
Work-In-Progress: Models and tools to detect
Real-Time Scheduling Anomalies

Blandine Djika+, Frank Singhoff*, Alain Plantec*, and Georges Edouard
Kouamou+

+Doctoral Research Unit for Engineering and Applications, University of Yaounde 1,
B.P. 337, Cameroon

*Univ. Brest, Lab-STICC, CNRS, UMR 6285, F-29200 Brest, France
medjika@yahoo.fr, frank.singhoff@univ-brest.fr,

alain.plantec@univ-brest.fr, georges.kouamou@gmail.com

Abstract. This paper deals with scheduling anomalies in real-time sys-
tems. Scheduling anomalies jeopardize schedulability analysis made prior
to execution. In this paper, we propose a model to specify conditions lead-
ing to scheduling anomalies. A scheduling anomaly is modeled as a set of
constraints on the architecture. We use this model to detect scheduling
anomalies by offline and online analysis. To validate our approach, we
implemented the approach as an extension to Cheddar, a schedulability
tool. We apply our approach to seven scheduling anomalies and we show
that most of these anomalies can be successfully detected.

Keywords: Real-Time Scheduling · Scheduling Anomaly.

1 Introduction

This article focuses on scheduling anomalies in real-time systems. As defined
in [1], a scheduling anomaly refers to a counter-intuitive phenomenon in which
increasing the system resources or relaxing the application constraints can make
the application unschedulable.

Real-time systems have functions that have to be run before a given deadline.
To check that the deadlines will be respected, they are usually validated early,
at design time for example. After such validation, a real-time system is said to
be schedulable if all deadlines can be met. When a scheduling anomaly occurs
at execution time, a deadline can be actually missed. As a consequence, early
validation efforts may be jeopardized.

In this article, we propose a set of models to specify seven scheduling anoma-
lies identified by the community. Each model is made of a set of constraints on
the architecture and is used both at design time and at execution time to detect
scheduling anomalies. To validate the proposed approach, we have implemented
tools able to verify the constraints and actually detect scheduling anomalies.
These tools are implemented in Cheddar, a real-time scheduling analysis toolset.

The remainder of the article presents background about scheduling anoma-
lies (Section 2), our approach to detect scheduling anomalies (Section 3), the



2 B. Djika et al.

experiments and preliminary results (Section 4), related works (Section 5) and
a conclusion (Section 6).

2 Background

2.1 Scheduling anomalies

In the field of real-time systems, one of the first scheduling anomalies being
identified was the Graham’s anomaly [10, 1] and was defined as follow:

Definition 1. If a task set is optimally scheduled on a multiprocessor with some
priority assignments, a fixed number of processors, fixed execution times, and
precedence constraints, then increasing the number of processors, reducing exe-
cution times, or weakening the precedence constraints can increase the schedule
length [10].

Fig. 1: Anomaly when reducing task execution time

Let us illustrate scheduling anomalies with an example from [15], composed
of three periodic tasks scheduled with a non-preemptive fixed-priority scheduler.
Each task i is defined by a 3-tuples with its WCET (worst case execution time)
Ci, its period Ti and its fixed priority πi: (C1=1, T1=3, π1=1), (C2=2, T2=6,
π2=2) and (C3=4, T3=12, π3=3). Figure 1 presents two schedules of such task
set: (a) when the tasks are executed with their WCET, (b) when reducing the
execution time of task 2 from 2 to 1, which makes the system unschedulable due
to a scheduling anomaly.

2.2 Scheduling anomalies addressed in this article

After Graham’s publication, several anomalies that may occur in various real-
time systems were identified [13, 11, 12, 8, 3]. Such anomalies may occur in ar-
chitectures with preemptive or non-preemptive scheduling policies, both unipro-
cessor and multiprocessor. Scheduling anomalies may occur with well studied
scheduling policies such as preemptive uniprocessor EDF [16]. They may also
occur in architectures frequently applied by practitioners such as multiprocessor
partitioned systems [5].



Title Suppressed Due to Excessive Length 3

In this article, we present our contribution to handle the most addressed
seven types of scheduling anomalies by the community, namely: 1) Reducing
the task execution time [10, 13, 11, 12, 16, 5, 14]; 2) Weakening the precedence
constraints between tasks [10, 13]; 3) Increasing the period of the task [8, 3, 2];
4) Changing priorities of tasks [10]; 5) Delaying the execution of the tasks [5]; 6)
Increasing the number of processors of the execution platform [10]; 7) Increasing
processor speed [5].

3 Approach

In this section, first we give examples of the constraints we modeled for each
scheduling anomaly. Then, we explain how the analysis is conducted with such
models.

3.1 Modeling scheduling anomaly conditions by constraints

The conditions leading to scheduling anomalies are described in the literature.
Our approach consists in modeling each condition as constraints on the real-time
system architecture. We have identified two types of complementary constraints:
static constraints and dynamic constraints.

Static constraints are only related to the architecture specification and can
be verified prior to execution. They are related to the task properties and the
execution platform properties that are specified at design time. We identified 9
static constraints related to the execution platform and 8 related to the tasks
(Tables 1 and 2).

Dynamic constraints depend on the system state during execution time: they
are related to particular events that will actually cause scheduling anomalies (Ta-
ble 3). Thus, checking dynamic constraints can only be done during execution.

These two kinds of constraints are complementary and the combination of a
set of static constraints with a set of dynamic constraints defines a scenario that
can lead to the detection of an anomaly during execution. In such a scenario,
static constraints are necessary conditions to raise a scheduling anomaly but an
anomaly only occurs when both static and dynamic conditions hold. Practically,
detecting scheduling anomalies implies both offline and online verification.

3.2 Modeling each scheduling anomaly

As each scheduling anomaly can be raised in different scenarios defined by differ-
ent conditions, detecting a scheduling anomaly requires verifying the constraints
for each scenario. We have specified 17 constraints to cover the case of seven



4 B. Djika et al.

Id Name Description

C1 Uniprocessor Execution platform must be com-
posed of one processor.

C2 Multiprocessor Execution platform can be multipro-
cessor, i.e. containing several execu-
tion units such as cores.

C3 Partitioned Tasks cannot migrate. Execution
platform is partitioned.

C4 Global A global multiprocessor scheduling
policy is applied.

C5 FP A fixed priority scheduling policy is
applied.

C6 EDF An EDF scheduling policy is applied.

C7 DM Priorities are assigned according to
Deadline Monotonic.

C8 Preemptive A preemptive scheduling policy is ap-
plied.

C9 Non-Preemptive A non-preemptive scheduling policy
is applied.

Table 1: Static constraints on the execution platform

scheduling anomalies. The seven scheduling anomalies are specified by 19 sce-
narios of the 17 constraints (Table 4). As an example, to detect the reducing task
execution time scheduling anomaly, we must verify seven scenarios defined with
15 constraints.

3.3 From the constraint model to the actual detection of anomalies

Fig. 2: Verification approach

We perform a two step verification process to detect scheduling anomalies,
as shown in Figure 2. First, at design time, static constraints which can be



Title Suppressed Due to Excessive Length 5

Id Name Description

C10 Synchronous release. All tasks must have their first re-
lease at the same time.

C11 Asynchronous release. There is no constraint on the first
task release.

C12 Periodic tasks. Tasks must be periodic.

C13 Independent tasks. No task requires the execution of
another to be released.

C14 Suspended tasks. Tasks may be suspended during a
bounded duration.

C15 Precedence constraints. Task releases may occur on other
task completion time.

C16 Shared resources. Tasks share a resource with a pro-
tocol such as PCP.

C17 Aperiodic tasks. Tasks must be aperiodic.

Table 2: Static constraints on the tasks

computed offline are verified. When static constraints are true it means that
scheduling anomalies could occur. Otherwise, we can state that the scheduling
anomalies resulting of the 19 scenarios cannot occur. In case potential scheduling
anomalies could occur at runtime, we run the second step in which an online
verification is applied. During runtime, we verify the dynamic constraints to
actually detect scheduling anomalies.

4 Experiments

We explain now how we expect to validate the proposed method to detect
scheduling anomalies. The proposed method requires the implementation of 2
different tools: (1) a first tool is needed to verify static constraints prior execu-
tion; while (2) a second tool must verify dynamic constraints during execution.
In the following, first we describe a prototype of each tool. Then, preliminary
evaluation results are given.

4.1 Implementation of the static constraints verification tool

To implement the first tool, we have extended Cheddar [17]. Cheddar is imple-
mented in Ada. It provides a modelling language called CheddarADL and an
analysis framework. CheddarADL allow the modelling of real-time systems by a
set of concepts such as tasks, processors, or shared resources [7]. To implement
the static constraint verification tool, no extension was needed to CheddarADL
but we implemented into the Cheddar framework a new library of 17 functions.
Each function verifies a static constraint of Tables 1 or 2. Figure 3 depicts the
Ada implementation of constraint C10 and how it is used for the reducing exe-
cution time anomaly.



6 B. Djika et al.

Id Anomaly Description

D1 Reducing execution
time

Tasks may see their execution
time decreasing during runtime.

D2 Increasing period Task periods may increase dur-
ing runtime.

D3 Increasing number of
processors

Number of processors may in-
crease during runtime.

D4 Changing priority Task priorities may change dur-
ing runtime.

D5 Weakening prece-
dence constraint

Precedence constraints may be
relaxed during runtime.

D6 Increasing processor
speed

Processor speed may be in-
creased during runtime.

D7 Delaying task execu-
tion

Tasks may suffer unexpected la-
tency before being released.

Table 3: Dynamic constraints

4.2 A monitoring service to verify the dynamic constraints

The second step is the verification at runtime of the dynamic constraints of
Table 3. By example, with the reducing execution time anomaly, we have to
check that a task actually run quicker than expected, leading to a scheduling
anomaly. For such a purpose, we need a monitoring service implemented in the
operating system.

Figure 4 presents a possible interface of such monitoring service for an oper-
ating system compliant with POSIX. The main entry point of such interface is
scheduling anomaly handler which is called by the operating system when an
event which may lead to an anomaly occurs (see type event type). This handler
maintains a dynamic and a static view of the monitored system and raises an
alarm (by the output param parameter) when a scheduling anomaly is detected
(see type anomaly type).

4.3 Preliminary evaluation

Before implementing the monitoring service of Figure 4 in a real operating sys-
tem, we prototyped it into the scheduling simulator of Cheddar. This scheduling
simulator is able to simulate the behaviour of many task models and schedul-
ing policies in the field of real-time scheduling. Figure 5 shows a sample of this
implementation in Ada. We need 1600 lines of Ada code to implement in Ched-
dar the 17 static constraints with their 19 scenarios and the monitoring service
which handles events generated by the Cheddar simulator to verify the dynamic
constraints. The Ada implementation of the static and the dynamic constraints
shares many existing Cheddar software units which reduces significantly the im-
plementation effort.

With this implementation, we are able to verify that all scheduling anomalies
are correctly detected by their static constraints. Dynamic constraints of five



Title Suppressed Due to Excessive Length 7

function check_c10_synchronous_release

(a : in system) return Boolean is

iterator1 : tasks_iterator;

task1, task0 : generic_task_ptr;

begin

reset_iterator(a.tasks,iterator1);

current_element(a.tasks,task0,iterator1);

loop

current_element(a.tasks,task1,iterator1);

if (task1.start_time/=task0.start_time)

then return False; ...

function check_static_reducing_execution_time

(a : in system) return Boolean is

begin

return

(check_c1_mono_processor_system (a) and

check_c3_partitionned_scheduling(a) and

check_c10_synchronous_release (a) and ...

Fig. 3: Specification of static constraints in Ada

enum anomaly_type {

task_execution_time_decrease,

task_period_increase, ...

enum event_type {

thread_context_switch,

semaphore_or_mutex_lock, ...

typedef struct input_param {

enum event_type an_event;

struct timespec current_time; ...

typedef struct output_param {

enum anomaly_type detected_anomaly; ...

typedef struct cheddar_system { ...

int scheduling_anomaly_register(

struct cheddar_system m);

int scheduling_anomaly_handler(

struct input_param in,

struct output_param* out); ...

Fig. 4: Monitoring API specification for dynamic constraints verification



8 B. Djika et al.

Anomaly Dynamic
Con-
straints

Static Constraints Ref

Reducing execution time

D1
C1,C3,C5,C10,C12,C15 [13]
C1,C3,C5,C9,C10,C12,C13 [14]
C1,C3,C7,C8,C10,C12,C16 [11]
C1,C3,C6,C8,C11,C12,C13,C14 [16]
C2,C4,C5,C8,C11,C12,C13,C17 [12]
C2,C3,C5,C9,C10,C12,C16 [5]
C2,C4,C5,C9,C10,C12,C15 [10]

Increasing period
D2

C2,C4,C7,C10,C12,C13 [8]
C2,C4,C5,C8,C10,C12,C13 [2]
C2,C4,C6,C8,C10,C12,C13 [3]
C2,C3,C5,C8,C10,C12,C13 [3]

Increasing number of proces-
sor

D3 C2,C4,C5,C9,C10,C12,C15 [10]

Changing priority
D4 C1,C3,C5,C10,C12,C15 *

C2,C4,C5,C9,C10,C12,C15 [10]

Weakening precedence
constraint

D5 C1,C3,C5,C10,C12,C15 [13]
C2,C4,C5,C9,C10,C12,C15 [10]

Increasing processor speed
D6 C1,C3,C5,C8,C11,C12,C16 [5]

C1,C3,C5,C9,C11,C12,C13 [5]

Delaying execution time D7 C1,C3,C5,C8,C10,C12,C16 [5]

Table 4: Modeling each scheduling anomaly. *This scenario for D4 was identified
by the authors during this work.

anomalies were also verified. The verification of two dynamic constraints (D3 and
D7) stays an ongoing work due to the number of updates needed in the Cheddar
simulator. This evaluation was made by scheduling simulation of several task
sets over their feasibility interval [9], which exhibits a schedulability proof for
the tested task sets. Finally, a new scheduling anomaly scenario for D4 described
in Table 4 has been identified during the experimentations.

5 Related work

Previous research on scheduling anomalies has generally focused on identifying
and presenting different types of scheduling anomalies in both uniprocessor and
multiprocessor systems [10, 14], but without mentioning how to prevent them
practically.

As far as we know, only [6] and [2] have investigated scheduling anomalies
prevention.



Title Suppressed Due to Excessive Length 9

type handler_output_parameter is record ...

type handler_input_parameter is record ...

procedure scheduling_anomaly_register(

m : in system);

procedure scheduling_anomaly_handler(

inp : in handler_input_parameter;

sched : in generic_scheduler’class;

outp : out handler_output_parameter);

Fig. 5: Monitoring service implementation in Cheddar

Chen [6] looks for scheduling anomaly prevention when software components
have to be ported from uniprocessor to multiprocessor environments. Chen intro-
duces the notion of scheduler stability. This concept allows designers to prevent
scheduling anomaly when tasks synchronize themselves during I/O operations.

Another approach was investigated by Andersson [2]. Andersson designed a
partitionned multiprocessor scheduling approach that prevents scheduling anomaly
providing that processor utilization stays under 41%.

Contrary to our work, none of them proposed and implemented tools to
detect various scheduling anomalies.

6 Conclusion

Our work focuses on the modeling and the detection of scheduling anomalies in
real-time systems. To detect a scheduling anomaly, we need to define the context
in which the anomaly may occur. We then propose to specify the context of
seven of the most known scheduling anomalies as a set of models composed of
constraints. Each model is a set of constraints on the architecture allowing us
to detect if an anomaly occurs at runtime. These constraints and the related
verification tools were prototyped in Cheddar, a real-time schedulability tool.
Through simulations on the feasibility interval, we have shown that our toolset
is able to detect most of investigated anomalies. For future work, we will further
explore scheduling anomalies analysis by the implementation of our proposal in
an real operating system such as RTEMS [4].

7 Artefact

All programs and models described in this article are available at http://beru.univ-
brest.fr/svn/CHEDDAR/trunk/artefacts/rtss21



10 B. Djika et al.

References

1. L. Almeida, P. Pedreiras, and R. Marau. Traffic scheduling anomalies in temporal
partitions. LSE - IEETA / DET, 2006.

2. B. Andersson. Static-priority scheduling on multiprocessors. Chalmers University
of Technology, 2003.

3. B. Andersson and J. Jonson. Preemptive multiprocessor scheduling anomalies.
ARTES, 2002.

4. G. Bloom and J. Sherill. Scheduling and thread management with rtems. In ACM
SIGBED Review, 2014.

5. G.C. Buttazzo. Hard Real-Time Computing Systems; Predictable Scheduling Algo-
rithms and Applications. Springer, 2011.

6. Y. Chen, L. Chang, T. Kuo, and A.K. Mok. An anomaly prevention approach for
real-time task scheduling. The Journal of Systems and Software, 2009.

7. C. Fotsing, F. Singhoff, A. Plantec, V. Gaudel, S. Rubini, S. Li, H.N. Tran,
L. Lemarchand, P. Dissaux, and J. Legrand. Cheddar architectute description
language. Technical report, Lab-STICC technical report, 2014.

8. J. Goossens. Introduction à l’ordonnancement temps réel multiprocesseur. Uni-
versité Libre de Bruxelles, 2007.

9. Joël Goossens, Emmanuel Grolleau, and Liliana Cucu-Grosjean. Periodicity of real-
time schedules for dependent periodic tasks on identical multiprocessor platforms.
Journal of Real-Time Systems, 2016.

10. R. Graham. Bounds on the performance of scheduling algorithms. Computer and
job shop scheduling theory, 1976.

11. S. Pailler. Analyse Hors Ligne d’Ordonnançabilité d’Applications Temps Réel com-
portant des Tâches Conditionnelles et Sporadiques. PhD thesis, Ecole Nationale
Supérieure de Mécanique et d’Aérotechnique, 2006.

12. H. Rhan and W.S. Jane. Validating timing constraints in multiprocessor and
distributed real time systems. Proceedings of IEEE 14th International Conference
on Distributed Computing Systems, 1994.

13. M. Richard, P. Richard, E. Grolleau, and F. Cottet. Contraintes de précédences
et ordonnancement mono-processeur. Real-time and embedded systems (RTS’02),
2002.

14. P. Richard. On the complexity of scheduling real-time tasks with self-suspensions
on one processor. 2003.

15. P. Richard, G. Phavorin, J. Goossens, T. Chapeaux, and C. Maiza. Scheduling
with preemption delays anomalies and issues. RTNS, 2015.

16. F. Ridouard, P. Richard, F. Cottet, and K. Traoré. Some results on scheduling
tasks with self-suspensions. Journal of Embedded Computing, 2006.

17. Frank Singhoff, Jérôme Legrand, Laurent Nana, and Lionel Marcé. Cheddar: A
flexible real time scheduling framework. ACM SIGAda Conference, Atlanta, USA,
2004.


