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ABSTRACT 
 

This research work deals with Reconfigurable Uniprocessor embedded Real-Time Systems to be classically 

implemented by different OS tasks that we suppose independent, asynchronous and periodic in order to meet 
functional and temporal properties described in user requirements. We define in the book chapter a 

schedulability algorithm for preemptable, asynchronous and periodic reconfigurable task systems with arbitrary 

relative deadlines, scheduled on a uniprocessor by an optimal scheduling algorithm based on the EDF principles 

and on the dynamic reconfiguration. Two forms of automatic reconfigurations which are assumed to be applied 
at run-time: Addition-Remove of tasks or just modifications of their temporal parameters: WCET and/or 

Periods.  Nevertheless, when such a scenario is applied to save the system at the occurrence of hardware-

software faults, or to improve its performance, some real-time properties can be violated. We define a new 
semantic of the reconfiguration where a crucial criterion to consider is the automatic improvement of the 

system's feasibility at run-time by using an Intelligent Agent that automatically checks the system's feasibility 

after any reconfiguration scenario to verify if all tasks meet the required deadlines. Indeed, if a reconfiguration 
scenario is applied at run-time, then the Intelligent Agent dynamically provides otherwise precious technical 

solutions for users to remove some tasks according to predefined heuristic (based on soft or hard task), or by 

modifying the worst case execution times (WCETs), periods, and/or deadlines of tasks, that violate 

corresponding constraints by new ones, in order to meet deadlines and to minimize their response time. To 
handle all possible reconfiguration solutions, we propose an agent-based architecture that applies automatic 

reconfigurations in order to re-obtain the system’s feasibility and to satisfy user requirements. Therefore, we 

developed the tool RT-Reconfiguration to support these contributions that we apply to a Blackberry Bold 9700 
and to a Volvo system as running example systems and we apply the Real-Time Simulator Cheddar to check the 

whole system behavior and to evaluate the performance of the algorithm (detailed descriptions are available at 

the website: http://beru.univ-brest.fr/~singhoff/ cheddar). We present simulations of this architecture where we 

evaluate the agent that we implemented. Also, we present and discuss the results of experiments that compare 
the accuracy and the performance of our algorithm with others. 

 

 

INTRODUCTION 

Real-Time systems are playing a crucial role in our society, and in the last two decades, there has been an 

explosive growth in the number of real-time systems being used in our daily lives and in industry production. 

Systems such as chemical and nuclear plant control, space missions, flight control systems, military systems, 
telecommunications, multimedia systems, and so on all make use of real-time technologies. The most important 

attribute of real-time systems is that the correctness of such systems depends on not only the computed results 

but also on the time at which results are produced. In other words, real-time systems have timing requirements 

that must be guaranteed. Scheduling and schedulability analysis enables these guarantees to be provided. 
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Common denominators for these embedded systems are real-time constraints. These systems are often safety 

critical and must react to the environment instantly on an event. Imagine for example the airbag of a car not 
going off instantly as a crash occurs; reaction time delay would be disastrous (H.Gharsellaoui, M.Khalgui, 

S.BenAhmed, 2011) [34]. Several interesting academic and industrial research works have been made last years 

to develop reconfigurable systems (A.-L. Gehin and M. Staroswiecki, 2008). We distinguish in these works two 

reconfiguration policies: static and dynamic reconfigurations where static reconfigurations are applied off-line 
to apply changes before the system cold start (C. Angelov, K. Sierszecki, and N. Marian, 2005) whereas 

dynamic reconfigurations are applied dynamically at run-time. Two cases exist in the last policy: manual 

reconfigurations applied by user (M. N. Rooker, C. Sunder, T. Strasser, 2007) and automatic reconfigurations 
applied by Intelligent Agents (M. Khalgui, 2010); (Al-Safi and V. Vyatkin, 2007). 

Also, today in academy and manufacturing industry, many research works have been made dealing with real-

time scheduling of embedded control systems. The new generations of these systems are addressing today new 
criteria as flexibility and agility. For this reason many reconfigurable embedded control systems have been 

developed in recent years.   

In this book chapter, we are interested in the automatic reconfiguration of embedded real time Systems. 

We define at first time a new semantic of this type of reconfiguration where a crucial criterion to consider is the 
automatic improvement of the system’s feasibility at run-time. We propose thereafter an Agent-based 

architecture to handle all possible reconfiguration scenarios. Therefore, nowadays in industry, new generations 

of embedded real time systems are addressing new criteria as flexibility and agility. A disturbance is defined in 
this current book chapter as any internal or external event allowing the addition or removal of tasks to adapt the 

system’s behavior. A reconfiguration scenario means the addition, removal or update of tasks in order to save 

the whole system on the occurrence of hardware/software faults, or also to improve its performance when 
disturbances happen at run time. To reduce their cost, these systems have to be changed and adapted to their 

environment without any disturbance. It might therefore be interesting to study the temporal robustness of real-

time system in the case of a reconfiguration where the reconfiguration results in a change in the value of tasks 

parameters: WCET, deadline and period. This new reconfiguration semantic is considered in our work and we 
will present its benefits. We are interested in this work in automatic reconfigurations of real-time embedded 

systems that should meet deadlines defined in user requirements (S. Baruah and J. Goossens, 2004). A task is 

synchronous if its release time is equal to 0. Otherwise, it’s asynchronous. These systems are implemented by 
sets of tasks that we assume independent, periodic and asynchronous (e.g. they are activated at any t time units). 

According to (Liu and Layland, 1973) we characterize each task , τi by a period to be denoted by Ti, by a 

deadline denoted by Di, by an initial offset Si (a release time),  and by a Worst Case Execution Time (WCET) 

denoted by Ci. We assume that the relative deadline of each task can be different from its corresponding period. 

We assume also that the whole system is scheduled by the earliest Deadline First (EDF) scheduling policy [9]. 
In single processor system, the Earliest Deadline First (EDF) scheduling algorithm is optimal [1], in the sense 

that if a task set is feasible, then it is schedulable by EDF. Therefore, the feasibility problem on single processor 

systems can be reduced to the problem of testing the schedulability with EDF. For this reason, the usage of 
Earliest Deadline First (EDF) scheduling policy is starting to catch the attention of industrial environments, 

given its benefits in terms of increased resource usage. EDF is now present at different layers of a real-time 

application such as programming languages, operating systems, or even communication networks.  So, it is 

available in real-time languages like Ada 2005 [2] or RTSJ [3], and in real-time operating systems such as 
SHaRK [4]. It has been also implemented at the application level in OSEK/VDX embedded operating systems, 

and there are real-time networks using EDF for scheduling messages too; for instance in general purpose 

networks, or in the CAN Bus [5]. A feasible schedule is a schedule in which all tasks meet their deadlines. The 
feasibility problem for a set of independent periodic tasks to be scheduled on a single processor has been proven 

to be co-NP-complete in the strong sense [6, 7]. Leung and Merril [6] proved that it is necessary to analyze all 

deadlines in the hp = [0, 2*LCM+maxk( ,1kA )], where LCM is the well-known Least Common Multiple of all 

task periods and (Ak,1) is the earliest offset (starting time) of each task τk. Baruah et al. [7] proved that, when the 

system utilization U is strictly less than 1, the Leung and Merrils condition is also sufficient. Reconfiguration 

policies are classically distinguished into two strategies: static and dynamic reconfigurations. Static 
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reconfigurations are applied offline to modify the assumed system before any system cold start [25], whereas 

dynamic reconfigurations can be divided into two cases: manual reconfigurations applied by users [26] and 
automatic reconfigurations applied by intelligent agents [27, 28].  This paper focuses on the dynamic 

reconfigurations of assumed asynchronous real-time embedded control systems that should meet deadlines 

defined according to user requirements [29]. This work is a complete generalization of [21, 22] work where the 

special case, of synchronous real-time OS tasks with EDF algorithm has been studied. Here, we define the 
dynamic reconfiguration as any change in software to lead the whole embedded system into a better safe state at 

run time. We define a new semantics of reconfigurations that allow automatic improvements of system 

performances at run-time even if there are no hardware faults [23]. The general goal of this paper is to be 
reassured that any reconfiguration scenario changing the implementation of the embedded system does not 

violate real-time constraints: i.e. the system is feasible and meets real-time constraints even if we change its 

implementation and to correctly allow the minimization of the response time of this system after any 
reconfiguration scenario.  We define an automatic reconfiguration as any operation allowing additions-removes 

or updates of tasks at run-time. Therefore the system's implementation is dynamically changed and should meet 

all considered deadlines of the current combination of tasks. Nevertheless, when a reconfiguration is applied, 

the deadlines of new and old can be violated. We define an agent-based architecture that checks the system's 
evolution and defines useful solutions when deadlines are not satisfied after each reconfiguration scenario and 

the Intelligent Agent handles the system resources in such way that, meeting deadlines is guaranteed. Three 

cases of suggestions are possible to be provided by the agent: remove of some tasks from the new list, 
modification of periods or/and deadlines, and modification of worst case execution times of tasks. For this 

reason and in this original work, we propose a new algorithm for optimization of response time of this system. 

To obtain this optimization, we propose an intelligent agent-based architecture in which a software agent is 
deployed to dynamically adapt the system to its environment by applying reconfiguration scenarios. Before any 

reconfiguration scenario, the initial real-time embedded control system is assumed to be feasible. The problem 

is that when a scenario is applied and new tasks are added, the processor utilization U will be increased and/or 

some deadlines can be violated. We propose an agent that applies new configurations to change the periodicity, 
WCET of tasks or also to remove some of them as a worst case solution. The users should choose the minimum 

of these solutions to re-obtain the system’s feasibility and to guarantee the optimality. The problem is to find 

which solution proposed by the agent that reduce the response time. To obtain these results, the intelligent agent 
calculates the processor utilization U before and after each addition scenario and calculates the minimum of 

those proposed solutions in order to obtain kR optimal noted
k

optR , where 
k

optR  is the minimum of the 

response time of the current system under study given by the following equation:  

k

optR  = min (
,1k

R ,
,2k

R ,
,3k

R ). To calculate these previous values
,1k

R , 
,2k

R  and
,3k

R , we proposed a 

new theoretical concepts S (t, d), ˆ( , )S t d and W (t, d) for the case of real-time periodic asynchronous OS tasks. 

Where S(t, d) is the new function of job arrival with deadline at t time, ˆ( , )S t d  is the new function of major 

job arrival with deadline at t time and W(t, d) is the amount of workload in wait of treatment of which the 

execution must be ended before the deadline d at t time. A tool named RT-Reconfiguration is developed in our 
research laboratory at INSAT University to support all the services offered by the agent. The simulator Cheddar 

[8] is used to verify and to prove the schedulability analysis of the considered tasks given by our tool. We give 

in the following section a useful background before we detail thereafter the book chapter problems and we 

present our contributions. 
 

BACKGROUND  

The study of real-time embedded systems is growing at an exponential rate. Widespread deployment and 

complexity Software is becoming an important component of embedded systems, even the training manpower 
on the design and implementation of embedded software is becoming increasingly important. This section 

provides a review of the research related to our work. Users of this technology face a set of challenges: the need 

for fast, predictable, and bounded responses to events such as interrupts and messages, and also the ability to 
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manage system resources to meet processing deadlines. However, the Real-time and Embedded Systems Forum 

intends to plug this gap by bringing together system developers and users to build upon existing standards 
where they exist, evolve Product Standards that address market requirements, and develop Testing and 

Certification Programs that deliver products meeting these requirements. Ultimately the vision of the Forum is 

to grow the marketplace through the development of standardized systems based on real software solutions. 

Industry sectors that will benefit from the Forum include aerospace/defense, telecommunications, 
manufacturing, automotive, and medical/scientific research. This will advance standards development based on 

real software solutions. It will also establish test tools for suppliers to use to establish Confidence that their 

products conform. Consequently, the impact of software on the customer and, hence, on market shares and 
competition will be enormous. So, we can conclude that software is established as a key technology in the 

domain of real-time embedded systems (H.Gharsellaoui, M.Khalgui, S.BenAhmed, 2011) [34]. 

 

Real-Time Scheduling 

The Definition of “Real-Time” 

We consider a computing system or operating system to be a real-time one to the extent that: time-physical or 

logical, absolute or relative- is part of the system’s logic and in particular, the completion time constraints of the 
applications’ computations are explicitly used to manage the resources, whether statically or dynamically. 

Time constraints, such as deadlines, are introduced primarily by natural laws- e.g., physical, chemical, 

biological -which govern an application’s behavior and establish acceptable execution completion times for the 
associated real-time computations. 

Real-time scheduling theory provides a formal framework for checking the schedulability of a tasks 

configuration and finding feasible, as well as optimal, scheduling. The aim of this section is to give a brief 
overview of this framework, and afterwards to introduce the notion of functional determinism. Real-time 

scheduling has been extensively studied in the last thirty years (S. Baruah and J. Goossens, 2004). Several 

Feasibility Conditions (FC) for the dimensioning of a real-time system are defined to enable a designer to grant 

that timeliness constraints associated to an application are always met for all possible configurations. Different 
classes of scheduling algorithm are followed nowadays:  (i) Clock-driven: primarily used for hard real-time 

systems where all properties of all jobs are known at design time. (ii) Weighted round-robin: primarily used for 

scheduling a real-time traffic in high-speed, (iii) Priority-driven: primarily used for more dynamic real-time 
systems with a mixture of time-based and event-based activities. Among all priority driven policies, Earliest 

Deadline First (EDF) or Least Time to Go is a dynamic scheduling algorithm used in real-time operating 

systems. It places processes in a priority queue. Whenever a scheduling event occurs (task finishes, new task 

released, etc.) the queue will be searched for the process closest to its deadline. This process is the next to be 
scheduled for execution. EDF is an optimal scheduling algorithm on preemptive uniprocessor in the following 

sense: if a collection of independent periodic jobs characterized by arrival times equal to zero and by deadlines 

equal to corresponding periods, can be scheduled by a particular algorithm such that all deadlines are satisfied, 
then EDF is able to schedule this collection of jobs. 

 

Reconfigurable Scheduling 
The nature of real-time systems presents us with the job of scheduling tasks that have to be invoked repeatedly. 

These tasks however may range from simple aperiodic tasks with fixed execution times to dynamically 

changing periodic tasks that have variable execution times. 

Periodic tasks are commonly found in applications such as avionics and process control requiring data sampling 
on a continual basis. On the other hand, sporadic tasks are associated with event driven processing such as user 

response and non-periodic devices. Given a real-time system the goal of a good scheduler is to schedule the 

system’s tasks on a processor, so that every task is completed before the expiration of the task deadline. These 
and some of the other issues like stability and feasibility are examined here. 

 

Scheduling Policies:  
A scheduling strategy consists in organizing the execution of a tasks set under constraints. Usually, scheduling 

strategies are classified as preemptive versus non-preemptive, and off-line versus on-line policies. In non-
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preemptive case, each task instance, when started, completes its execution without interruptions. Conversely, in 

preemptive case, the scheduling unit can suspend a running task instance if a higher priority task asks for the 
processor. Off-line scheduling is based on a schedule which is computed before run-time and stored in a table 

executed by a dispatcher. One of the most popular off-line scheduling strategies is cyclic executive approach. 

With this method, tasks are executed in a predefined order, stored in a cyclic frame whose length is the least 

common multiple of the tasks periods. Each task can then be executed several times in the frame according to 
its period.  

In the Round Robin scheduling algorithm at each instant, a scheduling policy chooses among the set of all 

active instances exactly one instance for being executed on the processing unit. In a uniprocessor system there 
will never be more than one running process. If there are more processes, the rest will have to wait until the 

CPU is free and can be rescheduled. At any one time, a process can only be in one state and will continue to 

change states until it terminates. Figure 1 shows a state diagram of a process. In figure 1 the scheduler uses the 
Round-Robin scheduling algorithm that is designed especially for time-sharing systems. To implement the 

Round-Robin scheduling, we keep the ready queue as a FIFO (First In First Out) queue of processes. New 

processes are added to the tail of the ready queue. The CPU scheduler picks the first process from the ready 

queue, sets a timer to interrupt after 1 time quantum, and dispatches the process.  
Conversely, the idea of on-line scheduling is that scheduling decisions are taken at run-time whenever a running 

task instance terminates or a new task instance asks for the processor. The three most popular on-line 

scheduling strategies are Rate Monotonic (RM), Deadline Monotonic (DM) and Earliest Deadline First (EDF) 
(Liu and Layland, 1973). RM is an on-line preemptive static priority scheduling strategy for periodic and 

independent tasks assuming that T = D (period equals deadline) for each task t. The idea is to determine fixed 

priorities by task frequencies: tasks with higher rates (shorter periods) are assigned higher priority. DM is a 
generalization of RM with tasks such that Tt = Dt. In that case, tasks with shorter deadlines are assigned higher 

priority. EDF is a more powerful strategy. It is an on-line preemptive dynamic priority scheduling approach for 

periodic or aperiodic tasks. The idea is that, at any instant, the priority of a given task instance waiting for the 

processor depends on the time left until its deadline expires. Lower is this time, higher is the priority. 
 

Earliest Deadline First (EDF) Policy 

Earliest Deadline First (EDF) or Least Time to Go is a dynamic scheduling algorithm used in real-time 
operating systems. It places processes in a priority queue. Whenever a scheduling event occurs (task finishes, 

new task released, etc.) the queue will be searched for the process closest to its deadline. This process is the 

next to be scheduled for execution. EDF is an optimal scheduling algorithm on preemptive uniprocessors, in the 

following sense: if a collection of independent jobs, each characterized by an arrival time, an execution 
requirement, and a deadline, can be scheduled (by any algorithm) such that all the jobs complete by their 

deadlines, the EDF will schedule this collection of jobs such that they all complete by their deadlines. In other 

hand, if a set of tasks is not schedulable under EDF, then no other scheduling algorithm can feasibly schedule 
this task set. So, compared to fixed priority scheduling techniques like rate-monotonic scheduling, EDF can 

guarantee all the deadlines in the system at higher loading. With scheduling periodic processes that have 

deadlines equal to their periods, EDF has a utilization bound of 100%. The necessary and sufficient condition 
for the schedulability of the tasks follows that for a given set of n tasks, τ1, τ2… τn with time periods T1, T2… 

Tn, and computation times of C1, C2… Cn, the deadline driven schedule algorithm is feasible if and only if  

 

1

1,
n

i

i i

C

T

         1EXP  

 

Where U is the CPU utilization, Ci is the worst-case computation-times of the n processes (Tasks) and the Ti is 

their respective inter-arrival periods (assumed to be equal to the relative deadlines), (Liu and Layland, 1973).  
 

http://en.wikipedia.org/wiki/Scheduling_algorithm
http://en.wikipedia.org/wiki/Real-time_operating_system
http://en.wikipedia.org/wiki/Real-time_operating_system
http://en.wikipedia.org/wiki/Priority_queue
http://en.wikipedia.org/wiki/Rate-monotonic_scheduling
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We assumed that the period of each task is the same as its deadline. However, in practical problems the period 

of a task may at times be different from its deadline. In such cases, the schedulability test needs to be changed. 
If T

i 
> D

i
, then each task needs C

i 
amount of computing time every min (T

i
, D

i
) duration of time. Therefore, we 

can rewrite 1EXP as:  
 

1

1,
min( , )

n
i

i i i

C

T D


           

2EXP  

 
However, if p

i 
< d

i
, it is possible that a set of tasks is EDF schedulable, even when the task set fails to meet 

the 2EXP . Therefore, 2EXP is conservative when T
i 
< D

i, 
and is not a necessary condition, but only a 

sufficient condition for a given task set to be EDF schedulable.  

 

Example 
Consider 3 periodic Tasks scheduled using EDF, the following acceptance test shows that all deadlines will be 

met. 

 

Tasks Execution Time = C Period = T=D 

T1 1 8 

T 2 2 5 

T 3 4 10 

Table 0.1: A first task set example 

The utilization will be: 

 

The theoretical limit for any number of processes is 100% and so the system is schedulable. 

Consider now 3 periodic Tasks scheduled using EDF, the following Figure (Figure 2) shows that all deadlines 

will be met. 
 

 

Tasks Execution Time = C Period = T Deadline = D 

T1 3 8 7 

T2 1 3 3 

T 3 1 7 6 

Table 0.2: A second task set example 
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Figure 1. Scheduling of the system described in Table 0.2 by EDF 

 

 
However, when the system is overloaded, the set of processes that will miss deadlines is largely unpredictable 

(it will be a function of the exact deadlines and time at which the overload occurs). This is a considerable 

disadvantage to a real time systems designer. The algorithm is also difficult to implement in hardware and there 

is a tricky issue of representing deadlines in different ranges (deadlines must be rounded to finite amounts, 
typically a few bytes at most). Also, the limitation of the EDF is that we cannot tell which tasks will fail during 

a transient overload. Even though the average case CPU utilization is less than 100%, it is possible for the 

worst-case utilization to go beyond and thereby the possibility of a task or two being aborted. It is desirable to 
have a control over which tasks fail and which does not; however, this is not possible in EDF. Therefore EDF is 

not commonly found in industrial real-time computer systems. The situation is somewhat better in RM because 

it is the low priority tasks that are preempted. 

 

Rate Monotonic Algorithm (RM Policy)  

This is a fixed priority algorithm and follows the philosophy that higher priority is given to tasks with the higher 

frequencies. Likewise, the lower priority is assigned to tasks with the lower frequencies. The scheduler at any 
time always chooses the highest priority task for execution. By approximating to a reliable degree the execution 

times and the time that it takes for system handling functions, the behavior of the system can be determined 

before. The rate monotonic algorithm can successfully schedule tasks in a static priority environment but it has 
bound of less that 100% efficiency. The CPU utilization of tasks τi where 1 ≤ i ≤ n, is computed as the ratio of 

worst case computing time Ci to the time period Ti. The total utilization of the CPU is computed as follows: 

1

Un
n

i

i i

C

T

     (1). 

Here the frequency of the task is the reciprocal of the time period of the particular task. For the RM algorithm 
the worst-case schedulable time bound Wn for a set of n tasks was shown to be: 

 

1/Wn * 2 1)nn   
      

 (2). (Liu and Layland, 1973) 

 

http://en.wikipedia.org/wiki/Computer_hardware
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From (2), we can observe that W1 = 100%, W2 = 83%, W3 = 78% and as the task set grow in size, Wn = 69% 

(ln2). Thus for a set of tasks for which the total CPU utilization is less than 69% means that all the deadlines 
will be met. The tasks are guaranteed to meet their deadlines if Un ≤ Wn.  If Un > Wn, then only a subset of the 

original task set can be guaranteed to meet the deadline which forms the upper echelon of the priority ordering. 

This set of tasks will be the critical set (Liu and Layland, 1973). Another problem that exists is the inability for 

RM to support dynamic changes in periods, which is a regular feature of dynamically configurable systems. For 
example, consider a task set of three τ1, τ2, and τ3, with time periods T1=30 ms, T2=50 ms and T3=100 ms 

respectively. The priorities assigned are according to the frequency of occurrence of these tasks and so τ1 is the 

highest priority task. If the period for the first task changes to T1=75ms, we would then under RM require that 
the priority orderings be changed to, τ2, τ1, and τ3. This change is detrimental to the completion of the scheduled 

jobs, which have to finish before their deadlines expire. The problem with RM encouraged the use of dynamic 

priority algorithms. 
 

Example 

 

Tasks Execution Time = C Period = T Deadline = D 

T1 3 11 11 

T2 4 15 15 

T 3 1 5 5 

Table 0.3: A task set example 

 

 

Figure 2. Scheduling of the system described in Table 0.3 by RM 

 

 

Deadline Monotonic Algorithm (DM Policy)  

The priority of a task under RM is proportional to the rate at which jobs in the task are released while the 
priority of a task under DM is inversely proportional to the relative deadline of the task. Also, priorities may 

also be assigned dynamically: One of the problems with RM is that many systems will need job deadlines 

shorter than the job’s period which violates the assumption mentioned earlier. A solution to this problem arrived 

in 1982 with the introduction of the Deadline Monotonic (DM) algorithm (Leung W82). With DM, a job’s 
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priority is inversely proportional to its relative deadline. That is to say, the shorter the relative deadline, the 

higher the priority. RM can be seen as a special case of DM where each job’s relative deadline is equal to the 
period. However, the similarities end there. The “69%” feasibility test which we saw earlier doesn’t work with 

DM. The DM feasibility test involves calculating how long it takes a job to go from the start of its period to the 

point where it finishes execution. We’ll call this length of time the response time and denote it with R. 

After calculating R we then compare it with the job’s relative deadline. If it is shorter then this job passes the 
test, otherwise it fails because a deadline can be missed. We have to check the feasibility of every job we 

define. New schedulability tests have been developed by the authors for the deadline monotonic approach 

(Audsley, 1990). These tests are founded upon the concept of critical instants (Liu and Layland, 1973).  These 
represent the times that all processes (Tasks) are released simultaneously. When such an event occurs, we have 

the worst-case processor demand. Implicitly, if all processes can meet their deadlines for executions beginning 

at a critical instant, then they will always meet their deadlines. Thus, we have formed the basis for a 
schedulability test: check the executions of all processes for a single execution assuming that all processes are 

released simultaneously [34]. 

 

Example 
 

Tasks Execution Time = C Period = T Deadline = D 

T1 3 12 10 

T2 2 15 8 

T 3 1 5 5 

 Table 0.4: A task set example  

 

 

Figure 3. Scheduling of the system described in Table 0.4 by DM 

 

 

Least Laxity First (LLF) Algorithm 

Least laxity first algorithm (LLF) assigns priority bases upon the slack time of a task. The laxity time is 
temporal difference between the deadline, the remaining processing time and the run time. LLF always 

schedules first an available task with the smallest laxity. The laxity of a task indicates how much the task will 
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be scheduled without being delayed. LLF is a dynamic scheduling algorithm and optimal to use an exclusive 

resource. LLF is commonly used in embedded systems. Since the run time is not defined, laxity changes 
continuously. The advantage of allowing high utilization is accompanied by a high computational effort at 

schedule time and poor overload performance [34]. 

 

Example 

 

 

Tasks Execution Time = C Period = T Deadline = D 

T1 4 8 8 

T2 2 6 6 

Table 0.5: A task set example 

 

 

   

Figure 4. Scheduling of the system described in Table 0.5 by LLF 

  

 

Round Robin (RR) Algorithm 

Round Robin (RR) is one of the simplest scheduling algorithms for processes in an operating system, which 
assigns time slices to each process in equal portions and in circular order, handling all processes without 

priority. Round Robin scheduling is both simple and easy to implement. Effectiveness and efficiency of RR are 

arising from its low scheduling overhead of (1), which means scheduling the next task takes a constant time. In 

Round Robin Scheduling, the time quantum is fixed and then processes are scheduled such that no process get 
CPU time more than one time quantum in one go. If time quantum is too large, the response time of the 

processes is too much which may not be tolerated in interactive environment. If time quantum is too small, it 

causes unnecessarily frequent context switch leading to more overheads resulting in less throughput [34]. 
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Example 
 

Tasks Execution Time = C Period = T Deadline = D 

T1 6 14 14 

T2 3 14 14 

T 3 4 14 14 

Table 0.6: A task set example 

 

 

Figure 5. Scheduling of the system described in Table 0.6 by RR 

 

 

STATE OF THE ART ON RECONFIGURABLE EMBEDDED SYSTEMS 
A task is an executable program implementing one and only one functional module. A task may be periodic, 

sporadic or aperiodic. In most cases, especially in the context of critical systems, tasks are supposed to be 
periodic. In the following, we only consider periodic tasks. According to (Liu and Layland, 1973), periodic task 

may be characterized by static parameters (T, r, D, B, W) where T is the task period, r is the release date (first 

activation), D is the (relative) deadline, and (B and W) are the best and worst case execution time (BCET and 

WCET). B and W depend on multiple elements: the processor, the compiler, the Memories. Estimation of these 
parameters is a wide research area which is considered in the scope of this work. Few results have been 

proposed to deal with deadline assignment problem. In (Baruah, Buttazo, Gorinsky, & Lipari, 1999), the authors 

propose to modify the deadlines of a task set to minimize the output, seen as secondary criteria of this work.  
In (Cervin, Lincoln, & G., 2004), the deadlines are modified to guarantee close-loop stability of a real-time 

control system.  In (Marinca, Minet, & George, 2004), a focus is done on the deadline assignment problem in 

the distributed for multimedia flows. The deadline assignment problem is formalized in term of a linear 
programming problem. The scheduling considered on every node is non-preemptive EDF or FIFO with a jitter 

cancelation applied on every node. A performance evaluation of several deadline assignment schemes is 

proposed.  In (Balbastre, & Crespo, 2006), the authors propose an optimal deadline assignment algorithm for 

periodic tasks scheduled with preemptive EDF in the case of deadline less than or equal to periods. The goal is 
to find the minimum deadline reduction factor still meeting all the deadlines of the tasks. 

In the case of a variable speed processor, reducing the frequency can create overloads that can result in deadline 

miss. We identify several approaches to deal with overloads conditions: 
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 Remove some tasks to come back to a normal load.  

 Adapt the task parameters to come back to a normal load 
– Modification of periods (or deadlines), 

– Modification of worst case execution times of tasks, 

In the first case, several solutions from the state of the art have been proposed: 

 

 Stop the faulty task or put it in background. This is the solution used by most industrial systems. 

Probably not the best. 

 Use a heuristic to remove some tasks. In (Lock, 1986), the author proposes to remove the task with the 

lowest importance. The importance is characterized by a Time Value Function (TVF) providing a 

statistical overload management with no guarantee to solve the overload problem. 

 Applied for EDF scheduling, REDF (robust earliest deadline first) described in (Buttazzo, & Stankovic, 

1993), where a partitioning of critical real-time tasks and non-critical real-time tasks is proposed. The 

critical tasks should always meet their deadlines. The non critical tasks are removed if necessary 

according to their value density. A task τi has a value vi and a value density vi/Ci. With this mechanism, 

for an identical value, the task having a long duration will be removed first. 

 Applied for EDF scheduling, D-OVER proposed in (Koren, & Shasha, 1992), where the authors assigns 

a Time Value Function (TVF) to every task. A value equal to 0 is equivalent to a deadline miss. The 

goal is to obtain the maximum value among all the tasks. They prove that their algorithm is optimal in 
the sense that is achieves the maximum possible benefit for an on-line algorithm (1/4 of an omniscient 

algorithm). 

In the second case, the task parameters must be adapted on-line to cope with the overload. The idea is to adapt 
the periods of the tasks when needed to reduce the processor utilization. This approach has been proposed in the 

case of equally important tasks by gracefully adjusting the task periods. Other related papers are detailed in 

(Buttazzo & al., 2004).  In this paper, they introduce a novel scheduling framework to propose a flexible 

workload management a run time. They present the concept of elastic scheduling (introduced in Buttazzo, G., 
Lipari, & Abeni, 1998). The idea behind the elastic model is to consider the flexibility of a task as a spring able 

to increase or decrease its length according to workload conditions. The length of a spring is associated to the 

current processor utilization of its tasks. For a periodic task τi, the period Ti is the actual period and is supposed 

to range from  min
iT  to max

iT . The processor utilization of τi is Ci/Ti. The period adaptation is done with a new 

parameter: Ei defining an elastic coefficient. The greater Ei, the more elastic the task. Decreasing processor 

utilization result is applying a compression force on the spring that results in a period decrease. This model is 
well adapted to the case of deadlines equal to periods as it is possible in this case to derive sufficient feasibility 

for Fixed Priority (FP) with Rate Monotonic algorithm (Liu and Layland, 1973); (Bini, & Buttazzo, 2003), and 

necessary and sufficient feasibility conditions for EDF (Liu and Layland, 1973) based on the processor 

utilization U. In this case, determining if a task set is still schedulable after a task period change is not complex 
and can be done at run time. In (Buttazzo, 2006), the author proposes to use also the elastic model to adapt the 

period of the tasks to reach high processor utilization in the case of discrete voltage levels in variable speed 

processors. In soft real-time systems, another approach has been proposed, to bound the number of deadline 
miss. The (m, k)-firm approach introduced in (Hamdaoui & Ramanathan, 1995), can be used to specify that a 

task should have at least m consecutives instances over k meeting their deadlines. This algorithm, first 

conceived in the context of message transmission, is a best effort algorithm. In (Bernat, Burns & A., L. 2001), 
the authors propose to extend the (m, k)-firm model with the Weakly-hard model, considering non consecutives 

deadline miss. 

In (Balbastre, & Ripoll, 2002), the authors show how much a task can increase its computation time still 

meeting the system feasibility when tasks are scheduled EDF. They consider the case of only one task 
increasing its WCET. 
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Theorem 6 (Bini, E. & Di Natale, 2005): 

Let τ
C
 be the task set where every WCET is multiplied by a scaling factor α. Let τ

T 
be the task set where every 

Task period is divided by α. The task set τ
C
 is schedulable if and only if the task set τ

T 
is schedulable. 

 

Laurent George and Pierre Courbin considered in their works the benefits of sensitivity analysis for the 

reconfiguration of sporadic tasks when only one task parameter can evolve (WCET, Period or Deadline). In the 
case where applications are defined by several modes of execution, a reconfiguration consists of a mode change. 

A mode is defined its task set. Changing the mode of an application changes the task set run by the system. The 

problem of mode change is to study if it is possible end a mode and start a new one still preserving all the 
timeliness constraints associated to all the tasks in both modes. Mode change is a current active research area 

and has been considered for e.g. in (Nelis, Goossens,  & Andersson,  2009), Sensitivity analysis could be used 

to determine if a mode change results in acceptable WCET, period or deadline changes. Finally, we believe in 
the limitation of all these related works in particular cases and we note that all these related works consider the 

reconfiguration of only one task parameter which can evolve (WCET, Period or Deadline).  The only research 

work dealing with multi-parameters reconfiguration is that we propose in the current book chapter in which we 

give solutions to the user for all these problems presented by the tool RT-Reconfiguration. 

  

PROBLEM 

Embedded systems architecture is classically decomposed into three main parts. The control software is often 
designed by a set of communicating functional modules, also called tasks, usually encoded with a high level 

programming language (e.g. synchronous language) or a low level one (e.g. Ada or C). Each functional module 

is characterized by real-time attributes (e.g. period, deadline) and a set of precedence constraints. The material 
architecture organizes hardware resources such as processors or devices. The scheduler decides in which order 

functional modules will be executed so that both precedence and deadline constraints are satisfied. Behavioral 

correctness is proved as the result of the logical correctness, demonstrated with the use of formal verification 

techniques (e.g. theorem proving or model-checking) on the functional part, and the real-time correctness which 
ensures that all the computations in the system complete within their deadlines. This is a non trivial problem 

due both to precedence constraints between tasks, and to resource sharing constraints. This problem is 

addressed by the real-time scheduling theory which proposes a set of dynamic scheduling policies and methods 
for guaranteeing/proving that a tasks configuration is schedulable. However, in spite of their mutual 

dependencies, these two items (functional verification and schedulability) are seldom addressed at the same 

time: schedulability methods take into account only partial information on functional aspects, and conversely 

the verification problem of real-time preemptive modules has been shown undecidable. To overcome this 
difficulty, a third property is often required on critical systems, especially for systems under certification: 

determinism, i.e. all computations produce the same results and actions when dealing with the same 

environment input. The benefit of this property, if ensured, is to limit the combinatorial explosion, allowing an 
easier abstraction of real-time attributes in the functional view. For instance, preemptive modules may be 

abstracted by non preemptive ones characterized by fixed beginning and end dates. The interesting consequence 

is to allow separated functional and real-time analyses. For ensuring determinism, two ways can be followed: 
either to force it, or to prove it. Several approaches were proposed in order to guarantee determinism. One of the 

simplest manners is to remove all direct communications between tasks. This seems quite non realistic but it can 

be achieved by developing an adequate architecture, for instance, current computed data are stored in a different 

memory while consumed input are the ones produced in a precedent cycle. The execution order between tasks 
within each cycle does not impact the produced values. However, the main disadvantage is to lengthen the 

response time of the system. This solution is then not suitable for systems requiring short response time. 

A second approach is based on off-line non preemptive strategies, such as cyclic scheduling. Provided that 
functional modules are deterministic, the global scheduled behavior will also be deterministic. This solution is 

frequently followed by aircraft manufacturer for implementing critical systems such as a flight control system. 

However this strategy has two main several drawbacks. Firstly this scheduling leads to a low use of resources 
because tasks are supposed to use their whole worst case execution time (WCET). To overcome this first 
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problem, tasks are required to be as small as possible. Secondly, off-line scheduling strategies often need for 

over-dimensioning the system in order to guarantee acceptable response times to external events. For that 
purpose, tasks periods are often to be reduced (typically divided by 2) compared to the worse period of the 

polled external events. The guaranty that WCET and BCET (resp. worst and best case execution times) coincide 

provides a third interesting context. Any off-line scheduling is then deterministic and it is possible to modify the 

task model to produce a deterministic on-line scheduling. Unfortunately, warranting that BCET is equal to 
WCET is hardly possible. This can limit the programming task (no use of conditional instruction or on the 

contrary use of dead code to enforce equality). Other more recent approaches are based on formal synchronous 

programming languages. Systems are specified as deterministic synchronous communicating processes, and are 
implemented either by a sequential low level code which enforces a static execution order, or by a set of tasks 

associated with static or dynamic scheduling policies. Implementation is correct-by-construction, i.e., it 

preserves the functional semantics (and then determinism). These approaches are interesting, for they allow to 
by-pass the determinism verification problem.  Previous solutions are not suitable for highly dynamic non 

synchronous systems with high Workload.  

On-line preemptive scheduling strategies are often optimal, easy to implement, but deeply non deterministic 

when associated to asynchronous communication models. Problematic reconfiguration appears when there are 
temporal indeterminism on execution time and preemption. Consequently, if on-line preemptive scheduling 

policies are needed (for performance reasons for instance), it is the necessary to verify determinism. The aim of 

this book chapter is to answer the question is a scheduling deterministic for a particular multi-periodic tasks 
model and a given policy? The result is that the determinism problem is decidable even in case of preemptive 

on-line scheduling policies.  So, Due to the increasing complexity of the developed systems it is necessary to 

model correctly and to implement the chosen design in a correct manner. In the rest of this Book Chapter, we 
only consider single-processor systems. 

 

CONTRIBUTIONS 
In addition, before the main contributions are explained in this book chapter, we are interested in automatic 

reconfigurations of real-time embedded systems that should meet deadlines defined in user requirements. These 

systems are implemented sets of tasks that we assume independent, periodic and synchronous (e.g. they are 
simultaneously activated at time t = 0 time units). We assume also that the deadline of each task is equal to the 

corresponding period. We define an agent-based architecture that checks the system’s evolution and defines 

useful solutions when deadlines are not satisfied after each reconfiguration scenario and the Intelligent Agent 

handles the system resources in such way that, meeting deadlines is guaranteed. The resulting contributions of 
this Book Chapter can be divided into five cases of suggestions are possible to be provided by the agent:  

 

 Remove of some tasks from the new list,  
 Modification of periods and/or deadlines, 

 Modification of worst case execution times of tasks, 

 

The general problem of our project is to be reassured that any reconfiguration scenario changing the 
implementation of the embedded system does not violate real-time constraints: i.e. the system is feasible and 

meets real-time constraints even if we change its implementation. 

Formalization of Reconfigurable Real-Time Embedded Systems  
Nowadays, manual and automatic reconfigurations are often useful technical solutions to change the system’s 

behavior at occurrences of software/hardware faults or also to improve the performance. Let Sys be such system 

to be classically composed of a set of real-time tasks that support all different functionalities. We mean by a 
dynamic reconfiguration any operation allowing addition, removal or also update tasks at run-time. Let Sys be 

the set of all possible tasks that can implement the system, and let us denote by CurrentSys(t) the current set of 

tasks implementing the system Sys at t time units. These tasks should meet all required deadlines defined in user 

requirements. In this case, we note that Feasibility(CurrentSys(t)) ≡ True. 
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Example: 

Let us suppose a real-time embedded system (Volvo system) to be initially implemented by 5 characterized tasks 
(Table 0.7). These tasks are feasible because the processor utilization factor U = 0.87 < 1. These tasks should 

meet all required deadlines defined in user requirements and we have Feasibility (CurrentV olvo(t)) ≡ True. 

We suppose that a reconfiguration scenario is applied at t1 time units to add 3 new tasks C; G; H. 

The new processor utilization becomes U = 1.454 > 1 time units. Therefore the system is unfeasible. 
Feasibility (CurrentV olvo(t)) ≡ False. 

 

 

Task Ti Ci Di U
100

 Uasy UOPT 

A 10 2 10 20% 20% 4.7% 

B 20 2 5 10% 40% 4% 

D 50 6 50 12% 12% 1.6% 

E 100 8 100 8% 8% 5.6% 

F 2000 7 100 7% 7% 9% 

C 50 1 2 2% 50% 1% 

G 2000 8 100 8% 8% 18.6% 

H 2000 8 2000 8% 0.4% 18.6% 

 

(Table 0.7):  The Volvo case study 

 

 

 

 

Agent-based architecture for Reconfigurable Embedded Control Systems 

 

We define in this section an agent-based architecture for reconfigurable real-time embedded systems that should 

classically meet different deadlines defined in user requirements. The agent controls all the system’s evolution 

and provides useful solutions for users when deadlines are violated after any dynamic (manual or automatic) 
reconfiguration scenario. 

 

 
Running Example: 

In our real-time embedded system Volvo to be initially implemented by 5 characterized tasks which are feasible 

because the processor utilization factor U = 0.87 < 1. We suppose that a reconfiguration scenario is applied at t1 
time units to add 3 new tasks C; G; H. The new processor utilization becomes U = 1.454 > 1 time units. 

Therefore the system is unfeasible. Feasibility (CurrentV olvo(t)) ≡ False. 

 

To check the whole system behavior of this system Volvo, we present simulations given by the real-time 
simulator Cheddar in Figure 6. 
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Figure 6.  Simulations of the Volvo case study with Cheddar 

 

CONTRIBUTION 1: NEW THEORETICAL PRELIMINARIES 

This section aims to define a new theoretical preliminaries for a set of asynchronous real time tasks scheduling 

under EDF based on the concepts defined in [21, 22], which compute a feasible schedule for a set of 

synchronous real time tasks scheduling under EDF. These new theoretical preliminaries will be used in the 
following two contributions. Our main contribution is the optimal schedulability algorithm of uniprocessor 

periodic real-time tasks implementing reconfigurable systems. By applying a preemptive scheduling, the 

assumed system is characterized by periodic tasks such that each one is defined by a tuple (Si;Ci;Di;Ti).  A 

system is called asynchronous, if its tasks have offsets and are not simultaneously ready. Note that in 

synchronous systems, all offsets are zero and all tasks are released at time t = 0. In this work, when a hardware 

problem occurs in the studied system, a reconfiguration scenario is automatically applied in this system which 
has to react by changing its implementation from a subset of tasks to a second one. A reconfiguration scenario 

corresponds therefore to the addition, the removal or the update of real-time tasks. The general problem of our 

project is to be reassured that any reconfiguration scenario changing the implementation of the system does not 
violate real-time constraints: i.e. the system is feasible and meets real-time constraints even if we change its 

implementation. In this work also, we analyze the feasibility of real-time systems with a single processor by 

using preemptive Earliest Deadline First (EDF) scheduling algorithm. EDF is an optimal scheduling algorithm 
on preemptive uniprocessors in the following sense: if a collection of independent periodic (synchronous and 

asynchronous) jobs can be scheduled by a particular algorithm such that all deadlines are satisfied, then EDF is 

able to schedule this collection of jobs (instances) [1]. 

We propose in this paper an agent-based architecture that checks the system’s evolution and defines useful 
solutions for users when deadlines are violated. Therefore, for every set of OS tasks, we check its on-line 

feasibility by executing it when the corresponding reconfiguration scenario is automatically applied by the agent 

at run-time. 
We apply these different solutions on the Volvo Benchmark (Industrial Case Study) that we consider as running 

example. 
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Formalization:  

By considering asynchronous real-time tasks, the schedulability analysis should be done in the Hyper-Period hp 
= [0, 2*LCM + maxk(Ak,1)], where LCM is the well-known Least Common Multiple and (Ak,1) is the earliest 

start time (arrival time) of each task τk [11].  The reconfiguration of the system Currentᴦ (t) means the 

modification of its implementation that will be as follows at t time units: Current Γ (t) = new _old   

Where _ old is a subset of n1 old periodic tasks which are asynchronous and not affected by the 

reconfiguration scenario (e.g. they implement the system before the time t), and new is a subset of n2 new 

asynchronous tasks in the system. We assume that an updated task is considered as a new one at t time units. By 

considering a feasible System Sys before the application of the reconfiguration scenario, each task of _ old is 

feasible, e.g. the execution of each instance is finished before the corresponding deadline:  

– Let n1 and n2 be the number of tasks respectively in _ old and new such that n1 + n2 = n (the number of 

a mixed workload with periodic asynchronous tasks in Current Γ (t)). To estimate the amount of work more 

priority than a certain under EDF, it is inevitably necessary to us to take into account deadlines because the 

more priority work is the work which has the earliest deadline. In particular, we propose one function of job 
arrival with deadline, one function of workload with deadline and finally, we propose the function of major job 

arrival with deadline for periodic asynchronous tasks.  

For example, In the Volvo case study, we have the first subset _ old  composed of the following five initial 

tasks _ old  = {A; B; D; E; F} (n1 = 5), this system is feasible and U = 0.87. We suppose that a 

reconfiguration scenario is applied at t time units to add a second subset composed of three new tasks {C; G; H} 

= new  (n2 = 3). 

Therefore, the system Current Γ (t) is composed of eight tasks (n = 8 = 3 + 5) as shown in table 0.7 and it’s 

unfeasible. Feasibility(Current Γ (t)) ≡ False. 

By applying the well-known scheduling real-time simulator Cheddar [8], the EDF scheduling result is shown in 

figure 6. The processor utilization factor (U) becomes equal to 1.454 after adding the 3 new tasks and the task 

set seems to be not schedulable. 

New function of job arrival with deadline: 

We propose new functions of job arrival which integrate the deadlines by the following levels: 

– In the instance level: 

Sk,n(t1,t2,d) = Ck,n * Π [t1≤Ak,n<t2] * Π [Dk,n≤d]  =  Sk,n(t1,t2) * Π [Dk,n≤d]  Where Sk,n(t1,t2,d) is the amount of 

job with lower deadline or equal to d brought by the instance τk,n meanwhile of time [t1,t2[, and Π [α] = 1 if the 

predicat α = true. 

– In the task level we propose: 

Sk(t1,t2,d) =  
n

 Ck,n * Π [t1≤Ak,n<t2] * Π [Dk,n≤d] , Where Sk(t1,t2,d) is the amount of job with lower 

deadline or equal to d brought by all the instances of τk  meanwhile of time [t1,t2[. 

 

– For a set of tasks Γ we propose: 

SCurrent Γ(t) (t1, t2, d) =  
 

i

Current t

S t1, t2,d
ii in 




, Where SCurrent Γ(t) (t1, t2, d) is the amount of job with lower 

deadline or equal to d brought by all the instances of tasks that composed Current Γ(t) meanwhile of time  

[t1, t2 [. 

 

New function of workload with deadline: 

In the study of the EDF policy, it is necessary to us to know at the certain moments the workload in wait of 
treatment of which the execution must be ended before a certain deadline. So, we propose one function of 

workload with deadline: 
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– In the instance level: 

Wk,n(t,d) = Sk,n(Ak,1,t,d)  − 
k ,n

k ,1A

( , )

t

u d du       (a) 

Where 
k ,n

( , )t d  = 
k,n

( )t * [Dk,n d] .  Wk,n(t,d) is the amount of job with lower deadline 

to d brought by the instance ,k n which again is to be executed at the moment t. If Ak, 1 = 0, we restraint to 

the case of synchronous tasks. 

 

– In the task level: 

Wk(t,d) =  Sk (Ak,1,t,d)  −  
k

k,1A

( , )

t

u d du  =   k,nW t,d
n

  

Where Wk (t,d) is the amount of job with lower deadline to d brought by all the instances of k which 

gain is to be executed at the moment t. 
 

– For a set of tasks Γ: 

For the Current Γ (t) = new _ old  , we propose: WCurrent Γ (t) (t,d) =  
 

i

Current t

W ,d
ii in

t
 




  

=  SCurrent Γ (t) (Ak,1,t,d)   - 
k ,1A

( , )

t

u d du
 , Where WCurrent Γ (t) (t,d) is the amount of job with lower 

deadline to d brought by all the instances of tasks that composed Current Γ (t) which again is to be executed at 

the moment t. 

 

CONTRIBUTION 2: AGENT-BASED REAL-TIME RECONFIGURABLE MODEL 

This section aims to propose an intelligent Agent-based architecture which is able to propose technical solutions 
for users after any dynamic reconfiguration scenario.  

Agent’s Principal 
Let Γ be the set of all possible tasks that can implement the system, and let us denote by Current Γ (t) the current 

set of periodic asynchronous tasks implementing the system at t time units. These tasks should meet all required 

deadlines defined in user requirements. By considering a feasible System Γ before the application of the 

reconfiguration scenario, each one of the tasks of  _ old  is feasible, e.g. the execution of each instance is 

finished before the corresponding deadline. In this case, we note that Feasibility (Current Γ (t)) ≡ True. 

An embedded system can be dynamically reconfigured at run-time by changing its implementation to delete old 

or to add new real-time tasks. We denote in this research by new a list of new asynchronous tasks to be 

added to Current Γ (t) after a particular reconfiguration scenario. In this case, the intelligent agent should check 

the system’s feasibility that can be affected when tasks violate corresponding deadlines, and should be able to 

propose technical solutions for users.  

Let us return now, to the equation (a), we can notice that for d < Dk,n, we have Wk,n(t,d) = 0 for any value of t 

and the Wk,n(t,Dk,n) > 0 for t > Dk,n which involves that τk,n cannot meet its deadline, (it can violates it). 

Consequently, the task τk can violates also its relative (corresponding) deadline and all the system Current Γ (t) 

will be unfeasible at t time units. In this case the following formula is satisfied: 
1

1,
min( , )

n
i

i i i

C

T D

  
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Now, we apply at time t a dynamic reconfiguration scenario in order to adapt the system’s behavior and to 

guarantee the system’s feasibility which depends of two major goals of the reconfiguration: 
 

– The first major goal to control the problem’s complexity is to minimize response time of asynchronous 

periodic tasks of Current Γ (t) = new _ old  , then the agent will not modify the _ old  tasks and 

should provide different solutions for users by reconfigure only new which is composed by n2 asynchronous 

periodic tasks in order to satisfy functional requirements,  
 

– The second major goal of obtaining the system’s feasibility is to meet deadlines of asynchronous periodic 

tasks, then, the agent should react by updating of the global system Current Γ (t) = new _ old  , which 

is composed by n1 and n2 asynchronous periodic tasks in order to re-obtain the system’s feasibility and provides 

different solutions for users. 

First Case: Minimizing the response time of periodic tasks 

In this case, the objective is to reduce the periodic response times as much as possible, still guaranteeing that all 

periodic tasks complete within their deadlines.  

Solution 1: Removal of Tasks (1) 
We define in this solution a perfect admission controller as a new heuristic, which is defined as an admission 

control scheme in which we always admit a task if and only if it can be scheduled. Such a control policy can be 

implemented as follows. Whenever a task arrives, the agent computes the processor utilization Ci/min(Ti,Di) of 

each task τi and generates the feasible superset Ωfeasible which defines the different feasible subsets of tasks in 

achieving good periodic responsiveness where U(t) = 

1

1,
min( , )

n
i

i i i

C

T D

 is enforced. 

Ωfeasible = {τ   Current Γ /Feasibility (τ) ≡ True} 

Each subset τ corresponds to a possible implementation of the system such that: new _old   

_

1
min( , )

i Asynchronous Task

i

i is

C

T D 

  [20] 

In this case we remove all tasks of new , we stock them in a list and we begin by using an acceptance test, 

e.g., periodic tasks ϵ new that would cause U (t) to exceed this bound are not accepted for processing. In 

other words, when a task arrives at the system, it is tentatively added to the set of tasks in the system. The 
admission controller then tests whether the new task set is schedulable. The new task is admitted if the task set 

is schedulable, e.g., would not cause U (t) to exceed the bound (U (t) =
1

1

1
min( , )

n j

i

i

i i

C

T D





  is enforced 

where j ∈ [0; n2]). Otherwise, there are two possible cases: 

 

– First case: if the arrival task is hard, then it will be accepted and we will randomly remove another soft task 
from the [1... n1 + j −1] previous tasks to be rejected and still guaranteeing a feasible system,  

– Second case: if the arrival task is soft, it will be dropped (rejected) immediately. 

The agent computes the processor utilization Ci/min (Ti,Di) of each task τi and generates the feasible superset 

Ωfeasible which defines the different feasible subsets of tasks. 

The agent suggests all possible combinations of tasks for users who have the ability to choose the best 

combination that satisfies functional requirements. 

Running Example: 

The agent should react to propose useful solutions for users in order to re-obtain the system’s feasibility. In our 
Volvo system, we present in Figure 7 the results described by the developed tool RT - Configuration. These 
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results are the possibilities of the considered tasks which can be removed from the subset. The user can choose 

one of these solutions to have a feasible system.  
Here the agent proposes the task C to be removed to re-obtain the system’s feasibility.  

 

 

 
 

Figure 7: the Volvo case study simulation 
 

 

By applying the well known scheduling real-time simulator Cheddar [8], the EDF scheduling result is shown in 

figure 8. 
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Figure 8: the Volvo case study simulation with Cheddar 

 

The processor utilization factor (U) becomes equal to 0.954 after removing the task C, and the task set becomes 

schedulable (feasible). 
 

Second Case: Meeting deadlines of periodic tasks 

– Solution 1: Modification of Periods (2) 

The agent proceeds as a second solution to change the periods of tasks of new and _ old . To obtain a 

feasible system, the following formula should be satisfied:  
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1
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i i n ji i i i
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   

 

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1
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 

   

  


  , Let j be ( min( , )i iT D i ) 
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  





 
 
  
 
 

 




= constant, the new period of Γ tasks is therefore deduced from j . 
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Running example: 

The agent should react to propose useful solutions for users in order to re-obtain the system’s feasibility. In our 

Volvo system, we present in Figure 9 the results described by the developed tool RT - Configuration. These 

results are the new temporal parameters of the considered tasks. The user can choose one of these solutions to 

have a feasible system. We note that: new = {C; G; H} and _ old = {A; B; D; E; F}. 

The agent computes the constant values j (j ∈ [0; 5]) corresponding respectively as follows: 

β0 = 43, β1 = 77, until β5 = 42 time units where _ old  Ø and new  = {A; B; D; E; F; C; G; H} 

 

 

 
 

Figure 9: The Volvo case study simulation 

 
 

By applying the well known scheduling real-time simulator Cheddar [8], the EDF scheduling result is shown in 

figure 10. 
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Figure 10: the Volvo case study simulation with Cheddar 

 

The processor utilization factor (U) becomes equal to 0.942 after updating the tasks C, G and H by the new 

value of period equal to 43 and the task set becomes schedulable (feasible). 
 

Solution 2: Modification of Worst Case Execution Times (3) 

The agent proceeds now as a third solution to modify the Worst case Execution Times (WCET) of tasks of 

new and _ old . To obtain a feasible system, the following formula should be satisfied: 
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 

   

     

 

Let j  be the following constant: j  = i  = Constant, 
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The new WCET of Γ tasks is therefore deduced from
j . 

 

Running example: 

The agent should react to propose useful solutions for users in order to re-obtain the system’s feasibility. In our 
Volvo system, we present in Figure 11 the results described by the developed tool RT-reconfiguration. These 

results are the new temporal parameters of the considered tasks. The user can choose one of these solutions to 

have a feasible system. We note that: new = {C; G; H} and _ old = {A; B; D; E; F} 

 

 
 

Figure 11: The Volvo case study simulation 

 

The agent computes the constant values
j , (j ∈ [0; 5]) corresponding respectively to the new values of the 

Worst Case Execution Times (WCET).  Here γ = -44, and the minimum value of WCET in the Volvo system is 

equal to 1, so γ = -44 + (Minimum WCET = 1) = -43 ≤ 0. Therefore, the agent deduces that modifications of 

Worst Case Execution Times (WCET) cannot solve the problem. 
 

CONTRIBUTION 3: OPTIMIZATION OF RESPONSE TIME 

This section aims to present the principle of response time minimization. Indeed, in this paper, we are interested 
in an automatic reconfiguration of operating system’s (OS) functional tasks. All the tasks are supposed to be 

independent, periodic and synchronous/asynchronous. We assume also that the whole system is scheduled by 

the earliest deadline first (EDF) scheduling policy. So, we shall deduct from this schedulability certain basic 

properties of the system, and then we shall become attached to finer characterizations with in particular the 
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determination of borders on response time which is a central problem in the conception of the real-time systems. 

For this reason, we present the function of major job arrival with deadline in the following paragraph. 
 

New function of major job arrival with deadline: 

In the Background, we defined the function of job arrival with deadline. Now and in order to analyze the 

feasibility, we shall have to quantify, the maximal amount of job of term less than or equal to one certain date 
was engendered on an interval of time, it is the function of major job arrival with deadline. This function 

applied to the task τk, noted ˆ (.)kS , limits the function of major job arrival with deadline of the task τk, on 

everything interval of time of duration Δt: Sk(Ak,j , Ak,j + Δt, Ak,j + d) ≤  ˆ ( t, )kS d , 
k, jA  (the beginning of 

the interval in which the function is estimated)  ≥ 0, 0t  , 0d  .   

We assume now the case where Dk,n = Ak,n + 
kD ,   k,n. We consider an interval of time [Ak,j,  Ak,j + Δt [, 

Which is the maximum amount of job which can be engendered for one periodic tasks with deadline on this 

interval? We know that most high time of execution of an instance is Ck. Let us determine the maximum 

number of instances in an interval of time of the type [Ak,j,  Ak,j + Δt [. We note Ak,n0  the first instance of τk, 

after Ak,j and Ak,n1 the last one before Ak,j + Δt with n =  n1 − n0 + 1 the number of instances in this interval 

[Ak,j,  Ak,j + Δt [. 

There are two conditions so that the job of an instance τk,i is counted, it is necessary that:  

 

1. Ak,i  <  Ak,j + Δt: the maximum number of instances is most big n which verifies: 

Ak,n0 + (n − 1)*Tk < Ak,j + Δt. Where A k, n0 ϵ [Ak,j ,Ak,j +Tk[. If Ak,n0 = Ak,j , we have n maximum and we obtain 

the following expression: n < Δt/ Tk + 1.    (b) 

The biggest integer n which satisfies (b) is t

k

n
T



 
 
 
 

 

2. Dk,i < Ak,j +d : the respect for this condition involves that the deadline of τk,n1 will have to verify: 

Dk,n1 = Ak,n1 + 
kD ≤  Ak,j + d. 

As Ak,n1  ≥  Ak,n0  +  (n − 1)*Tk, we have Ak,n0 + (n − 1)*Tk + 
kD  ≤  Ak,j + d. Where Ak,n0  ϵ  [Ak,j , Ak,j + Tk[. 

If Ak,n0 = Ak,j, we have n maximum and we obtain the following expression: n ≤ (d-
kD )/ Tk +1.       (c) 

The biggest integer n which satisfies (c) is n = kd D

kT



 
 
 
  

+1     (d). 

An implicit condition is that n ≥ 0, notice in (d) that as 
kD can be arbitrarily big, n can be negative. The 

biggest n which verifies three conditions (b, c and d) is finally:  n = min t( , 1)
d Dk

T Tk k



  
    

 
      

. Where ( )a


= 

max (0, a). We obtain finally the function of major job arrival with following deadline for τk: 

ˆ ( t, )kS d = min t( , 1)
d Dk

T Tk k



  
    

 
      

* Ck                (e). 
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Interference period with deadline d under EDF 

The end of execution of an instance τk,n1, with a deadline Dk,n, is the end of one period of activity of the 

processor in which all the executed instances have a deadline less or equal to Dk,n. So, we define the period of 

interference with a deadline d as: 

 

Definition: A period of interference with a deadline d is an interval of time [Bj, Ej [such as:  

W1..m (Bj,d) = W1..m (Ej,d) = 0 and Bj < t < Ej → W1..m(t,d) > 0. On the same trajectory, we can have several 

periods of interferences there with deadlines d and we shall note Bj(d) and Ej(d)  the beginning and the end of 

the i
th

 period of interference. So, the end of the period of interference with deadline d satisfies: 

 

Ej(d)  = min{t > Bj(d) / W1..m(t,d) = 0}.         (f) 
Inside the period of interference, the workload with deadline less than or equal to d evolves in time according to 

the equation (a)  

W1..m(t,d) = S1..m(Bj(d),t,d) - 

j

1..
B ( )

( , )

t

m
d

u d du  

As the function 
1..

( , )
m

t d is always equal to 1 inside the period of interference, we have:  

W1..m(t,d) = S1..m(Bj(d),t,d) -  (t − Bj(d)). By injecting this relation in the equation (f) and after a 

change of variable (t = Bj(d) + Δt), we obtain this characterization of Ej(d) that we shall use to determine 

the response time borders: 

Ej(d) = min {Δt >0/ S1..m(Bj(d), Bj(d) + Δt ,d)) =  Δt } 

 
Significant activation dates under EDF: 

We note E0(d) the end of the first period of interference with deadline d which follows the simultaneous 

activation of all the tasks except of the task τk under study. An instance τk,n ends its execution (in later) in E0(d) 

if d is the deadline of τk,n (d = Dk,n), that is for Ak,n = d -
kD . If we calculate the response time of τk,n for all 

the possible values of d for the first period of interference of the major activation scenario, we shall find 

inevitably one border at the response time of any instances of τk on any trajectory: 

ˆ
kR  = MAXd∈ Ɍ (E0(d) − (d − 

kD )) .  

The biggest size of this first period of interference is noted L. So that an instance τk,n belongs to this first period 

of interference, it is necessary that Ak,n + Ck ≤  L, where from d ≤  L + 
kD - Ck. Furthermore, the first possible 

deadline date is d = 
kD who corresponds to Ak,n = 0. 

We have then, 
ˆ

kR  = MAXd∈ Ɍ ,d≥ 
kD , d ≤  L + 

kD - Ck (E0(d) − (d − 
kD )) . As d , it is not 

possible to make the calculation for all possible values but we can limit ourselves to significant values of d, that 

is values of d which correspond to Ai,1 (i ∈ [1..m]). Let us build orderly sequence of the deadlines of all the 

instances of all tasks. The only values of d for which it is necessary to calculate E0(d) are values such as d is a 

deadline date included between kD and L + kD - Ck. The set Dk of all the values of d to examine is thus: 

Dk = {d = n*Ti + iD / d ≥ kD , d ≤ L + kD - Ck , n ∈ ℕ, i ∈ [1..m]}.      (g) 
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Calculation of response time borders under EDF 
The value of the biggest possible period of interference of the system noted L is common to all the tasks. This 

maximal period occurs after the simultaneous provision of an instance of all the tasks:  

L = min {Δt >0/  1..
ˆ 0,  tmS   = Δt}    (h) 

With  1..
ˆ 0, tmS =  1..

ˆ 0, t, +mS   is the function of major job arrival who adds the job of all the instances 

whatever are their deadlines. In the case of periodic tasks, as it was studied before, we have: 
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S t C
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 
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 
   

Now, according to the previous three solutions calculated by the Intelligent Agent (Solution 1, Solution 2, and 
Solution 3), we define:  

• L1 according to Solution 1, by the following expression: 

 

L1 = min {Δt >0/  
11..

ˆ 0,  tmS   = Δt}, where  
11..

ˆ 0,  tmS   = 
1

1

*
m

i

i i

t
C

T

 
 
 

  

and m1 ≤ m resulting from the removal tasks generated by the first solution (Solution 1). 
 

• L2 according to Solution 2, by the following expression: 

 

L2 = min {Δt >0/  1..
ˆ 0,  tmS   = Δt}, where  1..

1

ˆ *
m

m i

i i

t
S t C



 
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 
   and i  

resulting from the new periods generated by the second solution (Solution 2). 

 

• L3 according to Solution 3, by the following expression: 

L3 = min {Δt >0/  1..
ˆ 0,  tmS   = Δt}, where  1..

1

ˆ *
m

m i

i i

t
S t

T




 
   

 
 and i  

resulting from the new worst case execution times generated by the third solution (Solution 3). 

L1 is thus (respectively L2 and L3), the limit when n aims towards the infinity, of the suite: 
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The obtaining of L1 (respectively L2 and L3), allows us to build the set 
1

kD  (respectively 
2

kD and
3

kD ) defined 

by (g).  For every value of d 
1

kD  (respectively 
2

kD and
3

kD ), it is now necessary to calculate the end of the 

corresponding period of interference E0,1(d) (respectively E0,2(d) and E0,3(d)).  

According to (h) and (e): E0,1(d) is the limit when n aims towards the infinity of the suite: 

0

0,1( )E d   , 1

0,1

1

1
0,1

( , 1))( ) (min *
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nE d Di
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T Ti i
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
, 

E0,2(d) is the limit when n aims towards the infinity of the suite: 
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
, 

and E0,3(d) is the limit when n aims towards the infinity of the suite: 

 

0
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0,3

1

1
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nE d Di
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Where   is a positive and unimportant but necessary real value to affect the convergence. For every value of 

d 
1

kD  (respectively 
2

kD and
3

kD ), the corresponding response time is:  

,1 0,1( ( ) ( )),k kR E d d D   The biggest value is the border of the response time (R {k,1}max). 

,2 0,2( ( ) ( )),k kR E d d D   The biggest value is the border of the response time (R {k,2}max). 

,3 0,3( ( ) ( )),k kR E d d D   The biggest value is the border of the response time (R {k,3}max). 

We define now, Rk optimal noted 
opt

kR   according to the previous three solutions calculated by the intelligent 

Agent (Solution 1, Solution 2, and Solution 3) by the following expression: 
opt

kR  = min (Rk,1, Rk,2, Rk,3)  (the minimum of the three values)     (j). 

So, the calculation of 
opt

kR   allows us to obtain and to calculate the minimizations of response times values 

and to get the optimum of these values.  
 

 

Final conclusion 

This research work dealing with multi-parameters reconfiguration is that we propose in the current paper in 
which, we give solutions to the user for all these problems presented by the tool RT-Reconfiguration. This work 

also, concentrates on the context of systems containing a set of tasks which is not feasible. The reconfiguration 

was applied in order not only to obtain the systems feasibility, but also to get the performance of the system by 
reducing the response time of the processes to be tolerated in interactive environment in order to obtain the 

optimization of the response time of the studied reconfigurable system. 
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Algorithm 

Given a set of periodic, independent tasks to be scheduled by EDF on a single processor, Spuri [30] proposed an 
algorithm for computing an upper bound on the worst-case response time of a task. His algorithm, however, 

does not consider task offsets. This means that the analysis proposed by Spuri is still valid even in the case of 

tasks with offsets (asynchronous case), but the results may be pessimistic. A first approach to the problem of 

computation of worst-case relative response times would be to apply Spuri’s method, considering each task to 
be independent from other tasks of the same set of tasks. However, this approach is extremely pessimistic. 

Palencia and Gonzalez [31] introduced a new method that is much less pessimistic than Spuri’s one by taking 

into consideration the offsets among tasks of the same set of tasks.  
The following algorithm is our original contribution to the problem, which is able to provide both a response 

time minimization and a feasibility of the studied system.  

We now introduce this algorithm, our original contribution to the problem, by these different codes to be 
supported by the agent for a feasible reconfiguration of an embedded system. 

 

 

Begin Algorithm 

Code1 Removal-Tasks () U 0;  

– For each partition new  old     

                 – i = 1; 

                – U   ;
min( , )

i

i

C

T Di
   

– If  1U  

         – Then display (  ); 

            Save (m1); 

Else display i+1; 

Code2 Modify Periods_Deadlines_WCET() 

– Compute ( i ); 

– Compute ( i );                                  

– For min( , )iT Di   new _old   

         – Display parameters (); 

Code3 Generate_parameters (m1, i , i ); 

– Compute (Rk,1); 

– Compute (Rk,2); 

– Compute (Rk,3); 

– Generate (
opt

kR ); 

End Algorithm 

 

 

Intuitively, we expect that our algorithm performs better than the Spuri’s, the Palencia and Gonzlez ones. We 

show the results of our proposed algorithm by means of experimental result’s evaluation. 
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Complexity 

The EDF-schedulability in the case of periodic synchronous tasks (with deadline equal to period) is decidable in 

polynomial time. In the case of asynchronous tasks, i.e. each task has an offset Si, such that jobs are released at 

k*Ti + Si (k ∈ ℕ), then testing the feasibility is strongly coNP-hard [11]. This complexity was decreased in our 

approach to O(nlog(n)) because the proposed algorithm is recursive, and the Earliest Deadline First algorithm 

also, would be maintaining all tasks that are ready for execution in a queue. Any freshly arriving task would be 

inserted at the end of queue. Each task insertion will be achieved in O(1) or constant time, but task selection (to 

run next) and its deletion would require O (n) time, where n is the number of tasks in the queue. EDF simply 
maintaining all ready tasks in a sorted priority queue that will be used a heap data structure. When a task 

arrives, a record for it can be inserted into the heap in O(log (n)) time where n is the total number of tasks in the 

priority queue. Therefore, the time complexity of Earliest Deadline First is equal to that of a typical sorting 
algorithm which is O (n log (n)). So O(nlog (n)) time is required. In other hand, the busy period, which is 

computed for every analyzed task set and has a pseudo-polynomial complexity for U ≤ 1 [12], is decreased also 

by the optimization of the response time. The most important results are presented in our work. So, we can 
deduce that using our proposed approach under such conditions may be advantageous.  

 

Theorem 

We assume a preemptive, asynchronous and periodic task system Γ to be composed of n periodic reconfigurable 

tasks, where each task is described by a period Ti, an arbitrary relative deadline Di, a Worst Case Execution 

time (WCET) Ci and a release offset Si. 

If Γ is unfeasible and we apply a reconfiguration scenario based on EDF algorithm using the three previous 

solutions described in (1), (2) and (3) then, these tasks are scheduled with minimum response time. The system 

Γ is feasible and more over, we obtain an optimal response time for this system in the hyper-period hp = [0, 

2*LCM+maxk(Ak,1)]. (4) 

Proof: 

We prove the above theorem by proving the contrapositive, i.e., by showing that if Γ is not schedulable by EDF, 
then (4) is false. 

Let tb be the first instant at which a job of some task τi misses its deadline under EDF. Since τi misses its 

deadline at tb, then all the system will be unfeasible, then the hyper-period hp = [0, 2*LCM + maxk(Ak,1)] is not 

bounded and it diverge. 

Or, initially we supposed that the hyper-period hp = [0, 2*LCM + maxk(Ak,1)] is bounded and converge. Thus, 

(4) is false as claimed. 

We now want to prove the property of optimality addressed above, in the previous proposed theorem. That is 

the response time of the asynchronous periodic requests under the EDF algorithm are the best achievable. This 
is exactly what is stated by the following lemma.  

 

Lemma Let A be any on-line preemptive algorithm, Γ a periodic task set, and τ an asynchronous periodic task. 

If ( )AR   is the response time of τ when    is scheduled by A, then ( ) ( )EDF AR R     

Proof: 

According to the equation (a), we can notice that for d < Dk,n, we have Wk,n(t,d) = 0 for any value of t. Where 

Wk(t,d) is the amount of job with lower deadline to d brought by all the n instances of τ k. Dk,n is the relative 

deadline of the nth instance of the task τ . So, for each instant t’ that, t’ ≥  t and t’ = d, we have: 

, ( , ') 0.EDF

k nW t t   It follows that: Current ( , ') 0EDFW t t


  

and Current Current( , ') ( , ')EDF AW t t W t t
 

 , it follows that: ( ) ( )EDF AR R     

That is, under the EDF algorithm, τ is never completed later than under A. By end, the optimality property was 
proved. 
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EXPERIMENTAL ANALYSIS AND DISCUSSION 
In this section, in order to check the suggested configurations of tasks allowing the system’s feasibility and the 

response time minimization, we simulate the agent’s behavior on a Blackberry Bold 9700 presented by [32] and 
on a Volvo system presented by [16]. This simulation presents some results by virtually applying real-time 

reconfigurations in the operating system of Blackberry Bold 9700 and in the operating system of a Volvo 

system. The Blackberry Bold 9700 is assumed to be initially composed of 50 tasks and dynamically 

reconfigured at run-time to add 30 new ones in which a task can be a missed call, a received message, or a 
Skype call. According to [32], the implemented Blackberry Bold 9700 is characterized as follows: 

• Mobile type: 3G (WCDMA), GSM, and WCDMA, 

• Support band: GSM 850/900/1800/1900, 
• Data transmission: GPRS, EDGE, and HSDPA, 

• Producer: RIM, Canada, 

• Commerce available: November, 2009, 
• OS: Blackberry OS 5.0, 

• Battery: Lithium battery, 1500 mAh, 

• CPU: Marvell PXA930, 624MHz, 

•Storage: Micro-SD 32GB, and 
• Memory: 256MB ROM and 256MB RAM. 

The Volvo system as shown in table 1 is assumed to be initially composed of 5 tasks and dynamically 

reconfigured at run-time to add 3 new ones. In this paper, any real-time reconfiguration and response time 
minimization is based on the real-time embedded control system reconfiguration. Moreover, in order to meet all 

real-time constraints, both initial WCETs Ci, the relative deadline Di and also periods Ti of each task are 

reconfigured by the intelligent agent RT-Reconfiguration. 

In this case, we are interested in the reconfiguration of these task’s parameters, however we just present Si, Ci 

and Ti of each task, and we assume that periods are equal to deadlines. The goal is to minimize the response 

time of the whole system and to meet their relative deadlines. 

By applying the well known scheduling real-time simulator Cheddar [8], the EDF scheduling result is shown in 

figure 12. 
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Figure 12: the Blackberry Bold 9700 simulation with Cheddar 

 
 

The developed intelligent agent RT-Reconfiguration can configure all the parameters and evaluate the processor 

utilization factor 

1

.
min( , )

n

i i i

Ci
U

T D


 

 

 
 

Figure 13: The Blackberry Bold 9700 simulation with RT-Reconfiguration 
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The previous tests were performed on an Intel(R) Core(TM) 2 Duo CPU (2.00 GHz, 3GHz RAM) on MS 

Windows 7. By considering asynchronous real-time tasks, the schedulability analysis should be done in the 

Hyper-Period HP = [0, 2*LCM + maxk(Ak,1)] ,where LCM is the well-known Least Common Multiple. Let n be 

the number of tasks in Current Γ (t). The reconfiguration of the system Γ means the modification of its 

implementation that will be as follows at t time units: 

 Current t   new _ old   , Where _ old  is a subset of old tasks which are not affected 

by the reconfiguration scenario (e.g. they implement the system before the time t), and new a subset of new 

tasks in the system. We assume that an updated task is considered as a new one at t time units. By considering a 

feasible System Γ before the application of the reconfiguration scenario, each one of the tasks of _ old  is 

feasible, e.g. the execution of each instance is finished before the corresponding deadline. 
 

Analysis of Results 

In order to evaluate the proposed approach and to determine their advantages we consider the systems 
Blackberry Bold 9700 and Volvo defined in the running examples.  

As shown in figures 14 and 15, the X axis (abscissa axis) represents the number of removal tasks. If the removal 

rate is equal to 5, implying that we remove 5 tasks at each reconfiguration scenario. Then, more than 50 tasks, 
we can’t remove another ones because the studied system will be disastrous. 

As shown in figure 16, the X axis (abscissa axis) represents the number of reconfigured tasks. If the 

reconfiguration rate is equal to 10, implying that we modify 10 task’s parameters (Deadlines/Periods or 

WCETs) at each reconfiguration scenario. The running time for the Blackberry Bold 9700 system ranges from 0 
to 550 microseconds using the first solution. The utilization factor (U) decreases from 1.489 to 0.389 

microseconds using the first solution, from 1.489 to 0.709 microseconds using the second solution and it 

decreases from 1.489 to 0.478 microseconds using the third solution. 
 

 
 

Figure 14: The Utilization Factor Evolution of the Blackberry Bold System (Solution 1) 
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Figure 15: The Response Time Evolution of the Blackberry Bold System (Solution1) 

 

 

 

 
 

Figure 16: The Comparison between the 3 Solutions (The Blackberry Bold System) 
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Figure 17: The Comparison between the 3 Solutions (The Volvo System) 

 

As the results show (figure 16), we can observe, especially from the second half of the curve, and demonstrate 

the importance and efficiency of the solution 1 against the solution 2 and the solution 3 and the efficiency of the 
solution 3 against the second solution in term of utilization factor (U) decreasing. 

Based on these observed results, we can compare our work to the corresponding papers in the state of the art 

which cannot reach these results and why, we can confirm that this method is very advantageous given the fast 

response time and the performance of the schedulability of such studied system. 
 

As shown in figure 17, the X axis (abscissa axis) represents the number of reconfigured tasks. If the 

reconfiguration rate is equal to 1, implying that we modify 1 task’s parameters (Deadlines/Periods or WCETs) 
at each reconfiguration scenario. The running time for the Volvo system ranges from 0 to 40 microseconds using 

the first solution, it ranges from 0 to 50 microseconds using the second one and it ranges from 0 to 60 

microseconds using the third solution. 

 
As the results show (figure 17), we can observe, especially from the second half of the curve, and demonstrate 

the importance and efficiency of the solution 1 against the solution 2 and the solution 3, and the efficiency of 

the solution 3 against the second solution in term of response time speed. 
The second important observation was obtained by the comparison of our proposed approach against the others 

from the literature about the current values. We tested the feasibility of the same task sets Blackberry Bold 

9700, and Volvo by other algorithms, so that we can compare the results directly. We carried out several test 
runs and examined them under different aspects. The total utilization of the static schedule is 75%, the classic 

one is 145.4 % and the other proposed by our method is 63.1%. 
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Discussion and Evaluation 

The test greatly reduces the processor utilization factor 
1 min( , )

n

i i i

Ci
U

T D

  in comparison to the original 

processor utilization factor, so the combination of both three solutions in order to obtain the optimization of the 

response time by calculating Lopt leads to an improved algorithm for the analysis of asynchronous systems. 

So, we can therefore confirm that this method is nowadays very advantageous given the fast response time and 
the performance of the RT-Reconfiguration tool. 

By applying the three solutions of this tool RT-Reconfiguration, we conclude that our approach can allow more 

reactive and also more efficient feasible systems. This advantage can be important in many cases where critical 

control tasks should be intensively executed in small periods of time. This work also, concentrates on the 
context of systems containing a set of tasks which is not feasible; the reconfiguration was applied in order not 

only to obtain the system’s feasibility but also to get the performance of the system by reducing the response 

time of the processes to be tolerated in interactive environment and by avoiding unnecessarily frequent context 
switch leading to more overheads resulting in less throughput. This advantage was increased and proved clearly 

with the Blackberry Bold 9700 system proposed by [32] and by the Volvo case study proposed by [16].  

Both, the figures 10, 14, 15 and 16 illustrate this advantage. Moreover, with the revolution of semiconductors 
technology and the development of efficient reconfiguration tools, the use of our method and the RT-

Reconfiguration tool will becomes increasingly important, and very advantageous for rapid and efficient 

response time of the periodic reconfigurable OS tasks, especially when the user has no other choice than to 

choose the previous proposed solutions and to decide the proper values of each reconfigured task’s parameters 
in order to obtain the system’s feasibility and to minimize the response time of the studied systems. 

 

 

FUTURE RESEARCH DIRECTIONS 

We plan in future works to resolve several problems for the Reconfigurable real-time embedded systems.  

Another problem that has to be resolved in the future deals with the study of each reconfiguration scenario of 
sporadic and aperiodic tasks to be released in different times and the minimization of their response time. We 

plan also to study the reconfigurations of dependent and distributed real-time tasks.  Finally, our important 

future work is the generalization of our contributions for the Reconfigurable real-time embedded systems.  
 

 

CONCLUSION  
The book chapter deals with reconfigurable systems to be implemented by different tasks that should meet real 

time constraints. In this paper, we propose a new theory for the minimization of the response time of periodic 

asynchronous constrained deadline real-time tasks with EDF algorithm that can be applied to uniprocessor 
systems and proved it correct. We showed that this theory was capable to reconfigure the whole system by 

calculating worst case response times for a simple example using EDF scheduler. Previous work in this area has 

been described, and several different solution techniques have been suggested. These solutions techniques are 

primarily intended to reduce the processor demand and the response time by adapting the scheduling parameters 
(WCET, Period or Deadline) in a uniprocessor system by removing some tasks, changing the periods/deadlines 

or by reducing the worst case execution time of each task set independent of the number of tasks. 

A tool is developed and tested to support all these services. This approach is applied to a Blackberry Bold 9700 
and to a volvo system. To satisfy user requirements, we apply the Real-Time Simulator, cheddar to check the 

whole system behavior.  
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KEY TERMS 

Embedded systems: An embedded system is a computer system designed to perform one or a few dedicated 

functions often with real-time computing constraints. It is embedded as part of a complete device often 

including hardware and mechanical parts. By contrast, a general-purpose computer, such as a personal computer 
(PC), is designed to be flexible and to meet a wide range of end-user needs. Embedded systems control many 

devices in common use today 

 
Dynamic Reconfiguration: :   The dynamic  reconfiguration means qualitative changes on-line (at run time) in 

the structures, functionalities and algorithms of the “Control System” as a response to qualitative changes of 

control goals, of the controlled “physical system”, or of the environment the control system behaves within. 

Real-Time OS Tasks: Smallest identifiable and essential piece of a job that serves as a unit of work, and as a 
means of differentiating between the various components of a project. Often used as an alternative term for 

activity. 

Real-time constraints: Execution of real-time tasks must satisfy three types of constraints. Timing constraints 

enforce each task instance to complete its execution before D after the date the task is released (D is a relative 

deadline); precedence constraints force partially task instance order and the read of current data values; resource 

constraints represent the exclusive access to shared resources. 

Processor utilization factor:  Given a set of n periodic tasks, processor utilization factor U is the fraction of 
processor time spent in the execution of the task set. 

 

Intelligent Agent: On the Internet, an intelligent agent (or simply an agent) is a program that gathers 
information or performs some other service without your immediate presence and on some regular schedule. 

Typically, an agent program, using parameters you have provided, searches all or some part of the Internet, 

gathers information you're interested in, and presents it to you on a daily or other periodic basis. An agent is 
sometimes called a bot (short for robot). 

 

Run-time Environment: Stands for "Runtime Environment." As soon as a software program is executed, it is 

in a runtime state. In this state, the program can send instructions to the computer's processor and access the 
computer's memory (RAM) and other system resources. 

When software developers write programs, they need to test them in the runtime environment. 

 
Response time of an instance:  is the time (measured from the release time) at which the instance is 

terminated. 
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