MODELING OF
MULTIPROCESSOR

HARDWARE PLATFORMS
FOR SCHEDULING ANALYSIS

Stéphane Rubini, Christian Fotsing, Frank Singhoff, Hai Nam Tran
Lab-STICC, University of Western Britany (UBO)
Contact: Stephane.Rubini@univ-brest.fr

Pierre Dissaux
ELLIDISS Technologies

Cheddar and SMART projects

AADL Comity, Toulouse, February 39 2014

occidentale

2

Basic view of multi-processing scheduling

- Partitioned/Global scheduling

Ready -——

queue I - - -

I
A Id === Read
y l P1 ! ' T 1 queug i

=T

[-

5 = B T

- Identical (a) , uniform heterogeneous (b) , or unrelated
heterogeneous (c) processing units

- = =1

I = - —,

@kﬂ C: C. X
P1 P1 P1
(a) (b) (c)
P2
Different speeds Different speeds

(depend on the job)

Outline

- Scheduling analysis of multi-processing systems
- Multi-processing implementations (shared memory)
- Scheduling analysis concerns

- AADL modeling

- Multi-processing systems
- Homogeneous/Heterogeneous processors

- Cheddar and AADLIinspector status

4

Multi-processing implementations and
task scheduling

Processors, cores or physical threads may be seen as

m “standard” processing resources by the scheduler.

ulti=Processor

Mult-Core Processor

‘e
0
‘e
0
.
.

ulti-Threaded

..
.......................
.

make the difference

But the shared resources -

Physical
Thread

Scheduling Analysis Framework

|

|

|

|

: Procl Proc?2

I Cache | Memory
1

|

Shared resources

Proc 1 .a m :
‘ Proc 2 m “

B Additional execution time

Scheduling
analysis

Thread

Scheduling
policy

Task capacities

Thread

The capacity may depend on:
1. the execution unit (processor or memory speed) > WCET

analysis technics, seliSaUliNganaycSI>
2. the sharing of resources (cache, bus) -

3. and the memory mapping. 2> WCET analysis techniques with

cac12. schedulng analyss

Effective capacity

Static ——

Dynamic mmm)

A
Deploi/ment
(memlbry map, \

analysis partition)
Schediuling

Coixms J ‘ analysis
Thread

Outline

- Scheduling analysis of multi-processing systems
- Multi-processing implementations (shared memory)
- Scheduling analysis concerns

- AADL modeling

- Multi-processing systems and shared resources
- Homogeneous/Heterogeneous processors

- Cheddar and AADLInspector tools status

AADL Modeling of Multiprocessor
Systems

- From scheduling analysis point of view,
how to model for analyzing
partitioned scheduling or global scheduling,
on
identical, or heterogeneous processors
with a “realistic” behavior, i.e. considering implicit
Interferences between system entities ?

Partitioned Scheduling

System : board::SoC_LEON4::Processor_Bus_System / unnamed Process : edgeDetection:: System1::processing / unnamed
line
Corel Core2
Processor_Bus Processor_Bus P getLine ; sharp L ! edge
[[cameraLine i | P |)
| P inputline inputLine
| line p | .] [)
i f outputLine p» | imageLine §
DDR2_ctrl ; cameraCtrl | | i | |
= AHB_Processor_Bus i W] i
Processor_Bus <]
image
<{Hemery_Busq(] DDR2_Bus0 »
VGA_Framebuffer Bl
{Hemery—Bust{ | DDR2_Busl
[[> Processor_Bus

VGA [h-v6A>

Processor_Bus

SYSTEM IMPLEMENTATION product.impl

SUBCOMPONENTS
hard : SYSTEM soc_leon4::soc.asic_leon4;
bankO : MEMORY ram.ddr2;
bank2 : MEMORY ram.ddr2;
soft : PROCESS edgeDetection.impl;

PROPERTIES
actual_processor_binding => (REFERENCE(hard.Proc_System.Corel)) JAPPLIES TO soft.getLine:
actual_processor_binding => (REFERENCE(hard.Proc_System.Core2)) APPLIES TO soft.sharp:
actual_processor_binding => (REFERENCE(hard.Proc_System.Core2)) APPLIES TO soft.edge;
Scheduling_Protocol => (Rate_Monotonic_Protocol) applies to hard.corel;
Scheduling_Protocol => (Rate_Monotonic_Protocol) applies to hard.core2;

END product.impl;

11

Task partitioning

Original AADL model

Allowed_Processor_Binding => (REFERENCE(hard.Proc_System))
APPLIES TO soft.getLine;

Allowed_Processor_Binding => (REFERENCE(hard.Proc_System))
APPLIES TO soft.sharp:

Allowed_Processor_Binding => (REFERENCE(hard.Proc_System))
APPLIES TO soft.edge:

Partitioning
(]0]S

AADL model complemented by partitions

Allowed_Processor_Binding => (REFERENCE(hard.Proc_System))
APPLIES TO soft.getLine;

Allowed_Processor_Binding => (REFERENCE(hard.Proc_System))
APPLIES TO soft.sharp:

Allowed_Processor_Binding => (REFERENCE(hard.Proc_System))
APPLIES TO soft.edge:

Actual_Processor_Binding => (REFERENCE(hard.Proc_System.Corel))
APPLIES TO soft.getLine;

Actual_Processor_Binding => (REFERENCE(hard.Proc_System.Corel)) |
APPLIES TO soft.sharp;

Actual_Processor_Binding => (REFERENCE(hard.Proc_System.Core2))
APPLIES TO soft.edge:

Table

Global Scheduling

Actual_Processor_Binding => (REFERENCE(hard.Proc_System.Corel),
REFERENCE (hard.Proc_System.Core2))
APPLIES TO soft.getLine;
Actual_Processor_Binding => (REFERENCE(hard.Proc_System.Corel),
REFERENCE (hard.Proc_System.Core2))
APPLIES TO soft.sharp:

Actual_Processor_Binding => (REFERENCE(hard.Proc_System.Corel), o e
REFERENCE (hard.Proc_System.Core2)) s s | | s v
APPLIES TO soft.edge: .
Scheduling_Protocol => Rate_Monotonic_Protocol applies to hard.Corel; oces o e
Scheduling_Protocol => Rate_Monotonic_Protocol applies to hard.Core2; [Jirpomss LJ tgimwmmw
VGA Cr-verD)

Actual_Processor_Binding has the inherit attribute; the
binding may be applied at the container level

Actual_Processor_Binding => (REFERENCE(hard.Proc_System.Corel),
REFERENCE (hard.Proc_System.Core2)) applies to soft;

AADL consistency rules (AADLv2, p221)

From the AADL standard :

- (C2) In the case of dynamic process loading, the actual
binding may change at runtime. In the case of tightly
coupled multi-processor configurations, such as dual core
processors, the actual thread binding may change
between members of an actual binding set of
processors as these processors service a common set of
thread ready queues.

- (C5) A thread must be bound to a one or more
processors. If it is bound to multiple processors, the
processors share a ready queue, i.e., the thread
executes on one processor at a time.

Specify the “global Scheduling_Protocol”

- The Scheduling_Protocol property can be applied to the
component types processor or virtual processor.

- For global scheduling, the protocol must be the same for
all the scheduled processors:

—> append a consistency rule,

- or, allow the Scheduling_Property to be defined
IN @ component system, and to be inherit by the processors
of this system,

—> or schedule on virtual processors, which are
subcomponents of a processor where the scheduling
protocol is defined.

Uniform processors

- Heterogeneous uniform processors: same capabilities,
but different speeds.

- Effective capacity or variable processor speed?

« Binding related » execution times

getLine : THREAD t1 {
period => S0us:
Dispatch_Protocol => Periodic:
Compute_Execution_Time => 2us..4us
in binding (Processor_Core::Core.freq_SO0OMHz) :
Compute_Execution_Time => lus..3us

in binding (Processor Core::Core.freq 1GHz);

Or different processor speeds
processor implementation core.freq 500MHz
properties
reference_processor => classifier(core);
scaling factor => 0.75;
end core.freq 5S00MHz;
processor implementation core.freq 1GHz
properties
reference_processor => classifier(core);
scaling factor => 1;
end core.freq 1GHz;

16

Cache sharing (architecture)

WCET including cache intrinsic effect
- Concurrent accesses to the

<>
shared cache - impact the TlonCl [
WCET, even if cache
partitioning technics are used. T2onC2 [N

- Need to known the shared
resources - AADL component
hierarchy

B Additional execution time due to
concurrent accesses to the cache

(—a,—2

C1 C2

memory cache fend cache;

processor core end core;
processor implementation core.impl
subcomponents

cachell : memory cache;
end core.impl;

system dual_core end dual_core;
system implementation dual_core.impl
subcomponents Cachel
cl : processor core.impl;
c2 : processor core.impl;
cachelL2 : memory cache;
end dual_core.impl;

Cache sharing (contents)

- Potential storage conflicts when WCET including cache intrinsic effect

<>
tasks shared a cache. Tion Pl [N

- Instruction caches:

- Relative memory locations of the T2 on P2 -

task code
- AADL properties: Base_address, i+ ; :
source code. size, memory. size B Additional execution time due to
- Code representation : explicit or concurrent accesses to the cache
abstract (CFG) " . :
« AADL: Source_Text, or reference to D Additional exgcuﬂon time due to
an external CFG representation storage conflicts

+ Cheddar: BasicBlock
- Coding rules of CFG with BA?
- Data caches:

- Shared data: private cache
invalidation on writing (?)

- AADL data components

Table

Core sharing (physical multi-thread)

- Architecture:
. processor core
- the threads share the first level end corej

cache; .
) i processor physical_thread
- fast context switching end physical thread;
- The Scaling_Factor value pesory cache Tassld
depends on the number of end cache_levell;
phySICaI threads and on system multithreaded_processor
programs (Operatlons end multithreaded_processor; 1
tem 1mplementation multithreaded_processor.imp
plpelme Sta”S) :zzcuponents
o The “processors” inherit the physical_threadl : processor phys@cal_thread.:
. . physical_thread2 : processor physical_thread;
properties Scallng_FaCtor inst_cache : memory cache_levell;
and Reference_Processor. properties -
] —] Reference_Processor => classifier(core);
- Context SWI'[ChIng time may Scaling_Factor => 0.7;

end multithreaded_processor.impl;

be quantified by the
Thread _swap_execution_time
AADL property.

Conclusion

- Modeling guideline

- Multi-processor, multi-core or multi-thread are hardware
Implementation issues, but do not change the basics of multi-
processing scheduling:

—use the processor entity to model the different kind of processing unit

—~Include in processor private resources (i.e. caches, scratchpad
memory)

- Shared hardware resources between processing units must be
appear as its own in the model (heavy impact on overall system
performances) : bus, memory, cache

- Component hierarchy can represent at the same level the entities that
interact directly.

SMART and Cheddar project status

- Cheddar tool:

- Partitioned and global scheduling (without hardware interferences)

- Tasks partitioning: basic algorithms (*-fit), studies about a
framework to express and integrate optimization heuristics

- Cache Preemption Related Delay analysis

- AADLInspector tool: multi-processor support in
development.

