that a
mixed-criticality approach would save upto 73% of the resource to execute the
program. In the gap, we do not consider the overhead due to the mixed-criticality
services implementation. Note that the real gaps may be higher than the one
shown in figure 4. Indeed, we are computing a gap with a worst-case execution
time measured during U-NET execution while the real worst-case execution time
could be higher.

The U-NET with the largest gap has an average execution time of 109 ms,
and a WCET of 252 ms, i.e. 2.5 times more. In this U-NET, only one program
execution reaches the worst-case value, implying that reserving the resources
with this WCET represents only 1% of the execution number of this U-NET.
About the 32 U-NETs, 9,65% of the 3200 program executions cases are above
the upper fence. The upper and lower fences represent the cut-off values for
upper and lower outliers in a dataset. It is calculated from the interquartile
range (IQR), representing the difference between the first and 3rd quartile.

Furthermore, we notice that the larger the U-NET in terms of the number
of neurouns is, the lower the gap (and consequently the variability) is.

To conclude, these experiments confirm that the U-NET parameters such as
the number of neurons, the number of levels or the number of feature maps may
have an impact on execution time variability. Furthermore, applying a mixed-
criticality approach when U-NETs are run on a multicore platform could save
resources compared to resource reservation.

4 Related work

Several works already investigated the temporal behavior of CNN programs.
Inference phase of a CNN program is composed of basic operations in which
the same parameters have a similar behavior between two executions. [6,13,7]

Title Suppressed Due to Excessive Length 7

have designed mathematical models and performed measures of those basic
operations. They have shown that the timing behavior of basic operations are
predictable. Contrary to us, they have not investigated the timing behavior of
the overall network.

In [10], CNN programs are run with various inputs. These authors show that
the execution time of CNN varies when the scenario of the inputs varies. In our
experiments, we did not make any assumption on the inputs: CNN are run with
the same set of inputs.

Execution time variation may come from hardware hosting the CNN programs [11].
The authors of [11] have investigated execution time variations of co-located jobs
to reduce access memory or execution time variation due to communications on
a ROS middleware. Furthermore, a limited amount of memory may also affect
the latency of inference [16]. In our experiment, we have run CNN programs on
a multicore platform where shared resource accesses (e.g. L1 or L2 caches) are
known to reduce predictability of execution times.

Finally, measures have been made to test different ways to decrease the
execution time latencies of a CNN inference, generally to meet system requirements
such as a minimal frequency to run a periodic CNN. Examples of those means are
the lowering of the quality or by adapting the CNN to the hardware platform [16].
In this article, we do not look for any execution time reduction.

To summarize, we presented several articles investigating CNN execution
times, but none have quantified the variability of the execution time. In this
article, we want to quantify how and when CNN program execution times may
vary on a multicore architecture and if applying a mixed-criticality approach
could save computing resources.

5 Conclusion

Mixed-criticality theory aims to provide an efficient management of computing
resources to master the unpredictability and the variability of task execution
times in real-time systems. In this article, we investigated the execution times of
CNN tasks implemented with Tensorflow and running on a multicore platform
running a Debian Linux distribution. This work is being carried out in an
industrial context in which CNNs are U-NET. Then, in this article, we restrict
the analysis to U-NET only.

We evaluated the variability of U-NET execution times. We have shown that
in the worst scenario, the average execution time is about 109 ms with a worst-
case execution time of 252 ms. The experiments showed that applying a mixed-
criticality approach instead of a partitioning/resource reservation with CNN
applications could save upto 73% of the computing resources. The experiments
also showed that the number of neurons, feature maps, and levels contributes to
this variability.

The overall results underline the relevance of using a mixed-criticality approach
for the scheduling of CNN tasks instead of a classic partitioning method.

8 A. Le Boudec et al.

In these experiments, we run tasks on a multicore platform and a part of
the execution time variability /unpredictability may come from the hardware
platform. In future works, we plan to run similar experiments with GPU to
identify the variably /unpredictability which is strictly due to Tensorflow CNN
programs. Until now, we also focus on CNN implementations with TensorFlow,
but the next step would be to explore other artificial intelligence engines.

6 Artefacts

Elements of artefacts can be reached at http://beru.univ-brest.fr/svn/ CHEDDAR /artefacts/RTSS23

References

1. Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaogiang
Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.
Software available from tensorflow.org.

2. Sanjoy K Baruah. Mixed-criticality scheduling theory: Scope, promise, and
limitations. IEEE Des. Test, 35(2):31-37, 2018.

3. Alan Burns and Robert Davis. Mixed criticality systems-a review. Department of
Computer Science, University of York, Tech. Rep, pages 1-69, 2013.

4. Alan Burns and Robert I Davis. A survey of research into mixed criticality systems.
ACM Computing Surveys (CSUR), 50(6):1-37, 2017.

5. Nuno Diniz and Jose Rufino. Arinc 653 in space. In DASIA 2005-Data Systems
in Aerospace, volume 602, 2005.

6. Thomas Garbay, Khalil Hachicha, Petr Dobias, Wilfried Dron, Pedro Lusich, Imane
Khalis, Andrea Pinna, and Bertrand Granado. Accurate estimation of the cnn
inference cost for tinyml devices. In 2022 IEEE 35th International System-on-
Chip Conference (SOCC), pages 1-6. IEEE, 2022.

7. Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann,
Ymir Vigfusson, and Jonathan Mace. Serving dnns like clockwork: Performance
predictability from the bottom up. arXiv preprint arXiv:2006.02464, 2020.

8. David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction
and functional architecture in the cat’s visual cortex. The Journal of physiology,
160(1):106, 1962.

9. Teja Kattenborn, Jens Leitloff, Felix Schiefer, and Stefan Hinz. Review on
convolutional neural networks (cnn) in vegetation remote sensing. ISPRS journal
of photogrammetry and remote sensing, 173:24—49, 2021.

10. Liangkai Liu, Zheng Dong, Yanzhi Wang, and Weisong Shi. Prophet: Realizing a
predictable real-time perception pipeline for autonomous vehicles. In 2022 IEEE
Real-Time Systems Symposium (RTSS), pages 305-317. IEEE, 2022.

11.

12.

13.

14.

15.

16.

Title Suppressed Due to Excessive Length 9

Liangkai Liu, Yanzhi Wang, and Weisong Shi. Understanding time variations of
dnn inference in autonomous driving. arXiv preprint arXiv:2209.05487, 2022.
Margaret Maynard-Reid. U-Net image segmentation in keras. PylmageSearch,
2022. https://pyimg.co/6mbbr.

Francesco Restuccia and Alessandro Biondi. Time-predictable acceleration of
deep neural networks on fpga soc platforms. In 2021 IEEE Real-Time Systems
Symposium (RTSS), pages 441-454. IEEE, 2021.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In Medical Image Computing and
Computer-Assisted Intervention—-MICCAI 2015: 18th International Conference,
Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pages 234-241.
Springer, 2015.

Steve Vestal. Preemptive scheduling of multi-criticality systems with varying
degrees of execution time assurance. In 28th IEEE international real-time systems
symposium (RTSS 2007), pages 239-243. IEEE, 2007.

Zhao Yang and Qingshuang Sun. Efficient resource-aware neural architecture
search with dynamic adaptive network sampling. In 2021 IEEE International
Symposium on Clircuits and Systems (ISCAS), pages 1-5. IEEE, 2021.

