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Chapter 1

Introduction - why TASTE?

The purpose of Taste is to build Real-Time Embedded (RTE) systems that are correct by construc-
tion: the developer specifies programming interfaces and the Taste toolset automatically config-
ures and deploys the application.

Taste relies on key technologies such as ASN.1 (for the data types description), AADL (for the
models description), code generators and Real-Time operating systems.

This manual details how to use Taste and its associated tools.

1.1 Automatic integration of multi-language/multi-tool systems

TASTE automatically supports and integrates code written in major programming languages (C,
C++, Ada) as well as code generated by many modelling tools (SCADE, Simulink, etc). The term
"automatically integrates" is meant in its most absolute form - when using TASTE, integrating
code e.g. written in Ada with code written in Simulink is 100% automated.

There are many advantages to using modeling tools for functional modeling of subsystems.
For one, modeling tools offer high-level constructs that abstract away the minute details that are
common in low-level languages. The burden of actually representing the desired logic in e.g. C
code, falls upon the tool itself, which can provide guarantees1 of code correctness. Additionally,
most modeling tools offer formal verification methods, which are equally important to their cer-
tified code generators. For example, a modeling tool can guarantee the correctness of a design in
terms of individual components (e.g. if input A is within rangeA, and input B is within rangeB,
then outputC will never exceed rangeC). These advantages have driven many organizations to se-
riously consider (and use) modeling tools for the functional modeling of individual subsystems.

After the completion of the functional modeling, however, the modeling tools use custom
code generators that materialize the requested functionality in a specific implementation language
(e.g. C or Ada). Unfortunately, the generated code is quite different amongst different tools; each
modeling tool has a very specific way of generating data structures and operational primitives,
and mapping these data structures between them is a tedious and very error prone process - since
it has to deal with many low level details. Integrating this generated code with e.g. manually
written code is therefore quite a task.

1SCADE, for example, has been qualified for DO-178B up to level A.
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With TASTE, all these tasks are completely automatically handled, guaranteeing zero errors
in "glue-ing" the functional components together. Calls across TASTE Functions’ interfaces are
automatically handled via (a) automatically generated ASN.1 encoders/decoders that marshal
the interface parameters and (b) automatically generated PolyORB-Hi containers that instantiate
the communicating entities (in terms of Ada tasks/RTEMS threads/etc).

By using ASN.1 as the center of a “star formation” in this communication process, the problem
of modelling tools and languages speaking to one another is therefore reduced to mapping the
data structures of the exchanged messages between those generated by the modeling tools and
those generated by an ASN.1 compiler2.

This process lends itself to a large degree of automation - and this is the task performed by
TASTE’s Data Modeling Toolchain3: the automated (and error-proof) generation of the necessary
mappings.

TASTE can automatically interface with code generated from the following modeling tools:

- SCADE/KCG

- Simulink/RTW

- ObjectGeode

- PragmaDev/RTDS

. . . and is also supporting manually written C, C++ and Ada code. External "black-box" libraries
are also supported.

1.2 Multiple supported platforms

TASTE is able to generate systems from a high-level abstraction. It can generate applications for
the following architectures:

1. x86 with the following operating systems: Linux, Mac OS X, FreeBSD, RTEMS.

2. ARM with RTEMS and Linux (successfully tested on Maemo4 and DSLinux5).

3. SPARC (LEON) with RTEMS and OpenRavenscar. For LEON/RTEMS, TASTE can be inter-
faced with the RASTA board which provides interfaces for serial, spacewire and 1553 buses.

1.3 Easy adaptation to changing deployment configurations

By separating the overall system design into Data, Interface and Deployment views, TASTE al-
lows for easy adaptation to multiple deployment scenarios. For example, you can start your de-
velopment with a single, monolithic deployment under Linux, and by changing one line in your
Deployment view, switch to an RTEMS/Leon deployment. Or allocate a Function to a separate
processor, or join two Functions in the same processor, etc.

2Semantix’s ASN.1 Compiler, asn1Scc (http://www.semantix.gr/asn1scc/)
3Data Modelling Toolchain, http://www.semantix.gr/assert
4http://www.maemo.org
5http://www.dslinux.org
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Figure 1.1: Automatically generated GUIs for TM/TCs

1.4 Automatic GUIs for telemetry and telecommands

Since many parts of TASTE were build under the close supervision of the European Space Agency
(ESA), the handling of telemetries and telecommands is completely automated. By simply mark-
ing a subsystem with the appropriate tag, TASTE automatically generates a complete GUI that
allows interactive, real-time monitoring and control of the system. By piping telemetry data to
GnuPlot, it also allows easy graphical monitoring (see figures 1.1, 1.3).

1.5 Automatic run-time monitoring of TM/TCs via MSCs

Using the tracer.py and tracerd.py utilities, the automatically generated TASTE GUIs mes-
sage exchanges (i.e. telemetry and telecommands) can be monitored in real-time, via the freely
available PragmaDev MSC Tracer6. This allows for direct and simple monitoring of the commu-
nications channels between the TASTE GUIs and the main applications (see figure 1.2).

6MSC Tracer available at http://www.pragmadev.com/product/tracing.html.
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Figure 1.2: Automatic monitoring of TM/TCs via MSC Tracer
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1.6 Automatic Python test scripts

Testing the (usually complex) logic inside space systems requires big regression checking suites.
TASTE tools automatically create Python bridges that offer direct access to the contents of the
ASN.1 parameters, as well as direct runtime access to the TM/TCs offered by the system.

All that the user needs to do to create his set of regression checks, is to write simple Python
scripts, that exercise any behavioural aspect of the system. For example, a scenario like this:

when I send a TC with value X in param Y,
then I expect a TM after a max waiting of Z seconds,
with the value K in the incoming param L

...can be expressed in less than 10 lines of Python code, with an order of magnitude less work
than the corresponding C code.

Figure 1.3: Graphical monitoring of telemetry data in real-time

1.7 Acknowledgements - who did TASTE

TASTE is a complex tool-chain made of a number of components that were developed by various
people and various companies. This section contains a list of TASTE authors and contributors. It
may not be exhaustive, as many partners are regularly contributing to the toolchain development.
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Chapter 2

Taste concepts

2.1 The TASTE steps in building an application

Data Models 

(ASN.1)

Lustre definitions SDL definitions

SCADE 

modeling

ObjectGeode 

modeling

System 

Models

AADL

Data Models 

AADL

C Code

Behavior

Data Structures

C Code

Behavior

Data Structures

ASN.1 compiler

C Code

Encoder/Decoder

Data Structures

PolyORB Container PolyORB Container

Platform (Leon/ORK, Leon/RTEMS or Linux)

“Glue” “Glue”

Figure 2.1: Data Modeling with ASN.1

Figure 2.1 displays a high level view of how TASTE integrates the individual pieces of an
overall system. The yellow blocks depict stages where manual labour is required, and the green
ones depict machine-generated entities.

1. The process begins with manual specification of the data models for the messages exchanged
between subsystems (TASTE "Functions"). This is where details about types and constraints
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of the exchanged messages are specified. To be usable from within the system AADL spec-
ifications, these message definitions are translated into AADL data definitions. These defi-
nitions are in turn used by the system designer (the one doing the high-level interface mod-
eling): they are referenced inside the high level design of the system, when describing the
system’s interfaces. The Interface View in AADL explicitely describes the interfaces, in terms
of the available ASN.1 types.

2. The actual functional modeling of subsystems is next - but before it begins, the exchanged
messages’ descriptions are read by TASTE, and semantically equivalent definitions of the
data messages are automatically created for each modeling tool’s language (e.g. Lustre def-
initions for SCADE modeling, Simulink definitions for MATLAB/Simulink modeling, etc).
This way, the teams building the individual subsystems are secure in their knowledge that
their message representations are semantically equivalent and that no loss of information
can occur at Interface borders.

3. Functional modeling is then done for the individual subsystems. The modeling uses the data
definitions as they were generated in step 2. In fact, the modelling has absolutely no work
to do in terms of interface specification: the interfaces are 100% automatically generated
by TASTE, in so-called "skeleton" projects. If the interface view specifies that a Function is
written in SCADE, a SCADE skeleton will be generated by TASTE, and the user fills-in the
"meat" of the calculation. If the interface view specifies that a Function is written in C, then
TASTE generates a .h/.c declaration/definition of the interface, and the user just fills-in the
details. Etc.

4. When functional modeling is completed, the modeling tools’ code generators are put to
use, and C code is generated (this step does not exist if the Function is manually written
in C or Ada). Modeling tools generate code in different ways; even though (thanks to step
2) the data structures of the generated code across different modeling tools are carrying
semantically equivalent information, the actual code generated cannot interoperate as is;
error-prone manual labour is required to “glue” the pieces together. This is the source of
many problems1, which is why ASN.1 is used in TASTE: by placing it as the center of a star
formation amongst all modeling tools, the “glue-ing” can be done automatically.

5. TASTE automatically invokes the ASN.1 compiler to create encoders and decoders for the
messages.

6. TASTE automatically creates “glue” code that maps (at runtime) the data from the data struc-
tures generated by the modeling tools to/from the data structures generated by the ASN.1
compiler.

7. Code from the ASN.1 compiler, code from the modeling tools and “glue” code are compiled
together inside PolyORB-Hi containers, generated by Ocarina.

8. The generated binaries (OpenRavenscar / RTEMS / Linux) are executed.

1Lost satellites being one of them.
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2.2 Taste guidelines

Taste aims at providing a Component-Based Software Engineering approach by defining a method-
ology that builds systems correct by construction: users define the functional aspects of the system
using containers, functions, interfaces and describe their allocation on the hardware (using a so-
called Deployment view).

Using this information, the Taste toolchain generates the code that is responsible for compo-
nent execution. It instantiates system resources (data, mutexes, tasks, etc.) and allocates software
on them. As is the case for every real-time system, the generated systems enforce a computational
model as well as several restrictions.

The computational model that is checked is the Ravenscar computation model. So, every func-
tion of the system must comply with these restrictions:

1. Tasks are scheduled using a FIFO via a priority scheduling algorithm.

2. The locking policy uses the ceiling protocol.

3. No blocking operations are allowed in protected functions

4. The following restrictions as defined in the Ada compiler must also be applied to any func-
tions that are written in other languages:

• No_Abort_Statements

• No_Dynamic_Attachment

• No_Dynamic_Priorities

• No_Implicit_Heap_Allocations

• No_Local_Protected_Objects

• No_Local_Timing_Events

• No_Protected_Type_Allocators

• No_Relative_Delay

• No_Requeue_Statements

• No_Select_Statements

• No_Specific_Termination_Handlers

• No_Task_Allocators

• No_Task_Hierarchy

• No_Task_Termination

• Simple_Barriers

• Max_Entry_Queue_Length => 1

• Max_Protected_Entries => 1

• Max_Task_Entries => 0

• No_Dependence => Ada.Asynchronous_Task_Control
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• No_Dependence => Ada.Calendar

• No_Dependence => Ada.Execution_Time.Group_Budget

• No_Dependence => Ada.Execution_Time.Timers

• No_Dependence => Ada.Task_Attributes

In addition, the following restrictions must also be enforced by each component used in Taste
programs:

1. No controlled types. In Ada, this is provided by pragma Restrictions (No_Dependence
=> Ada.Finalization);

2. No implicit dependency on object oriented features. Ada provides this restriction with
pragma Restrictions (No_Dependence => Ada.Streams)

3. No exception handler shall be defined. Ada provides this restriction with: pragma Restrictions
(No_Exception_Handlers)

4. No unconstrained objects, including arrays - and forbidden string concatenation. Ada pro-
vides this restriction with: pragma Restrictions (No_Secondary_Stack)

5. Do not use allocation. Ada provides this restriction with pragma Restrictions (No_Allocators)

6. All access/references to variables must be explicitly typed. Ada check that using the restric-
tion: pragma Restrictions (No_Unchecked_Access)

7. Avoid explicit dispatch. Ada provides this features with pragma Restrictions (No_Dispatch)

8. Do not use input/output mechanisms. Ada provides this feature/restriction with: pragma
Restrictions (No_IO)

9. Do not use recursion. Ada provides this feature with: pragma Restrictions (No_Recursion)

10. As for allocation, memory deallocation must be checked. This is provided in Ada with
pragma Restrictions (No_Unchecked_Deallocation)

2.3 Main components

Taste is centered around the following elements:

1. The Data View describes the data definitions of your system. It defines data types using the
ASN.1 standard2.

2. The Interface View details the system from a purely functional point of view. This view
describes the functions performed by the system and the data types that they handle. Data
associated with the functions rely on the Data View definitions.

2Read about ASN.1 on http://en.wikipedia.org/wiki/ASN.1
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3. The Deployment View defines how system functions are bound on the hardware. It defines
the underlying architecture (processors, devices, memories, etc.) and allocates each function
on these hardware components.

4. The Concurrency View represents software and hardware aspects of the system. It contains
tasks, data and communication between system artifacts (tasks, processes, subprograms,
etc.). The concurrency view is automatically generated from the interface view and the
deployment view by the buildsupport tool (see section 3.6). Thus, all the mapping rules
that transforms system interfaces and deployment information are included in this tool that
automatically generates a complete description of the system.

Finally, the Concurrency view provides a complete view of the system, giving the ability
to analyze it using validation tools. The TASTE-CV tool 3.2 provides such functionnality,
linking the concurrency view with schedulability analysis tool.

2.4 Development process overview

Once designers have specified the different views (Data, Interface, and Deployment), the Taste
tools automatically generate code that implements the system. In particular, they generate data
definitions in whatever language is used to describe the functionality of each system (SCADE
models, Simulink models, C header files, Ada .ads files, etc) as well as “skeleton” projects (.xscade
files, .mdl files, .c/.adb files, etc) that include the formal specifications of interfaces, with empty
implementations. The tools also create the code that connects function interfaces with their callers
(they can do that, because the Interface View includes these connections). Finally, they produce the
code required to execute the functions on top of Real-Time operating systems (such as RT-Linux,
RTEMS, etc.).

Finally, these code generators auto-configure and deploy the system so that you don’t have
to write additional code and introduce potential errors. Network addresses, drivers and all other
deployment code is automatically generated.

The whole process is illustrated in the figure below: the user defines the Data View, the In-
terface View and the Deployment View. Then, appropriate tools (code generators) automatically
produce data handling functions, interaction code with the functional code as well as deployment
and configuration code to execute the system on top of an RTOS.
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As a result, this approach creates systems that are correct by construction. By generating the
system from a high-level description, we can make several validation and/or verification and
ensure designers’ requirements.

2.5 Definitions

• The Concurrency View is automatically generated through the vertical transformation pro-
cess. It creates resources (tasks, mutexes, etc.) of the system and associates functions to
them.

• The Data View contains the definition of all data types used in the functions’ interfaces,
using the ASN.1 notation.

• The Interface View defines the functions of your system with their respective interfaces and
data ports.

• A periodic interface is executed according to a predefined period. It also has other proper-
ties, such as the deadline.

• A protected interface is executed exclusively by one entity, meaning that only one thread
can be executing this function at the same time.

• A sporadic interface is triggered by a reception of an event. The time between two events is
bounded and is specified with a value known as the Minimul Inter-Arrival Time (MIAT).

• An unprotected interface may be executed concurrently by different entities.

2.6 Modeling rules

You have four operation kinds (that correspond to the AADL property:

1. Periodic

2. Sporadic
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3. Protected/unprotected

So, when deciding what to use for a function’s provided interfaces (PIs), we must take into
consideration that the Functions can have PIs that can currently belong to only one of two care-
gories:

1. Sporadic and Cyclic

• Sporadic can’t have OUT params, since they are async (caller doesn’t wait for them to
return, so no results can be returned from their invocation).

• Each Sporadic/Cyclic PI gets one thread. They DONT run in the calling thread context.

• There is automatic mutual exclusion between all PIs that are Sporadic and/or Cyclic
inside the same Function, via a protected object. To be more exact, Sporadic and Cyclic
PIs get their own threads, but when they are called and need to execute their actual
implementations (user code), the actual user code call is done from inside a protected
object - and thus, mutual exclusion takes place (only one Sporadic/Cyclic can be active
at any time).

• Cyclic don’t have IN or OUT params, they are called periodically

• Sporadic can only have ONE IN param, carrying all the data they need.

• Sporadic can in fact be considered a special kind of Cyclic, since they have MIAT (Min-
imum Inter-Arrival Time)

2. Protected and Unprotected

• run in the calling thread context

• can have multiple IN and OUT params

• are synchronous, that is the calling thread waits for them to return (since they have
OUT values that it wants to read).

• Protected PIs use an Ada protected object to guarantee mutual exclusion between a
Function’ s protected PIs, so you use them whenever the Function’s PIs share state
and would have issues with multiple calling threads entering two or more of them
simultaneously and messing up the shared state.

• Unprotected can read/write anything they want, so they allow the calling context to
enter at will.

• Protected and Unprotected can co-exist inside a Function (since you may have func-
tionality that has no state-dependencies).
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Chapter 3

Overview of the Taste toolset

3.1 Labassert

Labassert is a graphical tool developed by ELLIDISS TECHNOLOGIES to edit the Interface and
Deployment views. Labassert works on Windows and Linux.

However, this tool is now considered as deprecated and is replaced by three programs : TASTE-
IV, TASTE-DV and TASTE-CV.

3.2 TASTE toolset (TASTE-IV, TASTE-DV and TASTE-CV)

TASTE-IV is the tool used to edit the interface view of your system: it provides functionnali-
ties to describe system functions, their parameters and in which language they are implemented.
TASTE-DV is the editor for the deployment view, providing functionnalities to describe how sys-
tem functions are allocated to processing resources (CPU, network, etc.). Finally, TASTE-CV is
the concurrency view editor. It is used to perform schedulability analysis and simulates system
execution, detecting potential system errors that can be risen at run-time (deadlocks, etc.).

3.3 ASN.1 generators

ASN.1 generators consist in tools that creates data types and run-time data translation "bridges"
(between e.g. SCADE/KCG code and Simulink/RTW code) from the ASN.1 type descriptions.
These tools are developed by SEMANTIX INFORMATION TECHNOLOGIES.

3.4 Ocarina

Ocarina is a toolchain to manipulate AADL models. It runs on Windows, Linux and Mac OS X
and proposes code generation features that produce code that targets real-time middleware such
as PolyORB.
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3.5 PolyORB-HI

PolyORB-HI is the middleware that interfaces generated code from AADL models to the RTOS.
It maps the primitives of the generated code to the ones offered by the operating system, in order
to ensure their integration. PolyORB-HI provides the following services to the generated code:

• Tasking: handle tasks according to their requirements (period, deadline, etc.)

• Data: define types and locking primitives

• Communication: send/receive data on the local application and send them to the other
nodes of the distributed system.

• Device Drivers: interact with devices when a connection uses a specific bus.

There are two versions of PolyORB-HI: one for Ada and one for C. They are described in the
following paragraphs.

3.5.1 Ada version

The Ada version can be used on top of Linux, RTEMS and Open Ravenscar Kernel (ORK). It
enforces the Ravenscar profile and has been successfully tested on LEON and x86 targets.

3.5.2 C version

The C version can be used on top of Linux, RT-Linux, Maemo and RTEMS. It works on LEON,
ARM, PowerPC and x86. It was successfully tested on native computers (x86 with Linux), LEON
boards (with RTEMS), ARM (with DSLinux and Maemo).

3.6 Buildsupport

Buildsupport provides several functionalities:

1. It generates the concurrency view from the interface and deployment views. The result
is an AADL models that is subsequently processed by Ocarina to generate and build the
system in C or Ada.

2. It creates skeletons (for each Function’s target environment, e.g. .xscade files for SCADE
Functions, .h/.c files for C Functions, .ads/.adb for Ada Functions, etc) that include the
complete specifications of interfaces, with empty implementations.

This part assumes that we have a description of all Archetypes, meaning how we convert the
interface and deployment view into a concurrency view that describe tasking concerns. It means
that this tool contain all relevant information to map a cyclic/sporadic/protected/unprotected
interface into thread and data.

!!! FIXME !!!

TO BE COMPLETED BY MAXIME
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3.7 Orchestrator

The orchestrator is a program that automates the build process. It takes as input the data view,
the interface view, the deployment view, as well as the complete Functional code (i.e. the filled-in
skeletons), and then calls each tool (buildsupport, ocarina, compilation scripts and so on). As a
result, the Orchestrator produces the final binaries that correspond to the system implementation.

The tool is maintained by SEMANTIX INFORMATION TECHNOLOGIES.

The process that is followed by the orchestrator and the way it calls other tools is illustrated in
the following figure.

Interface view Deployment view

Buildsupport
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Describe system functions,

their parameters and
implementation language

Specify deployment of system
functions on the hardware

(processors, bus, ...)

Implementation of functions
with traditional code (C, Ada)
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(SCADE, Simulink, SDL, etc.)

Concurrency view
System description that contains

tasks, data and inter-process 
connections

Glue code
Contain necessary code constructs
to distribute application data over

the nodes of the distributed system.

Ocarina

Data View
Data type definitio

with ASN1

Data types code
Contain data types definitio

 in the implementation
language (C, Ada, ...)

asn1scc

Architecture code
Code that creates tasks, protected data,

enable data distribution, runtime
services that supports system functions, and
configure the underlying operating syste

Compilation

Implementation binary
Executable binary that runs on the
target architecture (x86 with Linux,

LEON with RTEMS or ORK, etc.)
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3.8 TASTE GUI

The Taste GUI is a program which purpose is to assist the system designer in the use of the differ-
ent tools of Taste. It provides a convenient interface to design the different views of your system
(data, interface and deployment).

The TASTE GUI is available in the Taste virtual machine (VM), as well as an independent
package. An example of the interface is shown in the following picture.

The program let you define the view of your system but also let you edit their definition using a
text editor. Finally, it provides some functionnalities to deploy generated applications and choose
the runtime used (PolyORB-HI-C, PolyORB-HI-Ada, etc.).

3.9 TASTE daemon (tasted)

The TASTE daemon is a program designed to ease the execution of generated applications. It was
especially designed to interact with TASTE GUI (as detailed in section 14.6) : once system de-
signers have successfully built their systems, they can automatically execute them on boards. As
the TASTE toolset can produced applications for systems with different architectures and require-
ments, it is sometimes difficult to deploy them altogether. The TASTE daemon aims at facilitate
this deployment and execution step.

The TASTE daemon runs on a machine (potentially the same machine as the host development)
and listen for incoming request. Then, the TASTE GUI tool sends generated applications and
receives execution output from the daemon.

TASTE GUI TASTE daemon

Generated applications
binaries

Application
execution output
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3.10 Additional tools

The Taste process relies on third-party tools to either model functions; or RTOS to execute the final
systems. It is the user responsibility to get a valid license and install them. Chapter 7 illustrates
how to import your models and the code generated from this tools in the Taste toolchain.

The Taste toolchain supports the following tools:

• Simulink / Real Time Workshop v7.0

• Scade / KCG v6.1.2

• SDL tools ObjectGeode v4.2.1 and PragmaDev RTDS v4.12

In addition, the Taste toolchain can generate binaries for the following platforms:

• RTEMS from OAR Technologies, version 4.8.0,

• ORK+ from the Universidad Politécnica de Madrid, version 2.1.1,

• Linux and most POSIX-compatible variants, including embedded ones.
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Chapter 4

Installation and upgrade of the TASTE
toolchain

There are two ways to use the TASTE toolchain : a regular installation on a Linux system and
use of a virtual machine. The virtual machine system provides a complete environment with
a predefined Linux installation that contains everything. The installation on your Linux system
gives you the ability to use the toolchain with your day-to-day environment. It is more convenient
in many ways but the TASTE developpers does not provide official support on such installation.

Support is provided only for users that are using the tools within the VM. Indeed, the use
of the same architecture ease bug detection and provide a similar environment for both users
and developers, and so, is more convenient to reproduce bugs related to the toolchain (and not
environment of the user).

4.1 Installation of the virtual machine

The Virtual Machine system needs to install a software able to execute VMWare image. For that
purpose, you can download VMWare Player at the following address: http://www.vmware.
com/products/player.

Then, once installed, you need to download the TASTE virtual machine available at this ad-
dress: http://download.tuxfamily.org/taste/taste-vm.tar.gz.

Finally, launch VMWare Player, open the TASTE VM so that you can start to use the tools in
the configured environment.

4.2 Installation on your own Linux distribution

4.2.1 Distributions

At this time, we support the following distributions:

• Debian

• Ubuntu
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• Mandriva

4.2.2 Using the installation script

We provide an installation script that ease the installation and deployment of our tools. You can
find the installation program at http://download.tuxfamily.org/taste/taste-installer.
sh.

The installation program requires you have the program/package dialog installed on your
system. If it is not installed, use the package manager of your distribution to install it. Then,
invoke the program, you would see the following screen.

At first, you are asked to provide the installation directory. This directory must exist on your
system and you must be allowed to write in it.

Then, you can choose which packages to install on your system. We advise you to choose and
install every TASTE tools.

As the TASTE graphical tools are not directly available on the internet and require you down-
load them manually on Ellidiss website (http://www.ellidiss.com), you are asked to pro-
vide the archive file of the program of you want to install them. To do so, a file dialog chooser will
ask you to provide the location of the TASTE tools, as shown in the following picture.
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Then, the installation process starts, download software archive on the internet, compile and
install them.

Finally, if everything runs fine, the following screen would appear. If some error was raised, a
dialog error will appear. In that case, you can see the installation log in the file /tmp/taste-installer-log.

Finally, TASTE tools requires that you defined some environment variables. The installer au-
tomates this process by creating a shell-script that contains all new environment variables. It is lo-
cated in the installation directory, with the name taste-env.sh. So, if you installed the tools un-
der the directory /home/user/local/, you are required to use the file /home/user/local/taste-env.sh.
This can be done automatically by adding the following line in your shell configuration file:

source /path/to/installation/taste-env.sh
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Assuming you installed the tools in /home/user/local/, you will add the following line in
your shell configuration file (for example $HOME/.bashrc):

source /home/user/local/taste-env.sh

4.3 Upgrade within the virtual machine

To upgrade the tools to the latest version within the virtual machine, invoke the script UPDATE-TASTE.sh.
Open a terminal and invoke the command. Once called, it downloads the latest version of each
tool and install them in their appropriate directory.

4.4 Upgrade on your own Linux distribution

If you want to upgrade the tools on your own installation, you need to run the installation program
again. Fortunately, the installation program is already installed when you run it for the first time.
In that case, you just have to invoke the command taste-installer on your system. It will
restart the installation program and will use the installation directory you used at installation time
to upgrade the tools.
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Chapter 5

Using ASN.1

ASN.1 is a standardized notation to represent data types. An overview of this standard can be
found on http://www.itu.int/ITU-T/asn1/introduction/index.htm. For readers that
are interested in ASN.1 and want to learn the language, a tutorial can be found here: http:
//www.obj-sys.com/asn1tutorial/asn1only.html.

All data types exchanged between Function interfaces are described using ASN.1. Data types
definitions constitute the Data View. These types are then used by function interfaces, to specify
the parameter types in a standardized way. On the implementation side, code generators map the
ASN.1 types into language-specific definitions (e.g. SCADE definitions, or Simulink/RTW defini-
tions, or Ada/C definitions, etc) and create functions to exchange these types between different
environments, regardless of their specific characteristics (CPU models, endianness, word sizes,
etc).

If you are not familiar with ASN.1, an easy way to get acquainted is to follow the tutorial on
http://www.obj-sys.com/asn1tutorial/asn1only.html.
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Chapter 6

Using the graphical tool (The TASTE
toolsuite)

6.1 The interface view: TASTE-IV

The interface view provides the ability to describe system functions with their provided and re-
quired interfaces. The picture below gives an example of the Interface View.
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In the interface view, you define containers, functions and provided/required interfaces. The
picture below illustrates the definition of two containers, each one containing one function. The
function on the right uses a Provided Interface (PI) that is required by the function on the left. To
describe that using the graphical interface, the interfaces are connected using a line and an arrow.
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When you define an interface, you have to define its characteristics (periodic, sporadic, arrival
time, etc.). For that, right-click on the provided interface, a menu will open. Choose Properties.
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Then, a new window gives you the ability to define the characteristics of the Provided Inter-
face, as shown in the following picture.

In the same window, you can also specify the data types of the interface parameters, as il-
lustrated in the following picture. Please also note that the types you specify in this window are
defined in your Data View (your ASN.1 type definitions).
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6.2 The deployment view: TASTE-DV

The deployment view editor is a graphical tool that provides the ability to edit the AADL defini-
tion of your architecture. A screenshot of the program follows:
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You can then add hardware components in your architecture. It mainly consists of adding
computer boards with their processors and memories. Partitions are then added, that will host
the functions from your functional view. You can connect partitions (and thus, functions) by
adding buses to your architecture and by connecting the processors with these buses.
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Note that when you add/specify a driver in the deployment view, it has to be configured. For
example, for a network card that uses the TCP/IP protocol, you have to specify the IP address
and the port used to receive incoming data. For serial port, you have to specify the corresponding
device (/dev/ttyS0, etc.) as well as the speed of the port (115200 bauds, etc ..).

This configuration is detailed in this documentation, within the PolyORB-HI-C and PolyORB-
HI-Ada part. For PolyORB-HI-C, section 15.3.3 provides all required information.

6.3 The concurrency view: TASTE-CV

TASTE-CV has the ability to edit the concurrency view generated by buildsupport. It provides
schedulability analysis functionalities to assess system scheduling feasability as well as scheduling
simulation. Using this tool, we could be able to know if the deadlines of your tasks will be met
and also inspect the behavior of your system, including its potential problems (such as deadlocks).

To assess scheduling feasability, TASTE-CV embedds the Cheddar scheduling analyzer. It pro-
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cesses AADL models and transform them into a suitable representation for Cheddar. The Cheddar
output is based in scheduling theory and feasability tests. Readers interested in scheduling tests
and scheduling theory could refer to articles listed on the official Cheddar website (see D for web
links).

To simulate system scheduling, TASTE-CV relies on the Marzhin scheduling simulator. Marzhin
shows the simulation of the execution of each tasks (running, waiting for a resource, sleeping, . . . )
as well as the state of shared data (locked, unlocked, . . . ).

6.3.1 Marzhin symbols

The following symbols are usedby Marzhin within the simulation window:

• # : Thread state none

• | : Thread state running

• _ : Thread state ready

• ˜ : Thread state awaiting resource

• * : Thread state awaiting return

• . : Thread state suspended

• O : Data state - occupied

• < : Get resource

• > : Release resource

• ! : Send Output or Subprogram Call

• 1..9 : Queued events or call requests

• + : More than 9 queued events or call requests

6.3.2 Marzhin assumptions about system behavior

To simulate your system, Marzhin makes the following assumptions about the behavior of your
system:

• An AADL data component in the Concurrency View without specific properties is consid-
ered as protected with no specific protocol (no priority inversion).

• An AADL data component can specifies the following protection mechanisms using the
Concurrency_Control_Protocol property:

1. IPCP (value Immediate_Priority_Ceiling_Protocol)

2. PCP (value Priority_Ceiling_Protocol)
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• All out ports from the threads send data when the thread completes its task. The tool consid-
ers that the thread completes its job when the upper bound of its execution time is reached.
It ensures that out ports are trigerred.

• Thread components that specifies their behavior using the Behavior Annex of the AADL don’t
send anything on their out ports when they complete their job. Instead, the tool expects that
the system designer specifies sending time using the Behavior Annex.

Finally, to be able to process both scheduling feasability tests as well as scheduling simulation,
you must check that all timing requirements of the functional aspects of your system are described
(period, deadline, execution time, etc.).
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Chapter 7

Creating Functions, using modelling
tools and/or C/Ada

7.1 Common parts

The TASTE process integrates the code for the system’s Functions into working executables (for
Linux or Leon/RTEMS or Leon/ORK). It therefore depends on the provision of the functional
code for the user’s subsystems (Functions). This provision is done either via code generated by
a modelling tool (SCADE, Simulink, ObjectGeode, PragmaDev) or via manually written code (C,
Ada).

Let’s see how things work in each of these categories.

7.2 SCADE-specific

If a Function is coded in SCADE, then the corresponding AADL part of the Interface View will
contain something like this:

SYSTEM pass ive_ func t ion
FEATURES

compute : IN EVENT PORT
{

Compute_Entrypoint => " compute " ;
Asser t_Proper t ies : : RCMoperation => SUBPROGRAM myLib : : compute ;
Asser t_Proper t ies : : RCMoperationKind => unprotected ;

} ;
END pass ive_ func t ion ;

SYSTEM IMPLEMENTATION pass ive_ func t ion . o thers
PROPERTIES

Source_Language => SCADE6;
END pass ive_ func t ion . o thers ;

. . .
SUBPROGRAM compute

FEATURES
my_in : in PARAMETER DataView : : T_POS

{ Asser t_Proper t ies : : encoding => UPER ; } ;
r e s u l t : out PARAMETER DataView : : T_POS

{ Asser t_Proper t ies : : encoding => NATIVE ; } ;
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PROPERTIES
Compute_Execution_Time => 1ms. . 1ms;

END compute ;

In this example, a Function called passive_function contains a provided interface called
compute. This interface has one input parameter and one output parameter, which, in this exam-
ple, are both of type T_POS. This type is described in the ASN.1 grammar:
. . .
T−POS : : = CHOICE {

long i t ude REAL( −180.0 . .180.0) ,
l a t i t u d e REAL( −90 .0 . .90 .0 ) ,
he igh t REAL(30000 .0 . .45000 .0 ) ,
subTypeArray SEQUENCE ( SIZE ( 1 0 . . 1 5 ) ) OF TypeNested ,
l a b e l OCTET STRING ( SIZE ( 5 0 ) ) ,
i n t A r r a y T−ARR,

. . .
}

TypeNested : : = SEQUENCE {
. . .
}

T−ARR : : = SEQUENCE ( SIZE ( 5 . . 6 ) ) OF INTEGER (0 . .32767)

This type is a complex one, referencing other types, and containing arrays (SEQUENCE OFs),
too. Let’s see how these two inputs - the ASN.1 grammar and the Interface view, are combined
during TASTE development.

Invoking asn2dataModel.py on the ASN.1 grammar:
bash$ cd ScadeExample
bash$ l s − l
t o t a l 9
drwxr−xr−x 2 asser t asser t 88 May 17 14:20 . /
drwxr−xr−x 37 asser t asser t 4608 May 17 14:21 . . /
−rw−r−−r−− 1 asser t asser t 2182 May 17 14:20 DataTypesFul l . asn

bash$ asn2dataModel . py −toSCADE6 DataTypesFul l . asn
bash$ l s − l
t o t a l 57
drwxr−xr−x 2 asser t asser t 128 May 17 14:23 . /
drwxr−xr−x 37 asser t asser t 4608 May 17 14:21 . . /
−rw−r−−r−− 1 asser t asser t 2182 May 17 14:20 DataTypesFul l . asn
−rw−r−−r−− 1 asser t asser t 46321 May 17 14:23 DataTypesFul l . xscade

The model mapper generates a .xscade file - and this file is directly importable in SCADE.
The next steps show how:

1. A new project is created in SCADE (see 7.1)

2. The default libraries are removed - and "Finish" is clicked (see 7.2)

3. The project opens - FileView is selected (see 7.3)

4. The TASTE-generated .xscade file is inserted (see 7.4)

5. Going back to "Framework", the ASN.1 types are now visible (and usable) in SCADE (see
7.5)
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Figure 7.1: Create a new SCADE project

Figure 7.2: Remove default libraries
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Figure 7.3: Select FileView

Figure 7.4: Add TASTE-generated .xscade file

Figure 7.5: Types are now available
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Figure 7.6: Interface skeleton generated by TASTE

Figure 7.7: SCADE settings
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Figure 7.8: SCADE settings - Set "Global context"

Figure 7.9: The simplest of systems - a pass-through
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This allows the user to use the ASN.1 types in his SCADE Function. However, TASTE offers
more than this - it creates the SCADE "skeleton", with the parameters of the Function’s interface
already filled in:
bash$ bu i l dsuppo r t −gw −glue − i i n t e r f a c e v i e w . aadl −c deploymentview . aadl −d DataTypesFul l . aadl
. . .
bash$ l s − l
t o t a l 88
drwx−−−−−− 2 asser t asser t 80 May 17 14:38 Backdoor
drwx−−−−−− 2 asser t asser t 200 May 17 14:38 ConcurrencyView
−rw−r−−r−− 1 asser t asser t 22393 May 17 14:35 DataTypesFul l . aadl
−rw−r−−r−− 1 asser t asser t 2182 May 17 14:20 DataTypesFul l . asn
−rw−r−−r−− 1 asser t asser t 46321 May 17 14:23 DataTypesFul l . xscade
−rw−r−−r−− 1 asser t asser t 126 May 17 14:38 bu i ld−sample . sh
drwx−−−−−− 2 asser t asser t 312 May 17 14:38 c y c l i c _ f u n c t i o n
−rw−r−−r−− 1 asser t asser t 1018 May 17 14:37 deploymentview . aadl
−rw−r−−r−− 1 asser t asser t 2242 May 17 14:37 i n t e r f a c e v i e w . aadl
drwx−−−−−− 2 asser t asser t 216 May 17 14:38 pass ive_ func t ion

bash$ cd pass ive_ func t ion
bash$ l s − l
t o t a l 16
−rw−r−−r−− 1 asser t asser t 368 May 17 14:38 mini_cv . aadl
−rw−r−−r−− 1 asser t asser t 740 May 17 14:38 pass ive_ func t ion . xscade
−rw−r−−r−− 1 asser t asser t 2302 May 17 14:38 pass ive_funct ion_wrappers . adb
−rw−r−−r−− 1 asser t asser t 873 May 17 14:38 pass ive_funct ion_wrappers . ads

Another .xscade file is generated - containing the skeleton for the SCADE Operator passive_function.
By importing this file as well (as before, from the FileView, right-click/insert files), the project
skeleton is now available - see 7.6.

In order to be able to use the KCG (SCADE’s code generator) output from TASTE, the user
must select "Global context" in the KCG options - see 7.7 and 7.8.

After this, we can fill-in the skeleton - for example, we can create the simplest of systems (since
both input and output are of the same type, T_POS): a pass-through (7.9).

Invoking KCG, will generate our code - which we place inside a .zip file, that must contain a
directory with the same name as our SCADE Function (passive_function):
bash$ mkdir package
bash$ cd package
bash$ mkdir pass ive_ func t ion
bash$ cp −a / path / to / kcg / generated / f i l e s /∗ pass ive_ func t ion /
bash$ z ip −9 −r pass ive_ func t ion . z ip pass ive_ func t ion /

This .zip file is the one that must be passed to the orchestrator, when using a SCADE subsys-
tem:
bash$ "$DMT/OG/ asser t−bu i l de r−ocar ina . py " \

−f \
−o b inary . l i n u x \
−a . / DataView . asn \
− i . / I n te r faceV iew . aadl \
−c . / DeploymentView . aadl \

. . .
−S pass ive_ func t ion : / path / to / pass ive_ func t ion . z ip
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Figure 7.10: Creating a Simulink/RTW function

7.3 Simulink-specific

If a Function is coded in Simulink, then the TASTE editor must be used to properly select the
Function’s "language" field, as depicted in Figure 7.10. The corresponding AADL part of the
Interface View will then contain something like this:

SYSTEM pass ive_ func t ion
FEATURES

compute : IN EVENT PORT
{

Compute_Entrypoint => " compute " ;
Asser t_Proper t ies : : RCMoperation => SUBPROGRAM myLib : : compute ;
Asser t_Proper t ies : : RCMoperationKind => unprotected ;

} ;
END pass ive_ func t ion ;

SYSTEM IMPLEMENTATION pass ive_ func t ion . o thers
PROPERTIES

Source_Language => Simul ink ;
END pass ive_ func t ion . o thers ;

. . .
SUBPROGRAM compute

FEATURES
my_in : in PARAMETER DataView : : T_POS

{ Asser t_Proper t ies : : encoding => UPER ; } ;
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r e s u l t : out PARAMETER DataView : : T_POS
{ Asser t_Proper t ies : : encoding => NATIVE ; } ;

PROPERTIES
Compute_Execution_Time => 1ms. . 1ms;

END compute ;

In this example, a Function called passive_function contains a provided interface called
compute. This interface has one input parameter and one output parameter, which, in this exam-
ple, are both of type T_POS. This type is described in the ASN.1 grammar:
. . .
T−POS : : = CHOICE {

long i t ude REAL( −180.0 . .180.0) ,
l a t i t u d e REAL( −90 .0 . .90 .0 ) ,
he igh t REAL(30000 .0 . .45000 .0 ) ,
subTypeArray SEQUENCE ( SIZE ( 1 0 . . 1 5 ) ) OF TypeNested ,
l a b e l OCTET STRING ( SIZE ( 5 0 ) ) ,
i n t A r r a y T−ARR,

. . .
}

TypeNested : : = SEQUENCE {
. . .
}

T−ARR : : = SEQUENCE ( SIZE ( 5 . . 6 ) ) OF INTEGER (0 . .32767)

This type is a complex one, referencing other types, and containing arrays (SEQUENCE OFs),
too. Let’s see how these two inputs - the ASN.1 grammar and the Interface view, are combined
during TASTE development.

Invoking asn2dataModel.py on the ASN.1 grammar:
bash$ cd SimulinkExample
bash$ l s − l
t o t a l 12
drwxr−xr−x 2 asser t asser t 4096 Sep 20 10:47 . /
drwxr−xr−x 17 asser t asser t 4096 Sep 20 10:47 . . /
−rw−r−−r−− 1 asser t asser t 903 Sep 20 10:47 DataView . asn

bash$ asn2dataModel . py −toSIMULINK DataView . asn
bash$ l s − l
t o t a l 24
drwxr−xr−x 2 asser t asser t 4096 Sep 20 10:48 . /
drwxrwxrwt 17 asser t asser t 4096 Sep 20 10:47 . . /
−rw−r−−r−− 1 asser t asser t 903 Sep 20 10:47 DataView . asn
−rw−r−−r−− 1 asser t asser t 9072 Sep 20 10:48 Simulink_DataView_asn .m

The model mapper generates a .m file - and this file is directly importable in Matlab/Simulink.
The next steps show how:

1. The generated file is placed under a new directory visible from MATLAB (see 7.11)

2. Right-click on the file and selecting "Run" (see 7.12)

3. Matlab will be "Busy" while processing the type declarations (see 7.13)

4. When processing is finished, the "buseditor" command is given (see 7.14)

5. The ASN.1 types are now visible (and available to create designs) in Matlab/Simulink (see
7.15)
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Figure 7.11: Use the generated file under Matlab

Figure 7.12: Run the file - Matlab learns the new types

This allows the user to use the ASN.1 types in his Matlab/Simulink Function. However,
TASTE offers more than this - it creates the Simulink "skeleton", with the parameters of the Func-
tion’s interface already filled in:
bash$ asn2aadlPlus . py DataView . asn DataView . aadl
bash$ bu i l dsuppo r t −gw −glue − i i n t e r f a c e v i e w . aadl −c deploymentview . aadl −d DataView . aadl
. . .
bash$ l s −lF
t o t a l 48
drwx−−−−−− 2 asser t asser t 4096 Sep 20 11:33 ConcurrencyView /
−rw−r−−r−− 1 asser t asser t 9877 Sep 20 11:33 DataView . aadl
−rw−r−−r−− 1 asser t asser t 903 Sep 20 10:47 DataView . asn
−rw−r−−r−− 1 asser t asser t 9072 Sep 20 11:25 Simulink_DataView_asn .m

Figure 7.13: Matlab processing (reports "Busy")
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Figure 7.14: Invoking the buseditor

Figure 7.15: Types are now available

Figure 7.16: Right-click on FUNCTIONNAME_script.m, select Run
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Figure 7.17: The FUNCTIONNAME.mdl file is generated

Figure 7.18: Double-click on FUNCTIONNAME.mdl, function skeleton is shown
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Figure 7.19: Double-click on the my_in bus selector, the fields are available

drwx−−−−−− 2 asser t asser t 4096 Sep 20 11:33 c y c l i c _ f u n c t i o n /
−rw−r−−r−− 1 asser t asser t 1038 Sep 20 11:15 deploymentview . aadl
−rw−r−−r−− 1 asser t asser t 2241 Sep 20 11:32 i n t e r f a c e v i e w . aadl
drwx−−−−−− 2 asser t asser t 4096 Sep 20 11:33 pass ive_ func t ion /
bash$ cd pass ive_ func t ion
bash$ l s − l
t o t a l 24
−rw−r−−r−− 1 asser t asser t 371 Sep 20 11:18 mini_cv . aadl
−rw−r−−r−− 1 asser t asser t 3901 Sep 20 11:18 p a s s i v e _ f u n c t i o n _ s c r i p t .m
−rw−r−−r−− 1 asser t asser t 2363 Sep 20 11:18 pass ive_funct ion_wrappers . adb
−rw−r−−r−− 1 asser t asser t 873 Sep 20 11:18 pass ive_funct ion_wrappers . ads
−rw−r−−r−− 1 asser t asser t 379 Sep 20 11:18 set InputsBusCreator .m
−rw−r−−r−− 1 asser t asser t 291 Sep 20 11:18 setOutputsBusSelector .m

A set of .m files is generated - containing the skeleton for the Simulink passive_function.
Placing these .m files under Simulink and executing "passive_function_script.m" creates the func-
tion skeleton (7.16, that is the FUNCTIONNAME.mdl file.

By double-clicking on the .mdl file, the skeleton is shown - see 7.17, 7.18.
Finally, by double-clicking on the bus selector of the input variable, all the message fields are

shown to be available (7.19).

7.4 RTDS-specific

7.4.1 Step 1: specify RTDS as implementation language

You can use RTDS to write the functional code of your system. By using RTDS, you design system
behavior. Then, TASTE use the code generated by RTDS and integrates it within the architecture
code, connecting all functions (potentially written using different languages) altogether.
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First of all, the user has to specify RTDS as the implementation language to be designed. Speci-
fication of functions implementation language is defined in the interface view, so, you have to add
this requirement in the interface view (see picture below).

7.4.2 Step 2: Generate application skeletons

Then, once you defined your Interface view and your Data view, you can generate SDL application
skeletons using buildsupport. In this way, you’ll have a new RTDS project that will contain
signals and data types to interact with the system environment.

To generate SDL skeletons, issue the following commands:

buildsupport -i <interface view file.aadl> -d <data view file>.aadl -o rtds_model -gw
asn2dataModel.py -toRTDS <data view>.asn -o rtds_model/my_rtds_system

7.4.3 Step 3: Edit application skeletons

After running these commands, you have a new directory rtds_model that contains a new RTDS
project. This project should then be edited by system programmer to defined application be-
haviour. The project contains a process that represents the function: you can edit it to defined
system concerns. In addition, Provided and Required Interfaces are specified in SDL using signals so
that you can use them to communicate with the other entities of the TASTE systems. Finally, to
ensure data consistency, ASN.1 data types are also embedded in your SDL project so that you can
use it in the description of application concerns and for communication with the other entities of
the system.

To edit the new RTDS project, run RTDS on the generated .rdp file:

rtds <project file>.rdp

Then, a project like the following will be opened. Note that this project contains two parti-
tions: one with the declarative part (data types import, etc.), another with the architecture (SDL
processes, etc.).
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7.4.4 Step 4: Generate SDL-related code

Once you have edited your SDL model, close RTDS. Then, you need to generate the code that
corresponds to this application model. First, you will need to add some files in the RTDS project
directory. Go into the directory that contains the RTDS project and then, add the following files:

• profile/DefaultOptions.ini

• profile/RTDS_ADDL_MACRO.h

• profile/RTDS_BasicTypes.h

• profile/RTDS_Common.h

• profile/RTDS_MACRO.h

• profile/RTDS_Proc.c

• profile/RTDS_Proc.h

• profile/RTDS_Scheduler.h

• profile/bricks/RTDS_Include.c
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The original version of these files can be found in the following directory: testSuites/Demo_RTDS_SyncCall/Inputs/rtds_model/my_rtds_system/.
Once you have added the necessary files, you can start to generate the code from the RTDS project.
To do so, invoke the following command in the directory of the RTDS project (.rdp file):

rtdsGenerateCode -f <file project>.rdp scheduled partial-linux

Then, the code generator will create the code with some errors and/or warnings. Please ig-
nore them: the code required by TASTE is correctly generated and these warnings/errors are not
relevant in our context. This code generation step will produce an output like the following:

You should get the following output:
Loading project...: .....
### Generating code...
--- Checking syntax/semantics for ’my_rtds_system’
--- Generating code for diagram "my_rtds_system"
--- Checking syntax/semantics for ’my_rtds_system_p’
--- Generating code for diagram "my_rtds_system_p"
### Generating message data encoding/decoding functions...
make RTDS_STRUCT_MSG
gcc -E -I ../profile/ -I"." -I"/home/assert/pragmdadev/second_async_rtds/Inputs/rtds_model/my_rtds_system/my_rtds_system/profile" -I"/opt/pragmadev/rtds/share/ccg/cscheduler" -I"/opt/pragmadev/rtds/share/ccg/common" -I"/home/assert/pragmdadev/second_async_rtds/Inputs/rtds_model/my_rtds_system/my_rtds_system" -DRTDS_SOCKET_IP_ADDRESS=127.0.1.1 -DRTDS_SOCKET_PORT=49250 -o "RTDS_includes4StructMsg.i" RTDS_includes4StructMsg.c
### Generating makefile...
### Updating packages for generated files...
Traceback (most recent call last):

File "/home/rtds/Tools/Python2.6+Tk8.5+th/bin/Linux/lib/python2.6/site-packages/cx_Freeze/initscripts/Console.py", line 29, in <module>
File "/home/rtds/Project/Versions/4.12/rtds_dev/src/rtds/editor/control/rtdsGenerateCode.py", line 159, in <module>
File "/home/rtds/Project/Versions/4.12/rtds_dev/src/rtds/editor/control/rtdsGenerateCode.py", line 142, in main
File "/home/rtds/Project/Versions/4.12/rtds_dev/src/rtds/editor/business/SdlZ100Project.py", line 282, in generateCode
File "/home/rtds/Project/Versions/4.12/rtds_dev/src/rtds/editor/business/Project.py", line 1150, in generateCode
File "/home/rtds/Project/Versions/4.12/rtds_dev/src/rtds/editor/business/CCppCodeGenerator.py", line 5837, in get_profileFileNames

OSError: [Errno 2] No such file or directory: ’profile/’

The errors do not seem to be an issue (to be investigated).

7.4.5 Step 5: Zip generated code to be used by the orchestrator

Once the code has been generated, you need to create an archive that will contain it. To do so,
go into the directory of the RTDS project (the one that contains the .rdp file) and invoke the
following command:

zip <SDL system name> <SDL system name>/* profile/*

For example, if your SDL function is called my_rtds_system, you will create the archive
using the following command:
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zip my_rtds_system my\_rtds_system/* profile/*

This command creates a ZIP archive called <SDL system name>.zip. This file will be later
used by the orchestrator to integrate all functions altogether.

7.4.6 Step 6: Zip generated code to be used by the orchestrator

When you produce your system with the orchestrator, you have to specify the archive file that
contains the code of each system function. For each language supported by TASTE, a special flag
must be specified to indicate the kind of application language is used for each function.

For RTDS, you have to use the flag -P. So, when invoking the orchestrator, if you SDL system
is called my_rtds_system, you must have the following in the command-line that invokes the
orchestrator: -P my_rtds_system:my_rtds_system.zip.

7.4.7 Use RTDS within TASTEGUI

To ease system development, we provide a graphical interface that automatically calls all TASTE
components (data view generator, orchestrator, etc.): TASTEGUI.

This tool is also capable to be interfaced with RTDS. When a function uses the RTDS implemen-
tation language, its edition automatically laucnhes RTDS. In addition, it produces all required files
to generated RTDS/SDL-related code so that you don’t have to worry about archive production.

However, to be able to use RTDS within TASTEGUI, you have to specify the RTDS_HOME en-
vironment variable, that is also required by the RTDS toolsuite. Be sure this variable is set in your
environment before starting RTDS.

7.5 C- and Ada- specific

For these two languages, the user writes manually the code for his Function’s interfaces. TASTE
helps, by automatically generating the C/Ada header/implementation files (i.e. the .h/.c files
for C, or the .ads/.adb files for Ada).

Here’s an example, taken from the Demo_2Cfunctions part of the TASTE examples (in the
VM, check the work/testSuites directory).
bash$ cat DataView . asn
DataView DEFINITIONS AUTOMATIC TAGS : : = BEGIN

T−INTEGER : : = INTEGER ( 0 . . 2 5 5 )

END

bash$ cat i n t e r f a c e v i e w . aadl
. . .

SYSTEM pass ive_ func t ion
FEATURES

compute : IN EVENT PORT
{

Compute_Entrypoint => " compute " ;
Asser t_Proper t ies : : RCMoperation => SUBPROGRAM myLib : : compute ;
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Asser t_Proper t ies : : RCMoperationKind => unprotected ;
} ;

END pass ive_ func t ion ;

SYSTEM IMPLEMENTATION pass ive_ func t ion . o thers
PROPERTIES

Source_Language => C;
END pass ive_ func t ion . o thers ;
. . .

SUBPROGRAM compute
FEATURES

my_in : i n PARAMETER DataView : : T_SEQUENCE
{ Asser t_Proper t ies : : encoding => UPER ; } ;

r e s u l t : out PARAMETER DataView : : T_INTEGER
{ Asser t_Proper t ies : : encoding => NATIVE ; } ;

PROPERTIES
Compute_Execution_Time => 1ms. . 1ms;

END compute ;
. . .

By using the TASTE views in ESA’s buildsupport, automatic skeleton projects are written for
our passive_function:
bash$ l s − l
t o t a l 20
drwxr−xr−x 2 asser t asser t 4096 Ju l 28 12:58 . /
drwxr−xr−x 17 asser t asser t 4096 Ju l 28 12:56 . . /
−rw−r−−r−− 1 asser t asser t 776 Ju l 28 12:56 DataView . asn
−rw−r−−r−− 1 asser t asser t 1018 Ju l 28 12:56 deploymentview . aadl
−rw−r−−r−− 1 asser t asser t 2246 Ju l 28 12:56 i n t e r f a c e v i e w . aadl

bash$ asn2aadlPlus . py DataView . asn DataView . aadl
bash$ l s − l
t o t a l 24
drwxr−xr−x 2 asser t asser t 4096 Ju l 28 12:58 . /
drwxr−xr−x 17 asser t asser t 4096 Ju l 28 12:56 . . /
−rw−r−−r−− 1 asser t asser t 2571 Ju l 28 12:56 DataView . aadl
−rw−r−−r−− 1 asser t asser t 776 Ju l 28 12:56 DataView . asn
−rw−r−−r−− 1 asser t asser t 1018 Ju l 28 12:56 deploymentview . aadl
−rw−r−−r−− 1 asser t asser t 2246 Ju l 28 12:56 i n t e r f a c e v i e w . aadl

bash$ bu i l dsuppo r t −gw − i i n t e r f a c e v i e w . aadl −c deploymentview . aadl −d DataView . aadl
bash$ l s − l
t o t a l 24
−rw−r−−r−− 1 asser t asser t 2751 Ju l 28 12:59 DataView . aadl
−rw−r−−r−− 1 asser t asser t 776 Ju l 28 12:56 DataView . asn
. . .
drwx−−−−−− 2 asser t asser t 4096 Ju l 28 13:00 pass ive_ func t ion

bash$ l s − l pass ive_ func t ion
t o t a l 8
−rw−r−−r−− 1 asser t asser t 382 Ju l 28 13:00 pass ive_ func t ion . c
−rw−r−−r−− 1 asser t asser t 372 Ju l 28 13:00 pass ive_ func t ion . h

As you can see in the above example, buildsupport generated the Function’s skeleton, which
includes all the necessary type and interface information:
/∗ This f i l e was generated a u t o m a t i c a l l y : DO NOT MODIFY IT ! ∗ /

/∗ Dec la ra t ion o f the f u n c t i o n s t h a t have to be provided by the user ∗ /

# i fndef __USER_CODE_H_passive_function__
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#define __USER_CODE_H_passive_function__

#include "C_ASN1_Types . h "

void pass i ve_ func t i on_s ta r tup ( ) ;
void passive_funct ion_PI_compute ( const asn1SccT_SEQUENCE ∗ , asn1SccT_INTEGER ∗ ) ;

#endif

/∗ Funct ions to be f i l l e d by the user ( never o v e r w r i t t e n by bu i l dsuppo r t t o o l ) ∗ /

#include " pass ive_ func t ion . h "

void pass i ve_ func t i on_s ta r tup ( )
{

/∗ Wri te your i n i t i a l i z a t i o n code here ,
but do not make any c a l l to a requ i red i n t e r f a c e ! ! ∗ /

}

void passive_funct ion_PI_compute ( const asn1SccT_SEQUENCE ∗IN_my_in , asn1SccT_INTEGER ∗OUT_result )
{

/∗ Wri te your code here ! ∗ /
}

Very similar things happen for Ada Functions, where the generated files are the corresponding
.ads/.adb:
−− This f i l e was generated a u t o m a t i c a l l y : DO NOT MODIFY IT !

−− Dec la ra t ion o f the prov ided and requ i red i n t e r f a c e s

pragma sty le_checks ( o f f ) ;
pragma warnings ( o f f ) ;
with adaasn1r t l ;
use adaasn1r t l ;

with dataview ;
use dataview ;

package pass ive_ func t ion is

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Provided i n t e r f a c e " compute "
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
procedure compute ( my_in : access asn1sccT_SEQUENCE ; r e s u l t : access asn1sccT_INTEGER ) ;
pragma expor t (C, compute , " passive_funct ion_PI_compute " ) ;

end pass ive_ func t ion ;

−− User implementat ion o f the pass ive_ func t ion f u n c t i o n
−− This f i l e w i l l never be o v e r w r i t t e n once ed i ted and modi f ied
−− Only the i n t e r f a c e of f u n c t i o n s i s regenerated ( i n the . ads f i l e )

pragma sty le_checks ( o f f ) ;
pragma warnings ( o f f ) ;
with adaasn1r t l ;
use adaasn1r t l ;

with dataview ;
use dataview ;
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package body pass ive_ func t ion is

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Provided i n t e r f a c e " compute "
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
procedure compute ( my_in : access asn1sccT_SEQUENCE ; r e s u l t : access asn1sccT_INTEGER ) is
begin

nul l ; −− Replace " n u l l " w i th your own code !

end compute ;

end pass ive_ func t ion ;

After filling-in the code, the user must simply zip the contents in the directories:
bash$ mkdir package
bash$ cd package
bash$ mkdir pass ive_ func t ion
bash$ cp −a / path / to / user− f i l l e d / f i l e s / pass ive_ func t ion . [ ch ] pass ive_ func t ion /
bash$ z ip −9 −r pass ive_ func t ion . z ip pass ive_ func t ion /

This .zip file is the one that must be passed to the orchestrator:
bash$ "$DMT/OG/ asser t−bu i l de r−ocar ina . py " \

−f \
−o b inary . l i n u x \
−a . / DataView . asn \
− i . / I n te r faceV iew . aadl \
−c . / DeploymentView . aadl \

. . .
−C pass ive_ func t ion : / path / to / pass ive_ func t ion . z ip

TASTE therefore completely automates the interface specification, allowing the user to focus
on the implementation logic of his interfaces. The passing of the parameters via PolyORB, the
encodings/decodings via ASN.1, endianess issues, etc, are all handled via TASTE.
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Chapter 8

Use AADL models without graphical
tools

You can also write the AADL views of a TASTE system by hand. In that case, you will need to write
AADL models and ASN.1 types definitions by yourself. The Interface View and Deployment
View are AADL models while the Data View includes the ASN.1 data types’ definitions. We
don’t explain how to write the Data View: there are many tutorials about ASN.1 and we don’t
use exotic features of this language - only the basics (type declarations and constraints). On the
contrary, we use special AADL constructs for the Interface View and the Deployment View so
we detail below the modeling patterns for each view.

8.1 Writing your Interface View manually

8.1.1 Main system of an interface view

The main system implementation of a Taste functional view is contained in a default package
called default::IV. This system is called by default SYSTEM IMPLEMENTATION default.others
and contains system subcomponents, each one representing a function. This system component
also connects each function according to their required/provided interfaces.

The default package that contains the main system defines the location of the data view. It
is specified using the properties TASTE::dataView and TASTE::dataViewPath. The value of
the TASTE::dataView property should be the string "DataView" and the property TASTE::dataViewPath
should specify the location (file) that contains the AADL data view file.

8.1.2 Model a container

A container is specified using an AADL package. By default, the interface view editor creates
package named like this: PACKAGE default::IV::CONTAINERNAME, where CONTAINERNAME
is the name of your container.

This package contain system components, each one represent a function.
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8.1.3 Model a function

A function is represented by a system component. The property Source_Language represents
the implementation language of the function (C, Ada, Simulink, etc.). For each provided or re-
quired interface, we add a feature in the system specification.

For example, the following component models a function that provides a single interface. The
function is implemented using the C language.

SYSTEM func t i on2
FEATURES

provided1 : PROVIDES SUBPROGRAM ACCESS d e f a u l t : : FV : : provided1
{

−− provided i n t e r f a c e s p r o p e r t i e s .
} ;

PROPERTIES
Source_Language => C;
Taste : : Coordinates => "91 27 109 50" ;

END func t i on2 ;

The following component models a function that requires a single interface. The function is
implemented using the Ada language.

SYSTEM func t i on1
FEATURES

requ i red1 : REQUIRES SUBPROGRAM ACCESS d e f a u l t : : FV : : b la
{
−− requ i red i n t e r f a c e p r o p e r t i e s .
} ;

PROPERTIES
Source_Language => Ada ;
Taste : : Coordinates => "14 14 35 45" ;

END func t i on1 ;

8.1.4 Model a provided interface

A provided interface is represented using two AADL artifacts:

1. A subprogram component.

2. A provides subprogram access feature in the AADL system component that repre-
sents the function containing this provided interface.

The subprogram component has the same name as the provided interface name. By de-
fault, the interface view editor adds all subprogram components in a default package called
default::FV.

Subprogram components declare features for their parameters. These parameters use the
types from the Data View. For example, the following component (provided1) declares a subprogram
component for a provided interface called provided1 having one parameter one type TM_T.

SUBPROGRAM provided1
FEATURES

paramin1 : in PARAMETER DataView : : TM_T
{ Taste : : encoding => NATIVE ; } ;

END provided1 ;
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The feature added in the system that represents the function which contains the interface
specifies all the properties of the interface (type, importance, etc.). For example, the following
system component (function2) provides an access to the interface provided1.

SUBPROGRAM provided1
SYSTEM func t i on2

FEATURES
provided1 : PROVIDES SUBPROGRAM ACCESS d e f a u l t : : FV : : provided1
{

Taste : : RCMoperationKind => sporad ic ;
Taste : : RCMperiod => 0 ms;
TASTE : : Compute_Execution_Time => 0 ms . . 100ms;
Taste : : Deadl ine => 0 ms;
Taste : : Importance => MEDIUM ;
Taste : : Coordinates => "89 45 91 47" ;

} ;
PROPERTIES

Source_Language => C;
Taste : : Coordinates => "91 27 109 50" ;

END func t i on2 ;

Here, the following properties are added to the provided interface:

1. Taste::RCMoperationKind: indicates the kind of the interface. The value can be spo-
radic, periodic, protected or unprotected. This property is defined in the Taste-specific prop-
erty set.

2. Taste::RCMPeriod: specifies the period at which the interface can be called. This property
is defined in the Taste-specific property set.

3. Taste::Importance: specifies if an interface is more important (in terms of priority) than
another. The value can be low, medium or high.

4. Compute_Execution_Time: specifies the execution time of the code. The value is a time
range. This property is defined in the standard AADL property set.

5. Taste::Deadline: specifies when the job associated with the interface should be com-
pleted. This property is defined in Taste-specific property set.

8.1.5 Model a required interface

A provided interface is represented by a requires subprogram access feature in the AADL
system component (Taste function) that calls the interface.

The required subprogram component is defined in the default::FV package. It was de-
fined when the user write the provided subprogram for this interface (see previous section).

The feature added in the system that represents the function that calls this interface specifies
all the properties of the interface (type, importance, etc.). For example, the following system
component (function1) provides an access to the interface provided1.

SYSTEM func t i on1
FEATURES

requ i red1 : REQUIRES SUBPROGRAM ACCESS d e f a u l t : : FV : : b la
{ Taste : : Coordinates => "35 41 37 43" ; } ;

PROPERTIES
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Source_Language => C;
Taste : : Coordinates => "14 14 35 45" ;

END func t i on1 ;

We don’t need to specify additional properties since all required properties are declared in the
declarations of the provided interface.

8.1.6 Connect provided and required interfaces

The interface view contains a single system that gathers all functions or your system. By default,
the interface view editor creates a system implementation called default.others, which con-
tains all functions (system components) and connects their features.

By connecting their features, it associates provided and required interface.

In the following example, the system default.others contains 4 functions. It connects func-
tion1 and function2: the interface provided by function2 (provided1) is connected to the in-
terface required by function1 (required1).

SYSTEM d e f a u l t
END d e f a u l t ;

SYSTEM IMPLEMENTATION d e f a u l t . o thers
SUBCOMPONENTS

func t i on1 : SYSTEM d e f a u l t : : IV : : con ta ine r : : f unc t i on1 . o thers
{ Taste : : Coordinates => "14 14 35 45" ; } ;

f unc t i on2 : SYSTEM d e f a u l t : : IV : : con ta ine r : : f unc t i on2 . o thers
{ Taste : : Coordinates => "91 27 109 50" ; } ;

f unc t i on3 : SYSTEM d e f a u l t : : IV : : con ta iner2 : : f unc t i on3 . o thers
{ Taste : : Coordinates => "135 33 155 70" ; } ;

f unc t i on4 : SYSTEM d e f a u l t : : IV : : con ta iner2 : : f unc t i on4 . o thers
{ Taste : : Coordinates => "135 73 185 94" ; } ;

CONNECTIONS
conn1 : SUBPROGRAM ACCESS func t i on2 . provided1 −> func t i on1 . requ i red1

{ Taste : : Coordinates => "35 42 63 42 63 46 91 46" ; } ;
END d e f a u l t . o thers ;

8.1.7 About AADL properties of the interface view

The TASTE::Coordinates property was introduced to describe where components are located
in the graphical example. If you are using only textual representation, they can be ommitted.

The list of all Taste-specific AADL properties is available in section E.

8.1.8 Example of a manually written interface view

The following example details the modeling of an interface view with AADL. We provide the
graphical representation as well to help the reader to understand the mapping between the graphic
representation and the textual one.
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PACKAGE d e f a u l t : : IV
PUBLIC
WITH DataView ;
WITH d e f a u l t : : FV ;
w i th d e f a u l t : : IV : : con ta ine r ;
w i th d e f a u l t : : IV : : con ta iner2 ;
WITH Taste ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− TASTE I n t e r f a c e View
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SYSTEM d e f a u l t
END d e f a u l t ;

SYSTEM IMPLEMENTATION d e f a u l t . o thers
SUBCOMPONENTS

func t i on1 : SYSTEM d e f a u l t : : IV : : con ta ine r : : f unc t i on1 . o thers
{ Taste : : Coordinates => "14 14 35 45" ; } ;

f unc t i on2 : SYSTEM d e f a u l t : : IV : : con ta ine r : : f unc t i on2 . o thers
{ Taste : : Coordinates => "91 27 109 50" ; } ;

f unc t i on3 : SYSTEM d e f a u l t : : IV : : con ta iner2 : : f unc t i on3 . o thers
{ Taste : : Coordinates => "135 33 155 70" ; } ;

f unc t i on4 : SYSTEM d e f a u l t : : IV : : con ta iner2 : : f unc t i on4 . o thers
{ Taste : : Coordinates => "135 73 185 94" ; } ;

CONNECTIONS
obj342 : SUBPROGRAM ACCESS func t i on2 . provided1 −> func t i on1 . requ i red1

{ Taste : : Coordinates => "35 42 63 42 63 46 91 46" ; } ;
END d e f a u l t . o thers ;
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PROPERTIES
Taste : : Coordinates => "0 0 297 210" ;
TASTE : : dataView => " DataView " ;
TASTE : : dataViewPath => " / tmp / dataview . aadl " ;

END d e f a u l t : : IV ;

PACKAGE d e f a u l t : : IV : : con ta ine r
PUBLIC

WITH d e f a u l t : : FV ;
WITH DataView ;
WITH Taste ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− TASTE Funct ion : d e f a u l t : : IV : : con ta ine r : : f unc t i on1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SYSTEM func t i on1
FEATURES

requ i red1 : REQUIRES SUBPROGRAM ACCESS d e f a u l t : : FV : : provided1
{ Taste : : Coordinates => "35 41 37 43" ; } ;

PROPERTIES
Source_Language => C;
Taste : : Coordinates => "14 14 35 45" ;

END func t i on1 ;

SYSTEM IMPLEMENTATION func t i on1 . o thers
END func t i on1 . o thers ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− TASTE Funct ion : d e f a u l t : : IV : : con ta ine r : : f unc t i on2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SYSTEM func t i on2
FEATURES

provided1 : PROVIDES SUBPROGRAM ACCESS d e f a u l t : : FV : : provided1
{

Taste : : RCMoperationKind => sporad ic ;
Taste : : RCMperiod => 0 ms;
Compute_Execution_Time => 0 ms . . 10 ms;
Taste : : Deadl ine => 0 ms;
TASTE : : Importance => MEDIUM ;
Taste : : Coordinates => "89 45 91 47" ;

} ;
PROPERTIES

Source_Language => C;
Taste : : Coordinates => "91 27 109 50" ;

END func t i on2 ;

SYSTEM IMPLEMENTATION func t i on2 . o thers
SUBCOMPONENTS

provided1_impl : SUBPROGRAM d e f a u l t : : FV : : provided1 ;
CONNECTIONS

SUBPROGRAM ACCESS provided1_impl −> provided1 ;
END func t i on2 . o thers ;

PROPERTIES
Taste : : Coordinates => "1 4 119 100" ;

END d e f a u l t : : IV : : con ta ine r ;

PACKAGE d e f a u l t : : IV : : con ta iner2
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PUBLIC

WITH d e f a u l t : : FV ;
WITH DataView ;
WITH Taste ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− TASTE Funct ion : d e f a u l t : : IV : : con ta iner2 : : f unc t i on3
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SYSTEM func t i on3
PROPERTIES

Source_Language => C;
Taste : : Coordinates => "135 33 155 70" ;

END func t i on3 ;

SYSTEM IMPLEMENTATION func t i on3 . o thers
END func t i on3 . o thers ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− TASTE Funct ion : d e f a u l t : : IV : : con ta iner2 : : f unc t i on4
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SYSTEM func t i on4
PROPERTIES

Source_Language => C;
Taste : : Coordinates => "135 73 185 94" ;

END func t i on4 ;

SYSTEM IMPLEMENTATION func t i on4 . o thers
END func t i on4 . o thers ;

PROPERTIES
Taste : : Coordinates => "129 16 189 98" ;

END d e f a u l t : : IV : : con ta iner2 ;

PACKAGE d e f a u l t : : FV
PUBLIC

WITH DataView ;
w i th Taste ;

SUBPROGRAM provided1
FEATURES

paramin1 : in PARAMETER DataView : : TM_T
{ Taste : : encoding => NATIVE ; } ;

END provided1 ;

SUBPROGRAM bla
END bla ;

END d e f a u l t : : FV ;
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8.2 Writing your Deployment View manually

8.2.1 Model a processor board

8.2.2 Model a processor

8.2.3 Model a partition

8.2.4 Model a memory

8.2.5 Model a device

8.2.6 Example of a manually written deployment view

The following example details the modeling of a deployment view with AADL. We provide
the graphical representation as well to help the reader to understand the mapping between the
graphic representation and the textual one.

PACKAGE d e f a u l t : : DV
PUBLIC
WITH Deployment ;
WITH Taste ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− TASTE Deployement View
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−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−
−− ProcessorBoards −−
−−−−−−−−−−−−−−−−−−−−−−

SYSTEM board1
FEATURES

obj5575_ethernet : requires bus access e therne t
{ Taste : : Coordinates => "105 180 107 182" ; } ;

END board1 ;

PROCESSOR cpu1
PROPERTIES

Schedul ing_Protocol => ( Pos ix_1003_H ighes t_Pr io r i t y_F i r s t_Pro toco l ) ;
END cpu1 ;

PROCESS par t1
END par t1 ;

MEMORY mem1
END mem1;

DEVICE d r i v e r 1
FEATURES

etherne t : requires bus access e therne t
{ Taste : : Coordinates => "105 180 107 182" ; } ;

END d r i v e r 1 ;

SYSTEM IMPLEMENTATION board1 . o thers
SUBCOMPONENTS

par t1 : PROCESS par t1
{

Taste : : APLC_Properties => (APLC => " t e s t c o n t a i n e r : : func1 " ;
Coordinates => "21 42 99 76" ; Source_Language => C; ) ;

Taste : : APLC_Properties => (APLC => " t e s t c o n t a i n e r : : func2 " ;
Coordinates => "21 79 98 113" ; Source_Language => C; ) ;

Taste : : APLC_Binding => ( " t e s t c o n t a i n e r : : func1 " , " t e s t c o n t a i n e r : : func2 " ) ;
Deployment : : Port_Number => 0;
Taste : : Coordinates => "17 28 103 118" ;

} ;
cpu1 : PROCESSOR cpu1

{ Taste : : Coordinates => "12 19 105 123" ; } ;
mem1 : MEMORY mem1

{ Taste : : Coordinates => "12 135 105 167" ; } ;
d r i v e r 1 : DEVICE d r i v e r 1

{
Taste : : Coordinates => "12 172 105 201" ;

} ;

CONNECTIONS
−− The bus connect ions
BUS ACCESS obj5575_ethernet −> d r i v e r 1 . e therne t ;

PROPERTIES
−− Connexion des CPUs aux process / d r i v e r s
Actual_Processor_Binding => ( reference ( cpu1 ) ) applies to par t1 ;
Actual_Processor_Binding => ( reference ( cpu1 ) ) applies to d r i v e r 1 ;
Actual_Memory_Binding => ( reference (mem1) ) applies to par t1 ;

END board1 . o thers ;

SYSTEM board2
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FEATURES
obj4948_ethernet : requires bus access e therne t

{ Taste : : Coordinates => "215 156 217 158" ; } ;
END board2 ;

PROCESSOR cpu2
PROPERTIES

Schedul ing_Protocol => ( Pos ix_1003_H ighes t_Pr io r i t y_F i r s t_Pro toco l ) ;
END cpu2 ;

PROCESS par t2
END par t2 ;

MEMORY mem2
END mem2;

DEVICE d r i v e r 2
FEATURES

etherne t : requires bus access e therne t
{ Taste : : Coordinates => "215 156 217 158" ; } ;

END d r i v e r 2 ;

SYSTEM IMPLEMENTATION board2 . o thers
SUBCOMPONENTS

par t2 : PROCESS par t2
{

Taste : : APLC_Properties => (APLC => " func1 " ;
Coordinates => "221 53 294 72" ; ) ;

Taste : : APLC_Binding => ( " func1 " ) ;
Deployment : : Port_Number => 0;
Taste : : Coordinates => "219 43 297 78" ;

} ;
cpu2 : PROCESSOR cpu2

{ Taste : : Coordinates => "215 22 301 87" ; } ;
mem2 : MEMORY mem2

{ Taste : : Coordinates => "216 97 302 127" ; } ;
d r i v e r 2 : DEVICE d r i v e r 2

{
Taste : : Coordinates => "217 135 302 170" ;

} ;

CONNECTIONS
−− The bus connect ions
BUS ACCESS obj4948_ethernet −> d r i v e r 2 . e therne t ;

PROPERTIES
−− Connexion des CPUs aux process / d r i v e r s
Actual_Processor_Binding => ( reference ( cpu2 ) ) applies to par t2 ;
Actual_Processor_Binding => ( reference ( cpu2 ) ) applies to d r i v e r 2 ;
Actual_Memory_Binding => ( reference (mem2) ) applies to par t2 ;

END board2 . o thers ;

−−−−−−−−−−−−−−
−− Devices−−
−−−−−−−−−−−−−−

DEVICE netdev2
FEATURES

etherne t : requires bus access e therne t
{ Taste : : Coordinates => "202 200 208 206" ; } ;

END netdev2 ;
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DEVICE netdev1
FEATURES

etherne t : requires bus access e therne t
{ Taste : : Coordinates => "112 218 118 224" ; } ;

END netdev1 ;

−−−−−−−−−−−
−− Buses −−
−−−−−−−−−−−

BUS etherne t
PROPERTIES

Taste : : In te r face_Coord ina tes => ( I n t e r f a c e => " netdev1 . e therne t " ;
Coordinates => "129 119 135 125" ; Target => " " ; ) ;

Taste : : In te r face_Coord ina tes => ( I n t e r f a c e => " netdev2 . e therne t " ;
Coordinates => "190 113 196 119" ; Target => " " ; ) ;

Taste : : In te r face_Coord ina tes => ( I n t e r f a c e => " board1 . obj5575_ethernet " ;
Coordinates => "147 119 153 125" ; Target => " " ; ) ;

Taste : : In te r face_Coord ina tes => ( I n t e r f a c e => " board2 . obj4948_ethernet " ;
Coordinates => "175 119 181 125" ; Target => " " ; ) ;

END etherne t ;

−−−−−−−−−−−−−−−−−
−− Root System −−
−−−−−−−−−−−−−−−−−

SYSTEM d e f a u l t
END d e f a u l t ;

SYSTEM IMPLEMENTATION d e f a u l t . o thers
SUBCOMPONENTS

−− The processor boards
board1 : SYSTEM board1 . o thers

{ Taste : : Coordinates => "1 1 114 206" ; } ;
board2 : SYSTEM board2 . o thers

{ Taste : : Coordinates => "210 7 307 176" ; } ;
−− The devices
netdev2 : DEVICE netdev2

{
Taste : : APLC_Binding => ( ) ;
Taste : : Coordinates => "208 191 306 218" ;

} ;
netdev1 : DEVICE netdev1

{
Taste : : APLC_Binding => ( ) ;
Taste : : Coordinates => "2 212 112 241" ;

} ;
−− The buses
e therne t : BUS etherne t

{
Taste : : Coordinates => "128 99 190 119" ;

} ;

CONNECTIONS
−− The bus connect ions
obj2378 :BUS ACCESS etherne t −> netdev1 . e therne t

{ Taste : : Coordinates => "132 119 132 221 112 221" ; } ;
obj2520 :BUS ACCESS etherne t −> netdev2 . e therne t

{ Taste : : Coordinates => "208 203 195 203 195 116 190 116" ; } ;
obj6140 :BUS ACCESS etherne t −> board1 . obj5575_ethernet

{ Taste : : Coordinates => "150 119 150 181 105 181" ; } ;
obj6337 :BUS ACCESS etherne t −> board2 . obj4948_ethernet
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{ Taste : : Coordinates => "178 119 178 157 217 157" ; } ;
END d e f a u l t . o thers ;

PROPERTIES
Taste : : Coordinates => "0 0 594 420" ;

END d e f a u l t : : DV;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− copied aadl l i b r a r i e s
−− TASTE requirement
−− Do not e d i t below t h i s l i n e
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

8.3 Device driver modelling

Devices are specified with the AADL device component. These components model the device
and the buses they use (ethernet, spacewire, etc.).

Device drivers internals are described using AADL properties. The initialization thread is
specified using the Initialize_Entrypoint on the device. The device driver resources are
specified using an AADL abstract component that is associated with the device using the
Device_Driver property on the device. This component describes thread, data and subprogram
used for implementation purpose.

8.4 AADL device driver library

Ocarina provides a set of predefined devices you can use in your models. This set of components
can be found in the resources/AADLv2/ directory of Ocarina sources, or in the INSTALLDIR/share/ocarina/AADLv2
(where INSTALLDIR is the installation directory of Ocarina).

Then, you can directly associated the device in your model, since Ocarina automatically in-
tegrates this component when it parses and analyzes models. For example, the following model
add an ethernet/ip device in the system being configured with the IP address 192.168.0.10
and listening for incoming connections on port 45678.
wi th ocar ina_devices ;

system main . i
subcomponents

n e t i f : device ocar ina_devices : : e t h_ l i n ux . raw
{ Deployment : : Con f i gu ra t i on => " i p 192.168.0.10 45678 " ; } :

end main . i ;

8.5 Device driver configuration (the Deployment::Configuration
property)

When you associate a device, you must configure it, it means:
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1. Specify the type of device it implements

2. Configuration items (such as IP address, device node, etc.)

For that purpose, the designer binds the Deployment::Configuration property. The value
of the property is clearly defined for each kind of device driver:

1. For sockets/ip driver, the value of the property is ip ip_addr ip_port. For example
the value ip 192.168.0.1 1234 specifies that the device is a network device with an IP
stack, it is associated with the address 192.168.0.1 and listen for incoming connections on
port 1234.

2. For spacewire driver, the value of the property is spacewire SENDER_CORE_ID RECEIVER_CORE_ID.
For example, the value spacewire 4 5 specifies a spacewire device that will communicate
through spacewire cores 4 and 5.

3. For serial drivers, the value of the property is serial DEVICE BAUDS DATA_BITS PARITY
STOP_BIT. For example, the value serial /dev/ttyS0 9600 8 N 1 specified a device
that will use /dev/ttyS0 at 9600 bauds. It will use 8 bits for each caracter, use parity and
one stop bit. For more information about serial line configuration, interested can refer to the
following web article1

1http://en.wikipedia.org/wiki/Serial_port
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Chapter 9

Toolset usage

9.1 ASN.1 tools

ASN.1 tools are used to transform ASN.1 types definitions into AADL models as well as functional
modelling representations (SCADE models, Simulink models, Ada/C code, etc).

9.1.1 Convert ASN.1 types into AADL models

To be able to use the ASN.1 type definitions with AADL models (and thus, with your interface and
deployment views), you must convert ASN.1 type definitions into AADL models. The resulting
AADL model will contain data components that represent the ASN.1 types.

For that purpose, the tool asn2aadlPlus automatically converts ASN.1 definitions into AADL
models. You can use it as it:
asn2aadlPlus d a t a d e f i n i t i o n 1 . asn . . . d a t a d e f i n i t i o n X . asn o u t p u t f i l e . aadl

It will process all ASN.1 files given in the command line parameter list, and output an AADL
specification that describes ASN.1 types in outputfile.aadl.

If you use the version 2 of the AADL language, you must use the switch -aadlv2. So, the
command would be:
asn2aadlPlus −aadlv2 d a t a d e f i n i t i o n 1 . asn . . . d a t a d e f i n i t i o n X . asn

o u t p u t f i l e . aadl

9.1.2 Convert ASN.1 types into Functional Data Models

When building your application, you need to generate interfaces of your ASN.1 types with your
architecture and your application. For that purpose, the tool asn2dataModel exports ASN.1
data types definitions into a representation that is suitable for the tools you use to develop your
Functions: Ada, C, Simulink/RTW, SCADE/KCG, ObjectGeode or PragmaDev (Python is also
supported, for scripting purposes).

The tool should be invoked like this:
asn2dataModel −toC d a t a d e f i n i t i o n 1 . asn . . . d a t a d e f i n i t i o n X . asn
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It will output a file that will contain the data type definition in the language you selected. For
example, in our example, the switch -toC indicates that we generate interfaces for the C language.
You can replace this switch with the following:

• -toAda: generate Ada type declarations

• -toC: generate C type declarations

• -toPython: generate Python declarations

• -toRTDS: generate PragmaDev/RTDS declarations

• -toSIMULINK: generate Simulink type declarations

• -toOG: generate ObjectGeode type declarations

• -toSCADE5: generate SCADE5 type declarations

• -toSCADE6: generate SCADE6 type declarations

For example, the following command exports data types definition contained in the data.asn1
file into a representation suitable for Simulink.
asn2dataModel −toSIMULINK data . asn1

9.2 Ocarina and PolyORB-HI

Ocarina is used transparently through the orchestrator. This tool is in charge of combining all
models and source code bound in the interface and deployment views. This process is sophisti-
cated. Therefore, we do not support the direct use of Ocarina as part of the TASTE toolchain.

9.3 Orchestrator

Invoking the orchestrator without parameters shows the available options:
Usage : asser t−bu i l de r−ocar ina . py <opt ions >
Where <opt ions > are :

−f , −−f a s t
Skip wa i t i ng f o r ENTER between stages

−n , −−nokalva
Use OSS Nokalva f o r ASN.1 compi ler

−p , −−with−polyorb−hi−c
Use PolyORB−HI−C ( ins tead of the de fau l t , PolyORB−HI−Ada )

−r , −−with−coverage
Use GCC coverage opt ions ( gcov ) f o r the generated a p p l i c a t i o n s

−v , −−aadlv2
Use AADLv2 when speaking wi th Ocarina
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−o , −−output <outpu tD i r >
D i r e c t o r y w i th generated sources and code

−s , −−stack <stackSizeInKB >
How much stack s ize to use ( in KB)

−a , −−asn <asn1Grammar . asn>
ASN.1 grammar wi th the messages sent between subsystems

−i , −−i n te r faceV iew < i_v iew . aadl >
The i n t e r f a c e view in AADL

−c , −−deploymentView <d_view . aadl >
The deployment view in AADL

−w, −−wrappers <adaSourceFile1 , adaSourceFile2 , . . . >
The ex t ra Ada code ( e . g . sdl_wrappers ) generated dur ing VT

−S, −−subSCADE name: < z i p F i l e >
a z ip f i l e w i th the SCADE generated C code f o r a subsystem
wi th the AADL name of the subsystem before the ’ : ’

−M, −−subSIMULINK name: < z i p F i l e >
a z ip f i l e w i th the SIMULINK /ERT generated C code f o r a subsystem
wi th the AADL name of the subsystem before the ’ : ’

−C, −−subC name: < z i p F i l e >
a z ip f i l e w i th the C code f o r a subsystem
wi th the AADL name of the subsystem before the ’ : ’

−A, −−subAda name: < z i p F i l e >
a z ip f i l e w i th the Ada code f o r a subsystem
wi th the AADL name of the subsystem before the ’ : ’

−G, −−subOG name : f i l e 1 . pr < , f i l e 2 . pr , . . . >
ObjectGeode PR f i l e s f o r a subsystem
wi th the AADL name of the subsystem before the ’ : ’

−P, −−subRTDS name: < z i p F i l e >
a z ip f i l e w i th the RTDS−generated code f o r a subsystem
wi th the AADL name of the subsystem before the ’ : ’

−V, −−subVHDL name
wi th the AADL name of the VHDL subsystem

−e , −−with−ext ra−C−code < d i r e c t o r y W i t h C f i l e s >
D i r e c t o r y con ta in ing a d d i t i o n a l . c f i l e s to be compiled and l i n k e d in

−d , −−with−ext ra−Ada−code <d i rec to ryWi thADBf i l es >
D i r e c t o r y con ta in ing a d d i t i o n a l . adb f i l e s to be compiled and l i n k e d in

−l , −−with−ext ra−l i b / path / to / l i b L i b r a r y 1 . a < , / path / to / l i b L i b r a r y 2 . a , . . . >
A d d i t i o n a l l i b r a r i e s to be l i n k e d in

The following paragraph describes each option.

-f When this option is NOT used, the orchestrator will pause between compilation stages, al-
lowing the user to inspect the build process as it unfolds.

-p When this is used, the compilation is using PolyORB-HI-C instead of the default PolyORB-
HI-Ada. If all Functions are using only C code, this will cause a decrease in the generated
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binary size, since Ada’s run-time won’t be linked-in.

-r Uses the appropriate GCC coverage options to allow invocation of gcov on the generated
binary (only for Linux builds).

-v Use AADLv2 when speaking with Ocarina (will become the default soon, currently using
AADLv1).

-o Specify the output directory where the generated code and binaries will be placed.

-s This option specifies how much stack size to use (in KB). This depends on your Functional
code; set it appropriately.

-a This option specifies the ASN.1 grammar describing the messages sent between subsystems.

-i This option specifies the interface view (AADL file).

-c This option specifies the deployment view (AADL file).

-S This option specifies that the "name" Function is implemented in SCADE/KCG, and the
"zipFile" contains the SCADE/KCG generated C code for the Function.

-M This option specifies that the "name" Function is implemented in Simulink/RTW, and the
"zipFile" contains the Simulink/RTW generated C code for the Function.

-C This option specifies that the "name" Function is implemented in manually written C code,
and the "zipFile" contains the C code for the Function.

-A This option specifies that the "name" Function is implemented in manually written Ada
code, and the "zipFile" contains the Ada code for the Function.

-G This option specifies that the "name" Function is implemented in ObjectGeode, and the .pr
files that implement the Function are provided as arguments.

-P This option specifies that the "name" Function is implemented in PragmaDev/RTDS, and
the "zipFile" contains the generated C code for the Function.

-V This option specifies that the "name" Function is implemented as a Leon/VHDL component.
TASTE will automatically generate the driver component necessary, so no "zipFile" is used.

-e If additional C code (not Function-specific) is needed, this option specifies the directory
containing the additional .c files to be compiled and linked in.

-d If additional Ada code (not Function-specific) is needed, this option specifies the directory
containing the additional Ada files to be compiled and linked in.

-l If additional "black-box" libraries are neeeded during linking, this option specifies them.
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Figure 9.1: Spawning the MSC Tracer, and starting a new trace

9.4 Real-time MSC monitoring

If your system was designed with a GUI block configured (i.e. your AADL definition includes a
SUBPROGRAM with Source_Language => GUI), then the TASTE build mechanisms will auto-
matically create a Graphical User Interface that allows you to invoke TCs and see the incoming
TM values (see 1.1).

Additionally, the TASTE tools tracer.py and tracerd.py allow a direct link of the GUIs
with the freely available PragmaDev MSC Tracer1. The user first starts the MSC Tracer (see figure
9.1), and clicks on "New Trace". Then, tracerd.py is spawned:
bash$ t race rd . py <ipAddressOfMSCTracer> <portOfMSCTracer>

1MSC Tracer available at http://www.pragmadev.com/product/tracing.html.
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Figure 9.2: Automatic monitoring of TM/TCs via MSC Tracer

The IP address of the machine running the MSC Tracer and the port number of the MSC tracer
(as configured in the "Options..." dialog) must be provided to tracerd.py.

After that, the user must simply spawn the automatically generated TASTE GUI applications,
under the supervision of tracer.py:
bash$ t r a c e r . py <ipAddressOfTracerd . py> 27182 <fi lenameOfGUIBinary >

The port, hardcoded as 27182, can be modified if desired by editing tracerd.py. The TCs
and TMs sent and received will then be monitored in real-time in the MSC tracer, as seen in 9.2.
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Chapter 10

ASN1SCC manual - advanced features
for standalone use of the TASTE ASN.1
compiler

In Windows platforms, the user must type the following command: asn1scc.exe file1.asn1
where file1.asn1 is an ASN.1 grammar file. If no input file is provided, asn1scc displays the
possible command line options and exits, as shown bellow:
C : \ tmp>asn1scc
No inpu t f i l e s .

ASN.1 Space C e r t i f i e d Compiler
Current Version i s : 1.00
Usage :

asn1scc [−debug ] [− t y p e P r e f i x p r e f i x ] [−useSpecialComments ] [−o o u t d i r ] f i l e 1 , f
i l e 2 , . . . , f i l e N

−debug re−p r i n t s the AST using ASN. 1 .
Usefu l on ly for debug purposes .

−t y p e P r e f i x adds ’ p r e f i x ’ to a l l generated C data types .

−useSpecialComments Only comments s t a r t i n g w i th −−@ w i l l be copied
to the generated f i l e s

−o o u t d i r d i r e c t o r y where a l l f i l e s are produced .
De fau l t i s cu r ren t d i r e c t o r y

Example :

asn1cc MyFile . asn1

Running asn1scc under Linux requires ‘mono’ in front. For example:
mono asn1scc . exe f i l e 1 . asn1
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10.1 Restrictions

Asn1scc will not generate code for ASN.1 grammars that

• contain SEQUENCE OFs and/or SET OFs with no SIZE constraint

• contain OCTET STRINGs and/or BIT STRINGs with no SIZE constraint

• IA5String, NumericString (and in general string types) with no SIZE constraint

• Contain extendable CHOICEs, extendable SEQUENCES or extendable enumerations.

The common reason for the above restrictions is that in all these cases, the maximum number of
bytes required for encoding of these types cannot be determined at compile time. Space software
needs to be certain that all the necessary space for types is reserved up-front, so all constructs that
can only be handled via dynamic heaps are forbidden.

The current version of asn1scc is also not supporting some advanced ASN.1 features such as
macros, parameterization and Information Class Objects.

10.2 Description of generated code

Asn1scc generates one C source file and one header file for each input ASN.1 grammar. Further-
more, for each type assignment that exists in an ASN.1 file, the following are created:

• one corresponding C data struct (a new type as result of a typedef) with the name of the type
assignment

• one #define integer constant which is the maximum number of bytes required for storing
any form of this type in unaligned PER encodings.

• four functions for initializing, checking type constraints, decoding and encoding the type.

• zero or more #define constants with the error codes that can be returned by the "check
constraints" function.

The generated C data structure depends on the ASN.1 type. The following paragraphs provide a
short description of the generated C data strictures for each ASN.1 type.

10.2.1 Integer

ASN.1 INTEGER types are mapped to asn1SccSint which is a 32 or 64 bit signed integer. The
asn1SccSint type is defined in the asn1crt.h header file. The number of bits depends on a
preprocessor directive called WORD_SIZE, which can be set to 4 or 8 bytes. The default value for
WORD_SIZE directive is 8 bytes, so all ASN.1 INTEGERs are mapped to 64 signed integers.

For example, for the following piece of ASN.1 grammar:
MyInt : : = INTEGER( 1 | 2 | 3 )

Asn1scc will produce the following code (only header file is shown):
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typedef asn1SccSint MyInt ;

#define MyInt_REQUIRED_BYTES_FOR_ENCODING 1

#define ERR_MyInt 1002 /∗ ( ( 1 | 2 | 3 ) ) ∗ /

void M y I n t _ I n i t i a l i z e ( MyInt∗ pVal ) ;
f l a g My In t_ I sCons t ra i n tVa l i d ( MyInt∗ val , i n t∗ pErrCode ) ;
f l a g MyInt_Encode ( MyInt∗ val , Bi tStream∗ pBitStrm ,

i n t∗ pErrCode , f l a g bCheckConstraints ) ;
f l a g MyInt_Decode ( MyInt∗ val , Bi tStream∗ pBitStrm , i n t∗ pErrCode ) ;

Besides the C data type (MyInt in this case), asn1scc generates one #define integer constant
which is the maximum number of bytes required for encoding the specific type in unaligned PER
(1 byte in this case), four functions for initializing, checking type constraints, decoding and encod-
ing the type and an error code (1002) that can be return by IsConstraintValid and Encode
functions.

Please note that all generated functions take as argument a pointer to a specific C data type
(MyInt* in this case). Moreover, the BitStream* type is defined in the asn1crt.h and repre-
sents a stream of bits.

10.2.2 Real

ASN.1 REAL types are mapped to C doubles. Everything else is just like ASN.1 INTEGERs.
Therefore, for the following ASN.1 grammar:
MyReal : : = REAL (10.0 . . 20.0 | 2 5 . 0 . . 2 6 . 0 )

The following C code is generated:
typedef asn1SccSint MyInt ;
typedef double MyReal ;

#define MyReal_REQUIRED_BYTES_FOR_ENCODING 13

#define ERR_MyReal 1007 /∗ ( ( 1 0 . . 2 0 | 2 5 . . 2 6 ) ) ∗ /

void M y R e a l _ I n i t i a l i z e ( MyReal∗ pVal ) ;
f l a g MyReal_ IsConst ra in tVa l id ( MyReal∗ val , i n t∗ pErrCode ) ;
f l a g MyReal_Encode ( MyReal∗ val , Bi tStream∗ pBitStrm ,

i n t∗ pErrCode , f l a g bCheckConstraints ) ;
f l a g MyReal_Decode ( MyReal∗ val , Bi tStream∗ pBitStrm , i n t∗ pErrCode ) ;

10.2.3 Enumerated

ASN.1 ENUMERATED types are mapped to C enum types.
For example, from the following ASN.1 code:

MyEnum : : = ENUMERATED {
alpha , beta , gamma

}

The following C code is generated:
typedef enum {

alpha = 0 ,
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beta = 1 ,
gamma = 2

} MyEnum;

#define MyEnum_REQUIRED_BYTES_FOR_ENCODING 1

void MyEnum_In i t ia l i ze (MyEnum∗ pVal ) ;
f l a g MyEnum_IsConstraintVal id (MyEnum∗ val , i n t∗ pErrCode ) ;
f l a g MyEnum_Encode(MyEnum∗ val , Bi tStream∗ pBitStrm ,

i n t∗ pErrCode , f l a g bCheckConstraints ) ;
f l a g MyEnum_Decode(MyEnum∗ val , Bi tStream∗ pBitStrm , i n t∗ pErrCode ) ;

10.2.4 Boolean

ASN.1 BOOLEAN types are mapped to a custom C type (flag) which is defined in asn1crt.h as
int. Hence, for the following ASN.1 code:

MyBool : : = BOOLEAN

The following code is generated:
typedef asn1SccSint MyInt ;
typedef f l a g MyBool ;

#define MyBool_REQUIRED_BYTES_FOR_ENCODING 1

void M y B o o l _ I n i t i a l i z e ( MyBool∗ pVal ) ;
f l a g MyBool_ IsConst ra in tVa l id ( MyBool∗ val , i n t∗ pErrCode ) ;
f l a g MyBool_Encode ( MyBool∗ val , Bi tStream∗ pBitStrm ,

i n t∗ pErrCode , f l a g bCheckConstraints ) ;
f l a g MyBool_Decode ( MyBool∗ val , Bi tStream∗ pBitStrm , i n t∗ pErrCode ) ;

10.2.5 Null

ASN.1 NULL types are mapped to a custom C type (NullType) which is defined in asn1crt.h
as a char.

Hence, for the following ASN.1 code:
MyNull : : = NULL

The following code is generated:
typedef NullType MyNull ;

#define MyNull_REQUIRED_BYTES_FOR_ENCODING 0

void M y N u l l _ I n i t i a l i z e ( MyNull∗ pVal ) ;
f l a g MyNu l l_ I sCons t ra in tVa l i d ( MyNull∗ val , i n t∗ pErrCode ) ;
f l a g MyNull_Encode ( MyNull∗ val , Bi tStream∗ pBitStrm ,

i n t∗ pErrCode , f l a g bCheckConstraints ) ;
f l a g MyNull_Decode ( MyNull∗ val , Bi tStream∗ pBitStrm , i n t∗ pErrCode ) ;
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10.2.6 Bit String

ASN.1 BIT STRINGs are mapped to C structs which have two fields:

1. a buffer that holds the bit stream and

2. an integer that holds the current number of bits in the bit stream.

For example, for the following ASN.1 code:
MyBit : : = BIT STRING ( SIZE ( 2 0 ) )

, the f o l l o w i n g C code is produced

\ begin { l s t l i s t i n g } [ language=c ]
typedef asn1SccSint MyInt ;
typedef s t r u c t {

long nCount ; /∗Number of b i t s in the ar ray . Max value is : 20 ∗ /
byte a r r [ 3 ] ;

} MyBit ;

# de f ine MyBit_REQUIRED_BYTES_FOR_ENCODING 3

# def ine ERR_MyBit 1001 /∗ ( SIZE ( 2 0 ) ) ∗ /

vo id M y B i t _ I n i t i a l i z e ( MyBit∗ pVal ) ;
f l a g MyB i t_ I sCons t ra in tVa l i d ( MyBit∗ val , i n t ∗ pErrCode ) ;
f l a g MyBit_Encode ( MyBit∗ val , Bi tStream∗ pBitStrm ,

i n t ∗ pErrCode , f l a g bCheckConstraints ) ;
f l a g MyBit_Decode ( MyBit∗ val , Bi tStream∗ pBitStrm , i n t ∗ pErrCode ) ;

Notice that in this example the size of the buffer is 3 bytes which is enough to hold 20 bits.

10.2.7 Octet String

ASN.1 OCTET STRINGs are handled like BIT STRINGs.
So, for the following ASN.1 code:

MyOct : : = OCTET STRING ( SIZE ( 4 ) )

The following code is produced:
typedef struct {

long nCount ;
byte a r r [ 4 ] ;

} MyOct ;

#define MyOct_REQUIRED_BYTES_FOR_ENCODING 4

#define ERR_MyOct 1000 /∗ ( SIZE ( 4 ) ) ∗ /

void M y O c t _ I n i t i a l i z e ( MyOct∗ pVal ) ;
f l a g MyOct_ IsConst ra in tVa l id ( MyOct∗ val , i n t∗ pErrCode ) ;
f l a g MyOct_Encode ( MyOct∗ val , Bi tStream∗ pBitStrm ,

i n t∗ pErrCode , f l a g bCheckConstraints ) ;
f l a g MyOct_Decode ( MyOct∗ val , Bi tStream∗ pBitStrm , i n t∗ pErrCode ) ;

10.2.8 IA5String and NumericString

ASN.1 IA5String(s) and NumericString(s) are mapped to C strings (i.e. an array of charac-
ters terminated with a NULL character). The size of the array is equal to MAX value in the string’s
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size constraint plus one character for the NULL character at the end.
For the following ASN.1 code:

MyStr ing : : = IA5St r ing ( SIZE ( 1 . . 1 0 ) ) (FROM( "A " . . " Z " | " abcde " ) )

The following C code is generated
typedef char MyStr ing [ 1 1 ] ;

#define MyString_REQUIRED_BYTES_FOR_ENCODING 7

#define ERR_MyString 1008 /∗ ( SIZE ( 1 . . 1 0 ) ) (FROM ( ( " A " . . " Z" | " abcde " ) ) ) ∗ /

void M y S t r i n g _ I n i t i a l i z e ( MyStr ing pVal ) ;
f l a g MySt r i ng_ IsCons t ra in tVa l i d ( MyStr ing val , i n t∗ pErrCode ) ;
f l a g MyString_Encode ( MyStr ing val , Bi tStream∗ pBitStrm ,

i n t∗ pErrCode , f l a g bCheckConstraints ) ;
f l a g MyString_Decode ( MyStr ing val , Bi tStream∗ pBitStrm , i n t∗ pErrCode ) ;

10.2.9 Sequence and Set

ASN.1 SEQUENCEs and SETs are mapped to C structs. The generated C struct has as fields
the fields of the SEQUENCE or SET. If the SEQUENCE (or SET) has optional fields then there an
additional field (called “exists”) for indicating the presence/absence of the optional fields.

For example, for the following ASN.1 SEQUENCE:
MyStruct2 : : = SEQUENCE {

a2 INTEGER ( 1 . . 1 0 ) ,
b2 REAL OPTIONAL,
c2 MyEnum OPTIONAL

}

The following code is generated:
typedef struct {

asn1SccSint a2 ;
double b2 ;
MyEnum c2 ;
struct {

unsigned i n t b2 : 1 ;
unsigned i n t c2 : 1 ;

} e x i s t ;
} MyStruct2 ;

#define MyStruct2_REQUIRED_BYTES_FOR_ENCODING 14

#define ERR_MyStruct2_a2 1013 /∗ ( 1 . . 1 0 ) ∗ /

void M y S t r u c t 2 _ I n i t i a l i z e ( MyStruct2∗ pVal ) ;
f l a g MySt ruc t2_ IsCons t ra in tVa l id ( MyStruct2∗ val , i n t∗ pErrCode ) ;
f l a g MyStruct2_Encode ( MyStruct2∗ val , Bi tStream∗ pBitStrm ,

i n t∗ pErrCode , f l a g bCheckConstraints ) ;
f l a g MyStruct2_Decode ( MyStruct2∗ val , Bi tStream∗ pBitStrm , i n t∗ pErrCode ) ;

To indicate the presence of b2, the programmer must write:
myStruct2 . e x i s t . b2 = 1;

With myStryct2 is a variable of type MyStruct2.
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10.2.10 Choice

ASN.1 CHOICEs are mapped to C structs which contain two fields

1. a C enum whose options are all possible CHOICE alternatives. Its purpose is to indicate
which CHOICE alternative is present.

2. a C union with all the CHOICE alternatives.

An example ASN.1 CHOICE follows:
MyChoice : : = CHOICE {

alpha MyStruct ,
beta MyStruct2 ,
o c t S t r OCTET STRING ( SIZE ( 4 ) )

}

And here is the code that is generated by asn1scc:
typedef struct {

enum {
MyChoice_NONE , /∗ No components present ∗ /
alpha_PRESENT ,
beta_PRESENT ,
octStr_PRESENT

} k ind ;
union {

MyStruct alpha ;
MyStruct2 beta ;
struct {

long nCount ;
byte a r r [ 4 ] ;

} o c t S t r ;
} u ;

} MyChoice ;

#define MyChoice_REQUIRED_BYTES_FOR_ENCODING 41

#define ERR_MyChoice 1014 /∗ ∗ /
#define ERR_MyChoice_octStr 1015 /∗ ( SIZE ( 4 ) ) ∗ /

void My Cho i c e_ I n i t i a l i ze ( MyChoice∗ pVal ) ;
f l a g MyChoice_IsConst ra in tVal id ( MyChoice∗ val , i n t∗ pErrCode ) ;
f l a g MyChoice_Encode ( MyChoice∗ val , Bi tStream∗ pBitStrm ,

i n t∗ pErrCode , f l a g bCheckConstraints ) ;
f l a g MyChoice_Decode ( MyChoice∗ val , Bi tStream∗ pBitStrm , i n t∗ pErrCode ) ;

10.2.11 Sequence of and Set of

ASN.1 SEQUENCE OFs and SET OFs are mapped to C structs that contain two fields:

1. a static C array for the inner type of the SEQUENCE OF

2. an integer field that indicates the number of elements in the SEQUENCE OF.

For example, the following ASN.1 code:
MySqOff : : = SEQUENCE ( SIZE ( 1 . . 2 0 | 2 5 ) ) OF MyStruct2

is translated into the following C code:
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typedef struct {
long nCount ;
MyStruct2 a r r [ 2 5 ] ;

} MySqOff ;

#define MySqOff_REQUIRED_BYTES_FOR_ENCODING 351

#define ERR_MySqOff 1014 /∗ ( SIZE ( ( 1 . . 2 0 | 2 5 ) ) ) ∗ /

void M y S q O f f _ I n i t i a l i z e ( MySqOff∗ pVal ) ;
f l a g MySqOf f_ IsConst ra in tVa l id ( MySqOff∗ val , i n t∗ pErrCode ) ;
f l a g MySqOff_Encode ( MySqOff∗ val , Bi tStream∗ pBitStrm ,

i n t∗ pErrCode , f l a g bCheckConstraints ) ;
f l a g MySqOff_Decode ( MySqOff∗ val , Bi tStream∗ pBitStrm , i n t∗ pErrCode ) ;

Here is another example where the inner type of the SEQUENCE OF is a composite type:
MySqOff2 : : = SEQUENCE ( SIZE ( 1 . . 2 0 | 2 5 ) ) OF SEQUENCE {

a2 INTEGER ( 1 . . 1 0 ) ,
b2 REAL OPTIONAL,
c2 MyEnum OPTIONAL

}

yielding the below generated code:
typedef struct {

long nCount ;
struct {

asn1SccSint a2 ;
double b2 ;
MyEnum c2 ;
struct {

unsigned i n t b2 : 1 ;
unsigned i n t c2 : 1 ;

} e x i s t ;
} a r r [ 2 5 ] ;

} MySqOff2 ;

#define MySqOff2_REQUIRED_BYTES_FOR_ENCODING 351

#define ERR_MySqOff2 1015 /∗ ( SIZE ( ( 1 . . 2 0 | 2 5 ) ) ) ∗ /
#define ERR_MySqOff2_elem_a2 1016 /∗ ( 1 . . 1 0 ) ∗ /

void My SqOf f2_ In i t i a l i ze ( MySqOff2∗ pVal ) ;
f l a g MySqOff2_IsConst ra in tVal id ( MySqOff2∗ val , i n t∗ pErrCode ) ;
f l a g MySqOff2_Encode ( MySqOff2∗ val , Bi tStream∗ pBitStrm ,

i n t∗ pErrCode , f l a g bCheckConstraints ) ;
f l a g MySqOff2_Decode ( MySqOff2∗ val , Bi tStream∗ pBitStrm , i n t∗ pErrCode ) ;

10.3 Using the generated code

Using the generated encoders and decoders is a simple procedure. To encode a PDU, the user
must:

1. declare a static buffer with the size calculated by asn1scc

2. declare local variable of type BitStream

3. call BitStream_Init() to link the buffer with BitStream variable and
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4. call the encode function.

10.3.1 Encoding example

Here is a code example for encoding an ASN.1 type MyTestPDU.
i n t main ( i n t argc , char∗ argv [ ] )
{

i n t errorCode ;
/ / 1 . Def ine a s t a t i c b u f f e r where uPER stram w i l l w r i t t e n
byte perBu f fe r [MyTestPDU_REQUIRED_BYTES_FOR_ENCODING ] ;

/ / 2 . Def ine a b i t stream v a r i a b l e
BitStream b i tS t rm ;

/ / 3 . Data to be encode ( assumed to be f i l l e d elsewhere )
MyTestPDU varPDU ;

/ / 4 . I n i t i a l i z e b i t s t rean
B i t S t r e a m _ I n i t (& b i tSt rm , perBuf fer , MyTestPDU_REQUIRED_BYTES_FOR_ENCODING ) ;

/ / 5 . Encode
i f ( ! MyTestPDU_Encode(&testPDU ,& bi tSt rm , &errorCode , TRUE) )
{

p r i n t f ( " Encode f a i l e d . E r ro r code i s %d \ n " , errorCode ) ;
return errorCode ;

}

/∗
The uPER encoded data are w i t h i n the perBu f fe r

va r iab le , wh i le the leng th o f the data can be
obta ined by c a l l i n g :

BitStream_GetLength (& b i tS t rm ) ;

∗ /

10.3.2 Decoding example

The process for decoding an ASN.1 message is similar. Here is a code example:
void DecodeMyTestPDU ( byte∗ data , i n t dataLen )
{

i n t errorCode ;
/ / 1 . Declare a b i t stream
BitStream b i tS t rm ;

/ / 2 . Declare the s t u c t where the decoded data w i l l be w r i t t e n
MyTestPDU decodePDU ;

/ / 3 . I n i t i a l i z e b i t stream
Bi tS t ream_At tachBuf fe r (& b i tSt rm , data , dataLen ) ;

/ / 4 . Decode data
i f ( ! MyTestPDU_Decode(&decodePDU , &bi tSt rm , &errorCode ) )
{

p r i n t f ( " Decoded f a i l e d . E r ro r code i s %d \ n " , errorCode ) ;

91



return errorCode ;
}
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Chapter 11

buildsupport - advanced features

11.0.3 Overview

The "buildsupport" component is one of TASTE’s most important low-level commands. Its invo-
cation is handled by various other components of the toolchain, such as tastegui and the main
orchestrator. Buildsupport has the following main capabilities:

1. Generate application skeletons in C, Ada, RTDS, ObjectGEODE, Simulink and SCADE (VHDL
code skeletons are generated by a different tool)

2. Generate glue code to make the link betweek user code (based on the generated skeletons)
and the underlying middleware/runtime layer, that is currently either PolyORB-HI/C or
PolyORB-HI/Ada.

3. Generate the so-called "concurrency view" of the system: based on the information from
the interface and deployment views, buildsupport determines the number of threads and
locks for shared resources necessary to fulfill the system constraints. The concurrency view
is generated in two different formats: one in pure AADL in order for Ocarina to generate
the runtime code of the system ; and one in the same format as the interface view (also in
AADL) for visualization in the TASTE-IV tool. The latter is useful for understanding how
the vertical transformation works in terms of threads and shared resources protection.

4. Perform a number of semantic checks on the interface and deployment views, to detect de-
sign errors as soon as possible.

5. Handle context parameters (also called "functional states") - see below.

6. Generate a script that contains all parameters that are required by the TASTE orchestrator to
build the complete system.

7. Handle interface to device drivers.

As a low-level command, in most cases buildsupport is not called directly by the end user.
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11.0.4 Command line

The command line of buildsupport is the following:
Usage : bu i l dsuppo r t <opt ions > o t h e r f i l e s
Where <opt ions > are :
−g , −−glue

Generate glue code

−w, −−gw
Generate code ske le tons

−v , −−onlycv
Only generate concurrency view ( no code )

−j , −−keep−case
Respect the case f o r i n t e r f a c e names

−o , −−output <outpu tD i r >
Root d i r e c t o r y f o r the output f i l e s

−i , −−i n t e r f a c e v i e w < i_v iew . aadl >
The i n t e r f a c e view in AADL

−c , −−deploymentview <d_view . aadl >
The deployment view in AADL

−d , −−dataview <dataview . aadl >
The data view in AADL

−t , −−t e s t
Generate debug in fo rma t i on

−s , −−stack <stack−value >
Set the s ize of the stack in kbytes ( d e f a u l t 100)

−v , −−vers ion
Disp lay bu i l dsuppo r t vers ion number

−p , −−polyorb−hi−c
I n t e r f a c e glue code wi th PolyORB−HI−C

−a , −−aadlv2
Use AADLv2 standard ( recommended )

o t h e r f i l e s : any other aadl f i l e needed to parse

For example , t h i s command w i l l generate your a p p l i c a t i o n ske le tons :

bu i l dsuppo r t − i I n te r faceV iew . aadl −d DataView . aadl −o code −−gw −−keep−case −−aadlv2

11.0.5 Generation of application skeletons

The generation of application skeletons can be done by invoking buildsupport manually. It re-
quires to have proper interface and data views in the textual AADL format.

However it is important to note that an interface view may contain references to several data
views. In effect, when a component is imported to an interface view, a reference to its data view
is stored in the AADL file of the interface view. In turn each data view may contain reference to
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several ASN.1 data models. The buildsupport component however only takes one dataview as
input, expecting it to be complete. In order to generate application skeletons in complex systems,
it is recommended not to invoke buildsupport directly but to use the higher-level "taste-generate-
skeleton" script, that first gather all dataviews together and automatically invokes the low-level
buildsupport command with appropriate parameters. This script only needs the interface view
(in AADL) to execute.

For example:
$ . / tas te−generate−ske le tons i n t e r f a c e v i e w . aadl code

Generat ing dataview and c a l l i n g bu i l dsuppo r t . . .
bu i l dsuppo r t − contac t : maxime . perrot in@esa . i n t or t ts iodras@semant ix . gr
Based on Ocarina : 2.0w ( Working Copy from r1849 )

Execut ing asn2dataModel . py −o code / / c a r _ c o n t r o l l e r / dataview −toRTDS code / / dataview−uniq . asn
Execut ing asn2dataModel . py −o code / / car_command / dataview −toAda code / / dataview−uniq . asn
Execut ing asn2dataModel . py −o code / / keyboard / dataview −toC code / / dataview−uniq . asn
Execut ing asn2dataModel . py −o code / / arduino_handler / dataview −toC code / / dataview−uniq . asn

"code" is the output directory, as requested by the user. It is created if it did not previously exist.
What is done is that the interface view is parsed to gather all dataviews, then the buildsupport
command is called. Buildsupport calls the asn2dataModel.py script to generate ASN.1 datatypes
in the subsystem languages, and generates code that is ready to be filled by the end user.

If we look at the directory tree that is generated by buildsupport, we find all the "ingredients"
to start the real job, which is to implement functional code (or model).
$ t ree code
code
|−− arduino_handler
| |−− arduino_handler . c
| |−− arduino_handler . h
| ‘−− dataview
| |−− asn1cr t . h
| ‘−− dataview−uniq . h
|−− bu i ld−s c r i p t . sh
|−− car_command
| |−− car_command . adb
| |−− car_command . ads
| ‘−− dataview
| |−− adaasn1r t l . ads
| ‘−− dataview . ads
|−− c a r _ c o n t r o l l e r
| |−− all_messages . t x t
| |−− a l l_processes . t x t
| |−− c a r _ c o n t r o l l e r
| |−− ca r_con t ro l l e r_p rocess . rdd
| |−− c a r _ c o n t r o l l e r _ p r o j e c t . rdp
| |−− dataview
| | ‘−− RTDSdataView . asn
| |−− p r o f i l e
| ‘−− scheduled . rdd
|−− dataview−uniq . asn
‘−− keyboard

|−− dataview
| |−− asn1cr t . h
| ‘−− dataview−uniq . h
|−− keyboard . c
‘−− keyboard . h
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Each subdirectory correspond to one subsystem. And each of them contain an additional
"dataview" folder that contains the native data types in each supported language, so that the end
user never needs to write any conversion code or even look at the ASN.1 model - with the sole
exception of SDL that natively supports ASN.1.

11.0.6 Generation of system glue code

Buildsupport is reponsible for making the link between user code (or code generated by a set
of supported modelling tools) and a runtime (operating system, midlleware). From the runtime
point of view, all messages that are exchanged between subsystems are "opaque" - they are char-
acterized by their size but not by their content. The runtime provides mechanisms (buffers, pro-
tocols...) to convey a set of messages of a given size from one user function to the other. In that
context it is the responsibility of the upper layers to format the message in a way that it can be un-
derstood by the receiver without any risk of loosing data: whatever the underlying layers or the
physical architecture of the network (if the system is distributed) the message must be understood
in the same way by both ends of the communication link. This is ensured by ASN.1 encoders and
decoders, which code is invoked by this glue layer generated by buildsupport.

The wrappers first intercept the runtime-dependent calls to execute a provided interface. They
receive a formatted (or encoded) message which they must decode before calling user code, as
shown below:
TBW
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Chapter 12

Orchestrator - advanced features

TBD: gcov, to check statement coverage of the generated binaries
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Chapter 13

TASTE daemon - advanced features

By default, the taste daemon waits for incoming connection on the port 1234. It can be modified
in the configuration file. In addition, to execute binaries on the LEON processor, it requires to
specify the path to the grmon utility (monitoring program for the execution of applications on
LEON boards).

13.1 Configuration file

The configuration file should be located in /etc/tasted.conf or in your home directory, under
the name .tasted. It defines the following configuration items :

• Path to grmon

• Default port to wait for incoming requests

There is an example of a valid configuration file :

<config>
<directive name="grmonpath" value="/path/to/grmon"/>
<directive name="port" value="5678"/>

Then, to execute the daemon, just run it as a single user.
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Chapter 14

TASTE GUI - advanced features

TASTE gui provides the following advanced features:

1. Coverage analysis of produced binaries.

2. Scheduling analysis with MAST.

3. Configure the build process with your own compilation/linking flags.

4. Change the default text editor for interface code edition.

5. Deploy applications with the TASTE daemon.

The following subsections detail each of these features.

14.1 Coverage analysis

TASTE gui provides the ability to execute code coverage analysis and let the user assess the cover-
age of generated application. It details, for each executed function, the time taken for its execution,
the number of times it has been executed, etc.

To perform coverage analysis, click on the "Profile system timing" button in the "Code Genera-
tion" menu (see 14.1). Then, it executes each binary during a fixed amount of time and display
a table that summarizes generated functions execution assessment. The picture 14.2 depicts an
example of such an analysis.

14.1.1 Restriction of the coverage analysis function

At this time, this function can only be used on a native platform, meaning that binaries has to run
on the computer that executes TASTE gui. This limitation is mainly due to deployment issues, it
would be removed as soon as possible.
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Figure 14.1: Code generation menu

Figure 14.2: Example of code coverage analysis

14.2 Memory analysis

TASTEGUI gives you the ability to analyze the memory consumption of each part of the system.
This feature is available from the code generation menu, as shown in the picture 14.3.

Then, the tool let you choose the process you want to analyze. To do so, a combobox let you
choose the generated application that will be processed (as shown in figure 14.4.

For each generated binary, it can report the memory related to each layer of the system or the
memory of each function executed by the system (cf. figure 14.5).

The different layers that can be analyzed are the following:

• Application layer: memory consumed by the user code (code contained in zip archive used
by the orchestrator).
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Figure 14.3: Code generation menu with memory analysis functionnality

Figure 14.4: Process selection for memory analysis

• Glue layer: memory consumed by the code generated by ASN.1 related tools and buildsup-
port.

• Middleware layer: memory related to AADL-generated code (code produced by Ocarina
and PolyORB-HI-C).

• Runtime O/S layer: memory from the underlying execution runtime, such as Linux or
RTEMS.

Once you choose which part of the generated application you want to analyze, the tool report
the functions of the chosen part with their size (in bytes). Figure 14.6 shows an example of the
analysis of the glue part of a generated system.

In addition, it can also detail the memory consumption related to each function. For that, when
you choose a process to analyze, it proposes to analyze the memory consumed by each function
located in that process. When you analyze the memory of a function, the tool separate the memory
related to glue used by the function (ASN.1 and buildsupport related code) and the user code and
detail each function and their associated size (in bytes). Figure 14.7 shows an example of the
memory analysis of a function.
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Figure 14.5: Memory analysis: choose part of the system to analyze or a specific function

Figure 14.6: Memory analysis: analysis of the glue part of a generated application

14.3 Scheduling analysis with MAST

TASTEGUI provides the ability to run scheduling analysis of the system using MAST. MAST pro-
vides several scheduling analysis algorithms so that users can assess the feasability of their system
before implement them.
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Figure 14.7: Memory analysis: analysis of a function

To assess application schedulability, click on the the "Launch MAST" button of the "Analysis
Workshop" menu (see picture 14.8). You also have to choose a type of analysis before running
MAST. Depending of the kind of analysis you’re using, the system may be schedulable or not. For
the description of each analysis, please refer to the MAST user manual (see section D for references
related to MAST).

Figure 14.8: The system analysis menu

Once scheduling analysis is completed, TASTEGUI launches MAST, which shows scheduling
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events and details for each processor. The figure 14.9 depicts an example of the execution of the
MAST tool.

Figure 14.9: Example scheduling analysis with MAST

14.3.1 Scheduling analysis restrictions

Depending on your system architecture and requirements, scheduling analysis would be feasible
or not. Sometimes, due to some restrictions on scheduling analysis techniques, MAST is not able
to be executed. In that case, TASTEGUI reports an error. For a complete description of scheduling
analysis kinds, features and restrictions, please refer to the MAST documentation (links to the
MAST website are provided in section D.

14.4 Change compilation/linking flags

When you’re writing the functional code of your system, you may require external libraries or
introduce conditional compilation (to enable some features or debugging informations). In that
case, you would change or add some flags used in the compilation process.

TASTEGUI gives you the ability to specify your own compilation and linking flags (also known
as the CFLAGS and LDFLAGS variable). To do so, go to the "Options" menu and choose the "Edit
compilation options" item. Then, a window let you edit the compilation and linking flags (picture
14.10 shows an example of this window). The first row "Additional compiler flags" corresponds to
the compilation options (the CFLAGS option) while the "Additional linker flags" corresponds to the
linking option (LDFLAGS).
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Figure 14.10: Edition of compilation and linking flags

14.5 Change the text editor for interface code modification

When editing the code of a function, TASTEGUI starts a text editor and provides the ability to edit
the code of each interface. Using this functionnality, users can write the functional code of the
system.

By default, TASTEGUI uses the nedit editor. However, some users prefer other text editors,
such as Vim, Emacs or Notepad.

For these users, TASTEGUI let you choose your own text editor. To change it, you must specify
the PATH to the text editor or the name of the command (in that case, it has to be in your PATH
environment) in the "Edit Programs" menu. You can access it through the menu Advanced/Edit
programs. When TASTEGUI executes the program, it executes it with all the files to edit as argu-
ments.

14.6 Execution of applications using the TASTE daemon

Once application are generated, you need to execute them. To ease the deployment and the ex-
ecution of generated applications, TASTE GUI can be interfaced with the TASTE daemon. This
will upload the generated binary to the TASTE daemon and print the output produced by the
application, taking the output sent back by the TASTE daemon.

To use this functionnality, you need to specify your deployment requirements using the Con-
figure button of the Code Generation part of the graphical interface. By pressing this button, a
dedicated window is opened to specify the deployment concerns for each binary, as showed in
figure 14.11. For each generated binary, you can specify:

• The system on which it is executed

• The host who is running the TASTE daemon (tasted) and the port to connect to. This ad-
dress/port will be used to send and so, execute the binary.

• In case of a binary executed on a LEON processor, you have to specify also the port to which
is connected the LEON on the tasted host. It is most of the time a serial port. Potential serial
ports are proposed (/dev/ttyS0, /dev/ttyUSB1, etc.).

• If you use gprof or gcov for timing or memory analysis. If these boxes are checked, the
TASTE daemon will gather information from gcov or gprof and send them back to TASTE
GUI for further analysis. Note that generated applications must be compiled with gprof/g-
cov support in order to be able to get relevant information from the execution.
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Figure 14.11: Configuration of system execution

Once all deployment informations are specified, the execution button can be used : TASTE
GUI will connect to the taste daemon and shows the output produced by the binary in a dedicated
window.
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Chapter 15

Ocarina - advanced features

15.1 Introduction

Ocarina is an application that can be used to analyze and build applications from AADL descrip-
tions. Because of its modular architecture, Ocarina can also be used to add AADL functions to
existing applications. Ocarina supports the AADL 1.0 [1] and AADLv2 [2] standards and pro-
poses the following features :

1. Parsing and pretty printing of AADL models;

2. Semantics checks;

3. Code generation, using one of the four code generators:

• ARAO-Ada, an Ada AADL runtime built on top of PolyORB;

• PolyORB-HI-Ada, a High-Integrity AADL runtime and its code generator built on top
of Ocarina that targets Ada targets: Native or bare board runtimes;

• PolyORB-HI-C, a High-Integrity AADL runtime and its code generator built on top of
Ocarina that targets C targets: POSIX and RT-POSIX systems, RTEMS;

• POK, a partioned operating system compliant with the ARINC653 standard.

4. Model checking using Petri nets;

5. Computation of Worst-Case Execution Time using the Bound-T tool from Tidorum Ltd.;

6. REAL, Requirement Enforcement and Analysis Language, an AADLv2 annex language to
evaluate properties and metrics of AADLv2 architectural models;

7. Scheduling analysis of AADL models, with a gateway to the Cheddar scheduling analysis
tool from the Université de Bretagne Occidentale.

In addition, Ocarina fully supports the “Data Modeling Annex” ([3]) and “Code Generation
Annex” ([4]) documents.
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15.2 Code generation workflow

The general philosophy of Ocarina code generators is that of a traditional compiler: from a com-
plete AADL model, Ocarina will map AADL constructs onto PolyORB-HI primitives, an abstrac-
tion layer on top of OS concurrency primitives and communication stacks. It provides the follow-
ing services:

• Tasking: handle tasks according to their requirements (period, deadline, etc.)

• Data: define types and locking primitives

• Communication: send/receive data on the local application and send them to the other
nodes of the distributed system.

• Device Drivers: interact with devices when a connection uses a specific bus.

The Taste toolchain uses only the PolyORB-HI runtimes provided by Ocarina. They share the
same design goal: support Ravenscar systems in an efficient and lightweight way. These mecha-
nisms are adapted to both the C and Ada variants to match actual features of these languages.

You may find more information in the “Ocarina User’s Guide”.

15.3 PolyORB-HI-C - advanced features

15.3.1 Introduction

PolyORB-HI-C is the minimal runtime that supports the execution of the generated code. It pro-
vides an interface between the code generated by Ocarina (which corresponds to the implementa-
tion of the concurrency view) and the operating system primitives (for thread creation/manage-
ment, protected data handling, device drivers, etc.).

The following section details executive runtime, operating systems, platforms and device drivers
supported by PolyORB-HI-C.

15.3.2 Supported Operating System/Runtime

PolyORB-HI-C supports the following operating systems with the following platforms:

• RTEMS executive for the SPARC/LEON2 architecture/BSP

• RTEMS executive for the SPARC/LEON3 architecture/BSP

• RTEMS executive for the i386 architecture

• RTEMS executive for the ARM architecture and the Nintendo DS BSP

• Linux operating system for the i386 architecture

• Linux operating system with embedded/real-time libraries (such as uClibc, dedicated ker-
nels, etc.). Supported for the i386 architecture.
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• Linux operating system for the ARM architecture and the MAEMO BSP.

Generally, all POSIX-compliant operating system is supported. To maximize the potential of
portability, PolyORB-HI-C uses the POSIX API to interface the generated code with the underlying
operating system. However, for the RTEMS executive, PolyORB-HI-C is able to be interfaced
directly with the RTEMS legacy API: it avoids the use of the POSIX layer and so, reduce the
memory footprint.

15.3.3 Supported drivers

The following drivers are supported for each kind of supported operating systems:

• Linux

– Serial driver: interface with the serial port.

– Ethernet driver: for sending data over an ethernet bus (ethX interface)

• RTEMS

– Spacewire driver for the LEON2/LEON3 platforms using the RASTA board.

– Serial driver for the LEON2/LEON3 platforms using the serial interface of the LEON
board.

– Serial driver for the LEON2/LEON3 platforms using the RASTA board.

– NE2000 driver for the i386 platform for sending/receiving data over an emulated RTEMS
system on top of QEMU.

Device drivers are specified in the Deployment View of TASTE models. The user captures
drivers configuration using the Configuration field in the driver properties. There is the list of
the configuration of each device driver:

• Ethernet driver for Linux and NE2000 driver for RTEMS: the configuration should be writ-
ten like that :

ip XXX.XXX.XXX.XXX NNN

Where XXX.XXX.XXX.XXX corresponds to the IP address associated to the interface and
NNN the port bound to the generated application (produced programs will listen on this port
for incoming requests/data).

• Serial driver for LEON2/LEON3 on RTEMS and serial driver for i386 on Linux and RTEMS:
the configuration should be written like this:

dev=accessed_device speed=baudrate

For example:
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– On RTEMS/LEON, a valid configuration that accesses the second serial port would be:

dev=/dev/console_b speed=34600

– On RTEMS/LEON with a RASTA board, a valid configuration that accesses the first
serial port of the RASTA rack would be:

dev=/dev/apburasta0 speed=19200

– On Linux/x86, a valid configuration that accesses the first serial COM port would be:

dev=/dev/ttyS0 speed=115200

Note that the RTEMS/LEON driver supports only a speed of 34600 bauds. Other specified
values will raise an error at run-time.

Also, when the speed of the driver is not specified, the driver automatically fallback to a
default speed, which is 34600.

• Spacewire for LEON2/LEON3 with RTEMS: the configuration is composed of one number
that corresponds to the node identifier of the device.

15.4 PolyORB-HI-Ada - advanced features

To support Taste requirement to generate code that is compatible with the Ravenscar paradigm,
PolyORB-HI-Ada relies on a set of Ada patterns that faithfully implement each concurrent con-
structs: sporadic, cyclic and protected.

Compliancy to the Ravenscar model is enforced at compile time by the Ada compiler that will
check that each restrictions defined by the “Ada 2005 Reference Manual” [5] and the “Guide for
the use of the Ada Ravenscar Profile in high integrity systems” [6].

You may find more information in the “PolyORB-HI-Ada User’s Guide”.
PolyORB-HI-Ada has been successfully tested on the following platforms:

1. Native systems: Windows, Linux, Solaris;

2. Bareboard systems: ORK+, GNAT Pro High-Integrity Edition;

3. Real-Time Operating Systems: RTEMS.

In addition, PolyORB-HI-Ada supports the following drivers:

1. Native systems: UART,BSD Sockets;

2. ORK+: SpaceWire and UART for the GR-RASTA board by Aeroflex Gaisler;
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15.5 Transformation from AADL to MAST

Ocarina provides the ability to generate MAST models from AADL descriptions. It is then used
by the MAST scheduling analysis tool to verify system schedulability. This section describes the
mapping rules that are used by Ocarina to transform AADL models into MAST models.

Users should also refer to the AADL standard and the MAST documentation to get information
about these two model formalisms to understand the mapping rules and their impact on model
semantics.

The name of each MAST entity is derived from the name of the AADL they are generated from.
Then, we used AADL properties to fill MAST entities requirements (period, execution time, etc.).
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AADL component AADL property MAST requirement MAST entity

Processor

Process_Swap_Execution_Time
(lower bound)

Worst_ISR_Switch

Processing_Resource
Process_Swap_Execution_Time
(upper bound)

Best_ISR_Switch

Priority_Range (lower
bound)

Min_Interrupt_Priority

Priority_Range (upper
bound)

Max_Interrupt_Priority

Thread

Associated Processor (via
process)

Server_Processing_Resource
Scheduling_Server

Priority The_Priority on sched pa-
rameters

Called subprograms Composite_Operation_List
Operation (enclosing)

Execution_Time (upper
bound)

Worst_Case_Execution_Time

Input Ports Output events
TransactionOutput Ports Output Events

Period (for Periodic Thread) Activation input event pe-
riod

Deadline (for Periodic
Thread)

Deadline for output event

Subprogram
Compute_Execution_Time
(upper bound)

Worst_Case_Execution_Time
Operation (simple)

Accessed data (in case of
data with subprogram ac-
cesses)

Shared_Resources_List

Bus
AADL devices that access
the bus

List_Of_Drivers

Processing_Resource
Transmission_Time (lower
bound)

Min_Packet_Transmission_Time

Transmission_Time (upper
bound)

Max_Packet_Transmission_Time

Allowed_Message_Size (up-
per bound)

Max_Packet_Size

Allowed_Message_Size
(lower bound)

Min_Packet_Size
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AADL component AADL property MAST requirement MAST entity

Device

Type = Packet_Driver Driver
Type = Simple Operation (for sending)
Type = Simple Operation (for receiving)

Processor bound to the de-
vice

Server_Processing_Resource Scheduling_Server

Data

Type=Msg_Transmission Operation
Source_Data_Size Max_Message_Size
Source_Data_Size Min_Message_Size
Source_Data_Size Avg_Message_Size

Data (protected)
Type=Imm_Ceiling Shared_Resource

Priority Ceiling

15.5.1 About protected data

In our context, an AADL protected data is a data with subprogram access or with the property
Concurrency_Control_Protocol set to Protected_Access, Priority_Ceiling_Protocol
or Priority_Ceiling.
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Appendix A

Abbreviations

• ASN1SCC: ASN.1 Space Certifiable Compiler

• ACG: Automatic Code Generation

• API: Application Programming Interface

• ASN.1: Abstract Syntax Notation one

• BER: Basic Encoding Rules

• CER: Canonical Encoding Rules

• DER: Distinguished Encoding Rules

• ECN: Encoding Control Notation

• ESA: European Space Agency

• ESTEC: European Space research and Technology Centre

• LSB: Least Significant Bit

• OER: Octet Encoding Rules

• PER: Packed Encoding Rules

• PDU: Protocol Data Unit

• PI: Provided Interface.

• RTOS: Real-Time Operating System.

• SER: Signalling specific Encoding Rules

• SW: Software

• XER: XML Encoding Rules

• XML: eXtended Markup Language
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Appendix B

TASTE technology and other approaches

B.1 PolyORB-HI-C/OSAL

PoilyORB-HI-C is the middleware used by TASTE to interface the generated code with the un-
derlying operating system. PolyORB-HI-C provides some wrappers in order to get access to OS
functions (tasking, data locking, etc.). In this manner, it is very similar to OSAL [7], a small mid-
dleware supported by NASA (see. http://opensource.gsfc.nasa.gov/projects/osal/
index.php).

B.1.1 Services and functionalities

PolyORB-HI-C OSAL
Tasking yes yes
Semaphore and Mutexes yes yes
Queues yes yes
Time yes yes
Memory Management no yes
Buffer Memory Pool no yes

For memory management (memory management and buffer memory pool), PolyORB-HI-C
does not provide any service: it assumes that the application does not use memory allocation
(mapping of Ravenscar requirements) and everything is declared as static in the code.

B.1.2 Supported O/S

PolyORB-HI-C OSAL
RTEMS yes yes
Linux yes yes
VxWorks no yes, partially
OS X yes yes, partially
ARTOS no yes, partially
ERCOS no yes, partially
Embedded linux yes unknown
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B.1.3 Configuration and set-up

OSAL provides a graphical interface to configure the system, choose the operating system which
it is interfaced and set up the maximum resources. This kind of graphical interface let the user to
configure the OSAL layer in a convenient way.

PolyORB-HI-C is configured using C macros. Thus, it does not provide any graphical inter-
face or user-friendly manner to be configured. On the other hand, the configuration can be done
through code generation from AADL models (which was the first purpose of PolyORB-HI-C: in-
terface AADL generated code with operating systems). On the other hand, writing a graphical
interface that generates PolyORB-HI-C would be easy, as it only requires to map user inputs into
C macros.

Finally, the configuration items between OSAL and PolyORB-HI-C are very similar and the
user can configure the same items: maximum resources (for example, bound the number of tasks/-
mutexes/semaphores), included services, etc. The main difference consists in the interface with
the user : OSAL provides an independent graphical interface while PolyORB-HI-C use C macros
and potentially AADL models and its generated code.
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Appendix C

More information

• ASSERT project: http://www.assert-project.net

• ASN.1 tutorial: http://www.obj-sys.com/asn1tutorial/asn1only.html.

• SEMANTIX website: http://www.semantix.gr/assert
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Appendix D

Useful programs

• Cheddar: http://beru.univ-brest.fr/~singhoff/cheddar/

• GNAT compiler: http://libre.adacore.com

• Gnatforleon: http://polaris.dit.upm.es/~ork/

• MAST: http://mast.unican.es/

• PuTTY: http://putty.very.rulez.org/download.html

• RTEMS: http://www.rtems.com

• SWIG: http://www.swig.org/

• WinSCP: http://winscp.net

• WxWidgets: http://www.wxwidgets.org/
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Appendix E

TASTE-specific AADL property set

property set Taste is
In te r face_Coord ina tes : aadlstr ing applies to ( subprogram access , bus access ) ;

Coordinates : aadlstr ing applies to
( system , package , device , memory , processor , process , access , subprogram access , connect ion , bus , v i r t u a l bus ) ;

Data_Transport : enumeration ( legacy , asn1 ) applies to ( device , abs t r ac t ) ;

Importance : enumeration ( low , medium , high ) applies to ( system , subprogram access , access ) ;

APLC_Binding : l i s t of reference ( process ) applies to ( process , device , system ) ;

APLC_Properties : record (APLC : aadlstr ing ; Coordinates : aadlstr ing ; Source_Language : Supported_Source_Language ; ) applies to ( process ) ;

ASN1_types : type enumeration
( asequenceof ,
asequence ,
aenumerated ,
aset ,
asetof ,
a in teger ,
aboolean ,
areal ,
achoice ,
a o c t e t s t r i n g ,
a s t r i n g ) ;

ASN1_Basic_Type : ASN1_types applies to ( data ) ;

FS_Default_Value : aadlstr ing applies to ( data ) ;

Deadl ine : i n h e r i t Time => Period
applies to ( thread ,

thread group ,
process ,
system ,
device ,
subprogram access ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Types and enumerations −−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Max_Pr ior i ty_Value : constant aadl integer => 28;
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−− Parametr ic example o f maximum p r i o r i t y

−− P r i o r i t y and I n t e r r u p t P r i o r i t y are cont iguous i n t e r v a l s

M i n _ I n t e r r u p t _ P r i o r i t y _ V a l u e : constant aadl integer => 29;
Max_ In te r rup t_Pr io r i t y_Va lue : constant aadl integer => 31;
−− Maximum and minimum i n t e r r u p t p r i o r i t y

−− Removed , these types have been def ined i n AADLv2 standard proper ty
−− set Thread_Propert ies

−− Pr io r i t y_Type : type aad l i n t ege r 0 . . value ( Max_Pr ior i ty_Value ) ;
−− −− We must de f ine a proper ty type to be able to re ference i t

−− P r i o r i t y : P r i o r i t y_Type app l ies to
−− ( thread ,
−− thread group ,
−− process ) ;

−− I n t e r r u p t _ P r i o r i t y : aad l i n t ege r
−− value ( M i n _ I n t e r r u p t _ P r i o r i t y _ V a l u e ) . . value
−− ( Max_ In te r rup t_Pr io r i t y_Va lue ) app l i es to
−− ( thread ,
−− thread group ,
−− process ) ;

C r i t i c a l i t y _ L e v e l _ T y p e : type enumeration (A, B, C, D, E ) ;
−− C r i t i c a l i t y l e v e l s

Transmission_Type : type enumeration
( simplex ,

ha l f_duplex ,
f u l l _ d u p l e x ) ;

−− Message t ransmiss ion k ind

Frequency : type aadlinteger 0 Hz . . Max_Aadl integer
units (
Hz ,
KHz => Hz ∗ 1000 ,
MHz => KHz ∗ 1000 ,
GHz => MHz ∗ 1000) ;

−− Frequency o f a processor

−−−−−−−−−−−−−−−
−− P a r t i t i o n −−
−−−−−−−−−−−−−−−

C r i t i c a l i t y : C r i t i c a l i t y _ L e v e l _ T y p e applies to ( process , system ) ;
Local_Schedul ing_Pol icy : Supported_Schedul ing_Protocols

applies to ( process , system ) ;
Time_Budget : aadlinteger applies to ( process , system ) ;
Budget_Replenishment_Period : Time applies to ( process , system ) ;
Storage_Budget : Size applies to ( process , system ) ;
−− XXX rep lace t h i s w i th Source_Code_Size ?

−−−−−−−−−−−−
−− RCM VM −−
−−−−−−−−−−−−

−− M i n _ P r i o r i t y : P r i o r i t y_Type app l ies to ( processor ) ;
−− Max_Pr io r i t y : P r i o r i t y_Type app l ies to ( processor ) ;
−− M i n _ I n t e r r u p t _ P r i o r i t y : P r i o r i t y_Type app l ies to ( processor ) ;
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−− M a x _ I n t e r r u p t _ P r i o r i t y : P r i o r i t y_Type app l ies to ( processor ) ;

−− To express the Global schedul ing po l i cy , we use the standard
−− proper ty Global_Scheduler_Pol icy o f type
−− Supported_Schedul ing_Protocols .

Longes t_Cr i t i ca l_Sec t i on : Time applies to ( processor ) ;

−− To descr ibe the c lock per iod we use the standard proper ty
−− Clock_Period o f standard type Time .

Per iod i c_C lock_ In te r rup t_Per iod : Time applies to ( processor ) ;
Per iodic_Clock_Handler : Time applies to ( processor ) ;
Demanded_Clock_Handler : Time applies to ( processor ) ;
I n te r rup t_Hand le r : Time applies to ( processor ) ;
E x t e r n a l _ I n t e r r u p t : Time applies to ( processor ) ;
Wakeup_Ji t ter : Time applies to ( processor ) ;
Ready : Time applies to ( processor ) ;
Se lec t : Time applies to ( processor ) ;
Context_Switch : Time applies to ( processor ) ;
S igna l : Time applies to ( processor ) ;
Suspension_Call : Time applies to ( processor ) ;
Wai t_Cal l : Time applies to ( processor ) ;
P r i o r i t y _ R a i s i n g : Time applies to ( processor ) ;
P r i o r i t y_Lower i ng : Time applies to ( processor ) ;
Ba r r i e r_Eva lua t i on : Time applies to ( processor ) ;
Budget_Replenishment_Overhead : Time applies to ( processor ) ;
Budget_Exhausted_Recovery_Call : Time applies to ( processor ) ;

−−−−−−−−−−−−−
−− Devices −−
−−−−−−−−−−−−−

−− Processor

Processor_Speed : Frequency applies to ( processor ) ;
−− XXX to be replaced wi th AADLv2 proper ty

−− I n t e r connec t i on

−− To express the message s ize bounds we use the standard proper ty
−− Allowed_Message_Size which i s a range of standard type Size .

−− To descr ibe the propagat ion delay and the t ransmiss ion t ime on a
−− bus , we use the standard p r o p e r t i e s Propagation_Delay and
−− Transmission_Time .

In terconnect ion_Speed_Factor : aadlreal applies to ( bus ) ;
Transmission_Kind : Transmission_Type applies to ( bus ) ;

Bandwidth : Data_Volume applies to (bus ) ;

−− Networking p ro toco l

−− Memory

Memory_Size : Size applies to (memory ) ;

Access_Time : Time applies to (memory ) ;
Access_Bandwidth : Data_Volume applies to ( bus ) ;

−−−−−−−−−−−−−−−−−−−−−−−−−−−
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−− Deployment Prope r t i es −−
−−−−−−−−−−−−−−−−−−−−−−−−−−−

−− To express the b ind ing o f an AP−Level con ta ine r to a processor , we
−− use the standard proper ty Actual_Processor_Binding .

−− To express the b ind ing o f a connect ion between a couple o f
−− ( provided , requ i red ) i n t e r f a c e s o f two AP−Level con ta ine rs to a
−− bus , a processor or a device , we use the standard proper ty
−− Actual_Connect ion_Binding .

−− To express the b ind ing o f an AP−l e v e l con ta ine r to a p a r t i c u l a r
−− memory , we use the standard proper ty Actual_Memory_Binding .

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Proper t i es r e l a t i v e to the RCM grammar −−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

RCMoperation : c l a s s i f i e r ( subprogram ) applies to ( event port , event data port ) ;

RCMoperat ionKind_l is t : type enumeration
( c y c l i c ,

sporadic ,
v a r i a t o r ,
protected ,
t ransac t i on ,
b a r r i e r ,
unprotected ,
deferred ,
immediate ,
any ) ;

RCMoperationKind : RCMoperat ionKind_l is t
applies to ( event port , event data port , access , subprogram access ) ;

RCMceil ing : aadlinteger
applies to ( event port , event data port ) ;

RCMperiod : Time applies to ( event port , event data port , access , subprogram access ) ;

RCMpart i t ion : reference ( system ) applies to ( system ) ;

dataview : l i s t of aadlstr ing applies to ( package ) ;

dataviewpath : l i s t of aadlstr ing applies to ( package ) ;

Encoding_type : type enumeration ( na t ive , uper , acn ) ;

Encoding : Encoding_type applies to ( parameter ) ;

Ada_Package_Name : aadlstr ing applies to ( data ) ;

i n te r faceV iew : aadlstr ing applies to ( package ) ;

WCET : Time applies to ( subprogram access ) ;

Instance_Name : aadlstr ing applies to ( system ) ;

Associated_Queue_Size : aadlinteger applies to ( subprogram ) ;

E n c o d i n g D e f i n i t i o n F i l e : c l a s s i f i e r ( data ) applies to ( data ) ;
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end Taste ;
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