D-OVER:
AN OPTIMAL ON-LINE
SCHEDULING ALGORITHM
FOR OVERLOADED REAL-TIME
SYSTEMS

Gilad KOREN
Dennis SHASHA

Février 1992
D-Over: an optimal on-line scheduling algorithm for overloaded real-time systems

Gilad Koren, koren@cs.nyu.edu Dennis Shasha, shasha@cs.nyu.edu

INRIA, Rocquencourt, projet Rodin, batiment 9
and Courant Institute, New York University
New York, NY 10012.

February 5, 1992

Abstract

Every task in a real-time system has a deadline by which time it should complete. Each
task also has a value that it obtains only if it completes by its deadline. The problem is to
design an on-line scheduling algorithm (i.e., the scheduler has no knowledge of a task until
it is released) that maximizes the obtained value.

When such a system is underloaded (i.e. there exists a schedule for which all tasks meet
their deadlines), Dertouzos showed that the earliest deadline first algorithm will achieve 100%
of the possible value. Locke showed that earliest deadline first performs very badly when the
system is overloaded and proposed heuristics to deal with overload.

This paper presents an optimal on-line scheduling algorithm for overloaded systems. It
is optimal in the sense that it gives the best competitive factor possible relative to an offline
scheduler.

Mots Clés: temps réel, ordonnancement, surchargé.

D-Over: un algorithme d'ordonnancement actif et optimal pour
systèmes temps réels surchargés

Dans un système temps réel, toute tâche a une date limite à laquelle elle doit être terminée.
De plus, chaque tâche a une valeur qu'elle n'obtient que si elle se termine à la date limite.
Le problème est de concevoir un algorithme d'ordonnancement actif (on-line) qui maximise
la valeur obtenue (i.e., tout en ayant aucune connaissance de la tâche a priori).

Lorsqu'un tel système est sous-chargé (i.e., il existe un ordonnancement par lequel toutes
les tâches terminent à leur date limite), Dertouzos a montré que l'algorithme "earliest deadline
first" atteint 100% de la valeur possible. Cependant, Locke a montré que cet algorithme
avait de très mauvaises performances lorsque le système devenait surchargé. Il a proposé
des heuristiques dans le cas de surcharge.

Ce papier présente un algorithme d'ordonnancement optimal pour systèmes temps réels
surchargés. Il est optimal dans le sens où il offre le meilleur facteur de compétition possible
relatif à un ordonnanceur passif (off-line).
1 Introduction

In real-time computing systems, correctness may depend on the completion time of tasks as much as on their input/output behavior. Tasks in real-time systems have deadlines. If the deadline for a task is met, then the task is said to succeed. Otherwise it is said to have failed.

A system is underloaded if there exists a schedule that will meet the deadline of every task and overLoaded otherwise. Scheduling underloaded systems is a well-studied topic, and several on-line algorithms have been proposed for the optimal scheduling of these systems on a uniprocessor [4, 11]. Examples of such algorithms include earliest-deadline-first (D) and smallest-slack-time (SL). However, none of these classical algorithms make performance guarantees during times when the system is overloaded. In fact, Locke has experimentally demonstrated that these algorithms perform quite poorly when the system is overloaded [10].

Practical systems are prone to intermittent overloading caused by a cascading of exceptional situations. A good on-line scheduling algorithm, therefore, should give a performance guarantee in overloaded as well as underloaded circumstances.

Researchers and designers of real-time systems have devised on-line heuristics to handle overloaded situations [1, 10, 12]. Locke proposed several clever heuristics as part of the CMU Archons project [10]. Unfortunately, those offer no performance guarantee. This paper proposes an algorithm with strong performance guarantees for a large portion of the parameters that Locke's algorithm considers.

1.1 Background

Real-time systems may be categorized by how they react when a task fails. In a hard real-time system, a task failure is considered intolerable. The underlying assumption is that a task failure would result in a disaster, e.g. a fly-by-wire aircraft may crash if the altimeter is read a few milliseconds too late.

A less stringent class of systems is denoted as soft real-time systems. In such systems, each task has a positive value. The goal of the system is to obtain as much value as possible. If a task succeeds, then the system acquires its value. If a task fails, then the system gains less value from the task [11]. In a special case of soft real-time systems, called a firm real-time system, there is no value for a task that has missed its deadline, but there is no catastrophe either. The first algorithm we present here applies to firm real-time systems. The paper then generalizes the algorithm to soft real-time systems.

An on-line scheduling algorithm is one that is given no information about a task before its release time. Different tasks models can differ in the kind of information (and its accuracy) given upon release. We assume the following: when a task is released, its value and deadline are known precisely, its computation time may be known either precisely, or, more generally, within some range. Also, preemption is allowed and task switching takes no time.

The value density of a task is its value divided by its computation time. The importance ratio of a collection of tasks is the ratio of the largest value density to the smallest value density. When the importance ratio is 1, the collection is said to have uniform value density, i.e., a task's value equals its computation time. We will denote the importance ratio of a collection by \(k \).
A natural way to measure a performance guarantee of an on-line scheduler is to compare it with a clairvoyant scheduling algorithm. A clairvoyant scheduler has complete A PRIORI knowledge of all the parameters of all the tasks. A clairvoyant scheduler can choose a "scheduling sequence" that will obtain the maximum possible value achievable by any scheduler. (The problem of finding the maximum achievable value for such a scheduler, however, can be shown to be reducible from the knapsack problem[5]; hence is NP-hard.)

As in [2, 6, 13] we say that an on-line algorithm has a competitive factor \(r \), \(0 \leq r \leq 1 \), if and only if it is guaranteed to achieve a cumulative value at least \(r \) times the cumulative value achievable by a clairvoyant algorithm on any set of tasks.

Three years ago, Marc Donner introduced a group of us to realtime scheduling in a seminar at NYU. Inspired by that seminar, Koren, Mishra, Raghunathan and Shasha [2, 7] suggested the first on-line scheduling algorithm with a performance guarantee for an overloaded system. They assumed a simplified variation of the task model that assumes firm deadline, preemption at no cost and uniform value density. This algorithm is called D-star (D*) since it behaves like earliest-deadline-first (D) in an underloaded situation.

D* executes to completion all the tasks with deadlines in underloaded intervals. D* also guarantees that all the tasks with a deadline in an overloaded interval will achieve a cumulative value of at least one-fifth of the length of the overloaded interval. However, D* has a competitive factor of zero.

Baruah et. al. [2, 3] demonstrated, using an adversary argument that, in the uniform value density setting, there can be NO on-line scheduling algorithm with a competitive factor greater than one-quarter.

Koren and Shasha describe in a technical report [8] an algorithm called DD-star (DD*), that has the competitive factor of one-fourth in the uniform value density case and offers 100% of the possible value in the underloaded case. This showed that the one-quarter bound is tight in the uniform value density case. Wang and Mao [15] independently report a similar guarantee.

On the complexity side, Baruah et. al. [2, 3] showed for environments with an importance ratio \(k \), a bound of \(\frac{1}{(1+\sqrt{k})^2} \) on the best possible competitive factor of an on-line scheduler. This result and some pragmatic considerations reveal the following limitations of the algorithms with competitive factors invented to date:

1. The algorithms all assume a uniform value density, yet some short tasks may be more important than some longer tasks.
2. The algorithms all assume that there is no value in finishing a task after its deadline. But a slightly late task may be useful in many applications.
3. The algorithms all assume that the computation time is known upon release. However, a task program that is not straight-line may take different times during different executions.

2 The Main Results

In this paper we present an on-line scheduling algorithm called Dover that has an optimal competitive factor of \(\frac{1}{(1+\sqrt{k})^2} \) for environments with importance ratio \(k \). Hence, we show that the bound in [2, 3] is tight for all \(k \).
Furthermore, D_{over} achieves 100% of the value of in an underloaded environment. In fact the performance guarantee of D_{over} is even stronger: D_{over} schedules to completion all tasks in underloaded periods and achieves at least $\frac{1}{(1+\sqrt k)^2}$ of the value a clairvoyant algorithm can get during overloaded periods\footnote{The definitions of underloaded and overloaded periods will be made precise in section 6.}.

We also investigate two important extensions to the task model studied earlier:

- **Gradual Descent:**

 We relax the *firm deadline* assumption. Tasks that complete after their deadline can still have a positive value though less than their initial value. As in Locke [10], the task's value is given by a *value function* which depends on its completion time.

 We show that under a variety of value functions an appropriate version of D_{over} has a competitive factor of $\frac{1}{(1+\sqrt k)^2}$ for environments with importance ratio k.

- **Situations in which the exact computation time of a task is not known**

 Suppose the on-line scheduling algorithm does not know the exact computation time of a task upon its release. However, for every task T, an upper bound on its possible computation time denoted by c_{max}, is given. The actual computation time of T denoted by c satisfies:

 $$(1 - \epsilon) \cdot c_{\text{max}} \leq c \leq c_{\text{max}}$$

 Where, $0 \leq \epsilon < 1$ is a given *error margin* which is common to all the tasks.

 We show that in that case D_{over} has a competitive factor of $\frac{1}{(1+\sqrt k)^2 + (\epsilon^2)(1+\sqrt k)+1}$. We also show that, in this setting a competitive on-line scheduler can not guarantee 100% of the value for underloaded systems.

Finally, D_{over} can be implemented using balanced search trees, and runs at an amortized cost of $O(\log n)$ time per task, where n bounds the number of tasks in the system at any instant.

The rest of the paper is organized as follows: Section 3 introduces some notation and definitions used in the paper. Section 4 describes the main algorithm, D_{over}. Section 5 shows that D_{over} has the optimal competitive factor as mentioned above. Section 6 defines the notion of conflicting and conflict-free tasks and proves the complete performance guarantee of D_{over} with respect to underloaded and overloaded periods. Section 7 contains the gradual-descent result. Section 8 is devoted to the model in which the exact computation time of a task is not known. The paper ends with a brief conclusion section and a discussion of open problems.

3 Notation

Before we describe the full algorithm, we need some notation. We are given a collection of tasks $T_1, T_2 \ldots T_n$ denoted by Γ. For each task T_i, its value is denoted by v_i, its release time is denoted by r_i, its computation time by c_i, and its deadline by d_i. The value density of T_i is denoted by $imp(T_i)$ and k denotes the importance ratio of the collection.
Definition 3.1

- **Underloaded and Overloaded Systems**: A system is *underloaded* if there exists a schedule that will meet the deadline of every task and *overloaded* otherwise.

- **Executable Period**: The *executable period*, Δ_i, of the task T_i is defined to be the following interval:

$$\Delta_i = [r_i, d_i]$$

By definition, T_i may be scheduled only during its executable period.

Suppose a collection of tasks is being scheduled by some scheduler S.

- **Completed Task**: A task (successfully) *completes* if before its deadline, the scheduler S gives it an amount of execution time that is equal to its computation time.

- **Abandoned Task**: A task is *abandoned* if it did not complete and will never be scheduled again by S.

- **Preempted Task**: A task is *preempted* when the processor stops executing it, but then the task might be scheduled again and complete at some later point.

- **A Ready Task**: A task is said to be *ready* at time t if its release time is before t, its deadline is after t and it neither completed nor was abandoned before t (the current executing task, if any, is always a ready task).

The earliest deadline first algorithm (hereafter, D) can now be described as follows:

At any given moment, schedule the ready task with the earliest deadline.

D THE EARLIEST DEADLINE FIRST SCHEDULING ALGORITHM.

Also, we shall make the following assumption:

Assumption 3.2

- **Task Model**: Tasks may enter the system at any time; their computation times and deadlines are known exactly at their time of arrival (we weaken this assumption of exact knowledge later in section 8). Nothing is known about a task before it appears.

- **Tasks Switching Takes No Time**: A task can be preempted and another one scheduled for execution instantly.

Suppose that a collection of tasks Γ with importance ratio k is given.

- **Normalized Importance**: Without loss of generality, assume that the smallest importance of a task in Γ is 1. Hence if Γ has *importance ratio of k*, the largest importance of a task in Γ is k. **
4 The Algorithm

In the algorithm described below, there are three kinds of events (each causing an associated interrupt) considered:

- **Task Completion**: successful termination of a task. This event has the highest priority.
- **Task Release**: arrival of a new task. This event has low priority.
- **Latest-start-time Interrupt**: the indication that a task must immediately be scheduled in order to complete by its deadline, that is the task’s remaining computation time is equal to the time remaining until its deadline. This event has also low priority (the same as Task Release).

If several interrupts happen simultaneously they are handled according to their priorities. A **Task Completion** interrupt is handled before the **Task Release** and **Latest-start-time** interrupts which are handled in random order. It may happen that a **Task Completion** event supersedes a lower priority interrupt, e.g., the **Task Completion** handler schedules the next task, if this task had just reached its LST then the **Latest-start-time Interrupt** is removed.

At any given moment, the set of ready tasks \(^2\) is partitioned into two disjoint sets. **recently-preempted** tasks and other tasks. Whenever a task is preempted it becomes a **recently preempted** task. However, whenever some task is scheduled as a result of **Latest-start-time Interrupt** all the ready tasks (whether preempted or never scheduled) become other tasks.

Dover maintains a special quantity called **avaitime**. Suppose a new task is released into the system and its deadline is the earliest among all ready tasks. The value of avaitime is the maximum computation time that can be taken by such a task without causing the current task or any of the recently-preempted tasks to miss their deadlines.

Dover requires three data structures, called **Qrecent**, **Qother** and **Qlst**. Each entry in these data structures corresponds to a task in the system. **Qrecent** contains exactly the recently-preempted tasks and **Qother** contains the other tasks. These two structures are ordered by the tasks’ deadlines. In addition, the third structure, **Qlst**, contains all tasks (again, not including the current task) but this time they are ordered by their latest-start-times (LST).

These data structures support **Insert**, **Delete**, **Min** and **Dequeue** operations.

- The **Min** operation for **Qrecent** or **Qother** returns the entry corresponding to the task with the earliest deadline among all tasks in **Qrecent** or **Qother**. For **Qlst** the **Min** operation returns the entry corresponding to the task with the earliest LST among all tasks in the queue. The **Min** operation does not modify the queue.

- The **Dequeue** operation on **Qrecent** (or **Qother**) deletes from the queue the element returned by **Min**, in addition **Dequeue** deletes this element from **Qlst**. Likewise a **Dequeue** operation on **Qlst** will delete the corresponding element from either **Qrecent**, if it is a recently-preempted task or from **Qother**, if it is an other task.

\(^2\)Excluding the currently executing task.
An entry of Qother and Qlst consists of a single task, whereas an entry of Qrecent is a 3-tuple (T, Previous-time, Previous-avail) where T is a task that was previously preempted at time Previous-time. Previous-avail is the value of the variable availtime at time Previous-time.

All of these data structures are implemented as balanced trees (e.g. 2-3 trees).

In the following code, Now() is a function that returns the current time. Schedule(T) is a function that gives the processor to task T. Lazity(T) is a function that returns the amount of time the task has left until its deadline less its remaining computation time. That is, lazity(T) = deadline(T) – (now()+ remaining_computation_time(T)). ø denotes the empty set.

This code includes lines manipulating intervals. The notion of an interval is needed for purpose of analysis only, so these lines are commented.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>recentval := 0 (* This will be the running value of recently-preempted tasks *)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>availtime := ∞ (* Availtime will be the maximum computation time that can be taken by a new task without causing the current task or the recently preempted tasks to miss their deadlines. *)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Qlst := ø (* All ready tasks, ordered according to their latest start time. *)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Qrecent := ø (* The recently preempted tasks ordered by deadline order *)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Qother := ø (* All the other tasks ordered by their deadlines. *)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>idle := true (* In the beginning the processor is idle *)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
loop
 Task Completion:
 if (both Qrecent and Qother are not empty) then
 (* Both queues are not empty and contain together all the ready tasks. The
 ready task with the earliest deadline will be scheduled unless it is a task of
 Qother and it can not be scheduled with all the recently-preempted tasks. The
 first element in each queue is probed by the Min operation. *)
 (TQrecent, tprev, availprev) := Min(Qrecent);
 (* Computes the current value of avaitime. This is the correct value be-
 cause TQrecent is the task last inserted of those tasks currently in Qrecent.
 The available computation time has decreased by the time elapsed since this
 element was inserted to the queue. *)
 availtime := availprev - (now() - tprev);
 (* Probe the first element of Qother and check which of the two tasks should
 be scheduled. *)
 TQother := Min(Qother);
 if dQother < dQrecent and
 availtime > remaining_computation_time(TQother) then
 (* Schedule the task from Qother. *)
 Dequeue(Qother);
 availtime := availtime - remaining_computation_time(TQother);
 availtime := min(availtime, laxity(TQother));
 Schedule TQother;
 else
 (* Schedule the task from Qrecent. *)
 Dequeue(Qrecent);
 recentval := recentval - value(TQrecent);
 Schedule TQrecent;
 end if; (* which task to schedule. *)
 else if (Qother is not empty) then
 (* Qrecent is empty. The current interval is closed here, t_close = now(). The
 first task in Qother is scheduled *)
 Tcurrent := Dequeue(Qother);
 availtime := laxity(Tcurrent);
 (* A new interval is created with tbegin = now(). *)
 Schedule Tcurrent;
else if (Qrecent is not empty)

(* Qother is empty. The first task in Qrecent is scheduled *)

(Tcurrent, tprev, availprev) := Dequeue(Qrecent);
recentval := recentval - value(Tcurrent);
availtime := availprev - (now() - tprev);
Schedule Tcurrent;
else

(* Both queues are empty. The interval is closed here, tclose = now(). *)

idle := true;
availtime := ∞;
end {if}
end (* task completion *)

Task Release:

(* Tarival is released. *)

if (idle) then
 Tcurrent := Tarival;
 Schedule Tcurrent;
availtime := laxity(Tcurrent);
 idle := false;
 (* A new interval is created with tbegin = now(). *)
else (* Tcurrent is executing *)
 if darrival < dcurrent and
 availtime ≥ computation_time(Tarival) then
 (* No overload is detected, so the running task is preempted. *)
 Insert Tcurrent into Qlist;
 Insert (Tcurrent, now(), availtime) into Qrecent;
 (* The inserted task will be, by construction, the task with the earliest deadline in Qrecent*)
 availtime := availtime - remaining.computation.time(Tarival) ;
 availtime := min(availtime, laxity(Tarival))
 recentval := recentval + value(Tcurrent);
 Tcurrent := Tarival;
 Schedule Tcurrent;
end {if}
end (* release *)
Latest-start-time Interrupt:

\[T_{next} = \text{Dequeue}(Qlst); \]

if \((v_{next} > (1 + \sqrt{K}) (v_{current} + \text{recentval}))\) then

Insert \(T_{current}\) into \(Qlst\) and \(Qother\);

Remove all recently-preempted tasks from \(Qrecent\) and insert them into \(Qlst\) and \(Qother\);

\((\ast \ Qrecent = \emptyset \ast)\)

\text{recentval} := 0;

\text{availtime} := 0

Schedule \(T_{next}\);

else \((\ast v_{next} \text{ is not big enough; it is abandoned.} \ast)\)

Abandon \(T_{next}\);

end \{if\}

end \{LST \ast\}

\hline

Dover: A Competitive Optimal On-line Scheduling Algorithm.

5 Analysis of Dover

In order to facilitate the analysis of Dover it is convenient to introduce the notation of intervals.

Definition 5.1 Intervals

- **Interval**: The intervals are created (opened) and closed according to the scheduling decisions of Dover and this process is depicted in the code of Dover in section 4 above.

When an interval is created (comments 32 and 52 of Dover) it is considered open, meaning that it may be extended, it is closed when a task completes while \(Qrecent\) is empty (comments 29 and 41). A new interval would be opened when the next task is scheduled. Initially there is no open interval. Hence, the first interval is opened when the processor first becomes non-idle.

The interval consists of the time between the point it was opened and the point it was closed. We will denote by \(I = [t_{begin}, t_{close}]\) an interval \(I\) that was opened at \(t_{begin}\) and closed at \(t_{close}\).

Note: Two intervals may overlap only at their endpoints. Also, the pointwise union of all intervals is exactly the time in which Dover was not idle.
Suppose that a collection of tasks Γ with importance ratio k is given. and D^{over} schedules this collection. When a task is scheduled it can have zero or positive slack time. A task may be preempted and then re-scheduled several times. We will be mainly concerned with the last time a task was scheduled. For the purposes of analyzing D^{over}, we will partition the collection of tasks according to the question of whether the task had completed exactly at its deadline or before its deadline or failed.

- Let F (for fail) denote the set of tasks that were abandoned.
- Let S^p (for successful with positive time before the deadline) denote the set of tasks that completed successfully and that ended some positive time before their deadlines.
- Let S^0 (for successful with 0 time before the deadline) denote the set of tasks that completed successfully but ended exactly at their deadlines.

Call a task order-scheduled if it was scheduled by the Task Completion or Task Release handlers. Call a task lst-scheduled if it was scheduled as a result of a Latest-start-time Interrupt. (As mentioned above, a Latest-start-time Interrupt is raised on a waiting task when it reaches its latest start time (or LST), i.e. the last time when it can start executing and still complete by its deadline).

The first task in each interval is order-scheduled. The subsequent tasks (if any) in this interval may be order-scheduled or lst-scheduled. Proposition 5.1 shows that once a task is lst-scheduled all subsequent tasks of this interval must be lst-scheduled. During an interval several order-scheduled tasks may complete but only one lst-scheduled task can complete (this task will also be the last task that executes in the interval).

Proposition 5.1 According to the scheduling of D^{over} once a task is lst-scheduled, then all subsequent tasks, in the current interval, are lst-scheduled.

Proof.

Suppose the current task, T_{current}, is lst-scheduled and a task, T_{arrival}, is released. T_{arrival} will not be scheduled by the Task Release handler, because when the current task is lst-scheduled avaitime equals zero (see statement 77 of D^{over}) hence no task can be scheduled by the Task Release handler (see statement 54 of D^{over})

Let $\text{recentval}(t)$ denote 3 recentval at time t (see statement 1) and $\text{achievedvalue}(t)$ denote the value achieved during the current interval before t. For an interval I, $\text{achievedvalue}(I)$ is the total value obtained during I.

We partition the value obtained during I in two different ways:

- ordervalue vs. lstvalue:

3In the following only recentval is a variable explicitly manipulated by D^{over}. All the others: zerolaxval, poslaxval, ordervalue and lstvalue are introduced here to facilitate the analysis. This is way they do not reference algorithm statements.
ordervalue(I) is the total value obtained by order-scheduled tasks that completed during I. The value obtained by lst-scheduled tasks is denoted by lstvalue(I) (there is at most one such task in any interval I).

- zerolaxval vs. poslaxval:

zerolaxval(I) denotes the total value obtained by tasks that completed at their deadlines during I (tasks in S^0). The value obtained by tasks that completed before their deadlines is denoted by poslaxval(I).

Hence, for every interval

$$\text{achievedvalue}(I) = \text{ordervalue}(I) + \text{lstvalue}(I) = \text{zerolaxval}(I) + \text{poslaxval}(I)$$

When the index (I) is omitted we refer to the entire execution. For example ordervalue denotes the total value obtained by order-scheduled tasks summing over all intervals.

Example 5.2 Before the detailed analysis, let us first study an example of D^{over}'s scheduling. Consider the following overloaded collection of six tasks. For notational convenience we will denote the tasks by their deadlines, hence for example T_{20} is a task with deadline at time 20. In this example we assume uniform value density.

<table>
<thead>
<tr>
<th>Task</th>
<th>Release-Time</th>
<th>Computation-Time</th>
<th>Deadline</th>
<th>Δ_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{20}</td>
<td>0</td>
<td>6</td>
<td>20</td>
<td>[0, 20]</td>
</tr>
<tr>
<td>T_{34}</td>
<td>1</td>
<td>26</td>
<td>34</td>
<td>[1, 34]</td>
</tr>
<tr>
<td>T_{24}</td>
<td>1</td>
<td>20</td>
<td>24</td>
<td>[1, 24]</td>
</tr>
<tr>
<td>T_{18}</td>
<td>2</td>
<td>5</td>
<td>18</td>
<td>[2, 18]</td>
</tr>
<tr>
<td>T_{17}</td>
<td>3</td>
<td>2</td>
<td>17</td>
<td>[3, 17]</td>
</tr>
<tr>
<td>T_5</td>
<td>4</td>
<td>1</td>
<td>5</td>
<td>[4, 5]</td>
</tr>
</tbody>
</table>

Table 1: The tasks for Example 5.2.

D^{over} schedules the above collection as follows: In the beginning availtime is ∞ and Qrecent is empty.

First, D^{over} schedules T_{20} to run at time 0. Availtime is set to 14 since this is T_{20}'s laxity.

At time 1, T_{34} is released into the system. Since T_{34}'s deadline is not earlier than the current task's (T_{20}), T_{34} is inserted into Qother (and Qlst with LST equal 8). Also at time 1, T_{24} is released. Again, since its deadline is after 20 this task is inserted into Qother and Qlst with LST equals 4.

At time 2, T_{18} is released. This time the current task is preempted. T_{20} is inserted into Qrecent and Qlst with LST equals 16. Availtime is decremented by the computation time of T_{18}. Its new value is 9. The value of recentval is set to the value of T_{20} (6).

T_{18} executes for one time unit until time 3, when T_{17} is released. T_{17} is scheduled since its computation time (2) is smaller than availtime (9). Availtime is decremented by the computation
time of T_{17}. Its new value is 7. The value the value of T_{18} (5) is added to recentval which becomes 11.

At time 4 two events occur: T_{24} reaches its LST and T_5 is released. These events can be handled in any order and we choose to handle the Latest-start-time Interrupt first. T_{24} reaches its LST but its value is smaller than twice $(1 + \sqrt{k} = 2)$ the value of the current task plus recentval (2 + 11). Hence, T_{24} is abandoned. T_5 is released and its deadline is earlier than the current task’s (T_{17}). T_5 is scheduled since its computation time is smaller then availtime (1 < 7). T_5 has laxity of zero which is smaller than the current availtime minus the computation time of T_5 (6). Hence, availtime is now set to 0 and recentval becomes 11 + 2 = 13.

At time 5, T_5 completes and since T_{17} is the task with the earliest deadline it is scheduled. Availtime is now 6 because this the value of availtime when T_{17} was executing (7) minus the time elapsed since it was inserted to Q recent (1). The value of T_{17} is subtracted from recentval which becomes 13 – 2 = 11.

The remaining computation time of T_{17} is one unit, hence at time 6 it completes. The next task in Q recent is T_{18} which has a remaining computation time of 4 units. Availtime is set to 6 which is value of availtime when T_{18} was executing (9) minus the time elapsed since it was inserted to Q recent ((6 – 3) = 3) (the value of T_{18} is subtracted from recentval which becomes 11 – 5 = 6).

However, T_{18} will execute only until 8 when T_{34} reaches its LST. The value of T_{34} is big enough to preempt the current task. All tasks from Q recent are moved to Q other and availtime as well as recentval are reset to zero.

The LST of T_{18} is 16 and of T_{20} (the only other task in Q lst) is 15. These tasks will generate Latest-start-time Interrupt in these respective times, both will be abandoned.

At time 34, T_{34} completes its execution and D over finished scheduling this history. Table 2 summarizes the scheduling decisions of D over.

<table>
<thead>
<tr>
<th>time released (LST)</th>
<th>preempted</th>
<th>completed</th>
<th>scheduled</th>
<th>availtime</th>
<th>Q recent</th>
<th>recentval</th>
<th>Q other</th>
<th>comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T_{20}</td>
<td>T_{20}</td>
<td>∞</td>
<td>$laxity(T_{20}) = 14$</td>
<td>0</td>
<td>0</td>
<td></td>
<td>new interval</td>
</tr>
<tr>
<td>1</td>
<td>T_{34}</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>T_{34}</td>
<td>LST of T_{34} is 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>T_{18}</td>
<td>T_{20} (16)</td>
<td>T_{18}</td>
<td>$min(14 - 5, 13)$</td>
<td>T_{20}</td>
<td>6</td>
<td>T_{24}, T_{34}</td>
<td>LST of T_{24} is 4</td>
</tr>
<tr>
<td>3</td>
<td>T_{17}</td>
<td>T_{18} (14)</td>
<td>T_{17}</td>
<td>$min(9 - 2, 12)$</td>
<td>T_{18}, T_{20}</td>
<td>5 + 6</td>
<td>T_{34}, T_{34}</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$min(9 - 2, 12)$</td>
<td>T_{18}, T_{20}</td>
<td>5 + 6</td>
<td>T_{34}</td>
</tr>
<tr>
<td>5</td>
<td>T_{5}</td>
<td>T_{17} (16)</td>
<td>T_{5}</td>
<td>$min(7 - 1, 0)$</td>
<td>T_{17}, T_{18}, T_{20}</td>
<td>2 + 5 + 6</td>
<td>T_{34}</td>
<td>T_{5} has no laxity</td>
</tr>
<tr>
<td>6</td>
<td>T_{17}</td>
<td>T_{18}</td>
<td>7 – (5 – 4) = 6</td>
<td>T_{18}, T_{20}</td>
<td>5 + 6</td>
<td>T_{34}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>T_{18} (15)</td>
<td>T_{34}</td>
<td>9 – (6 – 3) = 6</td>
<td>T_{20}</td>
<td>6</td>
<td>T_{34}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td>T_{18}’s LST</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td>T_{18}’s LST</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td>interval closed</td>
</tr>
</tbody>
</table>

Table 2: D over scheduling.
So, for this history, $S^0 = [T_5, T_{34}], S^p = [T_{17}]$ and $F = [T_{18}, T_{20}, T_{24}]$. Only three tasks completed their execution and the total value obtained by D^{over} is 29. A clairvoyant scheduler can achieve a value of 34 by scheduling T_{17}, T_{20} and T_{34}. Also notice that the system is already overloaded at time 1, but the first time an overload is “detected” by D^{over} is at time 4.

Our goal is to show that D^{over} has a competitive factor of $\frac{1}{(1+\sqrt{k})^2}$ for every collection of tasks with importance ratio of k. We will start by proving some lemmas about the behavior of D^{over}. Then we will try to estimate the best possible behavior of a clairvoyant algorithm by comparison to D^{over}. Our basic strategy is to bound from below what D^{over} achieves during each interval. This will lead to a global lower bound over the entire execution. Then, we bound from above what a clairvoyant scheduler can achieve during the entire execution.

5.1 Some Lemmas about D^{over}’s Scheduling

In this section we present some technical lemmas about the behavior of D^{over}. These lemmas will be used in the next section when comparing D^{over}’s performance with that of a clairvoyant scheduler. These lemmas concern the relationship between the the interval length and the value achieved by D^{over} in that interval (lemma 5.3). As well as the relationship between the computation time and value of tasks abandoned in an interval with respect to the value achieved in the interval (lemma 5.4 and 5.5).

Lemma 5.2

1. For any task T_i in S^0,

$$\Delta_i = [r_i, d_i] \subseteq BUSY$$

2. For any task T_i in F. Suppose T_i was abandoned at time $t_{abandon}$, then

$$[r_i, t_{abandon}] \subseteq BUSY$$

PROOF.

A processor is idle, under D^{over} scheduling, only if there is no ready task.

- A task T_i of S^0 does not complete before its deadline hence it is a ready task during all its executable period. This implies that there is no idle time during the executable period of T_i.

- Similarly, a task of F is a ready task from its release time to the point at which it is abandoned. Therefore there is no idle time between its release point and its abandonment point.
Lemma 5.3 For any interval $I = (t_{\text{begin}}, t_{\text{close}})$, the length of I, $t_{\text{close}} - t_{\text{begin}}$ will satisfy

$$t_{\text{close}} - t_{\text{begin}} \leq \text{ordervalue}(I) + (1 + \frac{1}{\sqrt{k}}) \cdot \text{Istvalue}(I) = \text{achievedvalue}(I) + \frac{1}{\sqrt{k}} \cdot \text{Istvalue}(I)$$

Recall that ordervalue(I) and Istvalue(I) are the values obtained from the order-scheduled and the lst-scheduled tasks respectively during I.

PROOF.

An interval $I = [t_{\text{begin}}, t_{\text{close}}]$, has the following two sub-portions the second of which may be empty.

1. $[t_{\text{begin}}, t_{\text{first lst}}]$
 From the beginning of I to the point in time, $t_{\text{first lst}}$, in which the first lst-scheduled task is scheduled. During this period all tasks are order-scheduled and some may complete their execution.

 If no task is lst-scheduled in I then define $t_{\text{first lst}}$ to be t_{close}. In this case the second sub-portion is empty.

2. $[t_{\text{first lst}}, t_{\text{close}}]$
 During this period, all tasks are scheduled and preempted by Latest-start-time Interrupt. Only the last task to be scheduled completes.

If there are no lst-scheduled tasks in I then all tasks that executed from t_{begin} to t_{close} completed successfully. The value achieved is ordervalue(I) and is at least as big as the duration of execution. Hence, the lemma is proved in this case.

Otherwise, suppose that T_1, T_2, \ldots, T_m ($m \geq 1$) are the tasks that were lst-scheduled in I. Hence, T_1 was scheduled at $t_{\text{first lst}}$, later it was preempted (and abandoned) by T_2 and so forth. Eventually T_m preempts T_{m-1} and completes at t_{close}, its value v_n is lstvalue(I).

Denote by l_i the length of the execution of T_i during the process above. T_m preempted T_{m-1} hence $v_m > (1 + \sqrt{k})v_{m-1}$. Which yields 5

$$l_{m-1} < v_{m-1} < \frac{v_m}{(1 + \sqrt{k})} = \frac{\text{Istvalue}(I)}{(1 + \sqrt{k})}$$

Going backward along the chain of preemptions we get:

$$l_i < v_i < \frac{v_{i-1}}{(1 + \sqrt{k})} < \frac{\text{Istvalue}(I)}{(1 + \sqrt{k})^{m-i}} \text{ for all } 1 \leq i \leq m - 1$$

\text{4}Recall that a value density is always equal or greater than 1, see assumption 3.2 above.

\text{5}Note that always $l_i \leq v_i$. However, for a task that was abandoned a strict inequality $l_i < v_i$ holds.
T_1 preempted the last order-scheduled task hence (see statement 72 of $D^\overline{\text{over}}$)

$$v_1 > (1 + \sqrt{k})(\text{recentval}(t_{\text{first, last}}) + \text{value(current task at time } t_{\text{first, last}}))$$

(2)

Also,

$$t_{\text{first, last}} - t_{\text{begin}} \leq \text{ordervalue}(I) + \text{recentval}(t_{\text{first, last}}) + \text{value(current task at time } t_{\text{first, last}})$$

(3)

This holds because the processor is not idle between t_{begin} and $t_{\text{first, last}}$ (as part of $BUSY$) and the right hand side above represents the sum of the values of all the tasks that were scheduled between t_{begin} and $t_{\text{first, last}}$. This sum must be greater than or equal to their period of execution by the normalized importance assumption (assumption 3.2). Inequalities 1, 2 and 3 imply

$$t_{\text{first, last}} - t_{\text{begin}} < \text{ordervalue}(I) + \frac{v_1}{1 + \sqrt{k}} < \text{ordervalue}(I) + \frac{\text{lstvalue}(I)}{(1 + \sqrt{k})^m}$$

We have produced the following bound on the distance between t_{begin} and t_{close}:

$$t_{\text{close}} - t_{\text{begin}} = (t_{\text{first, last}} - t_{\text{begin}}) + (t_{\text{close}} - t_{\text{first, last}})$$

$$= (t_{\text{first, last}} - t_{\text{begin}}) + (l_1 + l_2 + \cdots + l_m)$$

$$< \text{ordervalue}(I) + \text{lstvalue}(I) \cdot \left(1 + \frac{1}{(1 + \sqrt{k})} + \frac{1}{(1 + \sqrt{k})^2} + \cdots + \frac{1}{(1 + \sqrt{k})^m}\right)$$

$$< \text{ordervalue}(I) + \text{lstvalue}(I) \cdot \sum_{i=0}^{\infty} \frac{1}{(1 + \sqrt{k})^i}$$

$$= \text{ordervalue}(I) + \text{lstvalue}(I) \cdot \left(1 + \frac{1}{\sqrt{k}}\right)$$

$$= \text{achievedvalue}(I) + \frac{1}{\sqrt{k}} \cdot \text{lstvalue}(I)$$

The last equality follows from the fact that $\text{achievedvalue}(I) = \text{ordervalue}(I) + \text{lstvalue}(I)$ by definition. □

Lemma 5.4 Suppose T_i was abandoned during the interval I. Then

$$v_i \leq (1 + \sqrt{k}) \cdot \text{achievedvalue}(I)$$

Recall that $\text{achievedvalue}(I)$ is the total value obtained during I.

Proof.

Let $I = (t_{\text{begin}}, t_{\text{close}})$ be an interval. Define the Prospective Value map of I, PV_I, as follows:

$$PV_I(t) = \text{ordervalue}(t) + \text{recentval}(t) + \text{value(current tasks at time } t)$$

where $t_{\text{begin}} \leq t \leq t_{\text{close}}$

Claim For every interval, $I = [t_{\text{begin}}, t_{\text{close}}]$, 16
1. PV_I is monotone non-decreasing.

2. PV_I reaches, at the end of the interval, the total value obtained in I, i.e,

$$PV_I(t_{close}) = achieved(I)$$

Note: PV is not a function because it might have several values for one time instance since D_{over} can make several scheduling decisions at one time instance (see assumption 3.2). However, as a map with the ordered sequence of scheduling decisions as its domain, PV_I is a function.

Proof of claim.

There are two cases.

The first applies when there is no lst-scheduled task in I, the other applies when such tasks exist.

Case 1: Suppose that there are no lst-scheduled tasks in I. Then every task that was scheduled does complete. Let $S(t)$ be the set of tasks that were scheduled (not necessarily completed) up to t. One can verify by induction that

$$PV_I(t) = \sum_{T_i \in S(t)} v_i$$

The reason is that no scheduled task is abandoned hence at each moment a task is either the current task or in Q_{recent} or had completed. At the closing of I all tasks have completed. Hence,

$$PV_I(t_{close}) = \sum_{T_i \in S(t)} v_i = achieved(I)$$

PV_I is monotone (when there are no lst-scheduled tasks) because $S(t)$ is a monotone increasing set of tasks.

Case 2: Suppose there were lst-scheduled tasks. Assume that the first lst-scheduled task, T_1, was scheduled at time $t_{first lst}$. Let t be a time instance just before the scheduling of T_1, then by definition:

$$PV_I(t) = ordval(t) + recentval(t) + value(current tasks at time t)$$

T_1 is scheduled only if

$$v_1 > (1 + \sqrt{k)} \cdot (recentval(t) + value(current tasks at time t))$$

When T_1 is scheduled recentval is set to zero hence we can conclude that

$$PV_I(t_{first lst}) = ordval(t_{first lst}) + recentval(t_{first lst}) + value(T_1)$$

$$= ordval(t) + 0 + value(T_1)$$

$$> ordval(t) + (recentval(t) + value(current tasks at time t))$$

$$= PV_I(t)$$

Thus, PV_I is monotone from t_{begin} to $t_{first lst}$ (as in the case when there are no lst-scheduled tasks). It is left to show that PV_I continues to be monotone. After $t_{first lst}$, PV_I equals to

$$ordval(t) + value(current tasks at time t)$$
because \textit{recentval} remains equal to zero. This is a monotone increasing value since \textit{ordervalue}(I) is fixed and a task T_i will preempt the current task only if it has a larger value than the current task's value. In particular if T_i is the last task to be scheduled in I then

$$
PV_i = \text{ordervalue}(I) + v_i
$$

$$
= \text{ordervalue}(I) + \text{lstvalue}(I) = \text{achievedvalue}(I)
$$

So, the claim is proved.

\textbf{end of proof of claim}

There is only one way a task, T_i, can be abandoned at time t:

- T_i reaches its LST at t. A \textit{Latest-start-time Interrupt} is generated. However, T_i has insufficient value to preempt the task executing at time t.

Hence if T_i was abandoned then

$$
v_i < (1 + \sqrt{k}) \cdot \{\text{recentval}(t) + \text{value}(\text{current task at time } t)\}
$$

$$
\leq (1 + \sqrt{k}) \cdot PV_i(t), \text{ by definition of } PV
$$

$$
\leq (1 + \sqrt{k}) \cdot \text{achievedvalue}(I), \text{ by the claim}
$$

\square

\textbf{Lemma 5.5} Suppose T_i was abandoned at time t in $I = [t_{\text{begin}}, t_{\text{close}}]$. Then,

$$
c_i \geq d_i - t_{\text{close}}
$$

\textbf{PROOF}.

A task T_i, can be abandoned at time t only when:

- It reaches its LST at t. A \textit{Latest-start-time Interrupt} is generated. However, the current task is not preempted.

Then T_i reached its LST hence its computation time is at least $d_i - t$. Also, $t \leq t_{\text{close}}$ by assumption. Hence the computation time of T_i is at least $d_i - t_{\text{close}}$.

\square

\textbf{5.2 How Well Can a Clairvoyant Scheduler Do?}

Given a collection of tasks Γ, our goal is to bound the maximum value that a clairvoyant algorithm can obtain from scheduling Γ. We do it by observing the way D_{over} schedules Γ. From D_{over}'s scheduling we get the partitioning of the tasks to S^0, S^p and F we also take notice of the time periods in which the processor was not idle in this scheduling. The union of these periods is called \textit{BUSY}.

18
Definition 5.3 BUSY
Suppose D^over schedules \(\Gamma \). Let BUSY denote the time during which the processor is not idle during the execution of \(\Gamma \). For simplicity, the length of BUSY will also be denoted by BUSY.

Note that BUSY equals the union of all intervals created when D^over schedules \(\Gamma \).

In order to bound the value that can be achieved from scheduling \(\Gamma \), we will offer the clairvoyant algorithm two gifts that can only improve the value it can obtain. We will show an upper bound on the value the clairvoyant algorithm can get with these gifts hence bounding the value it can achieve from the original collection.

- As a first gift, we will give the clairvoyant algorithm the sum of the values of all tasks in \(S^0 \) at no cost to it (i.e. it will devote no time to these tasks). Then we will see what the clairvoyant algorithm can achieve on \(F \cup S^0 \).

- As a second gift, suppose that in addition to the value achieved from scheduling the tasks \(F \cup S^0 \) the clairvoyant scheduler can get an additional value called granted value. The amount of granted value depends on the scheduling chosen by the the clairvoyant scheduler: A value density of \(k \) will be granted for every period of BUSY that is not used for executing a task.

The clairvoyant scheduler must consider that scheduling a task might reduce the granted value (since time in BUSY is used). Of course, when this reduction is bigger than the value of a task then the task should not be scheduled. Suppose the clairvoyant algorithm had chosen a scheduling for \(F \cup S^0 \). We can assume that no task was scheduled entirely during BUSY because the granted value lost would be greater or equal to the value gained from scheduling the task.

We will show that tasks of \(S^0 \) can execute only during BUSY hence this leaves only tasks of \(F \) that were scheduled partially\(^6\) outside BUSY. Executing \(T \) results in a gain of value(\(T \)), but entails a loss of the granted value for the time that \(T \) executed in BUSY.

The clairvoyant scheduler has now two options. It can schedule no task during the entire BUSY period and get only (the whole) granted value or it can use some of BUSY in order to schedule some of \(F \) tasks. We will show that the maximal possible gain from choosing the second option is bounded by \((1 + \sqrt{k}) \cdot \text{achievedvalue}.\) Putting this altogether will give the desired result (theorem 5.12).

Example 5.4
To see the possibilities opened to the clairvoyant algorithm by introducing the granted value consider the following example:

The length of BUSY is 5 and the importance ratio, \(k \), is 4. \(F \) contains only one task, \(T \), with computation length 3 and value density 2.

\(^6\)When the computation time of a task is known precisely when it is released, a task \(T \in F \) can not be scheduled completely outside BUSY (see lemma 5.2). However, if the computation time of a task is not exactly known (section 8), then a failed task \(T \) may be scheduled completely outside BUSY.
Without scheduling T the value obtained by the clairvoyant algorithm only from the granted value is $5 \times 4 = 20$. If T could have been scheduled without using any of BUSY time then its value will be added to give $20 + 2 \times 3 = 26$. However if the clairvoyant algorithm must use 2 units of BUSY's time in order to schedule T then the total value will be only $(5 - 2) \times 4 + 6 = 18$, hence it is better not to schedule T in this case. As a matter of fact, whenever T has to use more than $\frac{3}{2}$ units of BUSY's time it should not be scheduled.

Suppose a clairvoyant scheduler has to schedule a collection of tasks A. We can assume that it schedules a task only if that task eventually completes. Hence the work of a clairvoyant scheduler is first to choose the set of tasks $A' \subseteq A$ that will be scheduled and then to work out the details of the processor allocation among the tasks of A'. We will call all possible selections of A' and processor allocation a scheduling of A.

In the scenario above the clairvoyant scheduler can achieve the maximal value of the sum in equation 4 below ranging over all possible scheduleings of F.

\[
\frac{\text{value obtained from those length of time in BUSY not utilized to }}{\text{tasks of } F \text{ that were scheduled} + k \cdot \text{schedule the tasks of } F}
\]

Denote by $C(\cdot)$ the value that a clairvoyant algorithm can achieve from a collection of tasks. We would like to show that $C(F \cup S^0)$ can not be greater then this maximal value. This will then give us an upper bound on what a clairvoyant algorithm can achieve.

Lemma 5.6

\[C(F \cup S^0) \leq \max_{\text{possible scheduling of } F} \left\{ \left. \frac{\text{value obtained by length of time in BUSY not utilized by tasks of } F}{\text{scheduling tasks of } F + k \cdot \text{utilized by tasks of } F} \right\} \]

Proof.

\[C(F \cup S^0) \leq \max \left\{ \frac{\text{value obtained from scheduling value obtained from scheduling}}{\text{scheduling tasks of } F + \text{tasks of } S^0 \text{ during the time not used by tasks of } F} \right\} \]

S^0 tasks can be scheduled only during BUSY (lemma 5.2) hence,
value obtained from
scheduling tasks of F + value obtained from scheduling tasks of S^0
during the time not used by tasks of F

\leq \text{value obtained by}
\text{scheduling } F
+ k \cdot \text{length of time in } BUSY \text{ not utilized }
\text{by tasks of } F

The lemma is proved.

\[\square \]

With the above gifts, the clairvoyant scheduler can maximize the sum in 4 above and hence obtain a value of at least $C(F \cup S^0)$.

Suppose a task $T_f \in F$ is scheduled to completion. If T_f executes entirely during $BUSY$ then the left hand factor of the sum is increased only by v_i which is smaller than or equal to $k \cdot c_i$ while the right hand factor is decreased by $k \cdot c_i$ giving zero or negative net change. Thus we assume that T_f executes (at least partially) outside $BUSY$.

Lemma 5.7 Suppose T_f was abandoned (by D^{over}) at time t_{aband} and that $I = [t_{\text{begin}}, t_{\text{close}}]$ is the interval in which T_f is abandoned. Then, if T_f is to be executed (by the clairvoyant algorithm) anywhere outside $BUSY$ it must be after t_{close}.

Proof.

$\Delta_f = [r_f, t_{\text{aband}}] \cup [t_{\text{aband}}, d_f]$. The first portion of Δ_f is contained in $BUSY$ (lemma 5.2). $[t_{\text{aband}}, t_{\text{close}}] \subseteq I \subseteq BUSY$, hence if T_i is to be scheduled anywhere outside $BUSY$ it must be after t_{close}.

\[\square \]

Now we are ready to give an upper bound on how much additional value can the clairvoyant algorithm achieve by scheduling tasks of F compared with collecting only the granted value without scheduling any tasks. We make strong use of the fact that when a task T is abandoned during I, T's value can not be too large with respect to $\text{achievedvalue}(I)$. We believe the techniques in this lemma to be widely useful.

Lemma 5.8 With the above gifts, the total net gain obtained by the clairvoyant algorithm from scheduling the tasks abandoned during I is not greater than

$$(1 + \sqrt{k}) \cdot \text{achievedvalue}(I)$$

Proof.

\[^7 \text{Note that parts of } [t_{\text{close}}, d_f] \text{ might be included in } BUSY \text{ as a new interval may be opened before } d_f \]
Assume that a clairvoyant scheduler selected a scheduling for the tasks of \(F \) considering the value that can be gained from leaving \(BUSY \) periods idle. We can assume that a clairvoyant algorithm executes a task only if this task eventually completes. If the clairvoyant algorithm does not schedule any of the tasks abandoned during \(I \) the lemma is proved. Hence, assume that of all the tasks abandoned in \(I = [t_{\text{begin}}, t_{\text{close}}] \), the clairvoyant scheduler schedules \(T_1, T_2, \cdots T_m \) (in order of completion). These tasks execute for \(l_1, l_2, \cdots l_m \) time after \(t_{\text{close}} \) (hence, maybe outside \(BUSY \)). We know that all the \(l_i \)'s are greater than zero (otherwise there is no net gain).

Lemma 5.4 ensures that the biggest possible value of a task to be abandoned during \(I \) is \((1 + \sqrt{k}) \cdot \text{achievedvalue}(I)\). If such a task has value density \(k \) its execution time is \((1 + \sqrt{k}) \cdot \text{achievedvalue}(I) \). Denote by \(L \) the maximal value of this execution time and the length of \(l_1 \)

\[
L = \max \left\{ \frac{(1 + \sqrt{k}) \cdot \text{achievedvalue}(I)}{k}, l_1 \right\} \tag{5}
\]

Let \(j \) be the index less than or equal to \(m \) such that

\[
\sum_{i \leq j} l_i \leq L < \sum_{i \leq j} l_i + l_{j+1}
\]

If no such \(j \) exists define \(j \) to be \(m \).

First, assume that we have an equality, \(\sum_{i \leq j} l_i = L \). The \(\sum_{i \leq j} l_i < L \) case is a little more complicated and will be treated later.

We will show that the net gain from scheduling tasks within a period of \(L \) after the end of the interval cannot be greater than \((1 + \sqrt{k}) \cdot \text{achievedvalue}(I)\).

- Suppose that in (5), the maximum is the first term. Then the total net gain from \(T_1, T_2, \cdots T_j \) is not greater than

\[
k \cdot \sum_{i \leq j} l_i = k \cdot L = (1 + \sqrt{k}) \cdot \text{achievedvalue}(I) \tag{6}
\]

- If on the other hand the second term is maximal in (5) then the value obtained by scheduling \(T_1 \) is at most \((1 + \sqrt{k}) \cdot \text{achievedvalue}(I)\) (lemma 5.4).

Now we will show that the net gain from scheduling tasks “after” \(L \) is never positive.

Every task \(T_i \) that executed at a time of at least \(L \) after the end of the interval, where \(j < i \leq m \), has an execution time of at least \(d_i - t_{\text{close}} \) (see lemma 5.5).

\[
d_i - t_{\text{close}} \geq \text{"the point at which } T_i \text{ completes (according to the clairvoyant)" - } t_{\text{close}}
\geq (t_{\text{close}} + \sum_{g \leq j} l_g) - t_{\text{close}}
\geq l_i + \sum_{g \leq j} l_g = l_i + L
\]

22
For $i > j$, T_i was scheduled by the clairvoyant scheduler but used only l_i time after t_{close}. Hence, T_i executed at least L time before t_{close} that is to say in BUSY by lemma 5.7. The "loss" from scheduling T_i during BUSY is at least $k \cdot L$. The value obtained by scheduling T_i is at most $(1 + \sqrt{k}) \cdot \text{achievedvalue}(I)$ (lemma 5.4). Hence the net gain is less than or equal to

$$
(1 + \sqrt{k}) \cdot \text{achievedvalue}(I) - k \cdot L \leq (1 + \sqrt{k}) \cdot \text{achievedvalue}(I) - (1 + \sqrt{k}) \cdot \text{achievedvalue}(I) = 0
$$

We conclude that the clairvoyant algorithm is better off not scheduling any task T_i, $j < i \leq m$. Hence, the lemma is proved for the case that $\sum_{i \leq j} l_i = L$.

What if L does not equal any of the partial sums? That is, if $\sum_{i \leq j} l_i < L < \sum_{i \leq j+1} l_i$. We will augment the total value given to the clairvoyant by some non-negative amount. Then we will show that even with this addition the net gain achieved by the clairvoyant algorithm is bounded by $(1 + \sqrt{k}) \cdot \text{achievedvalue}(I)$, hence proving the lemma.

First we will take the value density of T_j to be k. This move can only increase the overall value achieved by the clairvoyant algorithm. We will also "transfer" some execution time (and hence also value) from T_{j+1} to T_j. We will transfer exactly $L - \sum_{i \leq j} l_i$ execution time. There will be a non-negative net increase of $(k - \text{imp}(T_{j+1})) \cdot (L - \sum_{i \leq j} l_i)$ in the overall achieved value of the clairvoyant algorithm and we are back in the case of $L = \sum_{i \leq j} l_i$. The total net gain from T_1, \cdots, T_{j+1} is bounded by $(1 + \sqrt{k}) \cdot \text{achievedvalue}(I)$ while the net gain from all other tasks is zero or negative.

Our strategy thus far has entailed partitioning the problem into what the clairvoyant can obtain with respect to a given interval compared to what D_{over} obtains in that interval. We now compute an upper bound for what the clairvoyant algorithm can obtain over all intervals. This may overestimate what the clairvoyant algorithm obtains, because the time periods that the clairvoyant algorithm uses on the tasks of two neighboring intervals may overlap.

Corollary 5.9 With the above gifts, the total net gain (over the entire execution) obtained by the clairvoyant algorithm from scheduling the tasks of F is not greater than

$$(1 + \sqrt{k}) \cdot \text{achievedvalue}$$

Proof.

Lemma 5.8 measured the maximum net gain per interval. By construction, each task is accounted for in exactly one interval. Therefore, summing over all intervals we conclude that the total net gain during the entire execution is less than or equals to $(1 + \sqrt{k}) \cdot \text{achievedvalue}$.

The previous corollary bounds the value the clairvoyant algorithm could obtain beyond the granted value. Now, we will estimate the granted value (by bounding the length of BUSY) to get an upper bound on $C(S^0 \cup F)$.

23
Lemma 5.10

\[C(S^0 \cup F) \leq k \cdot (\text{achievedvalue} + \frac{1}{\sqrt{k}} \cdot \text{zerolaxval}) + (1 + \sqrt{k}) \cdot \text{achievedvalue} \]

\[= (k + 1 + \sqrt{k}) \cdot \text{achievedvalue} + \sqrt{k} \cdot \text{zerolaxval} \]

PROOF.

Lemma 5.6 shows that \(C(F \cup S^0) \) is bounded by the maximum, ranging over all possible schedulings of the tasks of \(F \), of the following sum:

(value obtained by scheduling \(F \)) + \(k \cdot (\text{length of time in BUSY not utilized by } F \text{ tasks}) \).

Corollary 5.9 above, shows that this sum is less than or equal to

\((1 + \sqrt{k}) \cdot \text{achievedvalue} + k \cdot \text{BUSY} \)

Lemma 5.3, summed over all intervals yields:

\(\text{BUSY} \leq \text{achievedvalue} + \frac{1}{\sqrt{k}} \cdot \text{lstvalue} \)

\(\text{lstvalue}(I) \leq \text{zerolaxval}(J) \) always holds because every task that is lst-scheduled must have completed at its deadline. This implies that

\(\text{BUSY} \leq \text{achievedvalue} + \frac{1}{\sqrt{k}} \cdot \text{zerolaxval} \)

Hence,

\[C(S^0 \cup F) \leq k \cdot (\text{achievedvalue} + \frac{1}{\sqrt{k}} \cdot \text{zerolaxval}) + (1 + \sqrt{k}) \cdot \text{achievedvalue} \]

\[= (k + 1 + \sqrt{k}) \cdot \text{achievedvalue} + \sqrt{k} \cdot \text{zerolaxval} \]

Which proves the lemma.

\[\square \]

We gave the clairvoyant algorithm the value of all tasks in \(S^p \). We also got a bound on \(C(S^0 \cup F) \). The following lemma shows that the sum of these two values bounds the value the clairvoyant can get from the entire collection.

Lemma 5.11

\[C(F \cup S^0 \cup S^p) \leq C(F \cup S^0) + C(S^p) \leq C(F \cup S^0) + \sum_{T_i \in S^p} v_i \]

PROOF.
$C(\cdot)$ is a sublinear function. For every two collections of tasks A and B the value that a clairvoyant algorithm can get from scheduling $A \cup B$ is not greater than the sum of values from scheduling each collection separately. The reason is that executing tasks of A might interfere with tasks of B and vice versa.

$$C(A \cup B) \leq C(A) + C(B)$$

Hence,

$$C(F \cup S^0 \cup S^p) \leq C(F \cup S^0) + C(S^p)$$

$C(S^p)$ can not be greater than the sum of the values of all the tasks in S^p. That yields the desired result.

Given a collection of tasks Γ, lemmas 5.10 and 5.11 give an upper bound on the value the clairvoyant algorithm can obtain from Γ in terms of the value obtained by D_{over} (achievedvalue, zerolaxval and poslaxval). The next theorem puts these results together.

Theorem 5.12 D_{over} has a competitive factor of $\frac{1}{(1 + \sqrt{k})^2}$. That is, D_{over} obtains at least $\frac{1}{(1 + \sqrt{k})^2}$ times the value of a clairvoyant algorithm given any task collection Γ.

Proof.

In the notation of the lemmas above, we got from lemma 5.10 that

$$C(S^0 \cup F) \leq (k + 1 + \sqrt{k}) \cdot \text{achievedvalue} + \sqrt{k} \cdot \text{zerolaxval}$$

We will bound $\sqrt{k} \cdot \text{zerolaxval}$ in the above equation.

$$\sqrt{k} \cdot \text{achievedvalue} = \sqrt{k} \cdot \text{zerolaxval} + \sqrt{k} \cdot \text{poslaxval}$$

$$\geq \sqrt{k} \cdot \text{zerolaxval} + \text{poslaxval}$$

$$\Rightarrow \sqrt{k} \cdot \text{zerolaxval} \leq \sqrt{k} \cdot \text{achievedvalue} - \text{poslaxval}$$

Hence, replacing $(\sqrt{k} \cdot \text{zerolaxval})$ by $(\sqrt{k} \cdot \text{achievedvalue} - \text{poslaxval})$ yields:

$$C(S^0 \cup F) \leq (k + 1 + \sqrt{k}) \cdot \text{achievedvalue} + \sqrt{k} \cdot \text{achievedvalue} - \text{poslaxval}$$

$$= (1 + \sqrt{k})^2 \cdot \text{achievedvalue} - \text{poslaxval}$$

Using lemma 5.11 we get:

$$C(F \cup S^0 \cup S^p) \leq C(F \cup S^0) + C(S^p)$$

$$= C(F \cup S^0) + \text{poslaxval}$$

$$\leq ((1 + \sqrt{k})^2 \cdot \text{achievedvalue} - \text{poslaxval}) + \text{poslaxval}$$

$$= (1 + \sqrt{k})^2 \cdot \text{achievedvalue}$$

\qed
5.3 The Running Complexity of \(D^{over} \)

In the previous section we analyzed the performance of \(D^{over} \) in the sense of what value it will achieve from scheduling tasks to completion. In this section we study the cost of executing the scheduling algorithm itself.

Theorem 5.13 If \(n \) bounds the number of unscheduled tasks in the system at any instant then each task incurs an \(O(\log n) \) amortized cost.

Proof.

\(D^{over} \) requires three data structures, called \(Q_{recent}, Q_{other} \) and \(Q_{lst} \), all of them priority queues, implemented as balanced search trees, e.g., 2-3 trees. They support \(\text{Insert}, \text{Delete}, \text{Min} \) and \(\text{Dequeue} \) operations, each taking \(O(\log n) \) time for a queue with \(n \) tasks. The structures share their leaf nodes which represent tasks.

\(D^{over} \) consists of a main loop with three "interrupt handlers" within it. The total number of operations is dominated by the number of times each of these handler clauses is executed and the number of data structure operations in each clause.

Suppose a history of \(m \) tasks is given.

First, let us estimate the number of times each handler clause can be executed. A task during its lifetime causes exactly one \(\text{Task Release} \) event and at most one \(\text{Task Completion} \) event as well as at most one \(\text{Latest-start-time Interrupt} \) event. Hence, while scheduling \(m \) tasks the total number of events is bounded by \(3m \).

Now, we will bound the number of queue operations in each handler clause.

- In the handler for the \(\text{Task Release} \) event (statement 46), there is a constant number of queue operations. Hence, this contributes a total of \(O(m) \) queue operations during the entire history.

- In the handler for the \(\text{Task Completion} \) event (statement 0) there is a constant number of queue operations. Hence, this contributes a total of \(O(m) \) queue operations during the entire history.

- In the handler for \(\text{Latest-start-time Interrupt} \) event (see statement 69), the number of queue operations is proportional to the number of tasks in \(Q_{recent} \) plus a constant (because the recently-preempted tasks are all inserted into \(Q_{other} \), statement 74). How many tasks can be in \(Q_{recent} \) throughout the history? A task can enter \(Q_{recent} \) only as a result of \(\text{Task Release} \) event there are at most \(m \) such events. Hence, the total number of tasks in \(Q_{recent} \) is at most \(m \), which means that the total number of queue operations is \(O(m) \) during the entire history.

We conclude that the total number of operations for the entire history is \(O(m \log n) \) and the theorem is proved.

\(\square \)

6 Conflicting Tasks

What if the collection of tasks to be scheduled is underloaded, that is to say that all tasks can be scheduled to completion? We would like the on-line scheduler to be optimal in this case.
D^over is optimal for underloaded systems. In fact, it has an even stronger performance guarantee: We devise a procedure \textit{(Remove.Conflicts)} to partition the tasks into two classes. The conflict-free tasks are those that can be scheduled to completion without preventing any other task from completing (in a sense to be made precise in the algorithm below). A task is conflicting otherwise.

We will show that D^over schedules all conflict-free tasks (in particular all tasks in an underloaded system) and also obtains at least $\frac{1}{(1+\sqrt{2})^2}$ the value a clairvoyant algorithm can get from the conflicting tasks.

The definitions of underloaded and overload systems in section 3 are natural and widely accepted. However, even when a system is overloaded it is possible that some periods are "underloaded" i.e., it is possible that some tasks will be scheduled to completion by all clairvoyant algorithms since they do not prevent any other task from completion. One can define the periods occupied by the aggregated tasks as overloaded intervals. We prefer this definition to that of [2, 7] because it does not depend on the behavior of D^5.

\begin{itemize}
\item \textbf{Function Remove.Conflicts (} \Gamma \textbf{)}
\item if num_of_tasks(\Gamma) == 1 then
\item \quad return(\Gamma);
\item \quad end if;
\item collection_num_of_tasks := 2
\item \textbf{repeat}
\item \quad Select a collection of tasks $S = T_1, T_2, \ldots, T_{collection_num_of_tasks}$, of size $r = \min_{T \in S} \{r_i\}$ and $d = \max_{T \in S} \{d_i\}$ and $c_{t_1} + c_{t_2} + \ldots + c_{\text{collection_num_of_tasks}} > (d - r)$
\item \quad if (such a collection is found) then
\item \quad \quad mark all the tasks in S as conflicting tasks;
\item \quad \quad Create a task T with release time r and deadline d
\item \quad \quad \quad and with no slack time;
\item \quad \quad \quad (* \textit{T is an aggregated task} *)
\item \quad \quad \quad return(remove.conflicts(\Gamma - S + \{T\}));
\item \quad \quad \quad (* \textit{Starts again with the new collection of tasks with a smaller collection of tasks. When the recursive calls reach the bottom of the recursive the result is propagated upwards (tail recursion).} *)
\item \quad \quad else
\item \quad \quad \quad \textbf{end} \{if\};
\item \quad \quad \textbf{until} collection_num_of_tasks > num_of_tasks(\Gamma)
\item \textbf{end repeat}
\end{itemize}

\textbf{The Remove Conflicts Algorithm.}9

9Also, in [2, 7] a task is "underloaded" if and only if its deadline is in an overloaded interval. This is not reasonable because even tasks that have enough slack time to complete "safely" before the overloaded interval starts will be considered as "overloaded".

9Another version of this algorithm is an iterative algorithm that at each iteration selects non-deterministically
Example 6.1 To see how remove.conflicts works consider the following example. Suppose we are given the following collection of tasks:

<table>
<thead>
<tr>
<th>Task</th>
<th>Release-Time</th>
<th>Computation-Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>0</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T_2</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>T_3</td>
<td>0</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>T_4</td>
<td>6</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>T_5</td>
<td>0</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

In the beginning remove.conflicts is invoked with the above collection. The algorithm seeks a conflicting collection S, starting with collections of size two. $S = \{T_1, T_2\}$ is such a collection since the computation time of these tasks (combined) is 8 but their combined execution periods has only a length of 6. Hence, these tasks are conflicting tasks and an aggregated task T_a is created with release time 0, computation time 6 and deadline 6.

The aggregated task replaces T_1 and T_2 and remove.conflicts is invoked with the new collection. This time there is no conflicting collection of size 2 but there is one of size 3, namely $\{T_a, T_3, T_4\}$. This is true since the combined computation time is 10 while the length of the combined execution periods is only 8. These tasks are replaced by a new aggregated task T_b which is created with release time 0 and computation time 8.

The new aggregated task replaces T_a, T_3 and T_4. remove.conflicts is invoked again but this time there are no conflicts. The process terminates. The following table summarizes the results:

<table>
<thead>
<tr>
<th>Task</th>
<th>Release-Time</th>
<th>Computation-Time</th>
<th>Deadline</th>
<th>Final Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td></td>
<td></td>
<td></td>
<td>conflicted</td>
</tr>
<tr>
<td>T_2</td>
<td></td>
<td></td>
<td></td>
<td>conflicted</td>
</tr>
<tr>
<td>T_3</td>
<td></td>
<td></td>
<td></td>
<td>conflicted</td>
</tr>
<tr>
<td>T_4</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>aggregated task</td>
</tr>
<tr>
<td>T_5</td>
<td></td>
<td></td>
<td></td>
<td>conflicted</td>
</tr>
<tr>
<td>T_b</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>aggregated task</td>
</tr>
</tbody>
</table>

Definition 6.2

- **Conflicting and Conflict-Free Tasks:** We are given a set Γ of original tasks. A task T is said to be conflicting if it was "marked" as such by the initial or any recursive

a minimal set of conflicting tasks and replace them by an aggregated task. A collection is minimal in the sense that removing any one task will make the remaining tasks schedulable. Our algorithm always selects a minimal collection with the smallest possible number of tasks. Note that the purpose of this algorithm is to define conflicting and conflict-free tasks. No scheduler needs ever to execute it.
call of remove_conflicts (statement 9). Conflicting tasks are merged into aggregated tasks. A task (original or aggregated) that is not conflicting is said to be a conflict-free 10.

When all the tasks (original or aggregated) of a collection are conflict-free the collection is conflict-free and otherwise conflicting.

6.1 The Performance Guarantee of Dover

In the following assume that a collection Γ is given.

Lemma 6.1 Γ is overloaded if and only if it is conflicting.

Proof.

Assume Γ is conflicting we will show that Γ is overloaded. Let T be the first aggregated task to be created by remove_conflicts when invoked with Γ as its input. T is an aggregate of original tasks. This means that the sum of the computation times needed for these tasks is greater than the time between their earliest release and latest deadline. Hence these tasks can not be all scheduled (see line 7 of remove_conflicts). We conclude that Γ is overloaded.

Assume Γ is overloaded we will show that Γ is conflicting. Let τ be a minimal set of tasks in Γ that can not be scheduled. τ is minimal in the sense that removing any one task will make the rest of the tasks in τ schedulable 11. Let r be the earliest release time and d the latest deadline among all tasks in τ. Let τ be scheduled by D.

Claim

When D schedules τ, there is no idle time between r and d.

proof of claim.

Suppose the system is idle time at time t, then at that time there is no ready task. This means that τ can be partitioned into two non-empty sets (one with all tasks with deadline before t and the other with deadline after t). At least one of these sets can not be scheduled 12, contradicting the minimality of τ.

end of proof of claim

Since the claim shows that there is no idle time, and that D could not schedule all the tasks even while executing continuously, we conclude that the sum of computation times needed for the tasks of Γ is greater than the time that can be possibly allotted to them.

Remove_conflicts must have found a conflict in Γ. To see this notice that as long as no conflict is found, the counter collection_num_of_tasks is advanced and is bound to reach the value of num_of_tasks(τ). At that point all the tasks of τ are still present (i.e. were not merged into an aggregated task) and satisfy the condition of statement 7.

Hence, Γ is conflicting.

10 T is conflicting if there a collection of tasks τ (original or aggregated) such that all the tasks of τ can be scheduled but not all the tasks in $\tau \cup \{T\}$ can be scheduled.

11 Such a minimal set must exists since the entire set of tasks, Γ, can not be scheduled but every singleton set of tasks can be scheduled.

12 Recall that D is an optimal scheduler for underloaded systems [9, 4].
Lemma 6.2 When scheduling Γ, D—the earliest-deadline-first algorithm—will schedule to completion all conflict-free tasks.

Proof.

Let C be the time that can be "occupied" by the aggregated tasks, that is the pointwise union of all their executable periods.

$$C = \bigcup_{T_i \text{ is an aggregated task}} [r_i, d_i] \quad (i)$$

where the union is a pointwise union. One can verify (see statement 10 of remove.conflicts) that

$$C = \bigcup_{T_i \text{ is an (original) conflicting task}} [r_i, d_i] \quad (ii)$$

Remove.conflicts(Γ) contains all the conflict-free tasks. It is conflict-free, otherwise remove.conflicts would not have halted. Hence, by lemma 6.1 all the tasks in remove.conflicts(Γ) can be scheduled by D. The aggregated tasks of remove.conflicts(Γ) can not be scheduled outside C. Moreover, all of C must be occupied by aggregated tasks since they have no slack time. Hence the conflict-free tasks are scheduled by D using only time that lies outside C.

We showed that D schedules all the conflict-free tasks when the collection to be scheduled is remove.conflicts(Γ), but does this hold when D schedules the original set of tasks, Γ? The answer is yes. When scheduling Γ, equation (ii) above shows that all the time outside C is available to the conflict-free tasks hence, by the previous paragraph, all conflict-free tasks complete their execution when Γ is scheduled by D.

\[\square\]

Corollary 6.3 D can schedule all the conflicting-free tasks using only time outside C.

\[\square\]

Lemma 6.4 Suppose T is not the current executing task and is not in Qrecent. If T has an earlier deadline than all the tasks in Qrecent and the current executing task (if any), then T, the current executing task, and all the tasks in Qrecent can be scheduled by D.

if and only if

$$\text{avaitime} \geq \text{remaining computation time}(T)$$

Proof.

The proof is by induction on the scheduling decisions of D^{over}. The induction is done separately on each interval.

\[\square\]
Definition 6.3

Real LST Event: According to Dover scheduling, when a Task Completion event occurs the next task to be scheduled is the ready task, T, with the earliest-deadline. It is possible that the slack-time of T reached zero exactly when a Task Completion event occurred, thus creating an LST event for T. We will call this LST event a false event since T would have been scheduled even without the interrupt. All other LST events will be called real.

In all of the following we ignore the false events. Only real LST events are considered.

Lemma 6.5

1. Let C be the time that can be occupied by the aggregated tasks,

\[C = \bigcup \{ T_i \text{ is an aggregated task}[r_i, d_i] \} \]

then, outside C, Dover schedules according to earliest-deadline-first (D).

2. Under Dover scheduling a conflict-free task will never generate a (real) Latest-start-time Interrupt.

3. Let A be an aggregate task in remove.conflicts(\Gamma) with parameters (r_a, d_a), then Dover will complete on or before \(r_a \) all conflict-free tasks with deadline on or before \(d_a \).

Proof.

Recall that the aggregated tasks in remove.conflicts(\Gamma) are those tasks that were created "from" conflicting tasks. List all the aggregated tasks according to deadline order

\[T_{a_1}, T_{a_2}, T_{a_3}, \ldots \]

By the construction of these tasks we know that

\[r_{a_1} < d_{a_1} < r_{a_2} < d_{a_2} < \ldots \]

(Actually, from remove.conflicts one can infer only that \(d_{a_1} \leq r_{a_2} \) but if it happens that \(d_{a_1} = r_{a_2} \) we can, for the purpose of the the following proof merge \(T_{a_1} \) and \(T_{a_2} \) into one aggregated task with parameters \(r_{a_1} \) and \(d_{a_2} \))

Dover departs from the earliest-deadline-first scheduling policy only when one of the following events occurs:

- The current task is lst-scheduled i.e., it was scheduled as the result of a Latest-start-time Interrupt.

- At a Task Release event or at a Task Completion event, the task with the earliest deadline among all ready tasks is not scheduled because avaitime is too small (see statement 54 and 65 of Dover).
Dover starts to schedule according to earliest-deadline-first. Before r_{a_1} there is no conflict hence by lemma 6.1 there is no overload. This means that neither of the above conditions occurs (lemma 6.4). Hence, before the first aggregated task (up to r_{a_1}), Dover schedules in the same way as D. Also, from corollary 6.3 we conclude that all conflict-free tasks with deadline on or before d_{a_1} completed on or before r_{a_1}.

Between the first and second aggregated task, i.e., between d_{a_1} and r_{a_2} there can not be any ready conflicting tasks because all conflicting tasks have their deadlines before d_{a_1} or release time after r_{a_2}. So, during this time only conflict-free tasks are scheduled. Moreover, they will be scheduled according to earliest-deadline-first. We will show this by showing that neither of the two cases above can hold. A conflict-free task would not create a real LST event (corollary 6.3). Also, a task with the earliest-deadline will be immediately scheduled. This holds because, if it is delayed, then D encounters an overloaded situation while executing the conflict-free tasks outside C. This contradicts corollary 6.3.

We conclude that up to r_{a_2}, Dover acts like D and all the conflict-free tasks with deadline before d_{a_2} complete before r_{a_2}. The induction can proceed through the entire list of aggregated task and the lemma is proved.

COROLLARY 6.6 Dover will schedule to completion all conflict-free tasks.

LEMMA 6.7 Let A be an aggregate task in remove-conflicts(Γ) with parameters (r_a, d_a), then during (r_a, d_a) a conflict-free task will be scheduled by Dover only if there are no ready conflicting tasks.

PROOF.

Lemma 6.5 states that a conflict-free task with deadline on or before d_a would complete before r_a. So, if any conflict-free task T with release time r and deadline d is to be scheduled during A, it must satisfy $d > d_a$.

Suppose at time $t \in (r_a, d_a)$ there is a ready conflicting task T_i. Then $d_i < d_a$ must hold, because T_i must be a part of the aggregated task A.\footnote{As a matter of fact the conflict-free tasks might have even used some of the time of C (when scheduled by Dover).} \footnote{We say that, a task T is a part of an aggregated task A if it is one of the tasks that were “merged” to create A.}

Hence, at time t all ready conflicting tasks have deadlines before the deadline of any conflict-free task. A conflict-free task can be scheduled, in these circumstances, only by a Latest-start-time Interrupt. This can not occur because a conflict-free task will not generate a (real) Latest-start-time Interrupt (lemma 6.5)

THEOREM 6.8 Dover schedules to completion all conflict-free tasks and obtains at least $\frac{1}{(1+\sqrt{k})^2}$ the value a clairvoyant algorithm gets from all other (i.e., conflicting) tasks.

\footnote{T_i is a conflicting task hence it is a part of an aggregated task, B, if this task is not A then the two aggregated tasks should be merged contradicting the fact that A is a task in remove-conflicts(Γ).}
PROOF.

The first part of this lemma is merely a repetition of corollary 6.6. From lemma 6.7, we conclude that \(\text{D}^{\overline{\text{over}}} \) schedules the conflicting tasks regardless the presence of the conflict-free tasks. Suppose the clairvoyant algorithm has to schedule only the conflicted-tasks. It can schedule this tasks only during \(C \). But we have just shown that \(\text{D}^{\overline{\text{over}}} \) schedules the conflicted tasks as if the conflict-free tasks do not exist. Since \(\text{D}^{\overline{\text{over}}} \) has a competitive factor of \(\frac{1}{(1+\sqrt{k})^2} \) it is guaranteed to achieve at least this fraction of what a clairvoyant algorithm can achieve from all conflicting tasks.

\[\square \]

7 Gradual Descent

In the previous sections we assumed firm deadlines. That is, a task has zero value if it misses its deadline. We would like to generalize to soft deadlines, which means that a task may have some value even after its deadline.

We assume here a soft deadline scheme called gradual descent and show that a suitable variant of \(\text{D}^{\overline{\text{over}}} \) is \(\frac{1}{(1+\sqrt{k})^2} \) competitive in this case. \(\text{D}^{\overline{\text{over}}} \) is also \(\frac{1}{(1+\sqrt{k})^2} \) competitive in some possible generalizations of this scheme. We discuss these generalizations at the end of this section.

7.1 Exponential Gradual Descent

Consider the following “exponential” value assignment for gradual descent. If a task \(T_i \) with computation time \(c_i \) and value \(v_i \) does not complete by its deadline \(d_i \) (we call this deadline, the zero’th deadline and denote by \(d_i^0 \)) then a value of \(\frac{v_i}{2} \) can be obtained if it completes by \(d_i + \frac{v_i}{2} \). This “deadline” is denoted by \(d_i^1 \). In general a value of \(\frac{v_i}{2^y} \) is obtained the task completes by its \(y \)’th deadline, \(d_i^y = d_i + \frac{v_i}{2} + \frac{v_i}{4} + \cdots + \frac{v_i}{2^y} \). We keep the list of deadlines finitey by postulating that a task’s value density can not go below 1. This means that the index of the last deadline after which the tasks has zero value is \(\lfloor \log_2(\text{imp}(T_i)) \rfloor - 1 = \lfloor \log_2\left(\frac{v_i}{2}\right) \rfloor - 1 \).

For notational convenience any task \(T_i \) will have associated descending tasks denoted by

\[T_i^0, T_i^1, T_i^2, \ldots, T_i^{\lfloor \log_2(\text{imp}(T_i)) \rfloor - 1} \]

where the release times and the computation times of all these tasks are equal to the release time and the computation time of \(T_i \). \(T_i^y \) has a firm deadline at \(d_i^y \) and a value of \(\frac{v_i}{2^y} \). Only one of the tasks associated with \(T_i \) can possibly complete. That is, if we say that an algorithm executes \(T_i^y \), we mean that \(T_i \) completes by deadline \(d_i^y \), but after deadline \(d_i^{y-1} \).

7.2 A Variant of \(\text{D}^{\overline{\text{over}}} \) for Gradual Descent

We modify the Latest-start-time interrupt handler of \(\text{D}^{\overline{\text{over}}} \) in such a way that when \(T_i^0 \) is to be abandoned because it reached its LST but does not have enough value to be scheduled (see statement 80 of \(\text{D}^{\overline{\text{over}}} \)), \(T_i^0 \) is indeed removed from all the data structures but in addition a task release for \(T_i^1 \) is simulated. \(T_i^1 \)’s remaining computation time is set to the remaining computation
time of T_i^0. In the same way, if T_i^1 is to be abandoned then a third task is "released". This process continues as long as the value density does not go below 1.

7.3 Analysis of D^{over} in the Gradual Descent Model

The analysis is similar to one in section 5. We will discuss the differences only. Suppose that a collection of tasks Γ with importance ratio k is given, and D^{over} schedules this collection. We partition the collection of tasks according to the question of which associated tasks (if any) completed.

- Let S^p denote the set of tasks that completed successfully and that ended some positive time before their zero'th deadline.
- Let S^0 denote the set of tasks that completed successfully but ended exactly at their zero'th deadline.
- For $1 \leq y \leq \lfloor \log k \rfloor - 1$, let S^y denote the set of tasks that completed successfully after their $(y-1)$'th deadline but not after their y'th deadline (i.e., the y'th associated task completed).
- Let $FAIL$ denote the set of tasks that never completed.

We will start by modifying the technical lemmas of subsection 5.1 to the new setting.

7.4 Lemmas about D^{over}'s Scheduling

For notational convenience we define a minus one deadline d_i^{-1} which equals to the zero'th deadline d_i^0.

- In this setting lemma 5.2 reads

Lemma 7.1

1. For any task T_i in S^y (with $y \geq 0$). Suppose T_i^y completed at time $t_{complete} \leq d_i^y$, then

$$[r_i, d_i^{y-1}] \subseteq [r_i, t_{complete}] \subseteq BUSY$$

2. For any task T_i in $FAIL$. Suppose T_i was abandoned at time t_{aban}, then

$$[r_i, t_{aban}] \subseteq BUSY$$

Proof.
The proof is similar to that of lemma 5.2.

□

34
Lemma 7.2 Suppose T_i^y was abandoned at time t in $I = [t_{\text{begin}}, t_{\text{close}}]$. Then,

$$c_i \geq d_i^y - t_{\text{close}}$$

PROOF.

The proof is the same as the proof of lemma 5.5.

\[\square\]

7.5 How Well Can a Clairvoyant Scheduler Do?

As in subsection 5.2, given a collection of tasks T, our goal is to bound the maximum value that a clairvoyant algorithm can obtain from scheduling T. We observe the scheduling of T by D^{over} which gives rise to the definition of S^p, the S^p’s and FAIL. As before, BUSY is defined to be the union of the periods in which the processor was not idle (under D^{over}’s scheduling).

The clairvoyant algorithm is offered the same two gifts as before. The first is the sum of the values of all tasks in S^p at no cost to it. The second gift is the granted value. That is, in addition to the value obtained from scheduling

$$LATE = (S^0 \cup S^1 \cup \cdots S^{[\log_2 k]-1} \cup \text{FAIL})$$

a value density of k will be granted for every period of BUSY that is not used for executing a task of $LATE$. By a similar argument to lemma 5.6 we can see that\(^\text{16}\)

$$C(LATE) \leq \max_{\text{possible scheduling of } LATE} \left\{ \text{value obtained by scheduling tasks of } + k \cdot \text{length of time in } \text{BUSY} \text{ not utilized by tasks of } LATE \right\}$$

In lemma 5.8 we bounded the net gain that the clairvoyant algorithm could get from scheduling tasks of F\(^\text{17}\). This was done by examining each interval separately. If $T \in F$ is scheduled

\(^{16}\)Recall that $C(\text{FAIL})$ denotes the value that a clairvoyant algorithm can achieve from scheduling (any subset of) $LATE$.

\(^{17}\)Note that in section 5 the clairvoyant scheduler could not make any net gain from tasks of S^0 that completed in I because they can be executed only during BUSY. This is not the case here because if T_i^y completed in I, the clairvoyant algorithm could choose a different completion point for T_i^y or even to abandon it in favor of another associated task T_x^z with $x \neq y$.

35
then its value is accounted for in the interval in which T was abandoned by D^{over}. Here, the method of relating the value of a task $T \in LATE$ to the interval in which it is accounted for is more complicated. Suppose the clairvoyant algorithm chose to execute the z'th task of T_i to completion. D^{over} could have chosen to complete any of the associated tasks of T_i ($T_i \in S_y'$ for some y) or none ($T_i \in FAIL$). In the first case we account for T_i^x in the interval in which D^{over} completed T_i; in the second case, in the interval during which T_i^x was abandoned.

Assume that a clairvoyant scheduler selected an optimal scheduling for the tasks of $LATE$ considering the value that can be gained from leaving $BUSY$ periods idle. The execution of a task can give a positive net gain only if the task executed (at least partially) outside $BUSY$. The following lemma shows that such execution may take place only after t_{close}.

Lemma 7.3 Suppose the associated task T_i^x of $T_i \in LATE$ is scheduled to completion by the clairvoyant algorithm. Suppose that T_i is accounted for in $I = [t_{begin}, t_{close}]$. Then, if T_i is to be executed (by the clairvoyant algorithm) anywhere outside $BUSY$ it must be after t_{close}.

Proof.

There are two cases:

- D^{over} never completed T_i ($T_i \in FAIL$). In this case let t be the time when D^{over} abandoned T_i^x.

 T_i^x can be executed only during $\Delta T_i'$ which is is $[r_i, t] \cup [t, d_i^x]$. The first portion of $\Delta T_i'$ is contained in $BUSY$ (lemma 7.1). The second portion is contained in I. Hence $[r_i, t_{close}] \subseteq BUSY$.

- D^{over} completed T_i^y for some y. Let t be the completion time of T_i^y.

 A similar argument as above for $\Delta T_i^y = [r_i, t] \cup [t, d_i^y]$ shows that $[r_i, t_{close}] \subseteq BUSY$.

Hence in both cases, if T_i^x is to be executed outside $BUSY$ it must be after t_{close}. □

- Lemma 5.8 has to be replaced by the following,

Lemma 7.4 With the above gifts, the total net gain obtained by the clairvoyant algorithm from scheduling the (associated) tasks accounted for in I is not greater than

$$(1 + \sqrt{k}) \cdot \text{achievedvalue}(I)$$

Proof.

Let T_1, T_2, \ldots, T_m be those tasks that are accounted for in $I = [t_{begin}, t_{close}]$ and that the clairvoyant algorithm scheduled after t_{close} (in order of completion). These tasks execute for l_1, l_2, \ldots, l_m time after t_{close} (hence, maybe outside $BUSY$ by the above lemma).

Denote by L the following value
\[L = \max\{\frac{(1 + \sqrt{k}) \cdot \text{achievedvalue}(I)}{k}, l_1\} \]

Let \(j \) be the index less than or equal to \(m \) such that
\[\sum_{i \leq j} l_i \leq L < l_{j+1} + \sum_{i \leq j} l_i \]

If no such \(j \) exists define \(j \) to be \(m \).

First, assume that we have an equality, \(\sum_{i \leq j} l_i = L \).

The proof now has two parts.

\(\diamond \) Part 1:
We will show that the net gain from scheduling tasks within a period of \(L \) after the end of the interval can not be greater than \((1 + \sqrt{k}) \cdot \text{achievedvalue}(I)\).

- Suppose that in 7, the maximum is the first term. Then the total net gain from \(T_1, T_2, \cdots T_j \) is not greater than
\[k \cdot \sum_{i \leq j} l_i = k \cdot L = (1 + \sqrt{k}) \cdot \text{achievedvalue}(I) \]

- Suppose the second term is maximum in 7 and that the \(z \)'th associated task of \(T_i \) was scheduled by the clairvoyant algorithm. If \(T_i^x \) was abandoned in \(I \) (by \(D^{over} \)) then lemma 5.4 ensures that its value is bounded by \((1 + \sqrt{k}) \cdot \text{achievedvalue}(I)\). The other possibility is that \(D^{over} \) completed \(T_i^y \) in \(I \). If \(z \geq y \) then \(\text{value}(T_i^x) \leq \text{value}(T_i^y) \) but \(\text{value}(T_i^y) \) is a component of \(\text{achievedvalue}(I) \) so must be less or equal to it. \(z < y \) implies that \(T_i \) executed to completion before \(t_{close} \), since \(d_i^x < d_i^y \leq t_{close} \) — a contradiction.

Hence, in any case, the value obtained by scheduling \(T_i \) is at most \((1 + \sqrt{k}) \cdot \text{achievedvalue}(I)\).

\(\diamond \) Part 2:
Now we will show that the net gain from scheduling a task \(T_i \) \((j < i \leq m)\) \(L \) time after the end of \(I \) is never positive. Here we have to distinguish between two cases depending on whether \(D^{over} \) completed or abandoned \(T_i \) in \(I \).

- \(D^{over} \) completed \(T_i \)
 Suppose that \(D^{over} \) completed \(T_i^y \) at \(t_{\text{complete}} \in I \) and that the clairvoyant algorithm chose to schedule \(T_i^x \).
 There are two possible cases:
 - \(z < y \):
 Lemma 7.1 shows that
 \[[r_i, d_i^x] \subseteq [r_i, t_{\text{complete}}] \subseteq \text{BUSY} \]
 This means that \(T_i^x \) executes during \(\text{BUSY} \), a contradiction.
\[- \gamma \geq \gamma:\]

The gradual descending scheme ensures that,

\[
d_i^\gamma = d_i^0 + \frac{c_i}{2} + \frac{c_i}{4} + \cdots + \frac{c_i}{2^\gamma} = d_i^0 + (c_i - \frac{c_i}{2^\gamma})
\]

From lemma 7.1 we see that

\[
d_i^0 \leq d_i^{\gamma-1} \leq t_{\text{complete}} \leq t_{\text{close}} \in BUSY
\]

Hence we conclude that

\[
d_i^\gamma \leq t_{\text{close}} + (c_i - \frac{c_i}{2^\gamma})
\]

\(T_i^\gamma\) must complete at or before \(d_i^\gamma\) implying that the clairvoyant algorithm schedules \(T_i^\gamma\) for at least \(\frac{\gamma}{2^\gamma}\) time before \(t_{\text{close}}\) hence in \(BUSY\). The loss from the execution during \(BUSY\) is at least \(\frac{\gamma}{2^\gamma} \times k\) while the value of \(T_i^\gamma\) is at most \(\frac{c_i \times k}{2^\gamma}\). Hence the net gain is not positive.

- \(T_i \in FAIL\)

Suppose that the \(y\)th associated task of \(T_i\) was scheduled by the clairvoyant algorithm and that \(T_i^\gamma\) was abandoned by \(D_{\text{over}}\) in \(I = [t_{\text{begin}}, t_{\text{close}}]\). \(T_i^\gamma\) has an execution time of at least \(d_i^\gamma - t_{\text{close}}\) by lemma 7.2.

\[
d_i^\gamma - t_{\text{close}} \geq \text{"the point at which } T_i^\gamma \text{ completes (according to the clairvoyant)"} - t_{\text{close}}
\]

\[
\geq (t_{\text{close}} + \sum_{g \leq i} l_g) - t_{\text{close}}
\]

\[
\geq l_i + \sum_{g \leq i} l_g = l_i + L
\]

\(T_i^\gamma\) was scheduled by the clairvoyant scheduler but used only \(l_i\) time after \(t_{\text{close}}\). Hence, \(T_i\) executed at least \(L\) time before \(t_{\text{close}}\) that is to say in \(BUSY\) (lemma 7.3). The "loss" from scheduling \(T_i\) during \(BUSY\) is at least \(k \cdot L\). The value obtained by scheduling \(T_i\) is at most \((1 + \sqrt{k}) \cdot \text{achievedvalue}(I)\) (lemma 5.4). Hence the net gain is less than or equal to

\[
(1 + \sqrt{k}) \cdot \text{achievedvalue}(I) - k \cdot L
\]

\[
\leq (1 + \sqrt{k}) \cdot \text{achievedvalue}(I) - (1 + \sqrt{k}) \cdot \text{achievedvalue}(I)
\]

\[
= 0
\]
What if L does not equal any of the partial sums? That is, if $\sum_{i=1}^{j} l_i < L < \sum_{i=1}^{j+1} l_i$. As in the proof of lemma 5.8, we augment the total value given to the clairvoyant by some non-negative amount. Even with this addition the net gain achieved by the clairvoyant algorithm is bounded by $(1 + \sqrt{k}) \cdot \text{achievedvalue}(I)$, hence proving the lemma.

- Corollary 5.9 holds with LATE replacing F.

Before we continue we must clarify the meaning of poslaxval and zerolaxval in this setting. poslaxval denotes the value obtained by tasks that completed before their zero'th deadline (tasks in S^p). zerolaxval denotes the total value obtained by tasks that completed at or after that deadline (i.e., tasks in $S^0 \cup S^1 \cup \cdots S^{\lceil \log_k k \rceil - 1}$).

- Lemma 5.10 holds without change given these new definitions of poslaxval and zerolaxval.
- Lemma 5.11 holds with LATE replacing $F \cup S^0$.

Theorem 7.5 In the exponential gradual descent model, D^{over} has a competitive factor of $\frac{1}{(1+\sqrt{k})^2}$.

Proof.

Proof as in theorem 5.12.

-\]

7.6 Inherent Bounds

The inherent bound given by Baruah et. al. [2, 3] can not be directly applied here. Hence, it is not clear whether D^{over} is optimal in this setting. It might very well be that the introduction of descending value schemes helps the on-line scheduler more then it helps the clairvoyant one. Thus, the question of finding the inherent bounds in this case is open.

7.7 Performance Guarantee for Underloaded Periods

In the gradual descent model we define an underloaded collection of tasks as a collection such that all its tasks can be scheduled by the zero'th deadline (i.e., with their full value). It is clear that D^{over} will get 100% of the value for such a collection since it will execute according to earliest deadline first scheduling.

7.8 Other Gradual Descent Schemes

In this section we presented a specific scheme of gradual descent. In fact, the current argument can provide the same result for more general schemes of descending value.

All schemes must have the following properties:

- The value density of a task must not go below 1 (used in lemma 5.3).
- For every possible associated task T^*_i of T_i,

$$d_i^2 < d_i^0 + c_i$$
and

\[(d^i_t - d^0_t) \times k \geq "the\ value\ of\ of\ T_i"\]

(used in part 2 of lemma 7.4)

Within these constraints, many schemes are possible. Some tasks can have firm deadlines; others may have descending values. The base of the exponent (2 was an arbitrary choice) can be different for different tasks.

8 Situations in Which The Exact Computation Time of A Task Is Not Known

Suppose the on-line scheduling algorithm is not given the exact computation time of a task upon its release. However, for every task \(T_i\), an upper bound on its possible computation time denoted by \(c_{i,\text{max}}\), is given. Also, the actual computation time of \(T_i\), denoted by \(c_i\), satisfies:

\[(1 - \epsilon) \cdot c_{i,\text{max}} \leq c_i \leq c_{i,\text{max}}\]

Where, \(0 \leq \epsilon < 1\) is a given error margin which is common to all the tasks. We make the following additional assumptions:

Assumption 8.1

- **The Actual Computation Time Is Environment-Invariant**: The actual computation time of a task does not depend on the point in time in which it was scheduled, the number of times it was preempted and rescheduled etc.

- **The Actual Computation Time Is Not Known Before The Completion Point**: An on-line scheduler cannot know the exact computation time of a task until it completes.

\[\Box\]

Some terms has to be redefined in the new setup:

Definition 8.2

- **Underloaded Collection of Tasks**: A collection of tasks is underloaded (in this setting) if the actual computation times enable execution of all the tasks to completion.

- **Importance Ratio**: The importance ratio, \(k\), of a collection with an error margin of \(\epsilon\) is defined to be the ratio of the largest possible value density to the smallest possible value density.

\[
k = \frac{\max_i \frac{u_i}{(1-\epsilon)c_{i,\text{max}}}}{\min_i \frac{u_i}{c_{i,\text{max}}}} = \frac{1}{(1 - \epsilon)} \cdot \frac{\max_i \frac{u_i}{c_{i,\text{max}}}}{\min_i \frac{u_i}{c_{i,\text{max}}}} \tag{9}\]

Here, the normalized importance assumption (assumption 3.2) means that \(\min_i \frac{u_i}{c_{i,\text{max}}} \geq 1\).
8.1 An Inherent Bound On The Competitive Factor

The inherent bound proof given in [2, 3] can be applied here as well. In the notation of those references, all the major tasks execute at their longest possible computation time with an actual value density 1 while all the associated tasks execute at their shortest possible computation time and value density k. This argument shows that no on-line scheduler can achieve a competitive factor greater than $\frac{1}{(1+\sqrt{k})^2}$.

8.2 Underloaded Systems

Example 8.3 Suppose we are given the following collection of two tasks:

<table>
<thead>
<tr>
<th>Task</th>
<th>Release-Time</th>
<th>Max. Computation-Time</th>
<th>Value</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>T_2</td>
<td>0</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

For an error margin $\epsilon < \frac{1}{201}$ this collection will always constitute an overloaded system. However, if $\epsilon \geq \frac{1}{201}$ then depending on the actual computation times, the system may be either underloaded or overloaded.

\[\Box \]

Theorem 8.1 An on-line scheduler that guarantees 100% of the value for an underloaded system has a zero competitive factor.

Proof.

Suppose an on-line scheduler S guarantees 100% of the value for underloaded systems. Suppose the tasks of example 8.3 with error margin of $\epsilon = \frac{1}{200}$ are scheduled by S.

Consider the following possible cases:

1. The actual executing time of T_1 is the maximum possible — 1 while that of T_2 is the minimum possible — 199. In this case the system is underloaded and S should be able to schedule both tasks to completion. That is schedule T_1 between 0 and 1 and T_2 from 1 to 200.

2. The actual executing time of both T_1 and T_2 are the maximum possible. In this case the system is overloaded and only one of the tasks can possibly complete. However, S can not distinguish between case 1 and case 2 (not before time 200). Hence, S will schedule T_1 between 0 and 1 and T_2 will reach its deadline without completing its execution.

In the second case, S obtains a value of 1 out of the possible value of 200. Hence S has a competitive factor of at most $\frac{1}{200}$. Of course the number 200 above is arbitrary and can be as large as wanted, which gives the desired result.

\[\Box \]
8.3 Overloaded Systems

Theorem 8.1 shows that we cannot guarantee both a positive competitive factor and a 100% the value for an underloaded system.

The earliest-deadline-first algorithm is an optimal on-line scheduler for underloaded systems. We will show that a version of D^{over} can achieve a competitive factor of

$$\frac{1}{(1+\sqrt{k})^2+(\epsilon \cdot k)(1+\sqrt{k})+1}$$

We utilize the following version of D^{over}:

- k is taken to be as in equation 9.
- D^{over} assumes that the computation time of a task to be the maximum possible — $c_{i,max}$.

This affects the values of available time, lazity, remaining computation time and the LST point of a task (statements 16, 19, 20, 31, 50, 54, 59, 60 and 70).

Theorem 8.2 D^{over} has a competitive factor of

$$\frac{1}{(1+\sqrt{k})^2+(\epsilon \cdot k)(1+\sqrt{k})+1}$$

Proof.

The proof will be an adaptation of the analysis for the case of exact knowledge of computation time in section 5. The following is a list of modifications that are needed in that analysis.

1. Lemma 5.5 should read:

$$c_{i,max} \geq d_i - t_{close}$$

Hence,

$$c_i \geq c_{i,max} \cdot (1 - \epsilon) \geq d_i - t_{close} - \epsilon \cdot c_{i,max}$$

2. In this set up lemma 5.8 should be replaced by:

Lemma 8.3 The total net gain from scheduling the abandoned during I is not greater than

$$(1 + \sqrt{k})(1 + \epsilon \cdot k) \cdot \text{achieved value}$$

The proof is essentially the same but here the value of L is taken to be 18:

$$L = \max\{(1 + \sqrt{k}) \cdot (\frac{1}{k} + \epsilon) \cdot \text{achieved value}(I), l_1\}$$

- The total net gain from those tasks of F, T_1, T_2, \ldots, T_j, whose total computation time after t_{close} equals L, is not greater than

$$k \cdot L = (1 + \sqrt{k})(1 + \epsilon \cdot k) \cdot \text{achieved value}(I)$$

18Instead of $L = \max\{(1 + \sqrt{k}) \cdot \text{achieved value}(I), l_1\}$ in section 5

42
• Every other task, T_i where $j < i \leq m$, has an execution time of at least

$$d_i - t_{close} - \epsilon \cdot c_{i,max} \geq L + I_i - \epsilon \cdot c_{i,max}$$

T_i was scheduled by the clairvoyant scheduler but used only l_i time after t_{close}. Hence, T_i executed at least $L - \epsilon \cdot c_{i,max}$ time before t_{close} that is to say in $BUSY$.

$$L - \epsilon \cdot c_{i,max} \geq L - \epsilon \cdot v_i$$

(by assumption $3.2 \ c_{i,max} \leq v_i$)

$$\geq L - \epsilon \cdot (1 + \sqrt{k}) \cdot achievedvalue(I)$$

(by lemma 5.4)

$$\geq \frac{1 + \sqrt{k}}{k} \cdot achievedvalue(I)$$

The “loss” from scheduling T_i during $BUSY$ is at least $k \cdot \frac{(1 + \sqrt{k}) \cdot achievedvalue(I)}{k}$. The value obtained by scheduling T_i is at most $(1 + \sqrt{k}) \cdot achievedvalue(I)$ (lemma 5.4). Hence the net gain is less than or equal to zero.

3. Lemma 5.10 should state that

$$C(S^0 \cup F) \leq (1 + \sqrt{k})(1 + \epsilon \cdot k) \cdot achievedvalue + k \cdot BUSY$$

$$\leq (1 + \sqrt{k})(1 + \epsilon \cdot k) \cdot achievedvalue + k \cdot (achievedvalue + \frac{1}{\sqrt{k}} \cdot lstvalue)$$

$$= (1 + \sqrt{k} + k + (\epsilon \cdot k)(1 + \sqrt{k})) \cdot achievedvalue + \sqrt{k} \cdot lstvalue$$

$$\leq ((1 + \sqrt{k})^2 + (\epsilon \cdot k)(1 + \sqrt{k})) \cdot achievedvalue$$

The first inequality follows from the fact that lemma 5.3 holds without change. The last inequality is due to the fact that lstvalue is always less or equal to achievedvalue.

Finally we can prove the theorem:

$$C(\Gamma) = C(F \cup S^0 \cup S^p) \leq C(F \cup S^0) + C(S^p)$$

$$\leq C(F \cup S^0) + poslavval$$

$$\leq (((1 + \sqrt{k})^2 + (\epsilon \cdot k)(1 + \sqrt{k})) \cdot achievedvalue + poslavval$$

$$\leq (((1 + \sqrt{k})^2 + (\epsilon \cdot k)(1 + \sqrt{k}) + 1) \cdot achievedvalue$$

The last inequality is due to the fact that poslavval is always less or equal to achievedvalue.
9 Conclusions

This paper has presented an optimal on-line scheduling algorithm for overloaded systems. It is optimal in the sense that it gives the best competitive factor possible relative to an offline (i.e., clairvoyant) scheduler. It also gives 100% of the value of a clairvoyant scheduler when the system is underloaded. The model accounts for different value densities and generalizes to soft deadlines.

This work leaves many problems open. Here is a small sampling.

- In practice, real-time systems have some periodic critical tasks and other less critical tasks which may be aperiodic. A typical solution (as taken in the Spring Kernel for example [14]) is to devote certain intervals to the critical tasks and to allow the less critical tasks to run during the rest of the time. D^{over} gives its usual guarantee with respect to the less critical tasks (the accounting is a little more difficult since useful time has "holes" in it corresponding to subintervals allocated to critical tasks). A much more subtle question is what is a good competitive algorithm that can take advantage of the cases when a given critical task executes in less time than is allocated for it. We suspect the competitive factor may be worse, since the clairvoyant algorithm might then execute a task that D^{over} has unnecessarily abandoned.

- For the case of uncertain computation time, can the gap between the complexity bound of $\frac{1}{(1+\sqrt{6})^2}$ and the algorithm guarantee of $\frac{1}{(1+\sqrt{6})^2+(c+1)(1+\sqrt{6})+1}$ be closed?

- For the gradual descent model, is D^{over} an optimal scheduler? What is the inherent bound in this case?

- What guarantees can be given for parallel scheduling algorithms?

- In general, the question of proof tools for such systems is open. We believe that the technique in subsection 5.2 will prove to be very useful.

- What performance guarantees can be given in more general value descending schemes?

References

