
CASE 2013, AUGUST 2013 1

Modeling and Rapid Prototyping applied to the
Upgrade of Mission-Critical Applications

using AADL
Gustavo Rodrı́guez, Alfons Crespo, Jérôme Hugues, and Manuel Amor

Abstract—Upgrade mission-critical applications such as the
Operational Flight Program (OFP) of avionics embedded com-
puter systems is a complex task. Requires software engineering
techniques particularly difficult from capturing requirements
until its implementation. Modeling and Rapid Prototyping with
Architecture Analysis & Design Language (AADL) are techniques
that can help upgrade the OFP mainly at the stage of formulating
and validating requirements.

Index Terms—Avionics Systems, Operational Flight Program,
Modeling, Rapid Prototyping, AADL.

I. INTRODUCTION

UPGRADE mission-critical applications such as the OFP
running in the aircraft’s Mission Computer (MC) is

a complex task. These are generally long life applications,
thus, in the best case, it is upgrading applications based on
software engineering techniques particularly difficult. It is not
uncommon for an OFP change or block update to take as
long as one year before released to the field. These software
engineering techniques consist of a series of stages beginning
with requirements capture to implementation and testing [1].

In general, upgrading an OFP may be due mainly to two
reasons:

• correction of errors detected during system operation and
• proposed improvements of the system by adding new

functionality.
In either of the two cases it is necessary to evaluate how

the upgrade will affect the existing avionics system.
Developers must apply software refinement in order to

proceed from a high-level abstract model to a final executable
software system by adding more details over time. Modeling
and Rapid Prototyping are techniques that contribute to the
design and incorporation of these upgrades [2] [3].

In software engineering, there are two main approaches
to prototyping. One approach is to develop a draft imple-
mentation (a throwaway or rapid prototype) in an attempt
to learn more about the requirements on the software, throw

G. Rodrı́guez is with Real-Time Systems Group, Department of Telecom-
munications, Rio Cuarto National University. Rio Cuarto, Argentine. e-mail:
grodriguez@ing.unrc.edu.ar

A. Crespo is with Industrial Informatics and Real-Time Systems Group, De-
partment of Systems Data Processing and Computers, Polytechnic University
of Valencia. Valencia, Spain.

J. Hugues is with Department of Mathematics, Computer Science, and
Control of the Institute for Space and Aeronautics Engineering (ISAE).
Toulouse, France.

M. Amor is with Real-Time Systems Group, Department of Telecommuni-
cations, Rio Cuarto National University. Rio Cuarto, Argentine.

the prototype away, and then develop production quality code
based on the experiences from the prototyping effort. The other
approach (evolutionary prototyping) is to develop a high qua-
lity system from the start and then evolve the prototype over
time. Unfortunately, there are problems with both approaches.

Model Driven Engineering (MDE), a software development
methodology promoted by the Object Management Group
(OMG), focuses on creating and exploiting domain models
simplifying the process of design and promoting communica-
tion between customers and developers.

The AADL [4] together with Modeling and Analysis of
Real-time and Embedded systems (MARTE) [5] are conside-
red as valuable candidates to support an MDE method for the
design and the implementation of avionics systems.

The AADL was released by the SAE in November 2004,
and is an architecture description language dedicated to em-
bedded real time systems in safe-critical domains. It provides
an industry-standard, text and graphical notation with precise
semantics to allow early function and quality properties ve-
rification at the model level and automatic code generation
from the models, which greatly improves productivity and
assures high reliability. The core language is enhanced by
annex languages that enrich the architecture description. One
of them is directly connected to avionics systems. ARINC653
annex: define patterns for modeling avionics systems.

The ARINC-653 standard [6] introduces the concept of
partitioning. It consists in isolating applications in space and
time so each partition has an address space and a time slice to
execute their code. Using this partitioning architecture, several
applications, at different criticality or security levels, can be
collocated on the same processor [7] [8] [9] .

This paper describes the application of modeling and rapid
prototyping based on AADL in upgrading mission-critical
applications such as an OFP, applied mainly at the stage of
formulating and validating requirements.

An overview of AADL on how it is used in upgrading
an OFP is presented in this paper. Section II presents some
background, as well as the goals of the upgrade an OFP. Next,
in Section III, we discuss a rapid prototyping methodology
applied to an avionics system and related work. In Section IV
there is a presentation of our case study using prototyping and
model refinement with AADL and Ocarina. Finally, Section V
ends this paper with a conclusion.



CASE 2013, AUGUST 2013 2

II. BACKGROUND

A. Modeling and Rapid Prototyping

Modeling is a way of thinking about problems using models
organized around real-world ideas [10].

Models are abstractions that portray the essentials of a
complex problem or structure by filtering out nonessential
details, thus making the problem easier to understand.

Abstraction is a fundamental human capability that permits
us to deal with complexity.

A prototype is any form of specification or implementation
of hardware or software (or both) that is built or designed for
evaluation purposes. When building a prototype, a designer
has typically in mind to design multiple copies once the design
is sufficiently evaluated. All prototypes have in common that
they are executable. Prototypes are also useful for formulating
and validating requirements, resolving technical design issues,
and supporting computer aided design of both software and
hardware components of future designs.

Rapid prototyping refers to the capability to implement
a prototype with significantly less effort than it takes to
produce an implementation for operational use. It is a way to
collect data and feedback for changing requirements, unveil
deviations from users constraints early, trace the evolution of
the requirements, improve the communication and integration
of the users and the developers, provide early feedback of
mismatches between proposed software architectures and the
conceptual structure of requirements.

Prototypes can either be developed as temporarily designs
that are not being used after some evaluations have provided
the designer with valuable insights, or they can directly evolve
into a product version of the respective design. Each of
these approaches has its advantages and disadvantages. It will
depend on the designers constraints which type is the best for
a certain project.

Software prototyping has many variants. However, all the
methods are in some way based on two major types of proto-
typing: Throwaway Prototyping and Evolutionary Prototyping.

• Throwaway: prototypes are built to validate a concept,
prior to implementing the real system. The throwaway
approach is used to refine requirements.

• Evolutionary: prototypes tend to become the final prod-
uct. Prototypes are refined to create more accurate ones.
The last prototype actually corresponds to the final sys-
tem. Then, feed-back on the system may be provided at
various levels and the model is the main reference for
describing the system.

The most common problem with throwaway prototyping
is managerial, many projects start developing a throwaway
prototype that is later, in a futile attempt to save time,
evolved and delivered as a production system. This misuse
of a throwaway prototype inevitably leads to unstructured and
difficult to maintain systems.

Notable examples of work in prototyping in embedded
systems development include PSDL [11] [12], Rapide [13]
[14] and AADL and Ocarina [15] [16]. PSDL is based on
having a reusable library of Ada modules which can be
used to animate the prototype. Nevertheless, it seems that

Fig. 1: AADL components to develop an AADL Model

this approach would preclude execution until a fairly detailed
specification was developed. Rapide is a useful prototyping
system, but it does not have as much flexibility to integrate as
easily with other tools as we desired. AADL and Ocarina are
the methodology used for this work.

B. AADL

The AADL is a standard architecture modeling language,
developed by and for the avionics, aerospace, automotive,
and robotics communities. It uses component-based notation
for the specification of task and communication architectures
of real-time, embedded, fault-tolerant, secure, safety-critical,
software-intensive systems.

The language and its associated tools are used to model,
analyze, and generate embedded real-time systems.

The AADL offers threads as schedulable units of concurrent
execution, processes to represent virtual address spaces whose
boundaries are enforced at runtime, and systems to support
hierarchical organization of threads and processes. The AADL
supports modeling of the execution platform in terms of
processors that schedule and execute threads; memory that
stores code and data; devices such as sensors, actuators, and
cameras that interface with the environment; and buses that
interconnect processors, memory, and devices. The Figure 1
shows the different components to develop an AADL model.

Threads can execute at given time intervals (periodic),
triggered by events (aperiodic) and paced to limit the execution
rate (sporadic), by remote subprogram calls (server), or as
background tasks. These thread characteristics are defined as
part of the thread declaration.

Application components interact with other application
components and devices exclusively through defined inter-
faces. A component interface consists of ports for unidirec-
tional flow of data (data ports for unqueued state data, and
event data ports for queued message data) and events (event
ports) between threads and to and from devices; synchronous
subprogram calls between threads, possibly located on di-
fferent processors; and access to data that is concurrency



CASE 2013, AUGUST 2013 3

Fig. 2: Generic avionics system architecture

controlled. Data port connections can be specified to per-
form mid-frame (immediate) communication within the same
dispatch period, or phase delayed (delayed) communication
for data to be available after the deadline of the originating
thread. These semantics ensure deterministic transfer of data
streams between periodic threads, an important feature for
embedded control systems. Deterministic data transfer means
that a thread always receives data with the same time delay; if
the receiving thread is over- or under-sampling the data stream,
it always does so at a constant rate.

C. Avionics Systems

An avionics system is a collection of subsystems that
support flight through several functions to ensure that the
aircraft’s mission to be carried out effectively. Figure 2 shows
a generic avionics system architecture.

The total system may be considered to comprise a number
of major subsystems, each of which interacts to provide the
overall system function. Major subsystems themselves may
be divided into minor subsystems or equipment which in turn
need to operate and interact to support the overall system.
Each of these minor subsystems is supported by components
or modules whose correct functional operation supports the
overall system. The overall effect may be likened to a pyramid
where the total system depends upon all the lower tiers.

An avionics system includes communications, navigation,
the display and management of multiple systems, and the hun-
dreds of systems that are fitted to aircraft to perform individual
functions. An OFP is the software program embedded in the
MC which enables to avionics system to perform its interactive
tasks as designed.

The period of development of a complete cycle of an OFP
(that is, the upgrade from one version to another) will depend
on many factors such as, among others, the complexity, the
operational need and the availability of human and material
resources. However, average intervals can be set between 1
and 1.5 years.

Moreover, a new OFP’s version provides improvements in
the operation of the systems, or incorporating new capabilities,
and, of course, all this will result in a medium-to long-term,
operational and logistical implications to be derived from its
implementation.

The complete cycle management of a system that requires
operating software includes all activities and tasks ranging

from the conception of the need for a new program until it is
fully implemented and operational. All these activities can be
divided into three phases clearly identified and separated from
each other, that determine the so-called software life cycle on
a cascade-type model, this implies that is not possible to tackle
the tasks corresponding to a phase if you have not completed
the entire phase above.

This lifecycle definition remains cascaded along the diffe-
rent tasks that compose each one of the phases, but with greater
flexibility, allowing varying degrees of overlap between tasks
based on the type of development and workflow in which lays
each project or requirement. The three phases of the cycle are:

1) Phase I: Definition
2) Phase II: Development
3) Phase III: Implementation
The objective of Phase I Definition is to study, analyze

and evaluate the implications that may involve incorporating
the proposed changes. This stage is critical because it will
determine the other two and includes those activities and
tasks leading to obtain the widest possible knowledge for each
anomalies or proposals for change and its possible solutions to
be adopted for each case, so that, once satisfied the objective
of this phase is to address the Phase II Development.

During Phase I Definition is essential to use tools to trans-
form software engineering anomalies and proposed changes
into a particular requirement to be incorporated into the new
version. The rapid prototyping helps to understand and get a
broader knowledge of the anomalies and proposals for change
in order to turn into a formal requirement.

The motivation of rapid prototyping techniques in the Phase
I Definition may be:

• reduce cost and development time and
• increases security and reliability of an avionics system.

III. A RAPID PROTOTYPING METHODOLOGY FOR
AVIONICS SYSTEMS

A typical OFP development process (upgrade) consists of
developers (software engineers, programmers) and customers
(pilots, analysts, etc.) collaborating together to develop several
options to evaluate for each requirement to be incorporated
into the new version. These options are often coded in high
level languages or graphical tools based on PC, with purposes
of having throwaway prototypes. The customer then evaluates
and discusses on the different options and a requirements list
is made.

This list becomes the basis for the software requirements
specification that the development team uses while develops
and tests the software. At the end of this process, which
usually takes more than 1 or 1.5 years, the customer can see
the resulting code in the flight simulator and later in flight.
If problems are found at that time or during flight tests, an
extensive period of time is often required to make changes
and corrections.

A. Eliciting Requirements and Building Prototypes

Specification-based prototyping allows an iterative approach
to building a formal specification. Initial versions of the



CASE 2013, AUGUST 2013 4

specification can focus on the desired control behavior and
ignore complicating details, such as sensor or actuator failures.

The specification can be evaluated in an equally simplified
environment containing failure free sensors and actuators. As
the understanding of the system and its environment deepens,
both the specification and the environmental models will be
refined. The following paragraphs outline the activities that
occur as the models are constructed and refined [17].

As mentioned in previous sections, these throwaway pro-
totypes are made in high-level languages, usually the de-
velopment is ad hoc without considering any details of the
implementation.

As a result, even at this early stage of system specification,
an executable prototype is available. In this fashion, the
analysts and stakeholders can actively evaluate and test the
high-level requirements of the system early in the development
cycle.

B. Refining the Model and Aspects of Human-Machine Inter-
face

Initially all requirements are considered together and an
impact analysis of the system is done. Importantly, there may
be requirements that are not entirely related to the philosophy
of the system. At this time is when they are discarded.

The process includes the grouping of requirements in sets by
affinities or complexity. With the set of requirements defined,
the prototype is refined increasingly incorporating more and
more realism, such as sensors and actuators. In general, it
is actually a prototype for each set of requirements and as a
result of all this has several throwaway prototypes that provide
a total behavior of the system change proposal.

In cases where there are different options for a given re-
quirement should be considered conducting various prototypes
to select one of the options.

Finally, the requirements that contain human-machine inter-
faces have special treatment. The prototype should not only
functionally characterize the requirement but must additionally
allow a vision of it. Prototypes are generally more configurable
and with the rise of graphical visualization tools based proto-
types traditional languages are increasingly obsolete.

IV. CASE STUDY: UPGRADING AN OFP USING RAPID
PROTOTYPING WITH AADL

Upgrade an OFP can be a labor, sometimes even more
complicated than creating a new one from scratch. The Model
Driven Engineering (MDE) is a comprehensive approach to
software system development (upgrade) that supports the en-
tire product lifecycle. The AADL is considered in a number
of projects aiming at defining and implementing tools support
for MDE.

In this section we detail a methodology for upgrading an
OFP using rapid prototyping with AADL. Our case study is
updating an OFP, incorporating a set of navigation require-
ments to the original design.

Each requirement is analyzed individually and are consi-
dered different options to incorporate. The analysis includes

the development of several prototypes to simplify the decision
which option is best suited to the original design.

In our case we take the navigation requirements, specifically
related to the takeoff and landing of aircraft and routes. It
was decided to make several throwaway prototypes to emulate
those conditions.

The process continues with AADL modeling of each of the
options on the requirements.

A. AADL Model Creation

The process implements the following (possibly iterative)
methodology to define and refine each requirement or set of
requirements:

• data types and related functions to operate on them
• supporting runtime entities (threads) and interactions

between them (through connection and ports)
• association of functions to threads
• mapping of threads onto processes and
processors to form the deployed system.

The AADL allows graphical and textual modeling. At first,
some graphics can be made to permit to be a starting point
for developers thereafter textual models are more effective.

The Software Engineering Institute at Carnegie Mellon
University developed the extensible Open Source AADL Tool
Environment (OSATE). OSATE consists of a set of plug-ins
for the open source Eclipse Platform [18].

As a result of this process an AADL model is obtained for
each prototype, including functional requirements to incorpo-
rate another as well as some non-functional properties.

B. AADL Model Validation

Validation of a prototype by an AADL model takes on
several forms. For this case study we used two forms:

1) semantic analysis validating the consistency of an
AADL model,

2) analysis an AADL model with respect to functional
and nonfunctional properties of the embedded system
represented by the model.

Semantic analysis is performed using AADL compiler
Ocarina. Ocarina checks that the given AADL model is
conforming to the AADL grammar and that some additional
restrictions are verified:

• All event or data ports are connected,
• All threads are either periodic or sporadic,
• All shared data use a concurrent access protocol.

With respect to nonfunctional requirements was performed
a schedulability analysis using Cheddar [19]. Cheddar is an
Ada 95 framework that provides tools and library to check
whether AADL threads will meet their deadline at execution
time. Cheddar uses the Ocarina libraries to analyze the AADL
models reducing significantly the time of analysis of each of
the prototypes modeled.



CASE 2013, AUGUST 2013 5

Fig. 3: Process for evaluating options through Throwaway prototypes

C. Executable Code Generation

We use code generation facilities in Ocarina to:
1) analyze the AADL model,
2) expand it, compute required resources and
3) generate code conforming to High-Integrity (HI) restric-

tions.
First, the prototype model is built by the application de-

signer, he maps its application entities onto a hardware ar-
chitecture. The throwaway prototype does not have the same
hardware as the MC. The prototype works on an emulated
environment (QEMU) [20]. Then, this architecture is tested
for completeness and soundness, any mismatch in the configu-
ration is reported by the analysis tool (e.g. lack of connection
from an object). Consequently, model processing occurs, and
the code is generated from this AADL model.

Code generation relies on well-known patterns for High-
Integrity systems, supported by the minimal middleware called
PolyORB-HI [21].

Figure 3 shows the entire process, in it can be seen as the
developer and the customer participates in the refinement of
the model and analysis of the options.

These steps allow the developer to go from the AADL
model to executable code and forth, using one common model
annotated with all required functional and non-functional
elements, including its code base. Each tool works on the same
model, allowing one to debug or enhance it at different steps.

Also, in our case study, this allowed that with small changes
in the AADL model, different prototypes generated covering
different options. Compared to a traditional process of upgrade
of an OFP, it was observed that the incorporation of rapid pro-
totyping with AADL has improved the quality and production
of prototypes impacting positively on requirements definition
process.

V. CONCLUSION

In this paper, we presented an application of modeling
and rapid prototyping based on AADL in upgrading safety-
critical systems such as an OFP, applied mainly at the stage
of formulating and validating requirements.

Was described it as a process of updating an OFP, the stages
that make up this process and particularly was introduced how
the rapid prototyping techniques contribute to the definition

stage both for the requirements engineers as well for customers
too.

Rapid prototyping is a technique that has been used for
many years in avionics systems but we selected the AADL to
implement an efficient rapid prototyping process for upgrading
the OFP, focusing on its design-by-refinement approach, and
its extensibility through user-defined properties. We illustrated
this approach by presenting the tool chain built around the
Ocarina tool suite, Cheddar, QEMU and PolyORB-HI High-
Integrity middleware.

We showed that an integrated set of tools enables the user to
focus directly on system upgrades, and leverage its architecture
to directly generate code for High-Integrity systems without
any user intervention. The prototypes generated in this way
can incorporate functional and nonfunctional requirements.
Besides, analysis tools have been proposed to check model
consistency and viability prior to generation. This increases
confidence in the model while being fully automated.

ACKNOWLEDGMENT

The authors thank GSTR’s (Real-Time System Group - Rio
Cuarto National University) members for their feedback on
earlier version of this work.

This work is partially funded by the PPI 18/B215 Project
dependent on Science & Technical Secretary of the Rio Cuarto
National University.

REFERENCES

[1] D. Morris, “Avionics operational flight program software support-
ability,” Digital Avionics Systems Conference, 1990. Proceedings.,
IEEE/AIAA/NASA 9th , vol., no., pp.265,267, 15-18 Oct 1990.

[2] F. Kordon, Luqi : An introduction to Rapid System Prototyping, IEEE
Transaction on Software Engineering Engineering, vol. 28 (9), pp. 817-
821 (2002)

[3] F. Kordon, J. Henkel : An Overview of Rapid System Prototyping Today,
Design Automation for Embedded Systems, vol. 8 (4), pp. 275-282
(2003).

[4] SAE. Architecture Analysis & Design Language (AS5506). available at
http://www.sae.org, sep 2004.

[5] Modeling and Analysis of Real-time and Embedded systems.
http://www.omg.org/omgmarte/

[6] ARINC 653: Avionics Application Software Standard Interface, Airlines
Electronic Engineering Committee (AEEC). 1996.

[7] J. Delange, L. Pautet, A. Plantec, M. Kerboeuf, F. Singhoff and F.
Kordon. “Validate, simulate and implement ARINC653 systems using
the AADL”. In ACM’s 12th Annual International Conference on Ada
and Related Technologies - SIGAda09.

[8] M. Masmano, Ismael Ripoll, A. Crespo, “An overview of the XtratuM
nanokernel” 1st Intl. Workshop on Operating Systems Platforms for
Embedded Real-Time applications. OSPERT 2005.

[9] M. Masmano, Y. Valiente, P. Balbastre, I. Ripoll, A. Crespo and J.J.
Metge, “LithOS: a ARINC-653 guest operating for XtratuM”. 12th Real-
Time Linux Workshop. Nairobi. Kenya. 2010.

[10] T. Quatrami. “Visual Modeling with Rational Rose and UML”. Addison-
Wesley, 2000.

[11] B. Kramer, Luqi, and V. Berzins, “Compositional semantics of a real-
time prototyping language”, IEEE Transactions on Software Engineer-
ing, 19(5):453477, May 1993.

[12] Luqi, “Real-time constraints in a rapid prototyping language”, Computer
Languages, 18(2):77103, 1993.

[13] D. Luckham, J. Vera, D. Bryan, L. Augustin, and F. Belz, “Partial
orderings of event sets and their application to prototyping concurrent
timed systems”, Journal of Systems Software, 21(3):253265, June 1993.

[14] D. Luckham, J. Kenney, L. M. Augustin, J. Vera, D. Bryan, and W.
Mann. “Specification and analysis of system architecture using Rapide”,
IEEE Transactions on Software Engineering, 21(4):336354, April 1995.



CASE 2013, AUGUST 2013 6

[15] J. Hugues, B. Zalila, L. Paulet, F. Kordon, “Rapid Prototyping of
Distributed Real-Time Embedded Systems Using the AADL and Oca-
rina”, Rapid System Prototyping, IEEE International Workshop on,
pp. 106-112, 18th IEEE/IFIP International Workshop on Rapid System
Prototyping (RSP ’07), 2007.

[16] T. Vergnaud and B. Zalila, “Ocarina: a Compiler for the AADL”,
Technical report, Tlcom Paris, 2006. available at http://ocarina.enst.fr.

[17] M. Thompson, M. Heimdahl, “An integrated development environment
for prototyping safety critical systems”; Proceedings of IEEE Interna-
tional Workshop on Rapid System Prototyping, Clearwater Beach, FL.
1999.

[18] Open Source AADL Tool Environment (OSATE). http://www.aadl.info.
[19] F. Singhoff, J. Legrand, L. N. Tchamnda, and L. Marc. “Cheddar : a

Flexible Real Time Scheduling Framework.” ACM Ada Letters journal,
24(4):1-8, ACM Press. Also published in the proceedings of the ACM
SIGADA International Conference, Atlanta, 15-18 November, 2004,
Nov. 2004.

[20] Quick EMUlator. http://www.qemu.org/
[21] J. Hugues, B. Zalila, and L. Pautet. “Middleware and Tool suite for High

Integrity Systems”. In Proceedings of RTSS-WiP06, Rio de Janeiro,
Brazil, Dec 2006. IEEE.


