
Applying Formal Methods to Build a Safe
Continuous-Control Architecture for an Unmanned
Aerial Vehicle
Leandro Buss Becker (leandro.bussbecker@manchester.ac.uk)

University of Manchester
Fernando Silvano Gonçalves

Federal Institute of Santa Catarina
Elton Ferreira Broering

Universidade Federal de Santa Catarina
Henrique Amaral Misson

Polytechnique Montréal
Lucas Cordeiro

University of Manchester

Research Article

Keywords: UAV, Formal Veri�cation, Model Checking, Schedulability analysis, Time-correctness, Safety,
Implementation-errors analysis, Runtime Monitoring

Posted Date: December 15th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3668418/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-3668418/v1
mailto:leandro.bussbecker@manchester.ac.uk
https://doi.org/10.21203/rs.3.rs-3668418/v1
https://creativecommons.org/licenses/by/4.0/

Springer Nature 2021 LATEX template

Applying Formal Methods to Build a Safe

Continuous-Control Architecture for an

Unmanned Aerial Vehicle

Leandro Buss Becker1,2*, Fernando Silvano

Gonçalves2,3, Elton Ferreira Broering2, Henrique Amaral

Misson2,4 and Lucas Cordeiro1

1Department of Computer Science, University of Manchester,
Manchester, M13 9PL, UK.

2*Graduate Program on Automation and Systems Engineering,
Federal University of Santa Catarina (UFSC), Florianópolis,

88040–900, SC, Brazil.
4Extension, Research and Education Department, Federal

Institute of Santa Catarina (IFSC) - Campus Tubarão, Deputado
Olices Pedra de Caldas, 480, Tubarão, 88704–296, Santa

Catarina, Brazil.
4Computer Engineering and Software Engineering Department,

Polytechnique Montréal, 2500 Chemin de Polytechnique,
Montréal, H3T 1J4, Québec, Canada.

*Corresponding author(s). E-mail(s):
leandro.bussbecker@manchester.ac.uk;

Contributing authors: fernando.goncalves@ifsc.edu.br;
eltonbroering@gmail.com; henriquemisson@gmail.com;

lucas.cordeiro@manchester.ac.uk;

Abstract

Cyber-Physical Systems (CPS) are systems composed of computational
and physical processes where constant interaction with the surrounding
environment exists. Unmanned Aerial Vehicles (UAVs) can be high-
lighted as a typical example of CPS. It contains devices that sense the
surrounding environment (e.g., IMU, GPS) and provide data for the
embedded continuous-control software to compute the CPS reactions.

1

Springer Nature 2021 LATEX template

2 Article Title

Such reactions are, in fact, actions in the physical (electro-mechanical)
process, which occur using actuators (e.g., motors’ speed controllers).
Such a CPS is typically classified as safety-critical because a failure
might have severe implications. Therefore, providing safety guarantees
is of utmost importance when designing this application. This paper
presents a solution for offering safety guarantees during the design of the
continuous-control architecture, which is one of the most critical parts
of the CPS. The present proposal applies formal verification (FV) tech-
niques to detect software errors and verify if the architecture is suitable
to cope with the real-time requirements coming from the system spec-
ification. The first verification round targets individual elements of the
architecture, especially the continuous-control algorithm. Therefore, the
ESBMC model checker is used; it receives the element’s source code
as input and can check for a set of language-specific properties, such
as memory safety and concurrency vulnerabilities. After making all the
individual analyses and performing subsequent corrections, another ver-
ification process is started using the UPPAAL model checker, aiming to
make the schedulability analysis of the proposed architecture. Finally,
we conduct a runtime monitoring analysis using our recently developed
RMLib tool. This proposal was successfully used within the design pro-
cess of a UAV, where different classes of design and implementation
problems were detected and further corrected, as detailed in the paper.

Keywords: UAV, Formal Verification, Model Checking, Schedulability
analysis, Time-correctness, Safety, Implementation-errors analysis, Runtime
Monitoring

1 Introduction

Cyber-physical systems (CPS) are composed of computational and physi-
cal processes, constantly interacting with the surrounding environment [1].
A typical CPS example is the autonomous robots/ vehicles, such as an
Unmanned Aerial Vehicles (UAV). UAVs, for instance, contain an embed-
ded computational system that “senses” the surrounding environment through
sensors (e.g., Accelerometers, Magnetometers, Sonar). It acts in the physi-
cal (electro-mechanical) process using actuators (e.g., Brushless-motors with
speed controllers) [2]. Search and rescue (SAR), food/ goods delivery, environ-
mental monitoring, power line inspection, and precision agriculture are, among
others, typical non-military application examples for UAVs [3].

UAV-related applications are considered safety-critical because a failure
might have severe implications, threatening human lives, natural resources, and
expensive equipment [4]. Typically, UAV/CPS applications are subject to hard
real-time constraints [5], implying that deadlines cannot be violated; otherwise,
erroneous actions might occur. For such reason, it becomes interesting, even
necessary, to enrich the design process with methods that can assure the time-
correctness of the system under design. In this regard, formal verification along

Springer Nature 2021 LATEX template

Article Title 3

with the UAV/CPS design process becomes necessary, especially during the
earlier phases of the development cycle [3].

The paper presents an experience report from applying formal verification
to build a safe continuous-control architecture for an UAV. The conducted
work uses software tools and models developed by the present co-authors in
related works that are further addressed. The aim is to assure the safety
and the time-correctness of the generated software components, which is done
using implementation errors and schedulability analyses. This initiative is not
intended to be seen as an exclusive way of tackling UAV design using formal
verification but as a novel approach that has shown to be a valuable asset for
the UAV design process, as further detailed.

The core elements of the verification process presented here are described
as follows. The Efficient SMT-based Bounded Model Checker (ESBMC) [6, 7]
is a context-bounded model checker suitable to detect user-specified assertion
failures and additional classes of problems, such as out-of-bounds array access,
illegal pointer dereferences, integer overflows, NaN (Floating-point), division
by zero, and memory leaks. The UPPAAL tool [8] is used to formally verify the
scheduling algorithm specifically for supporting the continuous-control archi-
tecture presented in this work. The RMLib [9] is a tool that supports runtime
monitoring on top of the FreeRTOS. It can be used to analyze execution traces
in offline mode, as well as to perform online analyses.

1.1 Paper Contributions

The novelties/contributions addressed in this paper can be summarized as
follows:

• It presents an extended FV process compared to our previous studies [10,
11], which adopts static verification to analyze the source code and the
architectural model and also allows the use of runtime monitoring to check
for timing faults.

• It details static code verification to search for implementation errors in
continuous-control algorithms.

• It describes the results obtained from using this FV process within the design
of the continuous-control architecture of a UAV.

• It details the developed continuous-control architecture, which can be used
as a reference – even completely reused – within other CPS.

1.2 Paper Organization

This paper is organized as follows. In Section 2, it is presented an overview
of the adopted development method, which is the basis for the proposal pre-
sented in this work. Section 3 presents the proposed FV process, addressing
its workflow and describing each verification step. In section 4, we detail the
runtime monitoring tool. The application of the FV process and the runtime
monitoring tool for the design of the continuous-control architecture of a UAV,
highlighting obtained results, with achievements and limitations, is discussed

Springer Nature 2021 LATEX template

4 Article Title

in Section 5. Section 6 discusses related studies where FV techniques were
applied for CPS/UAV design. Finally, we present our conclusions and possible
directions for future work perspectives in Section 7.

2 Overview of the Adopted Development
Method

This section provides an overview of the model-based development method for
CPS design presented in [12] and that was followed in this work. It originally
contained four design steps, but a fifth step is introduced in the present work.
Follows a summary of such design steps: (i) system requirements definition; (ii)
preliminary design; (iii) detailed design; (iv) implementation, and (v) runtime
analysis. Fig. 1 depicts these five steps, including the resulting actions (inside
the blocks) and the provided outputs.

I-Define
system

requirements

II-Create
executable
specification

III-Create
detailed
design

IV-Generate
code

V-Perform
runtime
analysis

System
requiremts

Simulation
model +

source code
AADL
model

C/C++
code
✲✲ ✲ ✲

Fig. 1 Main activities and artifacts of the adopted development method (adapted
from [12]). The system requirements provided in step-I guide the creation of an executable
spec. in step-II, which includes the source code of a continuous-control algorithm; then step-
III generates an AADL model that is suitable to be analyzed; the complete application code
is generated in step-IV; finally, in step-V a runtime analysis is performed.

An essential aspect highlighted is that this method suggests adopting differ-
ent modeling languages to represent systems functionalities and architecture.
The rationale is related to the available tools to simulate system functional-
ities. CPS designers typically prefer using tools that support mathematical
modeling and include simulation capacities, like Simulink, Labview, Scilab,
and Ptolemy. However, as discussed in [13], such tools are not appropriate to
represent the system architecture. For this reason, the adopted development
method suggests using a different modeling language to represent the system
architecture.

2.1 Definition of the system requirements

The first step of the method is eliciting the system requirements from the
sources (typically the stakeholders). This is a non-trivial step since it implies
discovering and unveiling the users’ needs concerning the system being built.
Many techniques can be used in this step, like interviews, task analysis, domain
analysis, introspection, brainstorming, observation, and personas. A good sur-
vey about elicitation techniques can be found at [14]. There are no hard rules
to deciding which techniques to use in these situations. The techniques to be
used depend on the judicious evaluation made by the engineer. The result
of this step is a specification of the user requirements, both functional and

Springer Nature 2021 LATEX template

Article Title 5

non-functional, written in natural language (e.g., English). This specification
serves mainly as a communication medium between the users and the project
members.

2.2 Preliminary design

The next step is to create a preliminary design for the CPS, focusing on obtain-
ing a specification suitable for simulation, both the continuous controller and
the related environment. An additional exciting feature regards structuring
the CPS regarding components and subsystems. Moreover, the adopted lan-
guage/modeling formalism could also aid the design team in modeling the
possible operation modes of the CPS under design.

The work in [12] heavily relied on using the Simulink simulation tool at this
design step, given that it provides a block-diagram language to structure the
modeled system. The functional specification can then be represented using
block diagrams (blocks from a library or user-defined), Matlab or C source code
(used to specify user-defined blocks), and state machines. The work presented
a strategy to transform the automatic model from a Simulink specification to
an AADL model.

Besides being a commercial tool, Simulink did not provide facilities to build
realistic simulation models that could be adapted for different aircraft models.
Therefore, the Provant team decided to invest in creating its simulation struc-
ture. The first version of this simulator, which is based on ROS 1/Gazebo, was
presented in [15]. It is crucial to notice that the continuous-control algorithms
are described in C/C++ language, maintaining the practice adopted while
using Simulink. A new version of this simulator, based on ROS 2, is currently
under development.

2.3 Detailed design

Creating a detailed design is mandatory in any engineering project [16], and it
is not different from designing a CPS. At this step, the design team must decide
about allocating the functionalities into processes and threads and the reason
for deploying such tasks into a target platform, which must also be defined
in this design step. Moreover, the different constraints related to the sys-
tem implementation must be considered, like timing and energy consumption
restrictions.

Using different modeling languages in the previous and this design step
should allow the development team to gradually change the system represen-
tation written in one (more abstract, more informal) language into another
(more concrete, more rigorous) representation. The resulting model should
have enough details to make it suitable for the code generation phase. Such
a model should also be suitable for model-based analysis so that possible
design mistakes can be detected and adequately corrected before the code is
generated.

Springer Nature 2021 LATEX template

6 Article Title

The Architecture Analysis and Design Language (AADL) [17] was chosen
to be used in this step because it allows expressing in detail the software organi-
zation and its target platform. Besides, AADL contains adequate tool support
to perform various types of model-based analysis and a proper abstraction level
to allow its implementation in a given programming language. As described
in [10], it is possible to transform an AADL model into an automaton model
suitable to be processed by the UPPAAL verification tool.

2.4 Implementation

For the implementation phase to be conducted appropriately, the model result-
ing from the previous design step should have enough details to generate code
from it and becomes straightforward. This means that programmers or code
generation software might be able to interpret it and generate the respective
program code in a given target language. For instance, the Ocarina tool [18]
can automatically generate code from an AADL model to C, C++, or ADA
languages. In the present work, we target the C language.

2.5 Runtime Analysis

The runtime analysis step is devoted to performing execution traces of the pro-
gram and checking if the desired properties are fulfilled. It can, for example,
observe a certain task executed for a longer time than the worst-case execu-
tion time established, or it can also observe if the task violated its deadline.
The properties check can be done online, i.e., in parallel with the program
execution, or offline, i.e., by analyzing the collected execution trace.

3 Proposed Formal Verification Process

Essentially, the proposed FV process involves applying Model-Checking (MC)
at the end of steps II and III of the method presented in the previous section,
illustrated in Fig. 1. Therefore, two different static verification techniques/-
tools are used. The first part of this process relates to static code verification,
looking after implementation errors. It uses the source code generated as out-
put from step-II, the continuous-control algorithm, as input. Next, it performs
architecture analysis using the AADL model generated as output from step-III
as input. In what follows, these two techniques are presented in detail.

3.1 Verifying Implementation Errors in Control
Algorithms

This phase conducts model checking on the continuous-control algorithm’s
source code, utilizing the C programming language as input. The objective is
to identify implementation errors, including but not limited to pointer safety,
arithmetic overflow, and division-by-zero—issues that are often overlooked by
conventional software testing methods [19].

Springer Nature 2021 LATEX template

Article Title 7

We employ the Efficient SMT-based Bounded Model Checker (ESBMC) [6]
for this verification process. ESBMC is an open-source, permissively licensed
tool grounded in satisfiability modulo theories (SMT), designed to verify single
and multi-threaded C/C++ programs. Within ESBMC, diverse software ver-
ification techniques and solvers, such as incremental BMC, k -induction, and
SMT solvers like Bitwuzla, Boolector, CVC4, MathSAT, Yices, and Z3, can be
applied for program analysis. ESBMC is versatile in detecting various software
errors, including out-of-bounds array access, illegal pointer dereferences, inte-
ger overflows, NaN (Floating-point), division-by-zero, and memory leaks [20].
Nevertheless, it is important to note that, being a BMC tool, ESBMC is sus-
ceptible to resource exhaustion issues, and addressing the scalability of BMC
tools for large-scale software remains an ongoing challenge [21].

To mitigate scalability challenges, we offer an additional feature wherein,
in addition to the continuous-control algorithm’s source code, designers can
input range values (lower and upper bounds) for the variables used by the
control algorithm. These specified intervals boost the verification process and
yield counterexamples in the event of a property violation [22]. By exploring
the state space that represents the operational region of the control system,
we can achieve more efficient verification outcomes. Furthermore, designers
can incorporate user-defined assertions to verify the accuracy of the generated
outputs.

3.1.1 Incremental Verification

Here, we exploit the incremental verification algorithms implemented in
ESBMC [7, 23]. Consider a C program P be modeled as a finite transition
system M , which is defined as follows:

– I(sn) and T (sn, sn+1) represent the equations over program’s state variable
si ∈ S, which constrains the initial states and transition relations of M ;

– φ(s) represent the equation that encodes states satisfying a given safety
property, which verifies language-specific properties and user-defined prop-
erties;

– ψ(s) represents the equation that encodes states satisfying the completeness
threshold, i.e., states corresponding to the termination. Note that ψ(s) con-
sists of unwindings no more profound than the maximum number of loop
iterations in P .

In each step k of the incremental verification algorithm, two checks are
conducted: the base case B(k) and the forward condition F (k). B(k) represents
the standard BMC and it is satisfiable iff P has a counterexample of length k
or less:

B(k) ⇔ I(s1) ∧

(

k−1
∧

i=1

T (si, si+1)

)

∧

(

k
∨

i=1

¬φ(si)

)

. (1)

The forward condition verifies termination. It checks the completeness
threshold ψ(s) that must hold for the current k. Note that if F (k) is

Springer Nature 2021 LATEX template

8 Article Title

unsatisfiable, P has terminated:

F (k) ⇔ I(s1) ∧

(

k−1
∧

i=1

T (si, si+1)

)

∧ ¬ψ(sk). (2)

Note further that no safety property φ(s) is verified in F (k) since they
are checked for the current k in B(k). Lastly, the inductive check S(k) is
unsatisfiable if, whenever φ(s) holds for k unfoldings, it also holds for the next
unfolding of P :

S(k) ⇔ ∃n ∈ N
+.

n+k−1
∧

i=n

(φ(si) ∧ T
′(si, si+1)) ∧ ¬φ(sn+k). (3)

Here T ′(si, si+1) is the transition relation after eliminating the loop vari-
ables [24].

Through B(k), F (k), S(k), and π(k) ⇔ B(k) ∨ [F (k) ∧ S(k)], the incre-
mental verification algorithm bmcinc to falsify or verify programs at a given k
is:

bmcinc(P, k) =

P is unsafe, if B(k) is SAT,

P is safe, if π(k) is UNSAT,

bmcinc(P, k + 1), otherwise.

(4)

3.2 Architecture Verification (Schedulability analysis)

This step performs model checking using as input the software architecture
model (AADL model) designed at the end of step-III of the adopted design
method. This step requires the AADL model to be transformed into a set of
Timed Automata (TA). To transform an AADL model into TA it is adopted
the model transformation mechanism described in [10].

The static verification process presented here is performed using
UPPAAL [8], an integrated environment for modeling, simulation, and veri-
fying real-time systems. UPPAAL is an intuitive tool and, at the same time,
very efficient, allowing validation through graphic simulation and verifica-
tion through automatic model checking. Its interface is implemented in Java
and allows the modeling of systems in TA extended with integer variables,
structured data types, and channel synchronization.

This consists of finite state machines with a clock, in which the model is
composed of states (locations) that represent situations or modes of operation
and of transitions that connect two or more states. This network of states and
transitions forms the system’s behavior, where for each transition, it is possible
to define a set of rules and conditions that the system must meet to enable a
state change. The simulation stage of the model through UPPAAL allows the
developer to test the various paths the system can take during its execution
and observe whether it is not working as planned [25].

Springer Nature 2021 LATEX template

Article Title 9

In the context of an MC technique, let M be a Kripke structure (the
system model), and considering f be a formula of temporal logic (the desired
property), the problem is to find all states s of M such that M,s |= f [26].

Properties in UPPAAL are formalized using the Timed Computation Tree
Logic (TCTL) language [27], which is a fragment of CTL [28] that uses
clock variables and clock constraints to specify timing behaviors reasoning
about properties of the TA. TCTL allows to construct the queries using the
quantifiers A (for all paths) and E (exists a path), the temporal operators
⋄ (eventually) and □ (always), beyond the Boolean connectives (and, or,
implication).

To facilitate verification analysis, the properties can be organized in
patterns as follows:

• Reachability: it allows us to evaluate if there is a path where at least one
state satisfies a given α property. A possible notation using CTL is:

E ⋄ α

where E is the quantifier that means “exist a path”, the temporal operator
⋄ represents “eventually”, and α is the property. For example, considering
that the system has a state called Running, this is an essential state for
the correct operation of the application. It is possible to check the property
against the model using the reachability classification as the expression:

E ⋄model.Running

• Safety: this property states that “something bad never happens“, meaning
that the system should never reach the state where this property is satisfied.
TCTL can express the following formulae:

A □ α

where the quantifier A means “for all paths”, the temporal operator □ rep-
resents “always” and α is the desired property. A typical example of this
property is the absence of deadline misses on the system threads:

A □ not deadline-miss

• Liveness: this enables checking whether, considering all paths, states exist
that satisfy a given α property. It uses the following TCTL formulae:

A ⋄ α

where A is the quantifier “for all paths”, the operator ⋄ represents “eventu-
ally” and α is the desired property. For example, considering a system has
a “Ready” state, it is possible, through the liveness specification, to check
for all execution paths if this state is reached in one moment in the future.
This property can be expressed by:

Springer Nature 2021 LATEX template

10 Article Title

A ⋄model.Ready

MC in UPPAAL is usually fast and intuitive, especially considering
the counterexamples generation if the model does not satisfy the property.
However, it can be subject to state-space explosion, which is observed on
models with a high level of complexity and generates many possible state
combinations; thereby, the tool cannot evaluate the property.

To avoid this state explosion situation, some design techniques can be
applied. One of these techniques is creating an Observer Automata, restrict-
ing a system’s legitimate behavior to those accepted by such observers. This
technique is used in the schedulability analysis model presented in the next
section to verify whether higher-priority threads will always be executed before
lower-priority ones.

4 Runtime Monitoring Library

In this section, we present our proposed RMLib1, a lightweight and non-
intrusive solution for implementing runtime monitoring (RM) in embedded
systems, allowing users to perform customization based on specific architec-
ture characteristics. Although architecture-independent and compatible with
multiple platforms, the proposed tool was developed to support the FreeR-
TOS operating system. Overall, the developed library allows to address the
following issues:

1. Monitor if all tasks in the system are executed without missing deadlines.
This is important to assess the real-time performance of the system and
validate the scheduling and timing properties.

2. Measure (and reason about) the execution times of the tasks. This helps
identify potential bottlenecks or performance issues and provides insights
into the system’s timing behavior.

RMLib can support two distinct operation modes: online verification and
offline verification. In offline verification mode, the monitors run concurrently
with the application code, collecting timestamps at specific points of inter-
est. These timestamps are then stored for later exportation and evaluation of
monitored constraints using external software. Offline verification is less intru-
sive and imposes less overhead on the system, but it is not helpful to identify
situations where immediate response is required.

On the other hand, online verification mode operates similarly to offline
verification regarding event monitoring. However, verifying system restrictions
occurs online and does not require transferring all monitored events – only the
verification results are exported. Online verification offers additional features
such as timestamp analysis, exporting only cases of timing violations, and
exporting system information when violations occur. However, it imposes the

1https://github.com/EltonBroering/RMLib

https://github.com/EltonBroering/RMLib

Springer Nature 2021 LATEX template

Article Title 11

system’s overhead and, depending on the configuration, it can impact the
system’s performance.

5 Case Study: UAV Continuous-control
Architecture Design

This section describes the application of the proposed FV process within the
context of a project aiming for designing the UAV which dynamics is detailed
in [29]. More specifically, it aims to present the design of a safe continuous-
control architecture suitable not just for the UAV under the design at our
project but also for other CPS, as further detailed. All the assets used in this
study, which include the developed models and the verification tools presented
in section sec. 3 are left publicly available2.

The software part of the proposed continuous-control architecture is illus-
trated in the AADL model presented in Fig. 2. It consists of five concurrent
Processes/Threads, as follows. The High-Level Command (HLC) is a non-
preemptive thread responsible for interfacing with higher-level control entities,
such as an intelligent agent, which typically runs in separate hardware. This
task is critical because, whenever activated, it must execute before the control
thread so that it provides input data for the control algorithm. The Sensing
is a non-preemptive thread responsible for interfacing with the sensors, col-
lecting data, and making its pre-processing so that this data becomes ready
for input by the control algorithm. The Control is a non-preemptive thread
executing the continuous-control algorithm. It uses as input sensor data gen-
erated by the Sensing thread and commands from the HLC thread. It results
in actuation values that must be sent to the Actuation thread. The Actuation
is a non-preemptive thread responsible for interfacing with the actuation com-
ponents, such as the two Electronic Speed Controllers (ESC) attached to the
brushless motors. Given that the ESC demand periodically receives a com-
mand, the Actuation thread is critical because its slack time (time between
being ready for execution and starting executing) must be close to zero. The
Telemetry is a preemptive thread that sends monitoring data to a remote base
station. It is up to the UAV operation team to set up the amount of data
transmitted by this thread, which can lead to very high execution times. Here,
we have established the worst-case execution time.

Although the graphical AADL model representation in Fig. 2 does not show
the timing properties of the model elements (threads), such information is
indeed present in the AADL code. Tab. 1 summarizes the timing and schedul-
ing properties of the proposed continuous-control architecture threads. If we
use the maximum allowed execution time for the Telemetry (T5) thread, this
set achieves a processor utilization factor of 100%. Regardless of the Telemetry
thread execution time (either maximum or reduced), there are critical instants
that let the processor fully utilized. In this study, the critical instant last 12ms,

2https://provant.paginas.ufsc.br/formal-verification/

Springer Nature 2021 LATEX template

12 Article Title

Fig. 2 AADL model of the UAV continuous-control architecture. In the center, there is the
Control thread, which receives input from Sensing and HLC threads. Its output is sent to
Telemetry and Actuation threads.

Table 1 Thread-set of the proposed continuous-control architecture.

Period Deadl. WCET Utilizat. Prior. Preemptive

T1-Actuation 12 12 2 0.166 5 NO
T2-Sensing 12 12 3 0.250 4 NO
T3-Control 12 12 4 0.333 2 NO
T4-HLC 120 120 4 0.033 3 NO
T5-Telemetry 600 600 130 0.216 1 YES

and happens every 120ms. Fig. 3 illustrates the Gantt diagram that was gen-
erated with the Cheddar [30] plugin of the AADL editor. Please observe that
the threads in the diagram are in the same order as presented in Tab. 1, with
T1 (Actuation) on top and T5 (Telemetry) on the bottom. In this model the
critical instant happens every 120ms, i.e., whenever the HLC (T4) thread gets
ready for execution, so it must be executed before the Control (T3) thread.
It is worth calling readers’ attention to the 12ms timing windows immedi-
ately before (starting at 108ms) and immediately after (starting at 132ms)
the critical instant. Such windows are used to execute the single preemptable
task, Telemetry. Finally, one should observe the fact that the Actuation thread
executes without jitter.

As an embedded computing platform for the proposed architecture, it
adopted the STM32F4DISCOVERY development board [31], which has
a single-core 32-bit ARM Cortex-M4 processor with floating-point-unit
(FPU) [32]. The threads’ software was developed in the C programming lan-
guage and runs on top of the FreeRTOS Operating System (version 7.5.2) [33].
It is a low footprint OS that is proper for executing real-time threads in a
priority-driven manner.

The following two subsections provide details about the application of the
FV in the proposed architecture. In sec. 5.1 it is presented the use of ESBMC
to detect possible unwanted implementation errors and in sec. 5.2 it is pre-
sented the use of UPPAAL to detect specifications problems related to deadline

Springer Nature 2021 LATEX template

Article Title 13

Fig. 3 Gantt diagram of the proposed thread-set execution, with the critical instant in
the center (120ms− 132ms).

misses. To finish the study, sec. 5.4 discusses how the proposal can be used in
different CPS applications.

5.1 Verification in ESBMC

The Code Verification Phase, as outlined in Section 5.1, is now implemented.
This phase focuses on the Linear Quadratic Regulator (LQR) control algo-
rithm, as described in [29, 34], developed in the C programming language and
previously validated using the Simulink tool. The algorithm is integrated into
the Control thread illustrated in the AADL model in Fig. 2.

The static code verification process, executed using the ESBMC tool,
specifically targets the aforementioned LQR control algorithm. The program
analysis is conducted in an open-loop fashion, with a single execution of the
control loop for each input configuration. Note that ESBMC tests all possible
values of the input variables within the control loop. These variables, encap-
sulated within a data structure named iInputData, consist of 48 floats, 18
integers, and 4 unsigned integers. These values originate directly from UAV
sensors or indirectly from such measurements. To enhance the efficiency of the
verification process, bounds (upper and lower limits) were defined for each of
these 70 variables based on the simulation analysis conducted in the ProVant
project.

The evaluation of properties listed in Table 2 encompasses various checks
ESBMC supports. Floatbv indicates the use of floating-point computation by
ESBMC when scrutinizing assertions in the code. No bounds signifies the
absence of array out-of-bounds violations detected by ESBMC. No assertions
implies that ESBMC did not examine built-in or user-provided assertions in
its operational models. No div by zero denotes the absence of division by zero
computations detected by ESBMC. Pointer indicates that ESBMC found no
memory safety violations. No align means ESBMC did not identify any pointer
alignment issues. No pointer relation indicates that ESBMC did not assess

Springer Nature 2021 LATEX template

14 Article Title

Table 2 Evaluated Properties and Results.

Solver

Property
Incremental K-induction

1 floatbv Passed Passed
2 no bounds Passed Passed
3 deadlock Passed Passed
4 no assertions Passed Passed
5 no div by zero Passed Passed
6 no pointer Passed Passed
7 no align Passed Passed
8 no pointer relation Passed Passed
9 memory leak Passed Passed
10 NaN Failed Failed
11 overflow Failed Failed
12 data races Passed Passed
13 lock order Passed Passed

whether two pointers point to the same object. Memory leak checks for mem-
ory leaks in the underlying program. NaN suggests issues identified by ESBMC
related to floating-point computation, particularly instances of Not-a-Number,
which may be associated with division by zero, for example. Overflow checks
for arithmetic over- and underflows. Data race checks for simultaneous read-
ing and writing to a common memory location by different threads. Lock order
assesses the ordering of lock acquisition by different threads.

The table also provides insights into the verification strategy and outcomes.
The term Incremental BMC denotes a process where the program is incremen-
tally unwound until a bug is uncovered or until the completeness threshold is
met. This approach ensures that smaller problems are addressed sequentially
rather than relying on an arbitrary upper bound for verification. However, the
incremental algorithm has its limitations. Notably, the BMC must redo pars-
ing, generation, and solving for each bound k without leveraging records of
previous steps 1 to k-1 when addressing k. Despite the advent of incremen-
tal solving in the 1990s [35], the challenge of efficiently reusing information
learned from previous instances persists.

k-Induction employs BMC to identify property violations and establish pro-
gram correctness. At each step k of the k -induction algorithm, three checks are
performed: the base case B(k), the forward condition F (k), and the inductive
step S(k). In the base case B(k), ESBMC endeavors to identify a counterex-
ample with up to k loop unwindings. In the forward condition F (k), ESBMC
verifies whether loops have been completely unrolled and whether the speci-
fied property holds in all states reachable within k unwindings. The inductive
step I(k) ensures that if the property holds for k unwindings, it also holds
after the subsequent unwinding of the system [24].

As shown in Table 2, ESBMC has found violations related to arithmetic
overflow and ”Not a Number”. In particular, arithmetic overflow occurs when

Springer Nature 2021 LATEX template

Article Title 15

the result of an arithmetic operation exceeds the range that can be repre-
sented by the data type used to store the result. In this case, ESBMC has
found a computation result that is too large to be represented within the con-
straints of the underlying control algorithm data type, causing the value to
wrap around or become undefined. For the “Not a Number” violation, which
is a special floating-point value that represents the result of an undefined or
unrepresentable operation, ESBMC has found a mathematical operation in
the underlying control algorithm that cannot produce a meaningful result.

Overall, we can also analyze counterexamples generated by ESBMC against
the new instrumented program to pinpoint faulty lines in the UAV controller
implementation, as previously done by Alves et al. [36]. This involves search-
ing for diagnostic values corresponding to actual lines in the embedded UAV
software. Such an approach can further enhance debugging processes for UAV-
embedded software by indicating which lines require correction and identifying
the values leading to successful execution. However, we defer the exploration
of this research direction to future work focused on automated UAV software
fault localization and debugging.

5.2 Verification in UPPAAL

Overall, three steps are required to perform the envisioned formal verification:
modeling, formalization of properties, and verification. Regarding the modeling
in the present study, as stated in the previous section, the modeling step begins
with the AADL model generated as output from the step-III of the adopted
development method (see Fig. 1). It was also explained that such AADL model
must be transformed into a set of Timed Automata (TA) to be processed by
UPPAAL.

As a result of this transformation, templates that describe our architecture
were generated. It consists of an auxiliary scheduler TA and five instances of
the TA representing the generic thread behavior, with specific parameters for
each thread (see Tab. 1). It was adopted in this work as a simplified thread
template compared to the one presented in [11], as it does not consider shared
resources. However, this simplification does not mean that we lost analysis
capacity, as further explained.

Most of the threads share data among them and, therefore, are subject to
race conditions [37]. However, as just mentioned, it was adopted here a simpli-
fied thread model that does not support shared resources. The solution to this
problem is avoiding preemption within those threads accessing shared data,
thus creating implicit mutual exclusion areas. Such a solution mixes preempt-
able and non-preemptable threads, typically making analytical schedulability
analysis much more complex, sometimes impossible. However, this is not an
issue in the present work, given the use of Model Checking.

The AADL model used in the present study is depicted in Fig. 2, and its
source is available in [38]. It was transformed into TA using the AADL–to–TA
transformation tool presented in [10]. The generated TA corresponding to the
simplified thread template is illustrated in Fig. 4. It represents periodic and

Springer Nature 2021 LATEX template

16 Article Title

Fig. 4 TA of the thread model on UPPAAL. When in Ready state, the thread can be
selected for execution. When selected, it enters the Processing state. If it completes the
execution, it goes to Sleeping, where it waits for the next period according to the adopted
periodic model. If it is not completed by the deadline, it reaches the Error state. It can also
be preempted (yield transition).

preemptive thread execution, monitoring deadlines missed. As the thread is
created and its start-time is reached, it enters the Ready state, meaning that
it is added to the scheduling queue and can be selected for execution. When
selected for execution, the thread goes to the Processing state. If preempted by
a higher priority thread, it returns to Ready. If the deadline is reached without
completing the execution, it enters the Error state. If the thread completes
its execution, it goes to Sleeping, going back to Ready as soon as its period is
once again reached.

Different from the modeling step, which is performed automatically, the
formalization of properties is usually carefully conducted by experts. As pre-
viously mentioned, in UPPAAL the set of properties to be formally verified
must be specified in TCTL. Table 3 presents the set of properties verified in
the present study. They are characterized as safety properties essential for the
system’s reliability.

The first property analyzes the schedulability of the task set, proving that
there are no deadline misses, i.e., no thread reaches the Error state in the
proposed architecture. The second property proves that the adopted strategy
to avoid race conditions is successful, i.e., those threads that share memory
(T1–T4) will not be preempted once they start executing. When changing the
query to include T5 the result shows that the property is not satisfied, and
the counter-example points to the moment that T5 is preempted.

The third property relates to the T1–Actuation thread, which cannot have
jitter to start executing. This comes from the fact that actuation within a UAV
is very timing-sensitive and does not allow experiencing delays. The derived
property states that while in the Processing state, the thread general clock t

Springer Nature 2021 LATEX template

Article Title 17

Table 3 Properties formally verified with UPPAAL.

Spec.1
Threads T1–T5 exec. time will never exceed their deadline, i.e.,
deadlines will not be missed (Error state will not be reached).

Query A □ forall(i : 0− 4) not T thread(i).Error

Result Property is satisfied

Spec.2
Threads T1–T4 will never be preempted, i.e., they will not be
in Ready state with execution time (ax) greater than zero.

Query A □ forall(i : 0− 3) not(T thread(i).Ready and T thread(i).ax > 0)
Result Property is satisfied

Spec.3
While executing, the overall clock (t) of thread T1 will be syn-
chronized with its execution clock (ax), meaning that it will not
experience execution jitter.

Query A □ not(T thread(0).P rocessing and T thread(0).t > T thread(0).ax)
Result Property is satisfied

Spec.4
Covering all the threads execution period (600ms), thread T1
will always be completed before the threads T2–T5.

Query (time < 600)−− > forall(i : 1− 4) T thread(0).count >= T thread(i).count
Result Property is satisfied

is synchronized with the clock related to the execution time ax. This property
does not hold for the other threads (T2–T5).

The last verified property verifies the order in which the threads are exe-
cuted so that it becomes possible to prove that they are executed exactly as
depicted in Fig. 3. In other words, it is necessary to guarantee that higher-
priority threads will always have preference over lower-priority ones. To verify
this property, it was necessary to create an observer, which consists of an addi-
tional mechanism to “count” the thread’s execution. It is indeed an overhead
for the verification process, increasing the number of states. However, it does
not significantly increase the execution time of the present study. Moreover,
it was not possible to derive a query that covers the overall cases, like in the
first three properties. The example provided shows that instance i of T1 will
have preference over the same instances i of T2–T5. Additional similar queries
were provided for threads T2, T3, and T4 to complete our analysis.

The conducted schedulability analysis, which shows that the proposed task
set is indeed schedulable, would be very difficult to be done in analytical
means. This comes from the fact that the adopted parameters for threads
do not suit a single scheduling policy. Taking the well know Cheddar [30]
scheduling-analysis tool, for example, it is not possible to mix preemptable
and non-preemptable threads. Instead, either one uses a scheduling policy that
does not allow preemptions, or preemptions should be allowed for all tasks.

For instance, the designer can select a preemptable scheduling policy and
establish critical sections that last the execution of those non-preemptable
threads. However, there is no means to make an analytical schedulability anal-
ysis for such a situation, so only simulations would be possible. However,
simulations do not provide strong guarantees. Besides, the results (simulation
logs) can be challenging to be analyzed.

Springer Nature 2021 LATEX template

18 Article Title

5.3 Runtime Monitoring Results

Our RTMLib tool was used to monitor the timing behavior from all 5 threads
presented in Table 1. The present analysis allowed us to:

• Validate the two execution modes of the library: Online and Offline. This
helped to ensure that the library works properly and produces accurate
results in both operation modes.

• Validate the scaling model of the system by examining the behavior of
the Communication Task in periodic or continuous operation modes. This
allowed to evaluate the impact of different execution configurations on the
system’s overall performance and responsiveness.

• Validate the system’s behavior in the presence of an additional asynchronous
task, which served as a “disturbance” to the system. It allowed to assess
the system’s robustness and ability to handle unexpected events or task
interactions.

More importantly, the conducted analysis involved examining the tasks’
executions and judging if they were executed within their WCET and deadline
restrictions. The verdict is determined based on the following criteria:

• If the difference (∆) between task’s finish and release times is less than or
equal to the task’s deadline, the verdict is true. Otherwise, if ∆ exceeds the
deadline, the verdict is false.

• Another ∆ is calculated as the difference between tasks’ start and finish
times. If it is less than or equal to the WCET the verdict is true, otherwise
it is false.

Another specific point of analysis relates to the Actuation task (T1), given
the need for periodic reception of a command by the ESC. Task T1 is the most
critical in our proposed architecture because the UAV might fall if it does not
work properly (within the defined time-limits).

In summary, the results from all experiments (on the different opera-
tion modes of our tool) showed no timing-constraints violations during the
executions. It can also be observed that, in most cases, the Actuation task
(T1) is executed immediately after it is released. The maximum waiting time
observed was of 3 ms, which indeed is not a problem, as it allows T1 to
complete its execution much ahead of its deadline. Follows more details about
the conducted experimentation.

Offline Mode: in this experiment the Communication task (T5) was executed
whenever the higher-priority tasks were not executing, so that the processor
was fully utilized – it never became idle. Using the offline operation mode
in this way is advantageous because it allows to handle large amounts of log
events in an efficient manner, reducing memory utilization for storing events.
Online Mode: in this experiment the task T5 was executed for no longer
than its defined WCET. This execution model showed to be highly effective
for the Online Verification Mode, given that only a minimal amount of data

Springer Nature 2021 LATEX template

Article Title 19

needed to be exported, with the verdicts being the only exported data in this
case. Once again, the task model and scheduling policy proposed in this work
showed to perform properly, as no time constraint violations were observed.
Online Mode with Non-Periodic Task: in this experiment, a new test
scenario was created to examine the proposed scheduling model’s operation
limits and assess its performance when faced with disturbances. The aim was
to create a scenario where temporal violations will occur in the system under
execution due to unforeseen circumstances. This scenario is also helpful for two
other reasons: (i) it allows testing the monitoring of non-periodic tasks, and
(ii) it validates additional features for RMLib, such as the Online Verification
feature of exporting only cases with timing constraints and the ability to export
the status of the system tasks.

This scenario was materialized by manually inserting a higher-priority, non-
periodic task into the system. Such a task, which has ID − 6, has a WCET
of 8 ms and a deadline of 15 ms, and is triggered whenever a critical external
event occurs, serving as a failsafe action. Listing 1 presents the system out-
put where the asynchronous task can be observed, showing a timing violation
(StatusDeadline variable set to 1). This highlights the ability of the RMLib to
capture and analyze such corner cases.

Listing 1 Temporal restriction violation illustration at the exported data log. Having
the StatusDeadline variable set to 1 means deadline violation.

{ ‘ Ta sk Id en t i f i e r ’ : 1 , ‘ TimeStamp ’ : 4 1 4 4 2 , ‘ ExecTime ’ : 9 ,
‘CtdTask ’ : 8 9 1 6 , ‘ StatusWCET ’ : 0 , ‘ StatusDeadl ine ’ : 1 }
Dummy Actuation R 4 223 5
Asynchronous Dummy Sens ing R 4 223 4
IDLE R 0 237 7
Led B 3 223 3
Communication B 1 220 2
Con t r o l l e r B 2 223 1
{ ‘ Ta sk Id en t i f i e r ’ : 1 , ‘ TimeStamp ’ : 5 5 3 1 7 , ‘ ExecTime ’ : 7 ,
‘CtdTask ’ : 1 5 5 3 5 , ‘ StatusWCET ’ : 0 , ‘ StatusDeadl ine ’ : 1 }
Asynchronous IDLE R 0 237 7
Dummy Sens ing B 4 223 4
Dummy Actuation B 4 223 5
Led B 3 223 3
Communication B 1 166 2
Con t r o l l e r B 2 83 1

5.4 Reusing the Proposed Architecture

The proposed continuous-control architecture can be reused in different CPS
applications. For instance, in Provant, a new UAV is under construction, and
the aim is to reuse this proposal. Besides, there is a new project in the scope
of smart energy grids being started at UFSC, and it should also benefit from
the architecture presented here.

Springer Nature 2021 LATEX template

20 Article Title

The first essential point to reusing the proposed architecture is designing a
proper control algorithm. This implies modifying the inputs and outputs of the
control algorithm. Possibly, the algorithm itself will also change. Consequently,
all the steps related to the control algorithm analysis using ESBMC, presented
in sec. 5.1, must be re-conducted.

Modifying the inputs and outputs of the control algorithm necessarily
affects the connections among the AADL process presented in Fig. 2. How-
ever, the most critical adjust for performing the schedulability analysis relates
to properly modifying the timing parameters of the system, especially the
execution times.

When reusing the proposed-architecture in the same CPS domain, such
as using it in a new UAV, it is likely that the periods and deadlines of the
core threads (T1,T2,T3) will not change, given that the system dynamics are
mostly the same. However, when the system dynamics are different, like the
case in the smart energy grid, it is required that such core threads’ periods and
deadlines change as a multiple of the original ones. It is expected that such new
periods will be higher, not smaller, than then originals. This implies increasing
the critical instant at a multiple of the 12ms one used in the study previously
presented. Once this adjustments are finished, the designer can conduct the
schedulability analysis with UPPAAL presented in sec. 5.2.

6 Related Works

Several related studies are covering the use of FV in scenarios involving CPS
and UAVs (see [39–43]). Analyzing such works makes it possible to state that
the MC technique is widely used, but there is no consensus on which tool is
the best in each case.

In [39], authors apply FV to validate the model of the related CPS, named
“environment”. Next, the authors perform runtime verification to validate the
model against the real environment. However, this solution does not cover the
continuous-control layer of the software architecture as it tackles higher-level
decision-making, i.e., the system’s discrete behavior. Furthermore, it does not
analyze timing aspects, such as deadline violations.

A model-based integration framework for modeling and verifying the timing
properties of the UAV flight control system is proposed in [40]. This study
models the software system using a class diagram and state chart, aided by a
model transformation process that could be verified using formal verification
tools. In particular, the formal verification was applied by Z/EVES and PVS,
tools for analyzing formal specifications using theorem-proving techniques [44].
To check the system, a PTA (Probability Timed Automata) model was used,
and a mathematical model of real-time reliability was created to perform the
formal proof.

Authors in [45] proposed the application of Bounded Model Checking
(BMC) using their proposed DSVerifier tool and targeting system control [46],

Springer Nature 2021 LATEX template

Article Title 21

especially regarding low-level implementation errors related to digital con-
trollers and hardware compatibility. The proposed tool is applied in UAVs and
aims to investigate implementation problems in digital controllers designed for
aircraft systems. The obtained results showed flaws in UAV attitude control
software applied to aerial surveillance. This type of verification is efficient in
finding errors, similar to the testing techniques. However, unlike our proposed
approach, it does not prove the absence of implementation flaws. This proof is
essential to increase the system’s reliability. Additionally, such study also does
not consider the schedulability analysis of the system’s tasks, thus providing
no formal guarantees concerning the timing constraints.

In [41], the authors have used MC to verify the correctness of the UAV
behavior in a scenario of a given mission performed by multiple UAVs in coop-
eration. The properties were written in the formal language CTL, which allows
expressing behaviors in a branching time. The verification was performed using
the SMV model checker [47]. However, despite presenting some properties to
be checked, it was observed that the authors did not present the results of this
verification. Consequently, nothing can be concluded about the correctness of
the proposed (deployed) system.

Regarding the application of verification techniques in scenarios of multiple
UAVs for specific missions, it should also be mentioned [42]. In this case, the
author used the MC technique using the SPIN model checker [48]. The require-
ments definition was formalized through linear-time temporal logic (LTL) and
the scenario modeling in PROMELA. The verification was carried out in three
different scenarios. The first is the centralized cooperative control scheme, the
second is the same decentralized scheme, and the third considers high-level
mission planning. In addition to presenting the results, the author discusses
the difficulties encountered in applying MC using SPIN and the strengths and
weaknesses of the resources used for modeling and describing properties. One of
the limitations cited is scenario modeling. For example, only a certain number
of aircraft and base stations are considered to not fall into the state explo-
sion problem. However, the authors did not provide complementary methods
to avoid such limitations.

Instead of using MC for verification, in [43], the authors presented the
R2U2 framework for runtime monitoring of Unmanned Aerial Systems (UAS)
security properties. The framework monitors the code via information sent
over the system bus. It uses observers based on properties written in LTL
and its extension for deadline with real-time, the Metric Temporal Logic
(MTL) [49]. A hybrid architecture based on software and hardware was pro-
posed to implement this verification method using an FPGA. As a result,
simulations were performed where several scenarios of system attacks were con-
sidered. Although it has presented successful results, this framework is used
for a specific UAV using a NASA bus system called NASA CFS/CFE, thus
restricting its application to other systems.

The runtime verification (RV) toolchain called Rmtld3synth is presented
in [50], being the first RV framework for real-time embedded systems that can

Springer Nature 2021 LATEX template

22 Article Title

cope with explicit time and durations. It is based on the restricted fragment of
Metric Temporal Logic with duration (MTL-

∫

) [51], which allows to express
properties considering explicit time and temporal order of durations of the
system’s states and yields a three-valued verdict (true, false, unknown). In
addition, this language can specify tasks’ behavioral properties, considering
their time constraints. The work presents a study related with the monitoring
of the PX4 autopilot system for an ArduCopter UAV with the Pixhawk [52]
flight controller.

In contrast to previous studies, which suggest a single verification path,
we tackle two different formal verification approaches in this work that sig-
nificantly improve the safety of the system under design. On the one hand,
an automated transformation process extracts the timed automata from the
AADL model. Based on this model, several properties may be evaluated,
including the more general timed characteristics like deadlock absence. On
the other hand, using ESBMC supports the evaluation of application code,
significantly improving the safety of the generated application code.

7 Conclusions and Future Works

This paper presented a formal verification (FV) process devoted to improving
the safety of the software architecture within CPS. Such an FV process is
used to build a safe continuous-control architecture for a UAV. The proposed
architecture is, on its own, a valuable contribution to this paper, given that
we understand that it is generic enough to be used within other continuous-
control/CPS applications.

The proposed FV process has shown to be very useful in improv-
ing the safety of the proposed continuous-control architecture. On the one
hand, ESBMC allowed for the identification of implementation errors in the
continuous-control algorithms. Besides the benefits achieved in this specific
project, we understand that the control algorithm design team’s constant use
of this tool can improve programming style so that errors can be detected
earlier in the development process. On the other hand, the schedulability anal-
ysis infrastructure developed in UPPAAL provides safety guarantees for the
designed architecture. Moreover, as previously discussed, the proposed model-
checking-based schedulability analysis overcomes existing analytical schedula-
bility analysis techniques’ limitations, which occurs by allowing full processor
utilization (up to 100%) while mixing preemptable and non-preemptable tasks
and by providing counter-examples when the task-set is not schedulable.

The developed Runtime Monitoring library was able to collect events of
interest and analyze them. Such events are related to the tasks’ timing proper-
ties, like periodicity, execution time, and deadline misses. Making the library
more generic to cope with any event types should be targeted in our future
works.

Springer Nature 2021 LATEX template

Article Title 23

Additional future work efforts should be divided in two different directions.
The first one relates to ESBMC. The intention is to provide means to facili-
tate the identification of faulty lines in the analyzed code, given that this is
currently a very laborious task. Another direction relates to providing runtime
verification support so that formal verification is adopted in the proposed pro-
cess in every possible way, allowing it to reach the maximum possible safety
levels. Efforts in this direction have already started, targeting the FreeRTOS
operating system [53].

References

[1] Derler, P., Lee, E.A., Vincentelli, A.S.: Modeling cyber–physical systems.
Proceedings of the IEEE 100(1), 13–28 (2012)

[2] Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems: A Cyber-
physical Systems Approach. Mit Press, Cambridge, U.S. (2016)

[3] Austin, R.: Unmanned Aircraft Systems: UAVS Design, Development and
Deployment. John Wiley & Sons, New York, U.S. (2011)

[4] Knight, J.C.: Safety critical systems: challenges and directions. In: Pro-
ceedings of the 24th International Conference on Software Engineering.
ICSE 2002, pp. 547–550 (2002)

[5] Stankovic, J.A.: Misconceptions about real-time computing: a serious
problem for next-generation systems. Computer 21(10), 10–19 (1988).
https://doi.org/10.1109/2.7053

[6] Gadelha, M.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B.,
Nicole, D.A.: ESBMC 5.0: An industrial-strength C model checker.
In: 33rd ACM/IEEE Int. Conf. on Automated Software Engineering
(ASE’18), pp. 888–891. ACM, New York, NY, USA (2018). https://doi.
org/10.1145/3238147.3240481

[7] Gadelha, M.R., Monteiro, F., Cordeiro, L., Nicole, D.: Esbmc v6. 0: Veri-
fying c programs using k-induction and invariant inference: (competition
contribution). In: Tools and Algorithms for the Construction and Analy-
sis of Systems: 25 Years of TACAS: TOOLympics, Held as Part of ETAPS
2019, Prague, Czech Republic, April 6–11, 2019, Proceedings, Part III 25,
pp. 209–213 (2019). Springer

[8] Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. Sfm-rt
2004, pp. 200–236. Springer, Berlin, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30080-9 7

[9] Broering, E.F., Becker, L.B.: Applying runtime verification in real-time
systems with freertos. In: 2022 XII Brazilian Symposium on Computing

https://doi.org/10.1109/2.7053
https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7

Springer Nature 2021 LATEX template

24 Article Title

Systems Engineering (SBESC), pp. 1–6 (2022). https://doi.org/10.1109/
SBESC56799.2022.9964952

[10] Gonçalves, F.S., Pereira, D., Tovar, E., Becker, L.B.: Formal verifica-
tion of aadl models using uppaal. In: 2017 VII Brazilian Symposium on
Computing Systems Engineering (SBESC), pp. 117–124 (2017). IEEE

[11] Misson, H.A., Gonçalves, F.S., Becker, L.B.: Applying integrated formal
methods on cps design. In: 2019 IX Brazilian Symposium on Computing
Systems Engineering (SBESC), pp. 1–8 (2019). https://doi.org/10.1109/
SBESC49506.2019.9046084

[12] Passarini, R.F., Farines, J., Fernandes, J.M., Becker, L.B.: Cyber-physical
systems design: transition from functional to architectural models.
Des Autom Embed Syst (19), 345–366 (2015). https://doi.org/10.1007/
s10617-015-9164-y

[13] Gonçalves, F.S., Donadel, R., Raffo, G.V., Becker, L.B.: Assessing the use
of Simulink on the development process of an unmanned aerial vehicle.
In: 3rd Workshop on Cyber-Physical Systems (CyPhy 2013) (2013)

[14] Zowghi, D., Coulin, C.: Requirements elicitation: A survey of techniques,
approaches, and tools. Engineering and managing software requirements
(2005)

[15] Lara, A.V., Nascimento, I.B., Arias-Garcia, J., Becker, L.B., Raffo, G.V.:
Hardware-in-the-loop simulation environment for testing of tilt-rotor
uav’s control strategies. In: Congresso Brasileiro de Automática-CBA, vol.
1 (2019)

[16] Cordeiro, L.C., de Lima Filho, E.B., de Bessa, I.V.: Survey on automated
symbolic verification and its application for synthesising cyber-physical
systems. IET Cyper-Phys. Syst.: Theory & Appl. 5(1), 1–24 (2020)

[17] Feiler, P.H., Gluch, D.P.: Model-based Engineering with AADL: an
Introduction to the SAE Architecture Analysis & Design Language.
Addison-Wesley, ??? (2012)

[18] Lasnier, G., Zalila, B., Pautet, L., Hugues, J.: Ocarina: An environment
for aadl models analysis and automatic code generation for high integrity
applications. In: Reliable Software Technologies–Ada-Europe 2009: 14th
Ada-Europe International Conference, Brest, France, June 8-12, 2009.
Proceedings 14, pp. 237–250 (2009). Springer

[19] Alshmrany, K.M., Aldughaim, M., Bhayat, A., Cordeiro, L.C.: Fusebmc

https://doi.org/10.1109/SBESC56799.2022.9964952
https://doi.org/10.1109/SBESC56799.2022.9964952
https://doi.org/10.1109/SBESC49506.2019.9046084
https://doi.org/10.1109/SBESC49506.2019.9046084
https://doi.org/10.1007/s10617-015-9164-y
https://doi.org/10.1007/s10617-015-9164-y

Springer Nature 2021 LATEX template

Article Title 25

v4: Smart seed generation for hybrid fuzzing - (competition contribu-
tion). In: Johnsen, E.B., Wimmer, M. (eds.) 25th International Con-
ference on Fundamental Approaches to Software Engineering - FASE
2022. LNCS, vol. 13241, pp. 336–340 (2022). https://doi.org/10.1007/
978-3-030-99429-7 19

[20] Monteiro, F.R., Garcia, M., Cordeiro, L.C., de Lima Filho, E.B.: Bounded
model checking of C++ programs based on the qt cross-platform frame-
work. Softw. Test. Verification Reliab. 27(3) (2017)

[21] Cordeiro, L.C., de Lima Filho, E.B.: Smt-based context-bounded model
checking for embedded systems: Challenges and future trends. ACM
SIGSOFT Softw. Eng. Notes 41(3), 1–6 (2016)

[22] Alhawi, O.M., Rocha, H., Gadelha, M.R., Cordeiro, L.C., de Lima Filho,
E.B.: Verification and refutation of C programs based on k-induction and
invariant inference. Int. J. Softw. Tools Technol. Transf. 23(2), 115–135
(2021)

[23] Silva, T., Porto, C., da S. Alves, E.H., Cordeiro, L.C., Rocha, H.: Ver-
ifying security vulnerabilities in large software systems using multi-core
k-induction. CoRR abs/2102.02368 (2021)

[24] Gadelha, M.Y.R., Ismail, H.I., Cordeiro, L.C.: Handling loops in bounded
model checking of C programs via k-induction. Int. J. Softw. Tools
Technol. Transf. 19(1), 97–114 (2017)

[25] Behrmann, G., David, A., Larsen, K.G.: A tutorial on uppaal 4.0 (2006).
URL http://www. it. uu. se/research/group/darts/papers/texts/new-
tutorial. pdf (2014)

[26] Clarke, E.M.: The birth of model checking. 25 Years of model checking:
history, achievements, perspectives, 1–26 (2008)

[27] Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT press, ???
(2008)

[28] Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization
skeletons using branching time temporal logic. In: Workshop on Logic of
Programs, pp. 52–71 (1981). Springer

[29] Donadel, R., Raffo, G.V., Becker, L.B.: Modeling and control of a tiltro-
tor uav for path tracking. IFAC Proceedings Volumes 47(3), 3839–3844
(2014). https://doi.org/10.3182/20140824-6-ZA-1003.01735. 19th IFAC
World Congress

[30] Singhoff, F., Legrand, J., Marcé, L.N.L.: Cheddar : a flexible real time

https://doi.org/10.1007/978-3-030-99429-7_19
https://doi.org/10.1007/978-3-030-99429-7_19
https://doi.org/10.3182/20140824-6-ZA-1003.01735

Springer Nature 2021 LATEX template

26 Article Title

scheduling framework. ACM SIGAda Ada Letters 24(4), 1–8 (2004)

[31] STMicroelectronics: STMicroelectronics STM32F4DISCOVERY Discov-
ery Kit with STM32F407VG MCU Data Brief STmicroelectronics. http:
//www.st.com/resource/en/data brief/stm32f4discovery.pdf

[32] ARM: ARM Cortex-M4 Processor. https://www.arm.com/products/
silicon-ip-cpu/cortex-m/cortex-m4

[33] Barry, R.: Mastering the freertos real time kernel. A Hands-On Tutorial
Guide Real Time Engineers Ltd (2016)

[34] Donadel, R.: Modeling and control of a tiltrotor unmanned aerial vehicle
for path tracking. Master’s thesis, Federal University of Santa Catarina
(2015)

[35] Hooker, J.N.: Solving the incremental satisfiability problem. The Journal
of Logic Programming 15(1), 177–186 (1993)

[36] da S. Alves, E.H., Cordeiro, L.C., de Lima Filho, E.B.: A method to
localize faults in concurrent C programs. J. Syst. Softw. 132, 336–352
(2017)

[37] Silberschatz, A., Galvin, P.B., Gagne, G.: Applied Operating System
Concepts. John Wiley & Sons, Inc., New York, U.S. (1999)

[38] Goncalves, F.S., Misson, H.A., Cordeiro, L., Becker, L.B.: Supplemen-
tary Material of the Paper “Applying Formal Methods to Build a Safe
Continuous-Control Architecture for Cyber-Physical Systems”. https://
provant.paginas.ufsc.br/formal-verification/

[39] Ferrando, A., Dennis, L.A., Cardoso, R.C., Fisher, M., Ancona, D., Mas-
cardi, V.: Toward a holistic approach to verification and validation of
autonomous cognitive systems. ACM Trans. Softw. Eng. Methodol. 30(4)
(2021). https://doi.org/10.1145/3447246

[40] Xu, H., Wang, P.: Real-time reliability verification for uav flight control
system supporting airworthiness certification. PloS one 11(12), 0167168
(2016)

[41] Sirigineedi, G., Tsourdos, A., White, B.A., Zbikowski, R.: Modelling
and verification of multiple uav mission using smv. arXiv preprint
arXiv:1003.0381 (2010)

[42] Humphrey, L.R.: Model checking for verification in uav cooperative con-
trol applications. Recent Advances in Research on Unmanned Aerial
Vehicles, 69–117 (2013)

http://www.st.com/resource/en/data_brief/stm32f4discovery.pdf
http://www.st.com/resource/en/data_brief/stm32f4discovery.pdf
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m4
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m4
https://provant.paginas.ufsc.br/formal-verification/
https://provant.paginas.ufsc.br/formal-verification/
https://doi.org/10.1145/3447246

Springer Nature 2021 LATEX template

Article Title 27

[43] Schumann, J., Moosbrugger, P., Rozier, K.Y.: R2u2: monitoring and
diagnosis of security threats for unmanned aerial systems. In: Runtime
Verification: 6th International Conference, RV 2015, Vienna, Austria,
September 22-25, 2015. Proceedings, pp. 233–249 (2015). Springer

[44] Harrison, J.: Handbook of Practical Logic and Automated Reasoning.
Cambridge University Press, Cambridge, U.K. (2009)

[45] Chaves, L.C., et al.: Formal verification applied to attitude control
software of unmanned aerial vehicles (2018)

[46] Ismail, H., Bessa, I., Cordeiro, L.C., de Lima Filho, E.B., Filho, J.E.C.:
Dsverifier: A bounded model checking tool for digital systems. In: 22nd
International Symposium on Model Checking Software (SPIN). LNCS,
vol. 9232, pp. 126–131 (2015)

[47] Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M.,
Roveri, M., Sebastiani, R., Tacchella, A.: Nusmv 2: An opensource tool
for symbolic model checking. In: 14th International Conference Computer
Aided Verification (CAV). LNCS, vol. 2404, pp. 359–364 (2002)

[48] Holzmann, G.J.: Parallelizing the spin model checker. In: 19th Interna-
tional Workshop Model Checking Software (SPIN). LNCS, vol. 7385, pp.
155–171 (2012)

[49] Alur, R., Henzinger, T.A.: Logics and models of real time: A survey. In:
Proceedings of the Real-Time: Theory in Practice, REX Workshop, pp.
74–106. Springer, Berlin, Heidelberg (1991)

[50] Matos Pedro, A., Pinto, J.S., Pereira, D., Pinho, L.M.: Runtime verifica-
tion of autopilot systems using a fragment of mtl-

∫

. International Journal
on Software Tools for Technology Transfer (STTT) 20(4), 379–395 (2018)

[51] Lakhneche, Y., Hooman, J.: Metric temporal logic with durations. Theor.
Comput. Sci. 138(1), 169–199 (1995)

[52] Foundation, D.: The Pixhawk Open Source Flight Controller. https://
pixhawk.org/

[53] FreeRTOS.org: FreeRTOS: Real-time Operating System for Microcon-
trollers. https://freertos.org/

https://pixhawk.org/
https://pixhawk.org/
https://freertos.org/

Springer Nature 2021 LATEX template

28 Article Title

Statements and Declarations

Funding

This work was supported by the Brazilian funding agencies CNPq, CAPES,
FAPESC and the UK’s Royal Academy of Engineering through its Chair in
Emerging Technologies scheme.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

	Introduction
	Paper Contributions
	Paper Organization

	Overview of the Adopted Development Method
	Definition of the system requirements
	Preliminary design
	Detailed design
	Implementation
	Runtime Analysis

	Proposed Formal Verification Process
	Verifying Implementation Errors in Control Algorithms
	Incremental Verification

	Architecture Verification (Schedulability analysis)

	Runtime Monitoring Library
	Case Study: UAV Continuous-control Architecture Design
	Verification in ESBMC
	Verification in UPPAAL
	Runtime Monitoring Results
	Reusing the Proposed Architecture

	Related Works
	Conclusions and Future Works

