49

A Task-Based Concurrency Scheme for Executing
Component-Based Applications

Francisco Sdnchez-Ledesma, Juan Pastor, Diego Alonso and Bdrbara Alvarez
Division of Systems and Electronic Engineering (DSIE). Universidad Politécnica de Cartagena, Campus Muralla del

Mar, E-30202, Spain; email: juanangel.pastor@upct.es

Abstract

This paper describes a flexible development approach
for component—based applications with real-time re-
quirements, which enables the performance of schedula-
bility analysis of the resulting application. The work de-
scribed in this paper is part of a more general approach,
and as such it focuses on the design of a concrete part
of the approach. Specifically, we describe a task-based
concurrency scheme for executing component-based ap-
plications, the deployment model that enables us to
configure the application execution as well as some
examples of the performance of schedulability analy-
sis of the resulting application. The aforementioned
deployment model provides the approach with great flex-
ibility, since it enables developers to generate and test
different deployments of the same architecture, without
modifying it, while at the same time it enables us, as
the designers of the approach, to have better control
over the resources and facilities required to execute the
application, which is mandatory in embedded systems.

1 Introduction

Real-time (RT) systems possess specific characteristics that
make them particularly sensitive to the architectural decisions
made in the course of their construction. Concurrency design,
task scheduling, distributed communication, etc. need to be
addressed as soon as possible. However, it is not always possi-
ble to test them in the early development stages. Particularly,
RT scheduling analysis cannot be performed until the final
code is nearly finished and the execution platform has been
selected. In case the application does not meet its timing
requirements, it can be necessary to re-implement it, thereby
increasing the development time and cost. Concurrent pro-
gramming concepts such as thread, mutex, message, etc. are
the common design units in RT systems, since they are also
the analysis units. Despite being suitable for performing tem-
poral analysis, they cannot be easily combined or composed
in order to build new applications, since usually thread code
and thread interaction are application specific.

Architectural software components [?] are self-contained
units that encapsulate their state and behaviour, that com-
municate by sending messages through their ports, and that
have only explicit context dependencies. They are normally

used as the building blocks to model the application architec-
ture, since the abstractions they provide are better suited for
this purpose than those provided by concurrency. However,
the design concepts that make components very suitable for
application construction and code reuse, hinder the perfor-
mance of schedulability analysis, since there is not a clear
mapping between those concepts (i.e. port, interface, service,
etc.) and concurrency concepts (i.e. thread, mutex, message,
etc.). Typical examples of such mappings are:

e Component models that directly translate components
into processes and that use a middleware for message ex-
change among them. These models provide developers
with great flexibility at design time, but penalizes system
performance because of the overhead introduced by the
middleware. Schedulability analysis is hard to perform,
since the developer must know both the threads that are
created inside each process (component) and used by the
middleware, as well as their timing properties.

e Component models where components are purely pas-
sive entities that are invoked sequentially by a single-
threaded run-time suffer from “scant concurrency”, since
the application is normally executed by a cyclic execu-
tive. Despite being absolutely predictable they are very
fragile in the sense that if the system needs to be mod-
ified, a task that before would fit in the slot, may now
exceed it [1].

On the other hand, current object-oriented languages and
frameworks provide mechanisms and libraries to flexibly
manage concurrency in applications, like java.util.concurrent,
std::async in C+ 11, or android.os.AsyncTask. In these models,
the programmer enqueues the code he wants to be executed,
while a pool of worker threads is in charge of dequeuing and
executing them concurrently, returning the computed values
by means of future objects. This is a very powerful, expres-
sive, flexible, and easy to use model for concurrent execution.
But this model has two main drawbacks from our point of
view: it has a lower abstraction level for system modelling
than architectural components, and its behaviour is not pre-
dictable, because worker threads dequeue and execute the
activities as soon as there is one available activity and one
idle thread. Therefore, it cannot be directly used in RT sys-
tems, but instead it must be slightly modified in order to make
it more predictable.

The work described in this paper is part of a more general
approach, entitled C-Forge [2], where programmers model

Ada User Journal

Volume 36, Number 1, March 2015



50 A Task-Based Concurrency Scheme for Executing Component-Based Applications

applications using architectural components whose behaviour
is defined by means of state-machines with orthogonal re-
gions. An object-oriented framework, FraCC [3,4], provides
the execution environment for the resulting application. The
execution model is based on a modification of the task model
just mentioned, so that schedulability analysis can be per-
formed. In addition, FraCC provides a deployment facility
that separates application architecture from its deployment
in nodes, processes and threads. This separation allows de-
velopers to generate and test different deployments of the
same architecture, without modifying it, while at the same
time it enables us to have better control over the resources
required to execute the application. Given the differences
existing between the concepts of each domain (components
and concurrency), C-Forge uses the Model-Driven Software
Development paradigm [5] and its associated technologies
to support the whole process. An example of the usage of
C-Forge applied to underwater vehicles and the results of the
schedulability analysis is described in [6].

This paper describes the task-based concurrency scheme we
have developed for executing component-based applications,
the deployment model that enables us to configure the applica-
tion execution as well as some examples of the performance
of schedulability analysis of the resulting application. The
rest of the paper is organized as follows. Section 2 compares
the described approach with other similar approaches. Sec-
tion 3 briefly describes the task-based concurrency scheme
and its main properties. Section 4 illustrates the flexibility of
the approach by defining and testing some examples, while
section 5 outlines the conclusions and future research lines.

2 Related work

Given the number of available component models [7], we
will focus the rest of the discussion on those aimed to design
software for RT systems, their concurrency capabilities and
schedulability analysis.

ProCom [8] is the successor of SaveCCM. ProCom is inte-
grated in an MDSD toolchain, which provides C+ source code
generator and analysis capabilities, like worst-case execution
time. ProCom defines two layers: the upper and the lower
layer. The former allows developers to define large-grained
components, i.e. subsystems, which are active and which
communicate using message passing. The latter consists of
basic functional components, which are interconnected in-
side subsystem, and which are passive and only activated by
some external entity. Thus, components are active or passive
depending on their size, but smaller components are always
passive, independently of their complexity. In C-Forge, all
components are active, but this does not mean that they re-
quire their own thread.

The Architecture Analysis & Design Language (AADL) [9]
focuses on the modelling and analysis of the application archi-
tecture, both on the software and hardware platform. AADL
defines components as the kind of elements that can be used
to compose the software and the hardware. AADL does not
support the notion of software component, as stated in the
introduction, or changing the concurrency of the application,

though it does support many analysis types, including schedu-
lability analysis. There are several generators of Ada/C/C~
source code for implementing the application.

RUBUS [10] is a component model for RT systems that sup-
ports expressing timing requirements and properties on the
architectural level, so that they can be later analysed. It pro-
vides schedulability analysis, distributed end-to-end response
times, and overall stack analyse of the shared stacks, among
others. It does not however model component behaviour, but
it is added by the programmer. The execution semantics of
software components (implemented as functions) is started
based on an input-trigger, then read data on data in-ports, then
execute the function, afterwards write data on out-ports, and
finally activate the output trigger that will turn on the next
connected components. RUBUS does not support concurrent
execution.

The CHESS project [11] developed a MDSD toolchain for
cross-domain modelling of RT embedded systems, that allo-
cates distinct concerns to distinct views. It has been defined
as a UML profile, including tailored MARTE profile and
others OMG standards. Component behaviour can be de-
fined with state-machines, other standard UML diagrams, as
well as the Action Language for Foundational UML (ALF,
http://www.omg.org/spec/ALF/). The Deployment view mod-
els the target execution platform, and software to hardware
components allocations. The Analysis view supports Fail-
ure Mode Effects & Criticality (FMECA), Failure Mode
and Effect Analysis (FMEA), Fault Tree Analysis (FTA),
as well as schedulability analysis. CHESS also has generator
to Ada/C/C+ /Java source code. Among the reviewed compo-
nent models, CHESS is perhaps the most similar approach to
C-Forge. C-Forge focus on a single way to model component
behaviour and manage concurrency, which makes it easier to
generate and compose code.

The Real-time Container Component Model (RT-CCM) [12]
proposes a methodology for the design of component-based
applications with hard real-time requirements. RT-CCM is
a aimed at making the timing behaviour of applications pre-
dictable, and is inspired in the Lightweight CCM specification
with some extensions. The added mechanisms also enable
the application designer to configure this scheduling without
interfering with the opacity typically required in component
management. From the analysis of this model the application
designer obtains the configuration values that must be applied
to the component instances and the elements of the framework
in order to make the application fulfil its timing requirements.
However, RT-CCM considers components as black-boxes,
while our proposal considers them as white-boxes, with their
behaviour modelled by means of state-machines.

Summarizing, our approach revolves around the following
reasons. Firstly, it is mandatory that the number of threads
that execute the application, as well as their timing proper-
ties (mainly, computational load and period), are known in
order to be able to perform a schedulability analysis. Sec-
ondly, in order to maintain the coherence between the design
model (i.e., the components that define the application ar-
chitecture) and the concurrency model, this data must be

Volume 36, Number 1, March 2015

Ada User Journal



F. Sanchez-Ledesma, J. Pastor, D. Alonso and B. Alvarez 51

somehow present in the former, so that the latter can be par-
tially derived from it, and then completed by the developer if
needed. These two reasons imply that component models that
are purely structural, that is, that only provide primitives for
defining the external component shell and its ports, cannot
be used for this purpose. There are two viable alternatives to
overcome this limitation: (i) to enhance a purely structural
component model with the meta—data required to partially
derive concurrency characteristics, or (ii) to enable the de-
veloper to define component behaviour together with timing
requirements. The most important drawback of the first ap-
proach is that it is very difficult to assert that the component
implementation is coherent with the meta—data that describes
its concurrency characteristics and timing properties. We
decided to follow the second approach.

3 Task-based concurrency scheme

As said in the introduction, he work described in this paper
is part of a more general approach [2], where programmers
model applications using architectural components whose be-
haviour is defined by means of state-machines with orthogo-
nal regions. State-machines do not only model the lifecycle of
components, but also enable modelling how components react
to messages it receives from other components, to the results
of internal computations, as well as to the passage of time.
Communication among components only takes place through
their ports, and is message-based, asynchronous without re-
sponse. This mechanism does not only makes it possible to
implement any other communication scheme as required, but
also decouples component communication, since it does not
allow blocking calls. As a good consequence, synchroniza-
tion and message dependencies must be explicitly modelled
in state-machines, which facilitates reviewing and reasoning
about the component behaviour.

Regions constitute a very appropriate link between the archi-
tecture and concurrency domains. On the component domain,
a region defines a part of the whole component behaviour,
while on the concurrency domain, a region is assigned to
the thread that will execute it. On the component domain,
the states contained in a region have been enriched with
properties that allow developers to define their timing con-
straints (mainly execution time, and period or inter-arrival
time), while on the concurrency domain the thread’s timing
properties are derived from those of the states contained in the
regions assigned to it. Regions represent computational units
of work, since they contain the activities that encapsulate the
code that must be executed by the component depending on
its internal state. Though a region can contain many activities,
only the activity associated to the active state can be executed.

The concurrency model we have developed in order to orga-
nize and control region execution in threads is based on a
modification of the task-based scheme used in systems like
Jjava.util.concurrent, std::async in C+ 11, Grand Central Dis-
patch in i0S, or android.os.AsyncTask, to mention a few. In
this model, the main thread enqueues the activities it wants to
be asynchronously performed, while a pool of worker threads
is in charge of dequeuing and executing them concurrently,

returning the computed values by means of future objects.
This is a very powerful, expressive, flexible, and easy to use
model for concurrent execution, but its behaviour is not pre-
dictable, because worker threads dequeue and execute the
activities as soon as there is one available activity and one
idle thread. As such, it cannot be directly used in RT systems,
but instead it must be slightly modified in order to make it
more predictable:

e Make the computational load of worker threads static,
decided by the user at development time instead of by
the system at execution time.

e Convert the main thread into a “normal”, worker thread,
since there is not such a thing as “a main component” in
C-Forge.

o Let the developer decide how many (worker) threads
execute the application.

e Create a cyclic executive inside each thread in order to
schedule region execution.

The proposed task-based concurrency scheme for executing
component-based applications start by characterizing states.
States that contain one activity also define its period, deadline,
worst case execution time, and activation pattern (periodic
or sporadic): St; = (Tt .,, WCET},,); data that is obtained
from the application requirements. We assume that period
equals deadline, and that period also model the minimum
inter-arrival time in the case of sporadic activities. Starting
from this data it is possible to calculate the timing properties
of the regions of all components by applying equations 1 and
2. This is a pessimistic estimation, since we assume the region
will be always executing the activity with the largest execution
time, but it is needed in order to perform the schedulability
analysis.

1., = gcd(Toe € R') ¢
WCET},, = max(WCET, € R') @

On the other hand, the application can be executed in a set of
nodes, which represent computational units. They contain a
finite set of processes, which represent the unit of resource
management. Processes contain a finite set of threads, which
represent the unit of concurrent execution. Components are
assigned to processes and the regions of a given component
can be assigned to any of the threads of the process that
contains such component. This is a flexible scheme, which
enables threads to execute regions contained in different com-
ponents, but which does not force to assign all the regions of
a component to the same thread.

Threads can be characterized by their period and their worst
case execution time: Th* = (T}, , WCET}, ), which can be
derived from the assigned regions by applying equations 3
and 4.

T}, = gcd(Tyeqy € Th') (3)
WCET}, = > (WCET},, € Th') “4)

Ada User Journal

Volume 36, Number 1, March 2015



52 A Task-Based Concurrency Scheme for Executing Component-Based Applications

A cyclic executive scheduler is created inside each thread in
order to control the execution of the regions assigned to it.
Given that the assignment of regions to threads is static and
is made at design time, it is possible to automatically calcu-
late the parameters needed by the cyclic executive, primary
cycle (H) and secondary cycle (T%), and build the execution
table from such assignment. The primary cycle (H) can be
calculated by means of equation 5, while the secondary cy-
cle coincides with the thread period, calculated by means of
equation 3.

H' = lem(Tyeqy € Th') &)

It should be highlighted that FraCC does not give any guid-
ance as to the number of threads that have to be created or
how regions should be assigned to them, but rather it provides
the necessary mechanisms to enable developers to choose the
appropriate heuristic methods, like the ones defined in [13],
for instance. Both the number of threads as well as the allo-
cation of regions to them can be done arbitrary, but the main
objective should be to “ensure application schedulability”.
Two heuristics we normally use are to assign to the same
thread regions that have similar periods, or that have states
which activities communicate with each other.

3.1 Schedulability Analysis

A deployment model in C-Forge enables developers to set the
application distribution in computational nodes, as well as
the number of processes and threads in which the application
will be run, as described previously. This organization makes
it possible to perform schedulability analysis of a given ap-
plication deployment. The deployment model provides great
flexibility, since it does not impose a fixed relationship be-
tween component and processes/threads, but rather allows
developers to define it, within certain limits. It also enables
us to better control the resources and facilities needed by the
platform in order to execute the application, and use only the
necessary ones, as well as the performance of RT schedulabil-
ity analysis. For instance, if all the application components
run in the same node, no middleware is really needed, and
thus lighter mechanisms, like shared memory, can be used
instead for message exchange.

Cheddar [14] is a RT scheduling tool, designed for checking
task temporal constraints of a RT system. In order to perform
the schedulability analysis, Cheddar requires the number of
tasks, their timing properties (mainly wcet and period) and
the number of shared resources of the application. Threads of
the deployment model are directly transformed into Cheddar
tasks, but shared resources must be derived from the deploy-
ment model, according to the buffer structures implemented
in FraCC, as described in [3]. It must be highlighted that
shared resources do not use synchronization primitives, only
mutual exclusion, due to the fact that communication among
components is only asynchronous. This makes it possible to
bound blocking times.

According to the memory structure, only the buffers are can-
didates to be structures shared among threads. Among the

Table 1: Regions’ calculated timing properties

Region | Period (ms) | WCET (ms)
R1 10 0.5
R2 20 1
R3 2 0.5
R4 40 0.8
R5 20 1
R6 2 1

generated buffers, only those that hold messages sent or pro-
cessed by activities contained in regions assigned to different
threads need to be protected from concurrent access. Buffers
that hold messages produced or consumed by activities con-
tained in regions assigned to the same thread need not be
protected, since they will be accessed sequentially by activi-
ties. These shared buffers use the immediate ceiling priority
protocol. It must also be noted that there is only one active
state per region, and thus only one activity per region will ac-
cess these buffers. All the needed information can be derived
from the architectural and deployment models.

In case the schedulability analysis concludes that the appli-
cation is not schedulable, the developer can first generate
new deployment models, mainly by changing the number
of threads and the assignment of regions to threads. If the
applications continues to be not schedulable, he/she has to
start modifying the architecture, mainly by changing the algo-
rithms used in the activities to faster ones, or by relaxing the
timing constraints of the states. The last option if none of the
previous generates a schedulable application is to change the
components themselves, and thus the application architecture.

4 Sample Application

In order to illustrate the system and execution models de-
scribed in the previous section, as well as the schedulability
analysis, the sample application shown in figure 1 will be
used. As can be seen, it comprises three components and
six regions, which timing properties are also depicted in the
figure. We assume that the application will run in one node
and one process.

4.0.1 Region characterization.

The timing properties of the regions are derived from their
activities by applying equations 1 and 2 as shown in Table 1.

4.0.2 Region to threads assignment.

Regions can be assigned to threads in an arbitrary way. A
possible thread scheme considers four threads to execute the
application, with the following assignment: Thl = {R2},
Th2 = {R1,R4,R5}, Th3 = {R3}, and Th4 = {R6}.
The following subsection will present some deployment ex-
amples in which we change this assignment and the results of
the Cheddar analysis.

Volume 36, Number 1, March 2015

Ada User Journal



F. Sdnchez-Ledesma, J. Pastor, D. Alonso and B.

Alvarez 53

<<component>> El
K3
<<component>> a - N
K2 R6
V- N
R5 @ ‘ ( St9 St10
) St7 < Sts NS @1H) (20,0.4,ML)
(20,1,HL) (40,0.5,ML) L Y,
> X
R4 <<component>> g]
St6 K1
V- N
o g
(40,0.8,HL) Stl < —| St2
>R3 < (10,0.5,HL) J———=>{_(20,0.4,ML)
St5 € > <
o— @ R2 )
(2,0.5,LL) St3 < —| St4
b = (20,1,ML) J——=>{ (40,0.5,ML)
A A

Figure 1: Sample application architecture with timing properties.

Table 2: Threads’ calculated timing properties

Thread Region/s Period (ms) | WCET (ms) | Priority
Thi R2 20 1 4
Th2 R1, R4, RS 10 2.3 3
Th3 R3 2 0.5 2
Th4 R6 2 1 1

4.0.3 Threads characterization.

Given this assignment, the timing properties of the thread
can be calculated by applying equations 3 and 4, as shown in
Table 2. The rate monotonic algorithm is used to calculate the
concrete priority level. The lower the priority number (Pr),
the higher the thread priority.

4.0.4  Scheduling regions inside threads.

Threads Th1l,Th3, and Th4 do not need to schedule the
regions inside them because they only have one region each,
but thread T'h2 does need to schedule regions R1, R4, and R5.
To schedule these regions we need to calculate the primary
and secondary cycles, as well as to build the scheduling table.
Primary cycle is calculated by applying equation 3: Hy =
lem(Tr1,Tra, Trs) = lem(10ms, 40ms, 20ms) = 40ms,
while the secondary cycle coincides with the thread period,
Tso = 10ms. Thus, the scheduling table will have four
secondary cycles of 10ms each:

t =0ms  Executes R1, R4 and R5
t =10ms Executes R1

t = 20ms Executes R1 and R5

t = 30ms Executes R1

4.1 Deployment Examples

Table 3 shows the results of the Cheddar analysis for the sam-
ple deployments we describe below. The default deployment
model created by the tool, deployment 1, defines one node
with a single process hosting just one thread. All components
are assigned to this process, while all regions of the com-
ponents are assigned to such thread. Given the periods and
worst execution times of the components regions, it is clear

that the application resulting from the default deployment is
not schedulable.

In deployment 2 the developer has defined three threads, one
for executing each component. At a glance, it is possible
to determine that the application is again not schedulable.
Note that the period of thread 3 is lesser than its WCET. The
developer can change the regions assignment, as it is shown
in deployment 3, in order to reduce the WCET of thread 3.
This new deployment is now schedulable. Deployment 4
shows the case where all the components’ regions have been
assigned to different threads, resulting, for this example, in
the best of the four deployments from the point of view of
processor usage.

5 Conclusions

This paper describes a flexible development approach for
component-based applications with real-time requirements,
which provides developers with enough control over the con-
currency characteristics of the application execution so that
schedulability analysis can be performed. These objectives
have been achieved by means of (i) defining a component
model that includes structure and behaviour; (ii) establish-
ing a clear separation between these concerns, decoupling
the structural elements from the behavioural and the algo-
rithmic ones; (iii) defining a clear and consistent association
between the elements of the system and execution models
through a deployment model. The approach is supported by a
model-driven toolchain developed in Eclipse (C-Forge).

The explicit modelling of component behaviour by means of
state-machines with orthogonal regions offers several advan-
tages, namely it enables developers to describe the temporal
requirements at the architectural level; orthogonal regions
explicitly reflect the concurrent nature of the component be-
haviour; regions have proven to be an excellent way to link
the architecture and concurrency domains, since on the com-
ponent domain regions define a part of the whole component
behaviour, while on the concurrency domain they define the
unit of computational work assigned to a thread. The concur-
rency scheme we developed in order to organize and control

Ada User Journal

Volume 36, Number 1, March 2015



54

A Task-Based Concurrency Scheme for Executing Component-Based Applications

Table 3: Summary of the four considered deployments and the results of the Cheddar schedulability analysis

Deployment 1 (T, WCET)

Deployment 2

Deployment 3

Deployment 4

Threadl (T=2, WCET=4.8)
Regl (10, 0.5)
Reg2 (20, 1.0)
Reg3 (2, 0,5)
Reg4 (40, 0.8)
Reg5 (20, 1.0)
Reg6 (2, 1.0)

Threadl (T=10, WCET=1.5)
Regl (10, ©.5)
Reg2 (20, 1.0)

Thread2 (T=2, WCET=1)
Reg6 (2, 1.0)

Thread3 (T=2, WCET=2.3)
Reg3 (2, 0,5)
Reg4 (40, 0.8)
Reg5 (20, 1.0)

Threadl (T=10, WCET=1.5)
Regl (10, ©.5)
Reg2 (20, 1.0)

Thread2 (T=20, WCET=1.8)
Reg4 (40, 0.8)
Reg5 (20, 1.0)

Thread3 (T=2, WCET=1.5)
Reg3 (2, 0,5)
Reg6 (2, 1.90)

Threadl (T=10, WCET=0.5)
Regl (10, ©.5)
Thread2 (T=20, WCET=1.0)
Reg2 (20, 1.0)
Thread3 (T=2, WCET=0.5)
Reg3 (2, 0,5)
Thread4 (T=40, WCET=0.8)
Regd (40, ©.8)
Thread5 (T=20, WCET=1.0)
Reg5 (20, 1.0)
Threadé (T=2, WCET=1.0)
Reg6 (2, 1.0)

Cheddar analysis results:

Feasibility test based on the

processor utilization factor:

- Processor utilization factor
with deadline is 2.4

- In the pre-emptive case, with
RM, cannot prove that the
task set is schedulable:
processor utilization factor is
more than 1.0

Feasibility test based on worst
case task response time:
Processor utilization

Cheddar analysis results:

Feasibility test based on the

processor utilization factor:

- Processor utilization factor
with deadline is 1.52

- In the pre-emptive case, with
RM, cannot prove that the
task set is schedulable:
processor utilization factor is
more than 1.0

Feasibility test based on worst
case task response time:
Processor utilization

Cheddar analysis results:

Feasibility test based on the

processor utilization factor:

- Processor utilization factor
with period is 0.99

- 200 us are unused in the base
period.

- In the pre-emptive case, with
RM, the task set is
schedulable.

Feasibility test based on worst
case task response time:
Bound task response time:

Cheddar analysis results:

Feasibility test based on the

processor utilization factor:

- Processor utilization factor
with period is 0.92

- 3200 us are unused in the
base period.

- In the pre-emptive case, with
RM, the task set is
schedulable.

Feasibility test based on worst
case task response time:
Bound task response time:

exceeded: cannot compute
bound on the response time
with this task set.

exceeded: cannot compute
bound on the response time
with this task set.

Thread2 = 19800 us Thread4 = 15800 us

Threadl = 6000 us Thread2 = 10000 us
Thread3 = 1500 us Thread5 = 6000 us
Threadl = 2000 us

Thread3 => 1500 us
Thread6 = 1000 us

region execution in threads revolves around a modification of
the thread-pool design, where regions are the units of work;
developers define at design time both the number of threads
that execute the application, as well as their computational
load, by assigning the regions they will execute; and a cyclic
executive inside each threads manages region execution. The
regularity of this scheme enables the performance of schedu-
lability analysis, and thus its use in applications with timing
requirements.

The deployment model has also proven to be essential in
the approach, since it separates application architecture from
its deployment in terms of nodes, processes and threads, en-
abling the separation of roles in the development team, as
well as the rapid testing of different deployment scenarios.
This model also enables us to determine the computational
resources required by the application, as well as to estimate
memory consumption, which is very important in embedded
systems. Unlike other reviewed component models, C-Forge
does not enforce a rigid association between components and
processes/threads, but it can be easily configured thanks to
the deployment model. It also means that C-Forge compo-
nents are not forced to use a communication software for
message exchange in all scenarios, but only on those where
the application is distributed in more than one node.

Regarding future works, we are currently enhancing the de-
ployment model for supporting multi-core systems, and end-
to-end transactions specification, as well as automatically gen-
erating and testing different deployments, in order to find an
optimum one. We are also interested in generating a less pes-
simistic analysis file, since we now assume that components

are always executing the states with the longest computation,
which cannot be possible in some cases. A more exhaustive
analysis of the state-machines will enable us to make less
pessimistic analysis.

References

[1] M. Ben-Ari (2006), Principles of Concurrent and Dis-
tributed Programming, Addison-Wesley.

[2] D. Alonso, F. Sanchez-Ledesma, P. Sanchez, J. A. Pas-
tor, and B. Alvarez (2014), Models and frameworks: a
synergistic association for developing component-based
applications, The Scientific World Journal, pp. 1-17.

[3] D. Alonso, F. Sanchez-Ledesma, P. Sinchez and B. Al-
varez (2014), Embedded and Real Time System Devel-
opment: A Software Engineering Perspective, A flexi-
ble framework for Component based Application with
Real-Time Requirements and its Supporting Execution
Framework, pp. 3-22, Springer-Verlag.

[4] J. A. Pastor, D. Alonso, P. Sanchez and B. Alvarez.,
Towards the definition of a pattern sequence for real-
time applications using a model-driven engineering ap-
proach, The Scientific World Journal, pp. 1-17.

[5] J. Bezivin (2005), On the unification power of models,
Journal of Systems and Software, pp. 171-188.

[6] F. J. Ortiz, C. Insaurralde, D. Alonso, F. Sanchez and
Y. Petillot (2014), Model-driven analysis and design
for software development of autonomous underwater
vehicles, Robotica, pp. 1-20.

Volume 36, Number 1, March 2015

Ada User Journal



F. Sanchez-Ledesma, J. Pastor, D. Alonso and B. Alvarez

(7]

(8]

[9

—

[10]

I. Crnkovic, S. Sentilles, A. Vulgarakis and M. R. V.
Chaudron (2011), A classification framework for soft-
ware component models, IEEE Trans. Software Eng.,
pp- 37(5):593-615.

A. Vulgarakis, J. Suryadevara, J. Carlson, C. Seceleanu
and P. Pettersson (2009), Formal semantics of the pro-
com real-time component model, Proc. of the 35th Eu-
romicro Conference on Software Engineering and Ad-
vanced Applications, pp. 478-485, IEEE.

P. Feiler and D. Gluch (2012), Model-Based Engineer-
ing with AADL: An Introduction to the SAE Architecture
Analysis & Design Languages, Addison Wesley Profes-
sional.

K. Hanninen et al (2008), The rubus component model
for resource constrained real-time, International Sym-
posium on Industrial Embedded Systems, pp. 177183,
1EEE.

(11]

[12]

[13]

(14]

55

A. Cicchetti et al (2012), Chess: a model-driven engi-
neering tool environment for aiding the development
of complex industrial systems, in Proc. of the 27"
IEEE/ACM International Conference on Automated
Software Engineering, pp. 362-365, ACM Press.

Patricia Lépez Martinez, L. Barros and J. M. Drake
(2013), Design of component-based real-time applica-
tions, Journal of Systems and Software, pp. 86(2):449—
467.

P. Feiler and D. Gluch (2000), Designing Concurrent,
Distributed, and Real-Time Applications with UML, Ob-
ject Technology, Addison-Wesley.

F. Singhoff, A. Plantec, P. Dissaux and J. Legrand
(2009), Investigating the usability of real-time schedul-
ing theory with the cheddar project, Journal of Real
Time Systems, pp. 43(3):259-295.

Ada User Journal

Volume 36, Number 1, March 2015



