
Pierre Dissaux
AADL Demo Day

UAH, Huntsville, 14 Feb 2019

20 years tool support for major industrial projects:
- HOOD Software design tools for Ada and C
- Eurofighter Typhoon
- Airbus A340, A380, A400M, A350
- Tiger Helicopter (mission calculator)
- Rafale (engine control)

15 years investement in new tool technologies:
- SAE AS-5506: Architecture Analysis & Design Language
- AADL graphical modeling tools: Stood for AADL
- AADL analysis framework: AADL Inspector
- European Space Agency: TASTE Editors (Space SW development tools)
- European Commission: ERGO and MOSAR Projects (Space Robotics)
- Generic model processing technologies: GMP, LMP: LMP Dev Kit

AADL centric tool-chains

pivot
model

textual
AADL

customized offline
processing plug-inL

M
P

OCARINA
analysis & code generation

CHEDDAR
scheduling analysisL

M
P

MARZHIN
timing simulationL

M
P

SYSML to AADL
model transform. L

M
P

Domain Specific
graphical editorsG

M
P

L
M

P
L

M
PSTOOD for AADL

graphical editor

LAMP
inline verificationL

M
P

customized import
(BNF, XSD, ECORE) L

M
P

AADL Inspector

Other
AADL Tools

OCARINA
code generation

ARBRE ANALYSTE
fault tree analysisL

M
P

1

2 3

4

5

AADL projects
manager

AADL
textual editor

Stood for AADL
key features

multi-
user

instance model
graphical editor

incremental
documentation

requirements
coverage

code generators

behavior annex
STD editor

1

Hierarchical Object Oriented Design (HOOD)
– Inherits 20 years usage by the biggest European avionics projects (Airbus,

Eurofighter)
– Architectural Design (diagrams):

• hierarchy of components with rigorous visibility rules
• enable safe subcontracting (sub-trees)
• ease testing, integration and maintenance
• prevent from producing "spaghettiware"

– Detailed Design (structured text):
• keep track of design decisions
• requirements coverage
• supporting framework for design documentation, coding and testing

Benefits for the AADL user (Stood for AADL)
– Graphical editor of the AADL Instance Model (what you design is what you get)

– Data Hiding enforcement (visibility rules, no provides data access)

– AADL Declarative Model generator (textual AADL) for tools interchange

– Complement AADL design activities with detailed design (documentation and coding)

Top-Down modeling process
for AADL

1

AADL Inspector
key features

Projects
manager

Simulation
(Marzhin)

Simulation I/O

Assurance
cases (LAMP)

AADL model
core + annexes

Timing
analysis

Response Time
& CPU load

Safety
analysis

2

AADL Inspector 1.7

AADL projects manager
– core 2.2 + annex sub-languages EMV1, EMV2, BA 2.0

– hierarchical AADL project structure:
• AADL environment (libraries, property sets)
• sharable sub-projects
• simulation scenarios
• documentation sections (text, pictures)

Imports XML/XMI models
– generic transformation process for ECore based models using LMP

– existing prototypes for UML/MARTE, SysML, Capella, …

– require precise mapping rules to be formalized (project dependent)

AADL model processing
– turnkey embedded tools:

• Cheddar (scheduling analysis)
• Marzhin (event based simulation)
• Ocarina (AADL compliancy analysis, code generation)

– user defined on-line assurance case checkers with the LAMP annex

– customizable off-line plug-ins using the LMP toolbox

2

Marzhin
Executable AADL

Multi-agent real-time simulator:
– Based on a pre-existing multi-agent kernel

– Specialized agents to represent real-time software constructs:
• Processor and scheduler

• Process and partition

• Thread and shared data

• Ports and connections

• Bus and bus messages

– The agents interact together and exhibit a global behavior

Implementation of the AADL run-time
– Standard AADL run-time semantic

– Behavior Annex interpretor

– Supports multi-processor, multi-partitions and multi-core architectures

– Generates system state changes events

Accepts user interaction
– Can be controlled by scenarios or dialogs

– Used to display simulation traces

– Used to animate 2D/3D graphics

3

LAMP 4

Logical AADL Model Processing:
- Constraint language
- Assurance cases
- Inline verification rules
- Fully integrated within AADL models (LAMP Annex)
- Can replace REAL, LUTE, AGREE, RESOLUTE, …by a single one

LAMP features:
- Standard prolog language:

- No new language to define & learn &maintain
- Declarative syntax and formal semantics (ISO/IEC 13211)
- Byte code available for IP libraries

- Exhaustive AADL model accessors:
- Core language
- Behavior Annex
- Error Annex

- LAMPLib: predefined rules library
- Can process other input data sets (requirements, analysis results, …)
- Available in AADL Inspector 1.7 (LAMP Checker)

LAMP Example
THREAD t
FEATURES
i : IN DATA PORT d;
o : OUT DATA PORT d;

PROPERTIES
DISPATCH_PROTOCOL => Periodic;
PERIOD => 15ms;
DEADLINE => 8ms;
COMPUTE_EXECUTION_TIME => 2ms..2ms;
MY_PROPERTIES::MAX_VALUE => 80 APPLIES TO o;

ANNEX Behavior_Specification {**
VARIABLES
v : d;

STATES
s : INITIAL COMPLETE FINAL STATE;

TRANSITIONS
t : s -[ON DISPATCH]-> s { rand!(v); computation(10ms); o := v };

**};
END t;

ANNEX LAMP {**
checkOverflow(Id,Class) :-
concat(Id,'.o',F),
getProperties(F,Class,'MY_PROPERTIES::MAX_VALUE',M),
getPortValue(F,T,V),
strToNum(V,W), strToNum(M,N), W > N,
write('overflow of out data port '),
write(F), sp, write(' at tick '), write(T), nl,
write('('), write(W), write(' > '), write(80), write(')'), nl,
fail.

checkOverflow(Id,Class).
**}

4

access to AADL
property values

access to AADL
simulation output

overflow detection

Cheddar: Experimental
Multiprocessor & Multicore

Scheduling Analysis

Started during the SMART project (completed in 2014):
- How to model multicore/multiprocessor architectures with AADL

- Choose or design new scheduling analysis methods for such architectures

Main multicore/multiprocessors features of Cheddar 3.x:
- Partitioned and global scheduling policies: extension of classical

uniprocessor policies such as fixed priority or EDF + specific multicore
policies such as Proportional Fair, EDZL, LLREF, …

- Design of PAES partitioning algorithms: trade-off between preemption,
latency, communication, …

- Support of shared resources between cores: cache, network of chips

5

F. Singhoff
S. Rubini
L. Lemarchand
H. Nam Tran

Example:
Cache-Aware

Scheduling Analysis

Scheduling simulation with cache:
– L1 uniprocessor instruction caches
– Sustainable CPRD model (Cache Preemption Related Delay)
– And known feasibility interval (prooved): [0, LCM(Pi)]

Cache-Aware Priority Assignment Algorithm:
– Audsley oriented algorithm

Scheduling analysis for systems with cache

Cache Access
Profile

Memory
Layout

Worst-Case
Execution Time

Scheduling Policy

Control Flow
Graph

Cache
Configuration

5

Conclusion

AADL commercial tools
– Stood for AADL: instance model graphical editor for AADL
– AADL Inspector: analysis and simulation

Technology
– LMP: model processing toolbox (prolog)
– GMP: DSL graphical editor framework
– Research collaboration with University of Brest/Lab-STICC

Services
– Tools support
– AADL consulting
– Graphical front ends development
– Model processing tools (rules checkers, generators)
– Model transformations
– Heterogeneous tools integration
– R&D partnerships

