
ECTM: A New Communication Model to
Network-On-Chip Schedulability Analysis

Mourad Dridi1, Frank Singhoff1, Stéphane Rubini1, and Jean-Philippe Diguet2

1 Univ. Brest, Lab-STICC, CNRS, UMR 6285, F-29200 Brest, France
2 Univ. Bretagne Sud, Lab-STICC, CNRS, UMR 6285, F-56100 Lorient, France

{mourad.dridi, stephane.rubini, frank.singhoff}@univ-brest.fr
jean-philippe.diguet@univ-ubs.fr

Abstract. Network-On-chips are widely used in industrial applications
since they provide communication parallelism and reduce energy con-
sumption. The use of NoC has been recently extended to real-time sys-
tems, whose execution has to meet temporal constraints. Communication
delays introduced by the network make the scheduling analysis challeng-
ing. In this paper, we propose a new NoC communication model called
ECTM. The main goal of this model is to assess the schedulability of de-
pendent periodic tasks exchanging messages on NoC. ECTM transforms
NoC messages to tasks in order to take into account communication
delays during scheduling analysis. It supports Store-And-Forward and
Wormhole NoC. We have implemented ECTM in a real-time schedul-
ing analysis tool called Cheddar and performed experiments to assess its
efficiency. ECTM is more efficient than existing solutions with an im-
provement of 30% for Store-And-Forward NoCs and of 100% for Worm-
hole NoCs, while the proposed model requires a larger computation time
about 17% for Store-And-Forward NoCs and 54% for Wormhole NoCs.

Keywords: Network-On-Chip (NoC) · Real-Time Systems · Communi-
cation · Scheduling Analysis · Wormhole · Store and forward

1 Introduction

Since they provide communication parallelism and limit the energy consumption,
Networks on Chip (NoC) are widely used in industrial applications. Recently,
the use of NoC has been extended to real-time systems [12]. Real-time systems
are systems that have deadlines to met [3].

NoC introduce communication delays because of possible resource contentions
between different flows in the network. Those delays depend on many factors.

This work and Cheddar are supported by Brest Métropole, Ellidiss Technologies,
CR de Bretagne, CD du Finistère and Campus France PESSOA programs number
27380SA and 37932TF.

2 M. Dridi et al.

Some of them are related to the NoC configuration like the switching mode or
the arbitration policy, while others result from the network state [17]. Thus, due
to the NoC architecture, real-time scheduling analysis is a challenge.

In order to analyse schedulability of periodic tasks in NoC-based parallel
architectures, we have to take into account at the same time the task scheduling
over processing elements and the message communications scheduling over the
network.

Unfortunately, classic multiprocessor real-time scheduling solutions consider
worst case communication time instead of the actual delays introduced by the
network [14]. Consequently, it leads to pessimistic analysis results.

In this paper, we propose a NoC communication model in order to assess
the scheduling analysis of periodic tasks over NoC architectures. The proposed
model simplifies combined scheduling analysis of the periodic tasks and the NoC
communications.

Our approach converts NoC flows of messages scheduling to periodic tasks
scheduling. Each flow of message is transformed to a set of dependent periodic
tasks. As a result, the scheduling analysis is simplified as the problem of the tasks
and NoC communications scheduling is similar to the scheduling of periodic tasks
deployed on a multiprocessor, which has been well studied [15, 1]. By a set of
experiments, we show the efficiency of this approach.

The remainder of the paper is organized as follows. The next section presents
related works. Section 3 introduces background about the NoCs and the periodic
task model we consider. Then, section 4 proposes our approach for scheduling
periodic tasks over NoC-based architectures. Implementation and evaluation of
the proposed approach are explained in section 5 and section 6 concludes this
article.

2 Related Work

NoC-based communication has recently attracted significant attention because
of its potential for performance improvement and its impact on task scheduling.
Thus, several NoC communication analysis have been proposed.

[18] proposes an analysis approach for real-time on chip communication with
Wormhole switching and fixed priority scheduling. [19] focuses on real-time com-
munication service with a priority share policy. These works designed worst case
communication time analysis for different NoC configurations.

In order to schedule periodic tasks over NoC architectures, several schedul-
ing algorithms have been proposed. Those solutions have different goals. Some
optimize the design by minimizing the power consumption and the run time of
an application. Others enforce the timing constraints of the system [13].

G. Varatkar et al. [21] have developed a two-step mapping and scheduling
algorithm. It performs simultaneous mapping and scheduling of tasks in order
to reduce communication energy by minimizing the inter-processor communica-
tion. However, the communication distance is only roughly approximated. This

NoC Communication Models 3

work does not carry out communication mapping and scheduling. Thus, real-
time scheduling cannot supported, because communication latency is completely
ignored in the scheduling process.

T. Lei et al. [11, 10] also propose a two-step algorithm for task mapping and
task scheduling over NoC architectures. The goal of the scheduling analysis is
to check hard deadlines, while the goal of task mapping is to maximize timing
performances. The communications are not considered in the mapping and the
scheduling process. Communication delays are estimated using average distance
in the NoC. Thus, this approach cannot guarantee hard deadlines also.

The analysis approach we propose in the paper starts with a model transfor-
mation. The model transformation aims to convert an architectural model into
a simplified analysis model [16].

A model transformation approach has been used by Lakshmanan et al in [9]
also. They propose a stretching algorithm for a dependent task model. The
stretching algorithm avoids the parallel structure of the architectural model by
executing them as sequentially as possible. [16] introduces a DAG Stretching al-
gorithm in order to analyze the scheduling of dependent tasks. In the stretching
algorithms, dependent tasks are transformed to a set of independent sequential
threads. Intermediate offsets and deadlines are assigned to threads so as to de-
termine their execution interval. However, all these transformation models do
not consider the communications in a NoC.

To conclude, there are few approaches which perform NoC communication
scheduling [13]. Furthermore, most of the proposed works for task and communi-
cation scheduling over NoC architectures do not consider the exact communica-
tion time. They consider worst case communication time or average distance in
the NoC to estimate the communication time. Finally, existing transformation
models also ignore the NoC communications.

The next sections detail a new NoC communication model that addresses the
limitations highlighted above.

3 Background

This section contains the background required to understand the contributions
proposed in the next sections. First, we introduce the main concepts about NoCs.
Then, we present the models of flow and task assumed in this article.

3.1 Network-on-Chip

A NoC is a network of nodes. Each node may be a processing element, a memory,
a peripheral or a cluster.

Fig. 1 illustrates the major components of a NoC. Nodes access the network
through a network interface (NI) and receive data encapsulated in packets [12].
Then, processing elements communicate by exchanging messages over the net-
work. The network is composed of routers and unidirectional physical links. We
note eRxRy the unidirectional link between the two routers Rx and Ry, and

4 M. Dridi et al.

ePExRy the unidirectional link between the processing element PEx and the
router Ry. Finally, ePExRy is an unidirectional link between the router Ry and
the processing element PEx.

Fig. 1. Network On Chip

In order to ensure the communication in the network, routers implement
arbitration policy and switching mode.

Switching Mode: it determines how a packet is allocated to buffers and
channels and when it will receive service. In this article, we assume two switching
modes: Store And Forward (SAF) and Wormhole.

For the SAF mode, each router waits for a full packet to arrive before sending
it to the next router [7].

With the Wormhole mode, the packet is divided into a number of fixed size
flits [17]. The packet is split into an header flit, one or several body flits and a
tail flit. The header flit stores the routing information and is used to build the
route. As the header flit moves ahead along the selected path, the remaining flits
follow in a pipeline way and possibly span over multiple routers.

Arbitration Policy: its aim is to select one packet from many in a router.
When several incoming packets request the same output port of a router, an
arbitration is required to select one of these packets.

Several arbitration mechanisms have been used in NoC routers [12]. Round-
robin and priority-based are 2 examples of these mechanisms. Round-robin ar-
biters give the lowest priority to the last served request in the next arbitration.
Priority-based arbiters choose one packet from many requests based on their
fixed priority.

3.2 Task model

In this paper, we assume real-time systems designed as a set of dependent peri-
odic tasks deployed on a NoC.

NoC Communication Models 5

We assume a set of task Γ composed of n periodic tasks: Γ ={τ1, τ2, . . . , τn}
Each task τi is defined as follows: τi = { Oi, Ti, Ci, Di, Πi, Nodei, Ei } where:

– Oi is the first release time of the task τi.
– Ti is the period of the task.
– Ci specifies the Worst Case Execution Time of the task.
– Di is the deadline to meet.
– Πi is the fixed priority of the task. The value 1 denotes the highest priority

level while a larger value is a lower priority.
– Nodei identifies the NoC node (i.e. the processing element) running the

task. This parameter allows us to introduce the mapping configuration, i.e.
on which processing element each task is assigned to.

– Ei : Γ −→ Γ p τi −→ E(τi) ={τj , . . . , τk }
The function E introduces precedence constraints of the task model. For a
given task τi, the function E determines all the tasks τj that receive messages
from the task τi.

From the previous task model, in [4], we have proposed DTFM (Dual Task
and Flow Model) in order to compute the flow model from the task model, the
mapping of the tasks on the processing elements and the NoC model. The flow
model specifies the messages that have to be transmitted in the NoC to enforce
the communications between the tasks.

With DTFM, the set of flows ψ related to Γ can be defined as follow. The
flow model comprises m periodic traffic flows ψ ={ρ1, ρ2, . . . , ρm}.

Each flow ρi raises a sequence of messages in a similar way that a task raises
a sequence of jobs. Each flow ρi is defined as follows: ρi ={ Oi, Ti, Di, Πi,
NodeSi, NodeDi, Fi }

where:

– Oi is the release time of the messages, i.e. the first time when a message of
the flow becomes ready to be transmitted.

– Ti is the period of the message.
– Di is the deadline of the message.
– Πi is the priority of the messages. The value 1 denotes the highest priority

level while a larger value indicates a lower priority.
– NodeSi is the node (i.e. the processing element) running the transmitter

task.
– NodeDi is the node running the receiver task.
– Fi : ψ −→ Ωp

ρi −→ F (ρi) ={eRp,Rk, . . . , ePEi,Rj}
where Ω is a set of physical links in the NoC.
Fi is a function that computes the links used by a flow. In other words, Fi
identifies the physical links that will be used by any messages of the flow.
The function Fi helps us to understand the relationships between the various
flows that transit through the network and to determine the interferences
between messages sent by the tasks.

Next, we explain the proposed approach.

6 M. Dridi et al.

4 NoC Communication Time Models

In order to analyze the scheduling of periodic tasks running on a NoC architec-
ture, communication delays in the NoC have to be investigated.

Shi et al. in [17–19] proposed NoC communication models based on worst
case scenario. Those communication models produce worst case communication
delays that can be used to assess schedulability of periodic tasks running on the
NoC.

In the sequel, we formalize WCCTM, the Worst Case Communication Time
Model based of the Shi. et al analysis. Then, we propose ECTM (Exact Commu-
nication Time Model), an exact communication model that improves WCCTM.

Next, we present an overview of our schedulability approach before introduc-
ing both WCCTM and ECTM.

4.1 Overview of our approach

Fig. 2. Overall approach

Fig. 2 shows an overview of the approach we propose.

We assume the system to analyze is expressed by a model of the NoC, a
model of the application as a set of dependent periodic tasks and how such tasks
are deployed on the processing elements. In the sequel, we call such input model
the architectural model.

Then, to achieve schedulability analysis of the overall system, the commu-
nication delay model of the architectural model is transformed to an analysis
model to validate the scheduling of the communications. For such transforma-
tion, we use ECTM and WCCTM. WCCTM is used in this article to evaluate
ECTM efficiency.

In the next paragraphs, we define the architectural model and the analysis
model.

Architectural model : For the architectural model, we consider a set of pe-
riodic tasks exchanging messages deployed over a NoC. We use DTFM [4] in
order to model the NoC model, the task mapping, and the flow model.

DTFM generates the flow model from the task model, the mapping of the
tasks on the processing elements and the NoC model.

NoC Communication Models 7

Analysis model : The analysis model is a set of periodic tasks running on a
multiprocessor execution platform. We assume a multiprocessor with identical
processors [5] and no shared resources.

Scheduling analysis of such model can be performed with list scheduling [6,
15]. List scheduling algorithms build scheduling list of tasks when assigning them
their priorities. There are several ways to determine the priorities of tasks such
as Highest Level First, Longest Path and Longest Processing Time [8].

Highest Level First with Estimated Time (HLFET) algorithm, Modified Crit-
ical Path (MCP) algorithm, Earliest Time First (ETF) algorithm and Dynamic
Level Scheduling (DLS) algorithm are examples of list scheduling algorithms
which we can be applied on the analysis model we assume [15, 1].

Now we describe the communication time models considered in this article:
WCCTM and two ECTM models, one for SAF switching and the second for
Wormhole switching. Table 1 gives all the assumptions for these communications
models.

Noc Communication WCCTM ECTMSAF ECTMWormhole

Model

Topology and 2D mesh 2D mesh 2D mesh
dimension

Routing Algorithm XY / YX XY / YX XY / YX

Switching mode Wormhole / SAF SAF Wormhole

Arbitration policy Fixed priority Fixed priority Fixed priority
policy Round Robin Round Robin Round Robin

Virtual channel With / without With With

Preemption level Flit / Packet Packet Flit
Table 1. Assumptions on the NoC for each communication model

4.2 Worst Case Communication Time Model (WCCTM)

Now we explain how the architectural model is transformed to an WCCTM
analysis model. To achieve this transformation, we apply the following rules:

– All routers and unidirectional links of the architectural model will be re-
moved in the analysis model while keeping all the processing elements.

– For each flow ρi of the architectural model, we consider a new processing
element PEρi in the analysis model.

– Each flow ρi of the architectural model will be replaced by one task τρi in
the analysis model.
If the architectural model contains two periodic tasks τsource and τdestination
and if τsource sends the flow ρi to τdestination, then applying WCCTM leads
to the flow ρi transformed in the analysis model as a periodic task τρi with
the following parameters:

8 M. Dridi et al.

• Oτρi = Oρi
• Tτρi = Tρi
• Cτρi = WCCTi

Where WCCTi is the Worst Case Communication Time of a ρi’s mes-
sage. We compute WCCTi with the methods proposed in [17–19] for
Wormhole NoCs or in [17] for SAF NoCs.

• Dτρi
= Dρi

• Node(τρi) = PEρi
• E(τρi)= τdestination

We illustrate the WCCTM transformation by the Fig. 3 example. We con-
sider two periodic tasks τ1 and τ2. τ1 sends the flow ρ1 to the task τ2. In addition,
τ1 is executed by the processing element PE1, while τ2 is executed by PE3.

After applying the WCCTM transformation rules, routers and links are
removed. The flow ρ1 is transformed into a task τρ1 . τρ1 is modeled by the
processing element PEρ1 .

Fig. 3. Worst Case Communication Time Model (WCCTM): Example

4.3 Exact Communication Time Model for SAF NoC (ECTMSAF)

For SAF NoCs, we propose ECTMSAF . Next, we detail the transformation rules
of ECTMSAF .

– Each router of the architectural model will be removed in the analysis model
while keeping all the processing elements.

– Each unidirectional link in the network between two routers (eRxRy) of the
architectural model will be replaced in the analysis model by a new process-
ing element (PERxRy).

– Each unidirectional link in the network between router and processing el-
ement (ePExRy) (respectively eRxPEy) of the architectural model will be
replaced in the analysis model by a new processing element (PEPExRy) (re-
spectively PERxPEy).

NoC Communication Models 9

– Each flow ρi of the architectural model will be replaced by a set of nbrlinki
tasks Γρi , where nbrlinki denotes the number of links used by the flow ρi.

Γρi = { τρi,1 , τρi,2 , . . . , τρi,nbrlinki}.
If the architectural model contains two periodic tasks τsource and τdestination
and if τsource sends the flow ρi to τdestination, then applying ECTMSAF

leads to the flow ρi transformed in the analysis model as periodic taskset
Γρi . Parameters of each task τρi,j of the task set Γρi are computed as follow.
For j in [1, . . .nbrlinki] τρi,j is characterized by :

• Oi,j = Oρi
• Ti,j = Tρi
• Ci,j = PD1Link

PD1Link is the Path Delay of one link.

The path delay represents the communication delay for a given flow ρi
PD1Link represents the communication delay for the transmission of
one flow over one link without considering the possible conflicts in the
network.

• Di,j = Dρi

• Node(τi,j) =

PERjPEj if j = nbrlinki
PEPEjRj if j = 1
PERxRy if 1 < j < nbrlinki

• Ei,j =

{
τi,j+1 if j < nbrlinki
τdestination if j = nbrlinki

Fig. 4. Example of ECTMSAF

We apply the ECTMSAF transformation, to the previous example. Fig. 4
shows the architectural and the analysis models with ECTMSAF .

10 M. Dridi et al.

After applying the ECTMSAF transformations, routers have been removed
and the physical links are transformed in the analysis model to processing ele-
ments. The flow ρ1 uses 4 physical links. Thus, the flow ρ1 has been transformed
in the analysis model to a task set Γρ1 of 4 tasks. Γρ1 = { τρ1,1 , τρ1,2 , . . . , τρ1,4}.

τρ1,1 , τρ1,2 , τρ1,3 and τρ1,4 are respectively executed by the processing element
PEPE1R1, PER1R2, PER2R3 and PER3PE3.

4.4 Exact Communication Time Model for Wormhole NoC
(ECTMWormhole)

For Wormhole NoCs, we propose ECTMWormhole. In the following, we detail
rules of ECTMWormhole:

– Each router of the architectural model will be removed in the analysis model
while keeping all the processing elements.

– Each unidirectional link in the network between two routers (eRxRy) of the
architectural model will be replaced in the analysis model by a new process-
ing element (PERxRy).

– Each unidirectional link in the network between router and processing el-
ement (ePExRy) (respectively eRxPEy) of the architectural model will be
replaced in the analysis model by a new processing element (PEPExRy) (re-
spectively PERxPEy).

– Each flow ρi of the architectural model will be replaced by a set of nb tasks
Γρi , where nb = nblinki × nbsizei
nblinki represents the number of links used by the flow while nbsizei repre-
sents the size of message of the flow ρi.
Γρi = { τρi,1,1 , τρi,a,b , . . . , τρi,nbsizei,nblinki }.
For example, with ECTMSAF , a flow of 2 flits which uses 3 physical links
will be transformed in the analysis model to a task set of 2× 3 tasks.

If the architectural model contains two periodic tasks τsource and τdestination,
τsource and τdestination are executed respectively into PEs and PEd. If τsource
sends the flow ρi to τdestination, then applying ECTMWormhole leads to the flow
ρi transformed in the analysis model as periodic taskset Γρi . Parameters of each
task τρi,a,b of the task set Γρi are computed as follow :

For (a,b) ∈ [1, sizei] x [1,nbrlinki], τρi,a,b is characterized by :

– Oτρi,a,b = Oρi
– Tτρi,a,b = Tρi
– Cτρi,a,b = PDOneflit/Onelink

PDOnelink is the path delay of one flit over only one link.
– Dτρi,a,b

= Dρi

– Node(τρi,a,b) =

PEPEsRs if a = 1
PERxRy if 1 < a < nbrlinki
PERdPEd if a = nbrlinki

We note here that eRxRy presents one of the used physical links by the flow
ρi.

NoC Communication Models 11

– Eτρi,a,b =


τρi,a+1,b, τρi,a,b+1 if a < sizei and b < nbrlinki
τρi,a+1,b if a < sizei and b = nbrlinki
τρi,a,b+1 if a = sizei and b < nbrlinki
τdestination if a = sizei and b = nbrlinki

Fig. 5. Exact Communication Time Model for Wormhole: Example

In order to illustrate transformation of the proposed model for Wormhole
NoCs, we apply ECTMWormhole to the previous example. Fig 5 shows the ar-
chitectural and the analysis models with ECTMWormhole.

After applying ECTMWormhole transformation, routers are removed. Physi-
cal links are transformed in the analysis model to processing elements. The flow
ρ1 uses 4 physical links. The flow size is 2 flits. Thus, the flow ρ1 is transformed
in the analysis model to a task set Γρ1 of 8 tasks. Γρ1 = { τρ1,1,1 , τρ1,1,2 , . . . ,
τρ1,4,2}.

We note here that for n flows, ECTM generates a task set of n2 tasks for both
Wormhole and SAF NoCs, which may lead to a more expensive schedulability
analysis.

In order to validate the proposed approach, we have demonstrated theoret-
ically the correctness of the transformations of ECTM. First, we have identi-
fied properties of both architectural and analysis models. Then, we have shown
equivalence between the two properties set. Unfortunately, we cannot expose the
validation details in this article because of the page limitations.

In the next section, we present the evaluation of the proposed approach.

12 M. Dridi et al.

5 Implementation and Evaluation

We have produced several experiments in order to evaluate the accuracy and
the scalability of the proposed models. To perform these evaluations, we have
implemented our communication models into a real-time scheduling simulator
called Cheddar [20]. Then, with a first experiment, we evaluate the accuracy
of ECTM and WCCTM. A second experiment evaluates the scalability of our
approach.

5.1 Implementation of ECTM and WCCTM

Cheddar is a GPL framework that provides a scheduling simulator, schedulability
tests and various features related to the design and the scheduling analysis of
real-time systems. To model the system to analyze, Cheddar provides a specific
architecture design language, called CheddarADL [20]. CheddarADL allows users
to describe both the software and the hardware parts of the system they expect
to analyze.

Fig 6 is an overview of the software architecture of our prototype and a subset
of Cheddar framework libraries.

Fig. 6. Implementation into Cheddar. The NoC Architecture Generator produces a
random real-time system deployed over a NoC architecture. WCCTM and ECTM boxes
are for the NoC communication models described in this paper. Finally, the HLFET
module extends the scheduling algorithms implemented in the simulator.

5.2 Accuracy of WCCTM and ECTM

The purpose of this evaluation is to make a comparative study between the two
ECTM and WCCTM models in terms of accuracy. To do so, we evaluate the rate
of schedulable task sets found as schedulable by ECTM and WCCTM models.

NoC Communication Models 13

Fig. 7. Accuracy of the NoC analysis models for All-To-One traffic

In this experiment, we randomly generate 100 sets of dependent periodic
tasks using UUniFast [2]. We choose a random task mapping where we can have
a maximum of two tasks per processing element.

We consider two traffic patterns: All-To-One and One-To-One.

With an All-To-One traffic pattern, The source node will be randomly se-
lected using UUniFast, while the destination node is fixed arbitrarily. All flows
of the same set have the same destination node.

With an One-To-One traffic pattern, the destination node and the source
node are selected randomly using UUniFast. The chosen packet size is 4 flits.
Like for the previous experiment, we use a Wormhole NoC and a SAF NoC.

To perform the experiment, we first use DTFM in order to compute the flow
model from the task model, the task mapping and the NoC model. Then, we
apply ECTM or WCCTM and we compute the scheduling with one of the list
scheduling algorithms. Since it presents the best results in term of robustness
and complexity, scheduling analysis is performed with HLFET [1]. Simulation
intervals are choosen according to [5].

We also consider two NoC models. The first one is a Wormhole NoC, while
the second is a SAF NoC. The two NoCs have the same size and the same
topology (4× 4 2D mesh).

We present Fig. 7 the rate of task sets considered as schedulable according to
the overall processing element utilization rate for the All-To-One traffic pattern.
The figure shows that ECTM is more accurate than WCCTM with an improve-
ment of 30% for Store-And-Forward NoCs, From a use rate equal to 0.15, some
schedulable task sets are no more considered as schedulable by WCCTMSAF

14 M. Dridi et al.

model. However, with the ECTMSAF , these task sets remain seen as schedulable
up to 0.2 of use rate.

Fig. 8 presents the same results than Fig. 7 but for the One-To-One traffic
pattern. It confirms the last interpretation: WCCTM is more pessimistic than
ECTM. For Wormhole NoCs, ECTM is more accurate than WCCTM with an
improvement of 100%. Using WCCTMWormhole, the schedulable task sets are
no more seen as schedulable from a use rate equal to 0.08. However, with the
ECTMWormhole, the schedulable task set is seen as schedulable up to 0.16 of
use rate.

Fig. 8. Accuracy of the NoC analysis models for One-To-One uniform traffic

5.3 Evaluation of the scalability of our approach

In order to evaluate the scalability of our approach, we measured the compu-
tation time of the WCCTM and ECTM transformations. We keep the same
configuration than the previous experiments. Fig 9 presents this result for dif-
ferent numbers of flows ranging from 15 to 120.

WCCTM provides shorter computation time than ECTM. For 105 flows in
the network, WCCTM takes 2.32 seconds to compute the analysis model, while
ECTMSAF takes 2.86 seconds, and ECTMWormhole takes 6.80 seconds for 2 flits
flows and 8.13 seconds for 3 flits flows. In terms of computation time, WCCTM
has a shorter computation time comparing to ECTM, with a reduction of 17%
for Store-And-Forward NoCs and of 54% for Wormhole NoCs.

NoC Communication Models 15

Fig. 9. Computation time for the model transformations

6 Conclusion

Delays introduced by a NoC make the schedulability analysis challenging. In
this paper, we propose a new NoC communication model called Exact Commu-
nication Time Model (ECTM) in order to analyze the scheduling of periodic
tasks exchanging messages over a NoC. Our approach supports Wormhole and
Store-And-Forward NoC switching technics. With ECTM, we perform schedul-
ing analysis with a list scheduling algorithm called HLFET.

We have implemented our approach in a real-time scheduling simulator called
Cheddar. Results show that ECTM is more efficient than the classic solution
WCCTM with an improvement of 30% for Store-And-Forward NoCs and of
100% for Wormhole NoCs, while in terms of computation time of the analysis
model, WCCTM is better than ECTM with 17% for Store-And-Forward NoCs
and with 54% for wormhole NoCs.

In future work, we will evaluate the overhead on the computation time intro-
duced by the proposed model on the scheduling analysis. Furthermore, we intend
to use ECTM and its associated tools to investigate the scheduling analysis of
mixed criticality systems deployed over NoC architectures.

References

1. Adam, T.L., Chandy, K.M., Dickson, J.R.: A comparison of list schedules for par-
allel processing systems. Communications of the ACM 17(12), 685–690 (Dec 1974)

2. Bini, E., Buttazzo, G.C.: Measuring the performance of schedulability tests. Real-
Time Systems 30(1-2), 129–154 (2005)

3. Cheng, S.C., Stankovic, J.A., Ramamritham, K.: Tutorial: Hard real-time systems.
chap. Scheduling Algorithms for Hard Real-time Systems: A Brief Survey, pp. 150–
173. IEEE Computer Society Press, Los Alamitos, CA, USA (1989)

16 M. Dridi et al.

4. Dridi, M., Rubini, S., Singhoff, F., Diguet, J.P.: DTFM: a flexible model for schedu-
lability analysis of real-time applications on noc-based architectures. In: Proceeding
of the 4th IEEE International Workshop on Real-Time Computing and Distributed
systems in Emerging Applications (REACTION). pp. 43–49 (Nov 2016)

5. Goossens, J., Grolleau, E., Cucu-Grosjean, L.: Periodicity of real-time schedules for
dependent periodic tasks on identical multiprocessor platforms. Real-Time Systems
52(6), 808–832 (Nov 2016)

6. Hagras, T., Janeček, J.: Static vs. dynamic list-scheduling performance comparison.
Acta Polytechnica 43(6) (2003)

7. Jetly, K.: Experimental Comparison of Store-and-Forward and Wormhole NoC
Routers for FPGA’s. Ph.D. thesis, University of Windsor (Nov 2013)

8. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Computing Surveys 31(4), pp. 406–471 (Dec 1999)

9. Lakshmanan, K., Kato, S., Rajkumar, R.: Scheduling parallel real-time tasks on
multi-core processors. In: proceedings of the 31st IEEE Real-Time Systems Sym-
posium. pp. 259–268 (Nov 2010)

10. Lei, T., Kumar, S.: Algorithms and tools for network on chip based system design.
In: Proceedings of the 16th Symposium on Integrated Circuits and Systems Design.
pp. 163–168 (Sep 2003)

11. Lei, T., Kumar, S.: A two-step genetic algorithm for mapping task graphs to a
network on chip architecture. In: Proceedings of the 2003 Euromicro Symposium
on Digital System Design. pp. 180–187 (Sep 2003)

12. Ma, S., Huang, L., Lai, M., Shi, W.: Networks-on-Chip: From implementation to
programming paradigms. Morgan Kaufmann (2014)

13. Nejad, M.B., Nejad, E.B., Sayahi, A., Hashemi, S.M., Chaharlang, J.: Mapping
and scheduling techniques for network-on-chip architecture. International Journal
of Basic Sciences and Applied Research 2(7), 686–693 (2013)

14. Pop, R., Kumar, S.: A survey of techniques for mapping and scheduling applica-
tions to network on chip systems. Tech. Rep. 04:4, Department of Electronics and
Computer Engineering School of Engineering, Jönköping University (2004)

15. Qamhieh, M.: Scheduling of parallel real-time DAG tasks on multiprocessor sys-
tems. Ph.D. thesis, Université Paris-Est (2015)

16. Qamhieh, M., George, L., Midonnet, S.: A Stretching Algorithm for Parallel Real-
time DAG Tasks on Multiprocessor Systems. In: Proceedings of the 22nd Inter-
national Conference on Real-Time Networks and Systems. pp. 13–22. Versaille,
France (Oct 2014)

17. Shi, Z.: Real-Time Communication Services for Networks on Chip. Ph.D. thesis,
University of York (Nov 2009)

18. Shi, Z., Burns, A.: Real time communication analysis for on-chip networks with
wormhole switching. In: Proceedings of the Second ACM/IEEE International Sym-
posium on Networks-on-Chip (NOCS). pp. 161–170 (Nov 2008)

19. Shi, Z., Burns, A.: Real-time communication analysis with a priority share policy in
on-chip networks. In: Proceedings of the 21st Euromicro Conference on Real-Time
Systems (ECRTS). pp. 3–12 (July 2009)

20. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar: a flexible real time schedul-
ing framework. In: ACM SIGAda Ada Letters. vol. 24, pp. 1–8. ACM (2004)

21. Varatkar, G., Marculescu, R.: Communication-aware task scheduling and voltage
selection for total systems energy minimization. In: Proceedings of the 2013 Inter-
national Conference on Computer Aided Design. pp. 510–517 (Nov 2003)

