
Parametric schedulability analysis of a
launcher flight control system under

reactivity constraints

Étienne André1,2,3 , Emmanuel Coquard4, Laurent Fribourg5,
Jawher Jerray6 and David Lesens4

1Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
2JFLI, CNRS, Tokyo, Japan
3National Institute of Informatics, Tokyo, Japan
4ArianeGroup SAS, Les Mureaux, France
5Université Paris-Saclay, LSV, CNRS, ENS Paris-Saclay, France
6Université Sorbonne Paris-Nord, LIPN, CNRS, UMR 7030, F-93430, Villetaneuse, France

Abstract

The next generation of space systems will have to achieve more and
more complex missions. In order to master the development cost and
duration of such systems, an alternative to a manual design is to auto-
matically synthesize the main parameters of the system. In this paper,
we present an approach for the specific case of the scheduling of the flight
control of a space launcher. The approach requires two successive steps:
(1) the formalization of the problem to be solved in a parametric formal
model and (2) the synthesis of the model parameters with a tool. We first
describe the problem of the scheduling of a launcher flight control, then
we show how this problem can be formalized with parametric stopwatch
automata; we then present the results computed by the parametric timed
model checker IMITATOR. We enhance our model by taking into consider-
ation the time for switching context, and we compare the results to those
obtained by other tools classically used in scheduling.

Keywords— scheduling, real-time systems, model checking, parameter synthesis,
IMITATOR

1 Introduction

Real-time systems combine concurrent behaviors with hard timing constraints. An
out-of-date reply is often considered as invalid even if its content is correct. For
critical real-time systems, if a time constraint is violated, then the consequences may

This manuscript is the author version of the manuscript of the same name published in
Fundamenta Informatica 182(1). This is an extended version of the manuscript published
in the proceedings of the 19th International Conference on Application of Concurrency to
System Design (ACSD 2019). The final authenticated version is available at https://doi.

org/10.3233/FI-2021-2065. This work is partially supported by the ANR national research
program PACS (ANR-14-CE28-0002) and ERATO HASUO Metamathematics for Systems
Design Project (No. JPMJER1603), JST.

1

ar
X

iv
:2

11
2.

07
54

8v
1

 [
cs

.S
E

]
 1

3
O

ct
 2

02
1

https://orcid.org/0000-0001-8473-9555
https://orcid.org/0000-0001-6170-7489
https://doi.org/10.3233/FI-2021-2065
https://doi.org/10.3233/FI-2021-2065

be disastrous. Thus, a formal verification phase is essential in order to statically
guarantee that all the tasks will be executed in their allocated time, and that the
system will return results within the times guaranteed by the specification.

Assessing the absence of timing constraints violations is even more important when
the system can be hardly controlled once launched. This is especially true in the
aerospace area, where a system can only very hardly be modified or even rebooted
after launching.

The next generation of space systems will have to achieve more and more complex
missions. In order to master the development cost and duration of such systems, an
alternative to a manual design is to automatically synthesize the main parameters of
the system. While verifying a real-time system is already a notoriously difficult task,
we tackle here the harder problem of synthesis, i. e., to automatically synthesize a part
of the system so that it meets its specification. We notably focus on the synthesis of
admissible timing values.

1.1 Contribution

In this paper, we address the specific case of the scheduling of the flight control of a
space launcher. Our approach requires two successive steps:

1. the formalization of the problem to be solved in a parametric formal model and,

2. the synthesis of the model parameters with a tool.

We first describe the problem of the scheduling of a launcher flight control; then
we formalize this problem with parametric stopwatch automata, an extension of
timed automata [AD94] with parameters [AHV93] and stopwatches (“the ability to
stop clocks”) [CL00; Sun+13]; third, we present the results computed by the IMI-
TATOR [And21] tool. We compare our results with those obtained by other tools
classically used in scheduling. A key aspect is the verification and synthesis under
some reactivity constraints: the time from a data generation by sensor’s measurement
which is considered as an input to its output must always be less than a threshold.
The solution we propose is compositional, in the sense that the reactivity constraints
can be checked independently. We consider both an instantaneous switch from one
thread to another, and more general systems where the switch between two threads
has a CPU cost due to the copy of data between the contexts of each thread.

We propose here a solution to the problems using an extension of parametric timed
automata (PTA), which are an extension of finite state automata with clocks and pa-
rameters [AHV93]. The general class of PTA is notoriously undecidable, and notably
the mere problem of deciding whether at least one parameter valuation allows the
system to reach a global state is undecidable, even over discrete time [AHV93], with a
single integer-valued parameter over dense time [Ben+15], or with a single clock com-
pared to parameters [Mil00] (see [And19] for a survey). Still, some decidable subclasses
were proposed (e. g., [Hun+02; BL09; AL17; ALR18]), notably in the field of schedul-
ing real-time systems [CPR08; And17]. In spite of these undecidability results, the
use of parametric timed automata for solving various concrete problems was recently
considered, in frameworks such as hardware verification [Che+09], analysis of music
scores [FJ13], monitoring [AHW18] or software product lines testing [Lut+19]. We
show here that this formalism is also useful for solving concrete scheduling problems—
such as the one considered here.

2

1.2 Outline

After discussing related works in Section 2, Section 3 presents the problem we aim
at solving. Section 4 recalls parametric stopwatch automata. Section 5 exposes our
modeling; we extend our solution in Section 6 in a compositional manner, and in
Section 7 to enhance the model with context switch times. Section 8 gives the results
obtained, while Section 9 makes a comparison with other tools of the literature (solving
only a part of the problem). Section 10 concludes the paper.

2 Related works

2.1 Scheduling

A long line of works in the last five decades has been devoted to the problem of schedul-
ing analysis of real-time systems with various flavors. Several analytical methods were
proposed to study the schedulability for a particular situation. Such analytical meth-
ods need to be tuned for each precise setting (uniprocessor or multiprocessor, schedul-
ing policy, absence or presence of offsets, jitters, etc.). Most of them do not cope well
with uncertainty. For example, in [BB97], three methods for the schedulability analy-
sis with offsets are proposed. In [BB04], an efficient approach for testing schedulability
for RMS (rate monotonic) in the case of (uniprocessor) analysis is proposed, through
a “parameter” (different from our timing parameters) to balance complexity versus
acceptance ratio.

2.2 Scheduling with model checking

Schedulability with model checking is a trend that started as early as the first works
on timed model checking (e. g., [WME92; AHV93; AD94; YMW97; CC99]), and grew
larger since the early 2000s.

A natural model to perform schedulability analysis is (extensions of) timed au-
tomata (TA) [AD94]. On the negative side, the cost of state space explosion often
prevents the verification of very large real-time systems. On the positive side, they
allow for more freedom, and can model almost any system with arbitrarily complex
constraints; in addition, despite the cost of state space explosion, they can be used to
verify small to medium-size systems for which no other method is known to apply.

In [AM01; AM02], (acyclic) TA are used to solve job-shop problems. The preemp-
tion is encoded in [AM02] with stopwatches, while keeping some decidability results.
In [AAM06], scheduling is performed using TA. Timed automata allow to model natu-
rally and verify more complex systems, which are not captured so easily in traditional
formalisms for schedulability analysis.

In [NWY99; Fer+07], task automata are proposed as a formalism extending TA
to ease the modeling (and the verification) of uniprocessor real-time systems: in some
cases, the schedulability problem of real-time systems is transformed into a reachability
problem for standard TA and it is thus decidable. This allows applying model-checking
tools for TA to schedulability analysis with several types of tasks and most types of
scheduler.

In [Sun+14], hierarchical scheduling systems are encoded using linear hybrid au-
tomata, a model that generalizes TA. This approach outperforms analytical methods
in terms of resource utilization. In [SL14], linear hybrid automata are used to per-
form schedulability analysis for multiprocessor systems under a global fixed priority

3

scheduler: this method is more scalable than existing exact methods, and shows that
analytical methods are too pessimistic.

In [Fan+16], a schedulability analysis method is introduced using the model of
timed regular task automata (using under-approximated WCETs) and then using
nested timed automata; this method is shown to be exact.

The problem we solve here shares similarities with analyses done in [For+10;
Mik+10]. An important difference between [For+10; Mik+10] and our case study
comes from the fact that, here, there are two distinct notions of “thread” and “pro-
cessing”, while in [For+10; Mik+10] there was only one notion called “task”. Most
importantly, none of these works consider timing parameters.

2.3 Scheduling with parameters

When some of the design parameters are unknown or imprecise, the analysis becomes
much harder. Model checking with parameters can help to address this. In [CPR08],
PTA are used to encode real-time systems so as to perform parametric schedulability
analysis. A subclass (with bounded offsets, parametric WCETs but constants dead-
lines and periods) is exhibited that gives exact results. In contrast, our work allows
for parameterized deadlines; in addition, reactivities are not considered in [CPR08].

In [Fri+12], we performed robust schedulability analysis on an industrial case
study, using the inverse method for PTA [And+09; AS13] implemented in IMITA-
TOR. While the goal is in essence similar to the one in this manuscript, the system
differs: [Fri+12] considers multiprocessor, and preemption can only be done at fixed
instants, which therefore resembles more Round Robin than real FPS. In [Sun+13], we
showed that PTA-based methods are significantly more complete than existing analyt-
ical methods to handle uncertainty. In [SAL15], we solved an industrial challenge by
Thales using IMITATOR; in [And+19], we verified an industrial asynchronous leader
election algorithm using IMITATOR, with additional abstractions.

In [Le+13], the analysis is not strictly parametric, but concrete values are iterated
so as to perform a cartography of the schedulability regions. However, the resulting
analysis of the system is incomplete.

In [Bér+16], timed automata are extended with multi-level clocks, of which exactly
one at a time is active. The model enjoys decidability results, even when extended
with polynomials and parameters, but it remains unclear whether concrete classes of
real-time systems can actually be modeled.

The aforementioned task automata were extended in [And17] to parametric task
automata; some schedulability problems remain decidable in this setting, i. e., it is
possible in some cases to decide whether the set of valuations ensuring schedulability
is empty or not. In addition, procedures for exhibiting schedulability regions are
proposed and implemented.

Finally, Roméo [Lim+09] also allows for parametric schedulability analysis us-
ing parametric time Petri nets [TLR09], with applications to critical real-time sys-
tems [Par+16].

3 Description of the system and problem

The flight control of a space launcher is classically composed of three algorithms:

1. The navigation computes the current position of the launcher from the sensor’s
measurement (such as inertial sensors);

4

1 processing Navigat ion (Meas : in) i s period (5ms) ; end ;
2 processing Guidance i s period (60ms) ; end ;
3 processing Control (Cmd : out) i s period (10ms) ; end ;
4 processing Monitoring (Safeguard : out) i s period (20ms) ; end ;

Figure 1: An example of a flight control system

2. The guidance computes the most optimized trajectory from the launch pad to
the payload release location;

3. The control orientates the thruster to follow the computed trajectory.

Due to the natural instability of a space launcher, strict real-time requirements have
to be respected by the implementation of the flight control: frequency of each algo-
rithm and reactivity between the sensor’s measurement acquisition and the thruster’s
command’s sending.

The case study described in this paper is a simplified version of a flight control
composed of a navigation, a guidance, a control and a monitoring algorithms; these
four parts are called processings1 in the following. Each processing has a name and
a required rational-valued period; in our setting, the processing deadline is equal to
the period. A processing can potentially read data from the avionics bus (“in” data)
and/or write data to the same avionics bus (“out” data). Fig. 1 shows an example of
such a system (all the numerical data provided in this paper are only examples that
do not necessarily correspond to an actual system).

3.1 Threads and deterministic communications

The software components of the system are physically deployed on a single proces-
sor [OGL06]. Processings are allocated on threads run by the processor.

Figure 2: The communication between threads

Fig. 2 exemplifies the way data are exchanged between two threads. The fast thread
(in yellow) has a period of 1 time unit. This period defines the time granularity of the
system (this implies that the offset of the fast thread is 0 and that its deadline is 1).
In this example, the slow thread (in blue) has an offset of 1 (its start is delayed by
1 cycle compared to the start of the fast thread), a period of 10 and a deadline of 8.
The numbers from 1 to 10 denote the index of the period of the fast thread within

1Following the vocabulary used within ArianeGroup. Technically, a processing is a node
in SCADE, i. e., a subprogram activated cyclically, with a frequency, an activation condition
and inputs/outputs.

5

the period of the slow thread. The first communication between the fast thread and
the slow one is performed at the end of the first period ; this explains that, although
the second occurrence of the fast thread finishes before the first occurrence of the slow
thread, this is the first occurrence of the fast thread which is communicated to the
slow thread. Similarly, in order to ensure the determinism and taking into the priority
between the threads, the communication between the slow thread and the fast thread
is performed at the deadline of the slow thread, i. e., at the end of cycle 9 (offset +
deadline). That is, the first occurrence of the fast thread to receive data from the slow
thread is not the one starting at t = 8 nor at t = 9, but the one starting at t = 10.

In our setting, all the thread periods are harmonic, i. e., a thread period is a
multiple of the period of the thread just faster (they pairwise divide each other). In
other terms, for a system that contains a set of threads t1, . . . , tk, all the thread periods
are considered harmonic if for every thread tj (for all j ∈ {1, . . . , k}), the period PT j

of tj is a multiple of the periods of all the threads of smaller period, that is, PT j is
a multiple of the periods of all threads ti ∈ {t1, . . . , tk | PT i < PT j}. In our case,
the harmonic assumption on threads will not affect the modeling of the system in
Section 5; however, it may be used to reduce the number of clocks and considerably
decrease the computation time of our approach.

In addition, in order to ensure the determinism of the scheduling (which facilitates
the verification of the system), the threads work in a synchronous manner:

• The inputs of a thread are read at its start ; that is, no inputs are read during
the execution of the thread.

• The outputs of a thread are provided at its deadline; that is, not only no outputs
are provided during the execution of the thread, but the output is also not
provided as soon as the thread terminates—if it terminates before its deadline—
but only at its deadline.

Switch time In our case study, the switch time, i. e., the time needed by the CPU
to copy memory information when changing threads, is 500µs.

3.2 Reactivities

To ensure the controllability of the launcher, a reactivity2 is required between a data
read from the avionics bus (a measurement) and a data written to the avionics bus
(a command). A reactivity imposes a maximum bound on the time required by these
data to “travel” from the measurement to the command. This concept is quite similar
to that studied in [For+10] (without timing parameters).

Definition 3.1 (reactivity) A reactivity constraint imposes an upper bound from
a data read from the avionics bus to a data written to the avionics bus, where the
sequence of the path of the data represents a precedence constraint.

Several paths are potentially possible between a read data and a written data.
Fig. 3 shows an example of such reactivities.

Reactivities too must follow the deterministic communication model from Sec-
tion 3.1. Consider the execution of threads and processings in Fig. 4 (the values of
periods and WCETs are given for illustration purpose, and do not correspond to the
ones from our case study). Consider the reactivity imposing that the sequence of data

2In the literature, the term “reactivity” is also referred to as “latency” (see, e. g., [For+10]).

6

1 reactivity Meas −> Navigat ion −> Guidance −> Control −> Cmd
i s 150ms ;

2 reactivity Meas −> Navigat ion −> Control −> Cmd
i s 15ms ;

3 reactivity Meas −> Navigat ion −> Monitoring −> Safeguard
i s 55ms ;

Figure 3: Some typical reactivities

“Meas → Navigation → Guidance → Control → Cmd” should be equal to or less
than 5. Due to the data being communicated at the end of each thread only, the
Guidance processing (marked with green “G” in Fig. 4) does not receive the data from
the third execution of the Navigation processing (marked with “N” in red), as the
data of the third Navigation will be sent at the end of the thread T1 period, but from
the second execution of Navigation. Therefore, in Fig. 4, the only path of interest is
the path of the data starting from the second execution of Meas, going to the second
execution of Navigation, then going to the (only) execution of Guidance, and then fin-
ishing in the third execution of Control, before being written to the third occurrence
of Cmd. Also note that the data output by the first execution of Navigation are suc-
cessfully sent to T2 at the end of the first period of T1, but will be overwritten by the
second occurrence of Navigation, and are therefore not of interest when checking the
satisfaction of reactivities. Therefore, the time from the production of these data (at
t = 1) to their writing on the avionic bus (at t = 6) is 5, and therefore the reactivity
is satisfied.

Figure 4: Determinism and reactivities

We want to solve the scheduling problem of periodic processings under reactivity
constraints.

3.3 Processings and assignment into threads

A WCET (worst case execution time) is measured or computed for each processing.
An example is given in Fig. 5.

An important problem is to find a proper assignment of the processings into
threads, with their respective periods, while minimizing the number of threads. A
solution to this problem consists of a set of cyclic threads on which the processings

7

1 processing wcet Navigat ion (1ms) ;
2 processing wcet Guidance (15ms) ;
3 processing wcet Control (3ms) ;
4 processing wcet Monitoring (5ms) ;

Figure 5: Example of Worst Case Execution Times

are deployed. In our setting, these threads are scheduled with a preemptive and fixed
priority policy (FPS). A thread has a name and is defined by the following data:

1. a rational-valued period;

2. a rational-valued offset (with 0 ≤ offset < period), i. e., the time from the system
start until the first periodic activation;

3. a rational-valued (relative) deadline (with 0 < deadline ≤ period), i. e., the time
after each thread activation within which all processings of the current thread
should be completed;

4. a rational-valued major frame (or “MAF”). A MAF defines the duration of a
pattern of processing activation. The MAF in this case study is equal to 10.

5. a set of processings deployed on the thread. Different processings may be ex-
ecuted in an order which may change at each cycle. However, after a MAF
duration, the same pattern of processings is repeated.

In order to simplify the scheduling problem, we have considered in this paper a
pre-allocation of processings on threads, as specified in Fig. 7: that is, Navigation
and Control are allocated on T1, while Monitoring and Guidance are allocated on T2
and T3, respectively. In addition, Navigation is executed at every period of T1, while
Control is executed (after Navigation) on odd cycles only; this is denoted by the when

1 syntax in Fig. 7.

3.4 A formal framework for real-time systems

A real-time system S = {P, T ,R} is viewed here as a set of processings P =
{p1,p2, · · · ,pm}, a set of threads T = {t1, t2, · · · , tn} and a set of reactivities
R = {r1, r2, · · · , rq}. A thread ti computes a usually infinite stream of processings
instances.

In our setting, a thread ti is periodic, i. e., generates instances every fixed amount
of time (the “period”), and is characterized by a 5-tuple (PT i,OT i,DT i,MAF i,Pi),
where PT i corresponds to the period, OT i to the offset, DT i to the deadline, MAF i

defines the duration of a pattern of processing activation pik (where pik denotes the
kth proccessing computed in thread ti), and Pi defines a subset of processings of P
allocated to ti.

3

A processing pi is characterized by two values WCET i (Worst Case Execution
Time) and PP i (Processing Period): When a processing is activated, it is executed for
at most time WCET i time units every PP i time units.

3Note that the MAF is a per-thread property; it is quite similar to the ARINC 653 standard
used in industrial civil airplane [GNC13] designs, except that the ARINC 653 is a per-CPU
property.

8

0 t

WCET i WCET i WCET iWCET j WCET j

OT i DT i DT i DT i

PP i PP i PP i

PPj

PT i PT i PT i

MAF i

Figure 6: Real-time characteristics of the system

Example 1 Let us illustrate these definitions using Fig. 6. A single thread ti is
considered, with offset OT i, MAF MAF i, period PT i and deadline DT i. This thread
has two processings pi and pj, where pi is characterized by a WCET WCET i and a
period PP i and pj has WCET WCET j and period PPj.

A reactivity is of the form ri = ((pi1 → pi2 → · · · → pik),DRi) where
pi1 ,pi2 , . . . ,pik are k processings of P, (pi1 → pi2 → · · · → pik) denotes a precedence
constraint, and DRi is the maximum time of reactivity for ri: the end of the thread
period containing the last processing pik of the precedence sequence has to be com-
pleted before the deadline DRi. (If a reactivity is satisfied, its precedence constraint
is obviously satisfied too.)

Definition 3.2 A system S is schedulable if

1. ∀ ti ∈ T , the end of each instance of ti occurs before its relative deadline DT i.

2. ∀ ri ∈ R, the end of each instance of the thread containing the last processing
pik of ri occurs before DRi.

3.5 Formalization of the case study

We formalize in the following the system, with the values given in Figs. 1 and 5 and
the assignments onto threads given in Fig. 7.

3.5.1 Processings

Let P denote the set of processings. This set can be defined as P =
{pNavi ,pCont ,pMoni ,pGuid}, where:

Control: pCont = (WCETCont ,PPCont) = (3, 10).

Guidance: pGuid = (WCETGuid ,PPGuid) = (15, 60).

Monitoring: pMoni = (WCETMoni ,PPMoni) = (5, 20).

Navigation: pNavi = (WCETNavi ,PPNavi) = (1, 5).

9

1 thread T1 i s
2 period (5ms) ;
3 of fset (0ms) ;
4 deadline (5ms) ;
5 maf (10ms) ;
6 processing (when 0 => (

Navigat ion) ;
7 when 1 => (

Navigat ion ; Control)) ;
end ;

(a) Thread T1

1 thread T2 i s
2 period (20ms

) ;
3 of fset (0ms)

;
4 deadline (20ms

) ;
5 maf (20ms

) ;
6 processing (

Monitoring) ;
7 end ;

(b) Thread T2

1 thread T3 i s
2 period (60ms

) ;
3 of fset (0ms)

;
4 deadline (60ms

) ;
5 maf (60ms

) ;
6 processing (

Guidance) ;
7 end ;

(c) Thread T3

Figure 7: A typical solution of the flight control scheduling problem

3.5.2 Threads

Let T = {t1, t2, t3} denote the set of threads, with:

• t1 = (PT 1,OT 1,DT 1,MAF 1,P1) = (5,OT 1,DT 1, 10, {pNavi ,pCont}).
• t2 = (PT 2,OT 2,DT 2,MAF 2,P2) = (20,OT 2,DT 2, 20, {pMoni}).
• t3 = (PT 3,OT 3,DT 3,MAF 3,P3) = (60,OT 3,DT 3, 60, {pGuid}).

3.5.3 Reactivities

Let R = {r1, r2, r3} denote the set of reactivities, with:

• r1 =
(
(pNavi → pGuid → pCont),DR1

)
with DR1 = 150.

• r2 =
(
(pNavi → pCont),DR2

)
with DR2 = 15.

• r3 =
(
(pNavi → pMoni),DR3

)
with DR3 = 55.

3.6 Objectives

Let us summarize the problems we address in this paper. Our problems take as input
a real-time system, i.e.:

1. a list of processings with their WCET (for example Fig. 5) and period, and their
input or output data (for example Fig. 1);

2. a set of reactivities (for example Fig. 3);

3. an allocation of processings on threads, with period, offset, deadline and MAF
for each thread (for example Fig. 7).

Remark 1 Observe in Fig. 7 that the harmonic assumption on threads is respected,
with threads ordered by increasing frequency as follows: T3, T2, T1.

The first problem is to formally verify the schedulability of the real-time system:

10

Scheduling verification problem:
Input: a real-time system
Problem: formally verify that S is schedulable.

Recall that schedulability also ensures that all reactivity constraints are met (from
Definition 3.2).

The second problem assumes that some constants of the real-time system (dead-
lines, periods, offsets, WCET. . .) become unknown. The real-time system can then
be seen as a partially specified or abstract system.

In this work, we assume that the offsets and deadlines of each thread are unknown;
that is, some of the values in Fig. 7 are not known anymore. The scheduling synthe-
sis problem for our flight control system consists thus in computing the offsets and
deadlines of each thread in order to fulfill the required reactivities.

Scheduling synthesis problem:
Input: a real-time system, a set of unknown constants
Problem: exhibit valuations for the unknown constants such as S is schedulable.

Recall that our synthesis problem still considers as input the periods; therefore
offsets and deadlines are the main results of interest.

4 Parametric stopwatch automata

4.1 Clocks, parameters, constraints

We assume a set X = {x1, . . . , x|X|} of clocks, i. e., real-valued variables that evolve at

the same rate. A clock valuation is a function w : X→ R≥0. We write ~0 for the clock
valuation assigning 0 to all clocks. Given R ⊆ X, we define the reset of a valuation w,
denoted by [w]R, as follows: [w]R(x) = 0 if x ∈ R, and [w]R(x) = w(x) otherwise.
Given a valuation w, d ∈ R+ and X′ ⊆ X, we define the time-elapsing of w by d except
for clocks in X′, denoted by w↗+d

\X′ , as the clock valuation such that

w↗+d
\X′ (x) =

{
w(x) if x ∈ X′

w(x) + d otherwise

We assume a set P = {p1, . . . , p|P|} of parameters, i. e., unknown constants. A
parameter valuation v is a function v : P → Q+. We denote ./ ∈ {<,≤,=,≥, >}. A
guard g is a constraint over X ∪ P defined by a conjunction of inequalities of the form
x ./ d or x ./ p, with x ∈ X, d ∈ N and p ∈ P. Given a guard g, we write w |= v(g) if
the expression obtained by replacing in g each x ∈ X by w(x) and each p ∈ P by v(p)
evaluates to true.

4.2 Parametric stopwatch automata

Parametric timed automata (PTA) extend timed automata with parameters within
guards and invariants in place of integer constants [AHV93]. For many real-time
systems, especially when they are subject to preemptive scheduling, PTA are not
sufficiently expressive. As a result, we will use here an extension of PTA with stop-
watches [CL00], namely parametric stopwatch automata [Sun+13].

11

Definition 4.1 (PSA) A parametric stopwatch automaton (PSA) A is a tuple
A = (Σ, L, `0,X,P, I,S, E), where:

1. Σ is a finite set of actions,

2. L is a finite set of locations,

3. `0 ∈ L is the initial location,

4. X is a finite set of clocks,

5. P is a finite set of parameters,

6. I is the invariant, assigning to every ` ∈ L a guard I(`),

7. S is the stop function S : ` → 2X, assigning to every ` ∈ L a set of stopped
clocks,

8. E is a finite set of edges e = (`, g, a, R, `′) where `, `′ ∈ L are the source and
target locations, g is a guard, a ∈ Σ, and R ⊆ X is the set of clocks to be reset.

Stopwatch automata can be composed as usual using parallel composition on syn-
chronized actions. Note that our clocks are shared by default, i. e., a same clock (i. e.,
with the same name) can be read, stopped or reset in several automata. The same
applies to parameters.

Given a parameter valuation v and PSA A, we denote by v(A) the non-parametric
structure where, for each parameter p ∈ P, all occurrences of p have been replaced
by v(p). Any structure v(A) is also a stopwatch automaton [CL00]. If S(`) = ∅ for
all ` ∈ L, then by assuming a rescaling of the constants (multiplying all constants in
v(A) by the least common multiple of their denominators), we obtain an equivalent
(integer-valued) TA, as defined in [AD94].

Let us now recall the concrete semantics of stopwatch automata.

Definition 4.2 Given a PSA A = (Σ, L, `0,X,P, I,S, E), and a parameter valua-
tion v, the semantics of v(A) is given by the timed transition system (TTS) (S, s0,→),
with

1. S = {(`, w) ∈ L× R|X|≥0 | w |= v(I(`))},

2. s0 = (`0,~0),

3. → consists of the discrete and (continuous) delay transition relations:

(a) discrete transitions: (`, w)
e7→ (`′, w′), if (`, w), (`′, w′) ∈ S, and there exists

e = (`, g, a, R, `′) ∈ E, such that w′ = [w]R, and w |= v(g).

(b) delay transitions: (`, w)
d7→ (`, w↗+d

\S(`)), with d ∈ R≥0, if ∀d′ ∈
[0, d], (`, w↗+d′

\S(`)) ∈ S.

5 Specifying the system

Since the seminal work of Liu and Layland in [LL73], an abundant number of methods
and tools have been designed to check the schedulability of real-time systems. However,
while some aspects are reasonably easy (FPS, no mixed-criticality), the problem we
address here is not typical for several reasons:

1. offsets may be non-null;

12

2. the executed processings may differ depending on the cycle;

3. the reactivities must always be met, and therefore define new, non-classical
timing constraints; and, perhaps most importantly,

4. the admissible values for deadlines and offsets may not be known. Only the
global end-to-end reactivity is specified.

As a consequence, we choose to follow a model checking based method. Model
checking is known for being more expressive than analytical methods, at the cost of
performance or even decidability. We show here that, although we use an undecidable
formalism, we do get exact results for the instance of the problem we consider. We
indeed rely on a procedure (“reachability synthesis”, formalized in e. g., [JLR15]) which
is not guaranteed to terminate—but is correct whenever it does.

We present in the remainder of this section our modeling of the verification and
the synthesis problem using PSA. This formalism has several advantages. First, it is
helpful to model concurrent aspects of the system (different threads and processings
running concurrently). Second, stopwatches can be used to model preemption. Third,
parameters can be used to model the unknown constants, and solve the synthesis
problem.

For now, we consider that there are no context switches in the system. We will
discuss in Section 7 how to introduce them.

5.1 Architecture of the solution

5.1.1 A modular solution

To model the system, we use the concurrent structure of parametric stopwatch au-
tomata so as to build a modular solution: that is, each element (thread, processing,
scheduling policy) and each constraint (reactivity) is defined by a dedicated PSA.
These automata are then composed by usual parallel composition on synchronization
actions.

This makes our solution modular in the sense that, in the case of a modification in
the system (e. g., the scheduling policy), we can safely replace one PSA with another
(e. g., the FPS scheduler automaton with another scheduler PSA) without impacting
the rest of the system.

5.1.2 Encoding elements and constraints as automata

We will model each processing activation as a PSA. These automata ensure that
processings are activated periodically with their respective period and initial offset.

In addition, we will create one PSA for each thread: the purpose of these automata
is to ensure that the processings associated with each thread are executed at the right
time. In the case of our concrete problem, we assign both the Navigation and Control
processings to thread T1, the monitoring process to T2 and the guidance processing
to T3.

The reactivities also follow the concept of modularity. That is, each reactivity is
tested using a single PSA. By testing (as in [Ace+03]), we mean that a reactivity fails
iff a special location is reached. Therefore, ensuring the validity of the reactivities is
equivalent to the unreachability of these special locations.

Finally, we will specify a scheduler automaton that encodes the scheduling policy
between the different threads (in our problem, recall that the scheduling policy is fixed
priority scheduling (FPS)).

13

init periodic

xControl ≤ periodControl

xControl = periodControl
actControl

xControl := 0

xControl = periodControl
actControl

xControl := 0

Figure 8: Automaton periodicControl

We give more details on each of these automata in the following.

5.2 Modeling periodic processing activations

To model the periodicity of the processings, we create one PSA for each processing
activation. This PSA simply performs the activations in a periodic manner. Acti-
vations are modeled by a synchronization action that is used to communicate with
other automata (typically the thread automaton). For example, the activation of the
Control processing is denoted by actControl; this action will be used to synchronize
between the Control activation automaton with other automata (e. g., the threads or
the scheduler).

In addition, the period processing activation automaton detects whether a pro-
cessing missed its (implicit) deadline (equal to its period); that is, we assume that a
processing that has not finished by its next period is a situation corresponding to a
deadline miss.

Each automaton features a single clock.
We present in Fig. 8 a simplified version of the periodicControl automaton, modeling

the periodic activation of the Control processing.4 This automaton uses one clock
xControl and one parameter periodControl. The clock xControl is used to measure the
time between any two consecutive processing activations; it is never stopped. Note that
the period periodControl is known beforehand, and is therefore not strictly speaking
a parameter, but that makes our solution both more generic and more readable (in
IMITATOR, a parameter can be statically instantiated to a constant before running
the analysis).

The initial location is init: from then, the first occurrence of Control is immediately
activated (action actControl), and the automaton enters the periodic location. Then,
exactly every periodControl time units (guard xControl = periodControl), another
instance of Control is activated.

5.3 Modeling threads

We create one PSA for each thread. Each of these automata contains one clock for
the thread (used to measure the thread period and offset), as well as one clock per
processings assigned to the thread. These processings clocks are used to measure the
amount of time spent on executing these processings; these clocks can be stopped
(they are therefore stopwatches, strictly speaking) when the processor was preempted
for a higher priority task. For example in Fig. 9, the thread automaton threadT1
contains xT1 (the thread clock), as well as xExecControl and xExecNavigation (the

4Among the simplifications, we do not represent the check for the deadline miss.

14

init
stop {xExecC , xExecN}

xT1 ≤ offsetT1

exec nav odd
stop {xExecC}

xT1 ≤ deadlineT1
∧ xExecN ≤WCETN

exec control odd
stop {xExecN}
xT1 ≤ deadlineT1

∧ xExecC ≤WCETC

idle
stop {xExecC , xExecN}

xT1 ≤ periodT1

deadlineMissed

xT1 = offsetT1
actT1

xT1 := 0

xExecN = WCETN
finishNavigation
xExecN := 0

xExecC = WCETC
finishControl
xExecC := 0

xT1 = periodT1
actT1

xT1 := 0

xT1 = deadlineT1
∧ (xExecC < WCETC
∨xExecN < WCETN)

xT1 = deadlineT1
∧ xExecC < WCETC

Figure 9: Fragment of automaton threadT1

clocks associated to the processings of T1). Parameters include the offset, period, and
deadline of the thread, but also the WCETs of the processings assigned to this thread.

The thread automaton is responsible for:

1. encoding the initial thread offset, i. e., starting the periodic thread activation
only after the offset;

2. performing the periodic thread activation;

3. executing the processings associated with the thread; and

4. detecting the deadline misses.

The clocks associated with the processings are used to measure the execution time
of these processings: they are in fact stopped most of the time, except when the thread
is actively executing the processing. This is in contrast with the clocks associated
with the processing activation automaton, which are never stopped, as they measure a
period. Then, a deadline miss occurs if the clock measuring the thread period reaches
the deadline (recall that the deadline is less than or equal to the period, and therefore
we can use the same clock), while the clock measuring a processing execution time is
strictly less than its WCET.

We give in Fig. 9 a fragment of the automaton threadT1. We only give the odd
cycle, as this is the most interesting; that is, we removed the fragment corresponding
to the even cycle (only executing Navigation) between locations init and exec nav odd
(and the transition from idle should go to the removed exec nav even location). The
automaton uses several synchronization variables, notably the end of the processings
(e. g., finishControl), but also the start and end of the concerned thread (e. g., actT1
and endT1, not depicted in the simplified version in Fig. 9). We also abbreviate
some variable names to save space (e. g., xExecC for xExecControl and xExecN for
xExecNavigation or WCETN for WCETNavigation).

First, the automaton waits for the offset: that is, it stays in init exactly offsetT1
time units. Then, it executes the first processing of the odd cycle, i. e., Navigation: it
stays in exec nav odd until completion, i. e., for WCETNavigation time units.5 Note
that this is the only location where xExecNavigation is elapsing, i. e., is not stopped, as

5In the full model, we can allow for a best case execution time, in which case the duration
is nondeterministically chosen in the interval [BCETNavigation,WCETNavigation].

15

it measures the execution time. Then, upon completion of the Navigation processing,
the automaton moves to exec control odd, where Control is executed. Upon comple-
tion, it moves to idle, and waits until the clock xT1 reaches its period. Then, the cycle
restarts and so on.

In addition, at any time, possible deadline misses are checked for. A deadline
miss occurs on an odd cycle while execution Navigation whenever xT1 = deadlineT1
and either xExecControl < WCETControl or xExecNavigation < WCETNavigation.6

When executing Control, only the execution time of Control needs to be checked.

Remark 2 Our model is in fact more complicated as, for sake of modularity, we make
no assumption in the thread automaton on how the other automata behave, notably the
processings activation automata. Therefore, we allow for processings to be activated at
any time, which must be taken care of in the thread automaton.

5.4 Modeling the FPS scheduler

The FPS scheduler is modeled using an additional PSA. It reuses existing works from
the literature (e. g., [Fer+07; Sun+13]), and does not represent a significant original
contribution. We mainly reuse the scheduler encoding of [Sun+13], which consists of
an automaton synchronizing with the rest of the system on the start and end task
synchronization actions as well as the task activation actions. Whenever a new task
is activated, the scheduler decides what to do depending on its current state and the
respective priorities of the new and the executing tasks (if any).

Nevertheless, we had to modify this encoding due to the fact that existing scheduler
automata simply schedule tasks: in our setting, the scheduler schedules both the
threads and the threads’ processings. Among the various modifications, in case of
preemption, our scheduler does not stop the clocks measuring the execution times
of the preempted threads (because such clocks do not exist), but stop the clocks
measuring the execution times of the processings deployed on the preempted threads.

We give in Fig. 10 an example of such a scheduler in a simplified version, with
only two threads T1 and T2; the full scheduler is of course more complete. If any of
the two threads get activated (actT1 or actT2), the scheduler starts executing them.
If a second thread gets activated, the highest priority thread (T1) is executed, while
T2 is put on the waiting list (which is encoded in location execT1waitT2). This is
the location responsible for stopping the clock of the (only) processing of T2, i. e.,
Monitoring (clock xexecM). Only after T1 has completed (endT1), T2 can execute.
Our real scheduler is in fact significantly more complex as it has to cope with three
threads, but also with special cases such as the activation of a new thread activation
of ti while executing a previous instance of ti, etc.

5.5 Reachability synthesis

Finally, the system is schedulable if none of the “bad” locations (corresponding to
deadline misses, e. g., in the thread automata) is reachable. If all parameters are

6This encoding is not necessarily optimal. In fact, on odd cycles, as Navigation is executed
first, and followed by Control, a deadline miss can be detected earlier, i. e., if Navigation is still
executed, but there is not enough time to finish the execution of Navigation and that of Con-
trol: that is, an optimized deadline miss condition could be xT1+WCETControl = deadlineT1
and xExecNavigation < WCETNavigation. This optimization has not been implemented, so
as to leave the model (relatively) simple and maintainable, but could be tested in the future.

16

idle

execT1

execT1waitT2
stop{xexecM}

execT2

actT1

actT2

endT1
actT2

endT1endT2

actT1

Figure 10: Encoding the FPS scheduler (simplified version)

valuated, the system is a TA, and schedulability reduces to reachability checking. If
some parameters are free (i. e., the analysis is parametric), the set of valuations for
which the system is schedulable exactly corresponds to the valuations for which these
bad locations are unreachable, i. e., the complement of the valuations set result of
reachability synthesis. This guarantees our method correctness.

6 Compositional verification of reactivities

An originality of our work—which among other reasons, notably the timing parame-
ters, justifies our choice to use model checking—is the encoding of reactivities. Indeed,
our goal is to verify a system, or synthesize valuations, for which all reactivities are
met.

How to properly encode reactivities turned out rather subtle. Let us first exemplify
the complexity of the definition of reactivities.

Example 2 Consider the third reactivity in Fig. 3 (abbreviated by NM in the follow-
ing) that requires that any data transmission Meas → Navigation → Monitoring →
Safeguard must always be less than 55 ms. Recall that data are transmitted upon the
end of a thread period.

We can see this reactivity as the start of a timer at the beginning of the last thread
period of an execution of Navigation that completed before the end of an execution of
task T1, where T1 is such that it is the last execution of T1 the period of which ends
before the start of an execution of Monitoring; then, the timer stops following the end
of the period of an execution of T1 immediately following the end of the period of T3
corresponding to the end of the aforementioned execution of Monitoring. At the end,
the timer must be less than 55 ms.

In other words, this reactivity requires that any following sequence of actions should
take less than 55 ms: actT1, startNavigation followed by endNavigation (without any
occurrence of startNavigation in between) followed by endT1, followed by actT3 (with-
out any occurrence of endT1 in between), startMonitoring followed by endMonitoring
(without any occurrence of startMonitoring in between), followed by endT3.

Encoding reactivities is arguably the most technical part of our solution, and we
tried multiple methods (either incorrect or that represented a too large overhead)
before converging to this solution. Nevertheless, the solution we chose still represents
a large overhead, as we will see in Section 8.

In our solution, each reactivity is encoded as a sort of observer automaton [Ace+03;
And13]; an observer automaton observes the system behavior without interfering with
it. That is, it can read clocks, and synchronize on synchronization actions, but without

17

impacting the rest of the systems; in particular, it must be non-blocking (except
potentially once the property verified by the observer is violated). In addition, an
observer often reduces to reachability analysis: the property encoded by the observer
is violated iff a special location of the observer is reachable.

Each reactivity automaton uses a single (local) clock used to check the reactivity
constraint, and synchronizes with the rest of the system on (some) synchronization
labels encoding the start and end of processings and tasks.

In fact, we deviate from the principle of observer automaton by allowing it to block
in some cases. Indeed, a key point in the definition of reactivities in our problem is
the communication between threads as exemplified in Example 2. In order to allow a
generic solution for reactivities, and due to the fact that some timing parameters are
unknown, we cannot make assumptions on the respective ordering of processings w.r.t.
each other. Therefore, when a given processing is faster than another one (e. g., Nav-
igation is faster than Guidance), it is not possible to know a priori which instance of
the fast processing (e. g., Navigation) will effectively transmit its data to the following
slower processing (e. g., Monitoring). As a consequence, our observer will nondeter-
ministically “guess” from which instance of the slower processing to start its timer:
this is achieved by a nondeterministic choice in the initial location of the automaton. If
the guess is wrong, the observer “blocks” the system (impossibility to fire a transition
or let time elapse). Note that, while blocking is usually not an admissible feature of
observer automata, this is harmless in this case as, due to the nondeterministic guess
and the fact that model checking explores all choices, all possible behaviors of the
system are still explored by our solution.

Example 3 Consider again reactivity NM from Example 2. Consider a given instance
of Navigation. If a second full instance of Navigation (including the end of thread T1)
is observed before the start of T2, our observer made a wrong guess, and the observer
clock is not measuring a proper reactivity, as the instance of Navigation on which the
clock should be started must be the last completed instance before the start of T2. In
that case, the observer simply blocks.

6.1 Observer construction

Our solution consists in translating the sequence of starting and ending actions of
threads and processings following the definition of the reactivities, while forbidding
some actions in some locations to ensure the proper encoding of the definition of
thread communication and reactivities. In addition, a clock measuring the reactivity
is started upon the (nondeterministic) activation of the first thread, and is checked
against the reactivity nominal maximum time upon completion of the last thread. If
this maximum time constraint is violated, the observer enters a special “bad” location.
This observer violation location is added to the list of “bad” locations in Section 5.5
when performing reachability synthesis.

Example 4 We give the observer automaton corresponding to reactivity NM in
Fig. 11. We abbreviate in Fig. 11 the names of processings (N and M stand for Navi-
gation and Monitoring respectively). The only clock is xNM while reacNM denotes the
maximum nominal reactivity for NM (55 ms here). ΣNM stands for this automaton
alphabet; given a ∈ ΣNM , a denotes ΣNM \ {a} (we extend this notation to sets of
actions). In addition, whenever xNM > reacNM occurs in any location (except the
initial location), a transition leads to the special “bad” location (these transitions are
not depicted in Fig. 11 for sake of clarity).

18

init exec T1 exec N ending T1 wait T3 exec T3

exec Mending T3good

bad

actT1

xNM := 0

ΣNM

startN

startN

endN

endN

endT1

endT1

actT3

actT3, endT1

startM

startM

endM
endM

xNM ≤ reacNM
endT3

endT3

xNM > reacNM
endT3

Figure 11: Encoding reactivity Navigation → Monitoring

The nondeterministic choice is encoded in the initial location where, upon ac-
tion actT1, the automaton can either self-loop in init, or go to actT1 to try to measure
the reactivity from this instance of T1. The blocking is encoded by the absence of transi-
tion labeled with endT1 in location wait T3 (an alternative is to synchronize on endT1
to a sink location that also blocks time elapsing).

Both remaining reactivities in Fig. 3 follow easily from this scheme: the first reac-
tivity (Navigation → Guidance → Control) follows the same principle for Navigation
and Guidance, and is immediately followed by a third check for Control, while the
second reactivity (Navigation → Control) is simpler as both Navigation and Control
are on the same thread.

6.2 Compositional verification and synthesis

Due to the nondeterministic choice, the verification of the reactivities entails a clear
overhead to the verification (see Section 8). Verifying all three reactivities can be natu-
rally done by adding the three observer automata to the same system, and performing
synthesis on the composition of all these automata.

However, we claim that this can be done in a compositional fashion. Indeed,
checking reactivities is checking that a constraint is met for all executions; this can
be seen as a global invariant of the property “all reactivities are satisfied”, and we
will verify it using observers. Observers simply observe the system and do not interact
with it as long as the property they are verifying is not violated; therefore, independent
properties can be observed by different observers using different executions. Therefore,
checking that these three invariants are valid can be done separately. In the non-
parametric case, we will perform three different verifications of the system, with only
one reactivity automaton at a time. Then, if the “bad” locations are unreachable for
the three different verifications, then the system is schedulable and the reactivities are
met. In the case of synthesis, we will intersect the result of the synthesis applied to
the three parametric models.

This compositional analysis comes in contrast with many works on scheduling,
where compositionality is hard to achieve (see, e. g., [SL03; Ric05; LB05; SEL08;
CPV13]). Note that our compositional verification is not necessarily specific to a
parametric approach, and using our approach in a non-parametric setting (e. g., using
Uppaal) could also benefit from a similar compositionality.

19

1 processing wcet Navigat ion (1ms) ;
2 processing wcet Guidance (1 0 . 5ms) ;
3 processing wcet Control (3ms) ;
4 processing wcet Monitoring (3ms) ;

Figure 12: Example of Worst Case Execution Times for a system with switch
time

7 Enhancing the analysis with context switches

7.1 Problem

When switching between two threads, the CPU needs to store the state of a thread, so
that it can be restored later, and consequently the execution can be resumed from the
same point later. Threads usually do not switch instantaneously: a certain amount
of time is required for copying data. For each change in thread execution, the system
must copy data before running the next thread. The time to save this state and restore
another is known as thread context-switch time. This context-switch time between
threads is small, but can be important to consider for schedulability.

Example 5 For the threads assignment given in Fig. 7 together with the processings
values in Figs. 1 and 5, we can show using the Cheddar analyzer (see Section 9.1.1)
that the schedule is tight, i. e., the occupancy of the processor is 100 %. For this reason,
any non-zero context-switch time implies that the system becomes non-schedulable.

Because of the tight schedule mentioned in Example 5, in order to study the system
using non-zero context-switch times, we consider the second set of (fictitious) values,
given in Fig. 12. This set reduces the WCETs of the processings, and therefore allows
for some non-zero context-switch time.

Following the new data from Fig. 12, let us redefine the set of processings as
P ′ = {pNavi ,pCont ,pMoni ,pGuid}, where:

Control: pNavi = (WCETNavi ,PPNavi) = (1, 5).

Guidance: pCont = (WCETCont ,PPCont) = (3, 10).

Monitoring: pMoni = (WCETMoni ,PPMoni) = (3, 20).

Navigation: pGuid = (WCETGuid ,PPGuid) = (10.5, 60).

From now on, we consider that the switch from a thread to another one requires
a (constant) switch time equal to 500µs 7. Also note that, during the change of
processing within the same thread (e. g., from Navigation to Control in the odd period
of Thread T1 in Fig. 7), the switch remains 0, as these processings are part of the
same thread.

7.2 Modeling the context switch

The switch time between threads is modeled as part of the scheduler automaton. For
each change of execution from one thread to another, we go through an intermediate

7All values are confidential and therefore the given values in this paper are not the genuine
ones.

20

execT2
execT1waitT2
stop{xexecM}

actT1

(a) Without switch

execT2
switching

stop{xexecN , xexecC , xexecM}
execT1waitT2
stop{xexecM}

actT1
xSwitch := 0 xSwitch = pSwitch

(b) With switch

Figure 13: Encoding the FPS scheduler without and with switch (fragment)

location: upon activation of a thread implying a thread switch (recall that some thread
activations may not imply an immediate thread change, if the newly activated thread
has lesser priority than the currently activated thread, e. g., activating Thread T2
in location execT1 in Fig. 10), then a clock xSwitch is set to 0, and counts until it
reaches the context switch time. In our case, this timing is parameter pSwitch (this
parameter is in practice assigned to its nominal value 500µs and is therefore not truly
parametric).

Example 6 We give in Fig. 13a a fragment of the original FPS scheduler from Fig. 10,
corresponding to the execution of thread T2, followed by the activation of thread T1,
which has higher priority and therefore requires a context-switch time. In the orig-
inal version in Fig. 13a, the processor immediately starts executing T1 in location
execT1waitT2. In contrast, in the transformed version in Fig. 13b, the processor first
transits through an intermediate location switching, that it can only leave pSwitch time
units later; only from there, T1 starts being executed.

Also note that, in the intermediate location switching, all clocks measuring the
execution times of the processings associated to any of the threads of the processor (here
Navigation and Control for T1 and Monitoring for T2) are stopped, as the processor
is not executing any thread, but is performing the context switch.

We give in Fig. 14 the Gantt chart of the case study of interest with switch time
equal to 500µs. (This Gantt chart was generated by Cheddar [Sin].)

We give in Fig. 17 in Appendix A the full version of the scheduler with three
threads and the switch time between threads.

8 Experiments

8.1 Experimental environment

We modeled our network of PSA in the IMITATOR input language [And21]. IMITA-
TOR is a parametric model checker taking as input networks of PSA extended with
useful features such as synchronization actions and discrete variables. Synthesis can
be performed using various properties. We use here reachability synthesis (formalized
in, e. g., [JLR15]). When IMITATOR terminates (which is not guaranteed in theory),
the result is always sound (but not necessarily complete), but the tool is often able to

21

Figure 14: Gantt chart of the system GNC with switch time = 500µs

infer whether the result is exact (sound and complete). All analyses mentioned in this
manuscript terminate with an exact result.

The translation effort was manual due to the specificity of our solution (with
the exception of the scheduler, for which we started from an automated generator).
However, we tried to keep our translation as systematic as possible to allow for a
future automated generation from the problem input data. We made intensive use of
clock resets and stopwatches for clocks not necessary at some points, in order to let
IMITATOR apply inactive clock reductions.

All experiments were conducted using IMITATOR 2.10.4 “Butter Jellyfish” on an
ASUS X411UN Intel Core™ i7-8550U 1.80 GHz with 8 GiB memory running Linux
Mint 19 64 bits.8

In Sections 8.2 and 8.3, we first study the system without the extra context switch
time introduced in Section 7; then, we study in Section 8.4 the overhead incurred by
the context switch time.

8.2 Verification and synthesis without reactivities

In order to evaluate the overhead of the satisfaction of the reactivities, we first run
analyses without reactivities.

8.2.1 Non-parametric model

First, a non-parametric analysis shows that the bad locations are unreachable, and
therefore the system is schedulable under the nominal values given in Figs. 1 and 5.

The computation time of this non-parametric analysis, together with other para-
metric analyses (all without reactivities) are given in Fig. 16a.

We give in Fig. 15 the Gantt chart (obtained with Cheddar [Sin]) of this entirely
instantiated model.

8Sources, binaries, models and results are available at imitator.fr/static/FI2021/ and
at https://www.doi.org/10.5281/zenodo.5042059.

22

https://www.imitator.fr/static/FI2021/
https://www.doi.org/10.5281/zenodo.5042059

Figure 15: scheduling GNC without reactivities using Cheddar

Analysis Time (s)
No parameter 3.1
Parametric offsets 95.8
Parametric deadlines 17.7

(a) Without switch time

Analysis Time (s)
No parameter 17.9
Parametric offsets 5,396.3
Parametric deadlines 38.7

(b) With switch time

Figure 16: Computation times without reactivities

8.2.2 Parameterized offsets

We then parameterize offsets, i. e., we seek admissible offsets for which the system
is schedulable. The constraint synthesized by IMITATOR is given in Fig. 18 in Ap-
pendix B.1. We can see that, while several conditions for schedulability are given, at
least one offset must be 0 to ensure schedulability.

In order to exemplify admissible values, we exhibit some valuations satisfying this
constraint in Table 11 in Appendix B.1; we also give some valuations not satisfying
this constraint. These valuations were derived manually from the constraint, but an
automatization thanks to an SMT solver would be possible.

8.2.3 Parameterized deadlines

We then parameterize deadlines, i. e., we seek admissible deadlines for which the
system is schedulable. The constraint is: deadlineT2 ∈ [11, 20] ∧ deadlineT1 ∈
[4, 5] ∧ deadlineT3 = 60. That is, the deadline of T3 is strict, while T1 and T2
can be relaxed while preserving schedulability.

Again, we exhibit some valuations satisfying this constraint in Table 12 in Ap-
pendix B.2.

8.3 Compositional verification of reactivities

We then solve the scheduling verification and scheduling synthesis problems with re-
activities, using two methods:

23

Table 1: Computation times with reactivities (s)

Analysis Monolithic NGC NC NM Compositional
No parameter 109.4 21.4 3.4 15.2 40.1
Parametric offsets 2304.0 1111.9 210.8 955.7 2278.4
Parametric deadlines 637.2 173.0 28.5 129.8 331.3

Table 2: Computation times with reactivities and switch time (s)

Analysis Monolithic NGC NC NM Compositional
No parameter 476.5 47.5 6.5 34.5 88.5
Parametric offsets TO 33,449.6 2915.4 TO TO
Parametric deadlines 1,919.7 342.3 62.7 278.0 683.0

1. monolithic verification: all three reactivity automata are included in the model;
and

2. compositional verification: we verify sequentially three different models, each of
them including all automata modeling the system, but only one reactivity at a
time.

We give the various computation times, including the overhead incurred by each
reactivity, in Table 1. Table 1 shows the interest of the compositional verification
over monolithic verification, as the computation time is divided by a factor 2, except
in the case of parametric offsets, where the compositional verification is just a little
more efficient. Also, without surprise, the most complicated reactivity (NGC) takes
the longest computation time.

8.4 Switch time

We now give the computation times in the case of switch time of 500µs in Fig. 16b
and Table 2. In Table 2, “TO” denotes non-termination after 12 hours.

The constraints for offsets and deadlines synthesized by IMITATOR are given re-
spectively in Fig. 22 in Appendix D.1 and in Fig. 23 in Appendix D.2.

We give in Tables 3 and 4 some examples of the values of parameters for which
the system with switch time is schedulable (“|= K”) or not.

Let us briefly compare the computation times of the system without switch time
on the one hand, and of the system with the switch time of 500µs on the other hand.
The execution time of IMITATOR for the system with the switch time is nearly three
times higher than the system without switch time, in the non-parametric case and the

Table 3: Some valuations for which the system is schedulable (without reactiv-
ities)

Valuation offsetT1 offsetT2 offsetT3 |= K
v1 0 11.5 1.5

√

v2 3 0 10
√

v3 0 5 1
√

v4 12 0 3 ×
v5 3 15 0 ×

24

Table 4: Some valuations for which the system is schedulable (with reactivities)

Valuation deadlineT1 deadlineT2 deadlineT3 |= K
v1 4.5 20 60

√

v2 5 4.5 60
√

v3 4.5 4.5 60
√

v4 4 5 60 ×
v5 4.5 4 65 ×

case of parametric deadlines. For the case of parametric offsets, it is nearly ten times
higher.

9 Comparison with other tools

9.1 Comparison of our results with non-parametric tools

We perform a comparison with two other well-known tools, one from the real-time sys-
tem community, namely Cheddar [Sin], and one from the timed automata community,
namely Uppaal [LPY97]. Both tools cannot handle parameters nor consider partially
specified problems, and therefore can only solve the scheduling verification problem.
Therefore, in this section, we consider the instantiated version of the system according
to the nominal values given in Figs. 1 and 5. In addition, to the best of our knowledge,
Cheddar cannot test the reactivities.

9.1.1 Non-parametric comparison with Cheddar

Cheddar is a real-time scheduling tool distributed under the GPL license. Cheddar is
used to model software architectures of real-time systems and to check whether the
system is schedulable.

We checked the system’s schedulability using Cheddar when the system is instan-
tiated (i. e., all offsets are initialized to 0 and the deadline of each thread equal to
the period). We have indicated the period, the execution time and deadline of each
processings.

As result, Cheddar proves that the system in Fig. 5 without switch time between
threads is schedulable and there is no deadline missed in the computed scheduling. We
give in Fig. 15 the Gantt chart of this system using Cheddar. The computation time
of this analysis is given in Table 7. In this solution, the number of context switches
per period of T3 is 29 and the number of preemptions is 8.

Cheddar cannot give a solution to the scheduling synthesis problem since it only
works with instantiated systems, so we cannot determine offsets and deadlines, and
also it does not deal with reactivities.

9.1.2 Non-parametric comparison with Uppaal

We also compare the obtained results using IMITATOR with Uppaal results (for the
model without switch time). Uppaal is a timed model checker taking as input net-
works of timed automata, extended with some useful features such as synchronization,
integer-valued global variables, data structures and C-style functions. We wrote a

25

Table 5: Possible offset valuations with switch time using Uppaal

Valuation offsetT1 offsetT2 offsetT3
Uppaal

(with reactivities)
v1 0 11.5 1.5

√

v2 3 0 10
√

v3 0 5 1
√

v4 12 0 3 ×
v5 3 15 0 ×

Table 6: Possible deadline valuations with switch time using Uppaal

Valuation deadlineT1 deadlineT2 deadlineT3
Uppaal

(with reactivities)
v1 4.5 20 60

√

v2 5 4.5 60
√

v3 4.5 4.5 60
√

v4 4 5 60 ×
v5 4.5 4 65 ×

Uppaal model identical to the IMITATOR model—with instantiated parameters as
Uppaal does not support parametric analyses.

As result, Uppaal proves that the instantiated system is schedulable, both without
and with reactivities. We give in Table 5 obtained results using Uppaal when offsets
are parameterized and in Table 6 when deadlines are parameterized.

9.1.3 Summary of comparisons

We give the computation times without reactivities in Table 7. Clearly, from our
experiments, if the model features no parameters, Cheddar (if no reactivities are spec-
ified) or Uppaal (if some reactivities are specified) should be used. However, none of
these tools cope with uncertain constants. Therefore, despite the complexity overhead,
IMITATOR should be used if some timing constants are unspecified.

9.2 “Testing” the parametric analysis

Finally, we tried to obtain additional guarantees on our model’s correctness. Indeed,
while we can reasonably suppose that our methodology is correct and that the tools are
exempt from bugs for the algorithms used here (which remains to be done formally
though), a major issue is that of the manual coding of our model into the input
language of IMITATOR. In order to have further guarantees, we compared several
aspects of the results with other results, or with other tools, whenever applicable.

Table 7: Computation times without parameters

Analysis Without reactivities (s) With reactivities (s)
Cheddar < 0.1 N/A
IMITATOR 3.086 109.404
Uppaal 0.002 0.003

26

Table 8: Possible offset valuations (with reactivities) checked using Cheddar
and Uppaal

Valuation offsetT1 offsetT2 offsetT3 |= K
Cheddar

(without reactivities)
Uppaal

(with reactivities)
v1 0 2 1

√ √ √

v2 4 0 10
√ √ √

v3 2 10 0
√ √ √

v4 0 9 0
√ √ √

v5 2 12 1 × × ×
v6 5 9 0 × × ×

Table 9: Possible deadline valuations (with reactivities) checked using Cheddar
and Uppaal

Valuation deadlineT1 deadlineT2 deadlineT3 |= K
Cheddar

(without reactivities)
Uppaal

(with reactivities)
v1 5 20 60

√ √ √

v2 4 11 60
√ √ √

v3 5 15 60
√ √ √

v4 4 20 60
√ √ √

v5 3 11 60 × × ×
v6 4 9 55 × × ×

9.2.1 Using non-parametric model checking

In order to increase our confidence in the results obtained with IMITATOR in Sec-
tion 8.2, we will first test that sampled valuations from the parametric constraint
synthesized by IMITATOR are indeed proved schedulable (resp. non-schedulable) by
non-parametric tools whenever they belong (resp. do not belong) to the constraint
synthesized by IMITATOR. Once more, we do so using both a popular tool in the
real-time systems community (Cheddar) and a non-parametric timed model checker
(Uppaal).

Model with reactivities First, we fix the deadlines, and we vary the offsets
according to the constraint synthesized in Section 8.3. We sample four valuations of
this constraint, and give them in Table 8 (v1 to v4); we also add two valuations (v5
and v6) not belonging to the constraint synthesized by IMITATOR. For each of these
valuations, we test using Cheddar and Uppaal whether the system is schedulable.

We give in Table 8 obtained results using Cheddar and Uppaal when deadlines
are instantiated (and offsets remain parameterized) and in Table 9 when offsets are
instantiated (and deadlines remain parameterized). As one can see from Tables 8 and 9,
all results are consistent. Recall that this does not formally prove the correctness of our
method, but increases our confidence by testing sample points. Still, if one considers
that Uppaal or Cheddar are reliable tools and that our model is entirely correct,
once a given valuation is chosen from the constraint output by IMITATOR, checking
again its correctness using one of the aforementioned tools is a good way to assess the
validity of the whole process.

9.2.2 Using constraints comparisons

We now perform additional tests on the results of IMITATOR.

27

Table 10: Possible offset valuations in the difference of constraints without and
with reactivities

Valuation offsetT1 offsetT2 offsetT3 Cheddar Uppaal
v1 0 2 0

√
×

v2 0 4 1
√

×
v3 0 3 1

√
×

Model without switch time We consider here the constraints for the full system
including reactivities but excluding the switch time Section 8.3 (the case of the switch
time gave similar results).

Constraints comparisons First, we verified using PolyOp9 that the constraint
obtained by monolithic verification is equal to the intersection of the 3 constraints
(reactivity NC, reactivity NM and reactivity NGC) obtained by separate verifications,
on the one hand when offsets are parameterized, and on the other hand when deadlines
are parameterized.

Second, we checked that the results with reactivities are included in the constraint
without reactivities in all three cases (no parameter, parametric offsets, parametric
deadlines). Indeed, the model with reactivities is more constrained, and therefore its
admissible valuations set shall be included in or equal to the valuations set without
reactivity constraints.

Constraints difference We give below the difference of constraints without re-
activities and constraints with reactivities when offsets are parameterized:

offsetT3 + 5 > offsetT2 ∧ offsetT1 = 0 ∧ offsetT2 ∈ (1, 5] ∧ offsetT3 ∈ [0, 1]
This shows that the two constraints are not equal: some valuations ensure schedu-

lability when reactivities are not considered, but do not ensure schedulability under
reactivity constraints. This is a major outcome of our experiments, as it justifies
for the analysis under reactivity constraints. That is, tools that are not able to test
schedulability under reactivity constraints (such as Cheddar) will give incorrect results
for this case study.

We present in Table 10 some examples of values of offsets in the difference of
constraints without and with reactivities: as expected, Cheddar mistakenly guarantees
the system is correct while Uppaal shows it is not, due to some violated reactivities.

Model with switch time We finally perform additional verifications on the re-
sults of Section 8.4. We verify using PolyOp that the constraint with switch time
obtained by monolithic verification is equal to the intersection of the 3 constraints
(reactivity NC, reactivity NM and reactivity NGC) obtained by separate verifications
when deadlines are parameterized, just as we did in Section 6. We also checked that
the result with reactivity NC is included in the constraint without reactivities when
offsets are parameterized; and similarly for the result with all 3 reactivities. Not all
situations could be considered, as some analyses reach time out (see Table 2).

9A simple interface over the Parma Polyhedra Library [BHZ08], available at github.com/

etienneandre/PolyOp, and that allows for polyhedral computations such as intersection or
difference, as well as polyhedral checks such as equality or (strict) inclusion.

28

https://github.com/etienneandre/PolyOp
https://github.com/etienneandre/PolyOp

We also rechecked the sample results obtained by IMITATOR in Tables 3 and 4
using Uppaal. We did not use Cheddar in this example because, to the best of our
knowledge, Cheddar cannot apply switch time between threads.

10 Conclusion and perspectives

We proposed an approach to synthesize timing valuations ensuring schedulability of the
flight control of a space launcher. A key issue is to ensure that the system reactivities
are met—for which we proposed a compositional solution.

Our implementation of the flight control system as an extension of the parametric
timed automata formalism using IMITATOR allows to determine offsets and deadlines
of each thread taking into account that all reactivities are satisfied, and allows to
ensure formally that the FPS type scheduling can be a solution for our problem. We
build a modular solution, i. e., we specified an automaton for each element of our
system (thread, processing, scheduling policy) and for each constraint (reactivity).
The interest of using IMITATOR as the main tool of our approach is that it allows
to analyze a system with parameters in order to determine the possible values of
those parameters, unlike other existing tools (e. g., Cheddar and Uppaal) which treat
only initialized systems. In addition, we showed that the reactivity constraints are
important as, without them, wrong valuations can be derived.

Future works Due to the efficiency gap of an order of magnitude, combining some
non-parametric analyses (e. g., with Uppaal or Cheddar) with parametric analyses
(IMITATOR) would be an interesting future work.

The harmonic periods are a strong assumption of the problem. Tuning our solution
to benefit from this assumption is on our agenda. This may indeed allow us to reuse
some clocks, and therefore reduce the number of clocks; it is well-known that the
model-checking problem is exponential in the number of clocks.

In addition, synthesizing the admissible values for the context switch time, i. e.,
making this time a parameter, seems interesting as it derives admissible values of the
processor context switch speed for which the system can be scheduled.

So far, our method allows us to prove formally properties for systems that contain
only a limited number of threads and processings. In order to scale up the method, it
would be interesting to combine it with Bini-Buttazzo’s uniprocessor taskset generation
method [BB05; ESD10].

We envisage two tracks for longer-term future works:

1. Generalizing the flight control scheduling problem by automatically synthesizing
the allocations of processings on threads. This generalization raises first the issue
of modeling such a problem (how to model an allocation with a parameter) and
second the classical combinatorial explosion of states.

2. Applying this approach to the automatic synthesis of the launcher sequential,
i. e., of the scheduling of all the system events necessary to fulfill a mission:
ignition and shut-down of stages, release of firing, release of payloads, etc.

Acknowledgements

We would like to thank the anonymous reviewers for useful comments.

29

References

[AAM06] Yasmina Adbeddäım, Eugene Asarin, and Oded Maler. “Scheduling with
timed automata”. In: Theoretical Computer Science 354.2 (Mar. 2006),
pp. 272–300. doi: 10.1016/j.tcs.2005.11.018 (cit. on p. 3).

[Ace+03] Luca Aceto, Patricia Bouyer, Augusto Burgueño, and Kim Guldstrand
Larsen. “The power of reachability testing for timed automata”. In: Theo-
retical Computer Science 300.1-3 (2003), pp. 411–475. doi: 10.1016/S0304-

3975(02)00334-1 (cit. on pp. 13, 17).

[AD94] Rajeev Alur and David L. Dill. “A theory of timed automata”. In: Theo-
retical Computer Science 126.2 (Apr. 1994), pp. 183–235. issn: 0304-3975.

doi: 10.1016/0304-3975(94)90010-8 (cit. on pp. 2, 3, 12).

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. “Paramet-
ric real-time reasoning”. In: STOC (May 16–18, 1993). Ed. by S. Rao
Kosaraju, David S. Johnson, and Alok Aggarwal. San Diego, California,
United States: ACM, 1993, pp. 592–601. doi: 10.1145/167088.167242 (cit.

on pp. 2, 3, 11).

[AHW18] Étienne André, Ichiro Hasuo, and Masaki Waga. “Offline timed pattern
matching under uncertainty”. In: ICECCS (Dec. 12–14, 2018). Ed. by
Anthony Widjaja Lin and Jun Sun. Melbourne, Australia: IEEE Com-
puter Society, 2018, pp. 10–20. doi: 10.1109/ICECCS2018.2018.00010 (cit. on

p. 2).

[AL17] Étienne André and Didier Lime. “Liveness in L/U-Parametric Timed
Automata”. In: ACSD (June 25–30, 2017). Ed. by Alex Legay and Klaus
Schneider. Zaragoza, Spain: IEEE, 2017, pp. 9–18. doi: 10.1109/ACSD.

2017.19 (cit. on p. 2).

[ALR18] Étienne André, Didier Lime, and Mathias Ramparison. “TCTL model
checking lower/upper-bound parametric timed automata without invari-
ants”. In: FORMATS (Sept. 4–6, 2018). Ed. by David N. Jansen and
Pavithra Prabhakar. Vol. 11022. Lecture Notes in Computer Science. Bei-
jing, China: Springer, 2018, pp. 1–17. doi: 10.1007/978-3-030-00151-3_3

(cit. on p. 2).

[AM01] Yasmina Abdeddäım and Oded Maler. “Job-Shop Scheduling Using
Timed Automata”. In: CAV (July 18–22, 2001). Ed. by Gérard Berry,
Hubert Comon, and Alain Finkel. Vol. 2102. Lecture Notes in Computer
Science. Paris, France: Springer, 2001, pp. 478–492. isbn: 3-540-42345-1.

doi: 10.1007/3-540-44585-4_46 (cit. on p. 3).

[AM02] Yasmina Adbeddäım and Oded Maler. “Preemptive Job-Shop Scheduling
using Stopwatch Automata”. In: TACAS (Apr. 8–12, 2002). Ed. by Joost-
Pieter Katoen and Perdita Stevens. Vol. 2280. Lecture Notes in Computer
Science. Grenoble, France: Springer-Verlag, Apr. 2002, pp. 113–126. doi:

10.1007/3-540-46002-0_9 (cit. on p. 3).

[And+09] Étienne André, Thomas Chatain, Emmanuelle Encrenaz, and Laurent
Fribourg. “An Inverse Method for Parametric Timed Automata”. In: In-
ternational Journal of Foundations of Computer Science 20.5 (Oct. 2009),
pp. 819–836. doi: 10.1142/S0129054109006905 (cit. on p. 4).

30

https://doi.org/10.1016/j.tcs.2005.11.018
https://doi.org/10.1016/S0304-3975(02)00334-1
https://doi.org/10.1016/S0304-3975(02)00334-1
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1145/167088.167242
https://doi.org/10.1109/ICECCS2018.2018.00010
https://doi.org/10.1109/ACSD.2017.19
https://doi.org/10.1109/ACSD.2017.19
https://doi.org/10.1007/978-3-030-00151-3_3
https://doi.org/10.1007/3-540-44585-4_46
https://doi.org/10.1007/3-540-46002-0_9
https://doi.org/10.1142/S0129054109006905

[And+19] Étienne André, Laurent Fribourg, Jean-Marc Mota, and Romain Soulat.
“Verification of an industrial asynchronous leader election algorithm using
abstractions and parametric model checking”. In: VMCAI (Jan. 13–15,
2019). Ed. by Constantin Enea and Ruzica Piskac. Vol. 11388. Lecture
Notes in Computer Science. Lisbon, Portugal: Springer, 2019, pp. 409–
424. doi: 10.1007/978-3-030-11245-5_19 (cit. on p. 4).

[And13] Étienne André. “Observer Patterns for Real-Time Systems”. In: ICECCS
(July 17–19, 2013). Ed. by Yang Liu and Andrew Martin. Singapore:
IEEE Computer Society, July 2013, pp. 125–134. doi: 10.1109/ICECCS.

2013.26 (cit. on p. 17).

[And17] Étienne André. “A unified formalism for monoprocessor schedulability
analysis under uncertainty”. In: FMICS-AVoCS (Sept. 18–20, 2017). Ed.
by Ana Cavalcanti, Laure Petrucci, and Cristina Seceleanu. Vol. 10471.
Lecture Notes in Computer Science. Torino, Italy: Springer, 2017,
pp. 100–115. doi: 10.1007/978-3-319-67113-0_7 (cit. on pp. 2, 4).

[And19] Étienne André. “What’s decidable about parametric timed automata?”
In: International Journal on Software Tools for Technology Transfer 21.2
(Apr. 2019), pp. 203–219. doi: 10.1007/s10009-017-0467-0 (cit. on p. 2).

[And21] Étienne André. “IMITATOR 3: Synthesis of timing parameters beyond
decidability”. In: CAV (July 18–23, 2021). Ed. by Rustan Leino and
Alexandra Silva. Vol. 12759. Lecture Notes in Computer Science. virtual:
Springer, 2021, pp. 1–14. doi: 10.1007/978-3-030-81685-8_26 (cit. on pp. 2,

21).

[AS13] Étienne André and Romain Soulat. The Inverse Method. FOCUS Series
in Computer Engineering and Information Technology. ISTE Ltd and
John Wiley & Sons Inc., 2013. isbn: 9781848214477 (cit. on p. 4).

[BB04] Enrico Bini and Giorgio C. Buttazzo. “Schedulability Analysis of Peri-
odic Fixed Priority Systems”. In: IEEE Transactions on Computers 53.11
(2004), pp. 1462–1473. doi: 10.1109/TC.2004.103 (cit. on p. 3).

[BB05] Enrico Bini and Giorgio C Buttazzo. “Measuring the Performance of
Schedulability Tests”. In: Real-Time Systems 30.1-2 (2005), pp. 129–154.

doi: 10.1007/s11241-005-0507-9 (cit. on p. 29).

[BB97] Iain Bate and Alan Burns. “Schedulability analysis of fixed priority real-
time systems with offsets”. In: RTS (June 11–13, 1997). Toledo, Spain:
IEEE Computer Society, 1997, pp. 153–160. doi: 10.1109/EMWRTS.1997.

613776 (cit. on p. 3).

[Ben+15] Nikola Beneš, Peter Bezděk, Kim Gulstrand Larsen, and Jǐŕı Srba. “Lan-
guage Emptiness of Continuous-Time Parametric Timed Automata”. In:
ICALP, Part II (July 6–10, 2015). Ed. by Magnús M. Halldórsson, Kazuo
Iwama, Naoki Kobayashi, and Bettina Speckmann. Vol. 9135. Lecture
Notes in Computer Science. Kyoto, Japan: Springer, July 2015, pp. 69–
81. doi: 10.1007/978-3-662-47666-6_6 (cit. on p. 2).

[Bér+16] Béatrice Bérard, Serge Haddad, Aleksandra Jovanovic, and Didier Lime.
“Interrupt Timed Automata with Auxiliary Clocks and Parameters”. In:
Fundamenta Informormatica 143.3-4 (2016), pp. 235–259. doi: 10.3233/

FI-2016-1313 (cit. on p. 4).

31

https://doi.org/10.1007/978-3-030-11245-5_19
https://doi.org/10.1109/ICECCS.2013.26
https://doi.org/10.1109/ICECCS.2013.26
https://doi.org/10.1007/978-3-319-67113-0_7
https://doi.org/10.1007/s10009-017-0467-0
https://doi.org/10.1007/978-3-030-81685-8_26
https://doi.org/10.1109/TC.2004.103
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1109/EMWRTS.1997.613776
https://doi.org/10.1109/EMWRTS.1997.613776
https://doi.org/10.1007/978-3-662-47666-6_6
https://doi.org/10.3233/FI-2016-1313
https://doi.org/10.3233/FI-2016-1313

[BHZ08] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. “The Parma
Polyhedra Library: Toward a Complete Set of Numerical Abstractions
for the Analysis and Verification of Hardware and Software Systems”. In:
Science of Computer Programming 72.1–2 (2008), pp. 3–21. doi: 10.1016/

j.scico.2007.08.001 (cit. on p. 28).

[BL09] Laura Bozzelli and Salvatore La Torre. “Decision problems for lower/up-
per bound parametric timed automata”. In: Formal Methods in System
Design 35.2 (2009), pp. 121–151. doi: 10.1007/s10703-009-0074-0 (cit. on

p. 2).

[CC99] Sérgio Vale Aguiar Campos and Edmund M. Clarke. “Analysis and Veri-
fication of Real-Time Systems Using Quantitative Symbolic Algorithms”.
In: International Journal on Software Tools for Technology Transfer 2.3
(1999), pp. 260–269. doi: 10.1007/s100090050033 (cit. on p. 3).

[Che+09] Rémy Chevallier, Emmanuelle Encrenaz-Tiphène, Laurent Fribourg, and
Weiwen Xu. “Timed Verification of the Generic Architecture of a Memory
Circuit Using Parametric Timed Automata”. In: Formal Methods in Sys-
tem Design 34.1 (Feb. 2009), pp. 59–81. doi: 10.1007/s10703-008-0061-x

(cit. on p. 2).

[CL00] Franck Cassez and Kim Guldstrand Larsen. “The Impressive Power
of Stopwatches”. In: CONCUR (Aug. 22–25, 2000). Ed. by Catuscia
Palamidessi. Vol. 1877. Lecture Notes in Computer Science. University
Park, PA, USA: Springer, 2000, pp. 138–152. doi: 10.1007/3-540-44618-

4_12 (cit. on pp. 2, 11, 12).

[CPR08] Alessandro Cimatti, Luigi Palopoli, and Yusi Ramadian. “Symbolic Com-
putation of Schedulability Regions Using Parametric Timed Automata”.
In: RTSS (Nov. 30–Dec. 3, 2008). Barcelona, Spain: IEEE Computer So-
ciety, 2008, pp. 80–89. isbn: 978-0-7695-3477-0. doi: 10.1109/RTSS.2008.36

(cit. on pp. 2, 4).

[CPV13] Laura Carnevali, Alessandro Pinzuti, and Enrico Vicario. “Compositional
Verification for Hierarchical Scheduling of Real-Time Systems”. In: IEEE
Transactions on Software Engineering 39.5 (May 2013), pp. 638–657.
issn: 1939-3520. doi: 10.1109/TSE.2012.54 (cit. on p. 19).

[ESD10] Paul Emberson, Roger Stafford, and Robert I. Davis. “Techniques For
The Synthesis Of Multiprocessor Tasksets”. In: WATERS (July 6, 2010).
Brussels, Belgium, July 2010, pp. 6–11 (cit. on p. 29).

[Fan+16] Bingbing Fang, Guoqiang Li, Daniel Sun, and Hongming Cai. “Schedu-
lability Analysis of Timed Regular Tasks by Under-Approximation on
WCET”. In: SETTA. Ed. by Martin Fränzle, Deepak Kapur, and Nai-
jun Zhan. Vol. 9984. Lecture Notes in Computer Science. Beijing, China,
2016, pp. 147–162. doi: 10.1007/978-3-319-47677-3_10 (cit. on p. 4).

[Fer+07] Elena Fersman, Pavel Krcál, Paul Pettersson, and Wang Yi. “Task au-
tomata: Schedulability, decidability and undecidability”. In: Information
and Computation 205.8 (2007), pp. 1149–1172. doi: 10.1016/j.ic.2007.

01.009 (cit. on pp. 3, 16).

[FJ13] Léa Fanchon and Florent Jacquemard. “Formal Timing Analysis Of
Mixed Music Scores”. In: ICMC (Aug. 12–16, 2013). Perth, Australia:
Michigan Publishing, Aug. 2013 (cit. on p. 2).

32

https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1007/s10703-009-0074-0
https://doi.org/10.1007/s100090050033
https://doi.org/10.1007/s10703-008-0061-x
https://doi.org/10.1007/3-540-44618-4_12
https://doi.org/10.1007/3-540-44618-4_12
https://doi.org/10.1109/RTSS.2008.36
https://doi.org/10.1109/TSE.2012.54
https://doi.org/10.1007/978-3-319-47677-3_10
https://doi.org/10.1016/j.ic.2007.01.009
https://doi.org/10.1016/j.ic.2007.01.009

[For+10] Julien Forget, Frédéric Boniol, Emmanuel Grolleau, David Lesens, and
Claire Pagetti. “Scheduling Dependent Periodic Tasks without Synchro-
nization Mechanisms”. In: RTAS (Apr. 12–15, 2010). Ed. by Marco Cac-
camo. Stockholm, Sweden: IEEE Computer Society, 2010, pp. 301–310.

doi: 10.1109/RTAS.2010.26 (cit. on pp. 4, 6).

[Fri+12] Laurent Fribourg, David Lesens, Pierre Moro, and Romain Soulat. “Ro-
bustness Analysis for Scheduling Problems using the Inverse Method”.
In: TIME (Sept. 12–14, 2012). Ed. by Mark Reynolds, Paolo Terenziani,
and Ben Moszkowski. Leicester, UK: IEEE Computer Society Press, Sept.
2012, pp. 73–80. doi: 10.1109/TIME.2012.10 (cit. on p. 4).

[GNC13] Mainak Ghoshhajra, Sabitha Nair, and Ananda CM Cm. “ARINC 653
API and its application – An insight into Avionics System Case Study”.
In: Defence science journal 63 (Apr. 2013). doi: 10.14429/dsj.63.4268

(cit. on p. 8).

[Hun+02] Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaandrager.
“Linear parametric model checking of timed automata”. In: Journal of
Logic and Algebraic Programming 52-53 (2002), pp. 183–220. doi: 10.

1016/S1567-8326(02)00037-1 (cit. on p. 2).

[JLR15] Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. “Integer Param-
eter Synthesis for Real-Time Systems”. In: IEEE Transactions on Soft-
ware Engineering 41.5 (2015), pp. 445–461. doi: 10.1109/TSE.2014.2357445

(cit. on pp. 13, 21).

[LB05] Giuseppe Lipari and Enrico Bini. “A methodology for designing hierar-
chical scheduling systems”. In: Journal of Embedded Computing 1.2 (Apr.
2005), pp. 257–269. issn: 1875-9025 (cit. on p. 19).

[Le+13] Thi Thieu Hoa Le, Luigi Palopoli, Roberto Passerone, and Yusi Rama-
dian. “Timed-automata based schedulability analysis for distributed firm
real-time systems: a case study”. In: International Journal on Software
Tools for Technology Transfer 15.3 (2013), pp. 211–228. doi: 10.1007/

s10009-012-0245-y (cit. on p. 4).

[Lim+09] Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie
Traonouez. “Romeo: A Parametric Model-Checker for Petri Nets with
Stopwatches”. In: TACAS (Mar. 22–29, 2009). Ed. by Stefan Kowalewski
and Anna Philippou. Vol. 5505. Lecture Notes in Computer Science. York,
United Kingdom: Springer, Mar. 2009, pp. 54–57. doi: 10.1007/978-3-

642-00768-2_6 (cit. on p. 4).

[LL73] C. L. Liu and James W. Layland. “Scheduling Algorithms for Multipro-
gramming in a Hard-Real-Time Environment”. In: Journal of the ACM
20.1 (1973), pp. 46–61. issn: 0004-5411. doi: 10.1145/321738.321743 (cit.

on p. 12).

[LPY97] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. “UPPAAL in
a Nutshell”. In: International Journal on Software Tools for Technology
Transfer 1.1-2 (1997), pp. 134–152. doi: 10.1007/s100090050010 (cit. on

p. 25).

33

https://doi.org/10.1109/RTAS.2010.26
https://doi.org/10.1109/TIME.2012.10
https://doi.org/10.14429/dsj.63.4268
https://doi.org/10.1016/S1567-8326(02)00037-1
https://doi.org/10.1016/S1567-8326(02)00037-1
https://doi.org/10.1109/TSE.2014.2357445
https://doi.org/10.1007/s10009-012-0245-y
https://doi.org/10.1007/s10009-012-0245-y
https://doi.org/10.1007/978-3-642-00768-2_6
https://doi.org/10.1007/978-3-642-00768-2_6
https://doi.org/10.1145/321738.321743
https://doi.org/10.1007/s100090050010

[Lut+19] Lars Luthmann, Timo Gerecht, Andreas Stephan, Johannes Bürdek, and
Malte Lochau. “Minimum/maximum delay testing of product lines with
unbounded parametric real-time constraints”. In: Journal of Systems and
Software 149 (2019), pp. 535–553. doi: 10.1016/j.jss.2018.12.028 (cit. on

p. 2).

[Mik+10] Marius Mikucionis, Kim Guldstrand Larsen, Jacob Illum Rasmussen,
Brian Nielsen, Arne Skou, Steen Ulrik Palm, Jan Storbank Pedersen,
and Poul Hougaard. “Schedulability Analysis Using Uppaal: Herschel-
Planck Case Study”. In: ISoLA, Part II (Oct. 18–21, 2010). Ed. by
Tiziana Margaria and Bernhard Steffen. Vol. 6416. Lecture Notes in Com-
puter Science. Heraklion, Crete, Greece: Springer, 2010, pp. 175–190. doi:

10.1007/978-3-642-16561-0_21 (cit. on p. 4).

[Mil00] Joseph S. Miller. “Decidability and Complexity Results for Timed Au-
tomata and Semi-linear Hybrid Automata”. In: HSCC (Mar. 23–25,
2000). Ed. by Nancy A. Lynch and Bruce H. Krogh. Vol. 1790. Lec-
ture Notes in Computer Science. Pittsburgh, PA, USA: Springer, 2000,
pp. 296–309. isbn: 3-540-67259-1. doi: 10.1007/3-540-46430-1_26 (cit. on

p. 2).

[NWY99] Christer Norströöm, Anders Wall, and Wang Yi. “Timed Automata as
Task Models for Event-Driven Systems”. In: RTCSA (Dec. 13–16, 1999).
Hong Kong, China: IEEE Computer Society, 1999, pp. 182–189. doi: 10.

1109/RTCSA.1999.811218 (cit. on p. 3).

[OGL06] Iulian Ober, Susanne Graf, and David Lesens. “Modeling and Validation
of a Software Architecture for the Ariane-5 Launcher”. In: FMOODS
(June 14–16, 2006). Ed. by Roberto Gorrieri and Heike Wehrheim.
Vol. 4037. Lecture Notes in Computer Science. Bologna, Italy: Springer,
2006, pp. 48–62. doi: 10.1007/11768869_6 (cit. on p. 5).

[Par+16] Baptiste Parquier, Laurent Rioux, Rafik Henia, Romain Soulat, Olivier
H. Roux, Didier Lime, and Étienne André. “Applying parametric model-
checking techniques for reusing real-time critical systems”. In: FTSCS
(Nov. 14, 2016). Ed. by Cyrille Artho and Peter Csaba Ölveczky. Vol. 694.
Communications in Computer and Information Science. Tokyo, Japan:
Springer, Nov. 2016, pp. 129–144. doi: 10.1007/978- 3- 319- 53946- 1_8

(cit. on p. 4).

[Ric05] Kai Richter. “Compositional scheduling analysis using standard event
models: The SymTA/S approach”. PhD thesis. University of Braun-
schweig - Institute of Technology, 2005. doi: 10 . 24355 / dbbs . 084 -

200511080100-362 (cit. on p. 19).

[SAL15] Youcheng Sun, Étienne André, and Giuseppe Lipari. “Verification of Two
Real-Time Systems Using Parametric Timed Automata”. In: WATERS
(July 7, 2015). Ed. by Sophie Quinton and Tullio Vardanega. Lund, Swe-
den, July 2015 (cit. on p. 4).

[SEL08] Insik Shin, Arvind Easwaran, and Insup Lee. “Hierarchical Schedul-
ing Framework for Virtual Clustering of Multiprocessors”. In: ECRTS
(July 2–4, 2008). Prague, Czech Republic: IEEE Computer Society, 2008,
pp. 181–190. doi: 10.1109/ECRTS.2008.28 (cit. on p. 19).

34

https://doi.org/10.1016/j.jss.2018.12.028
https://doi.org/10.1007/978-3-642-16561-0_21
https://doi.org/10.1007/3-540-46430-1_26
https://doi.org/10.1109/RTCSA.1999.811218
https://doi.org/10.1109/RTCSA.1999.811218
https://doi.org/10.1007/11768869_6
https://doi.org/10.1007/978-3-319-53946-1_8
https://doi.org/10.24355/dbbs.084-200511080100-362
https://doi.org/10.24355/dbbs.084-200511080100-362
https://doi.org/10.1109/ECRTS.2008.28

[Sin] Frank Singhoff. The Cheddar project: a GPL real-time scheduling ana-
lyzer. http://beru.univ-brest.fr/singhoff/cheddar/ (cit. on pp. 21,

22, 25).

[SL03] Insik Shin and Insup Lee. “Periodic Resource Model for Compositional
Real-Time Guarantees”. In: RTSS (Dec. 3–5, 2003). Cancún, Mexico:
IEEE Computer Society, 2003, pp. 2–13. doi: 10.1109/REAL.2003.1253249

(cit. on p. 19).

[SL14] Youcheng Sun and Giuseppe Lipari. “A Weak Simulation Relation for
Real-Time Schedulability Analysis of Global Fixed Priority Scheduling
Using Linear Hybrid Automata”. In: RTNS (Oct. 8–10, 2014). Ed. by
Mathieu Jan, Belgacem Ben Hedia, Joël Goossens, and Claire Maiza.
Versaille, France: ACM, 2014, p. 35. doi: 10.1145/2659787.2659814 (cit. on

p. 3).

[Sun+13] Youcheng Sun, Romain Soulat, Giuseppe Lipari, Étienne André, and
Laurent Fribourg. “Parametric Schedulability Analysis of Fixed Prior-
ity Real-Time Distributed Systems”. In: FSTCS (Oct. 29–30, 2013). Ed.
by Cyrille Artho and Peter Ölveczky. Vol. 419. Communications in Com-
puter and Information Science. Auckland, New Zealand: Springer, Oct.
2013, pp. 212–228. doi: 10.1007/978-3-319-05416-2_14 (cit. on pp. 2, 4, 11,

16).

[Sun+14] Youcheng Sun, Giuseppe Lipari, Romain Soulat, Laurent Fribourg, and
Nicolas Markey. “Component-based analysis of hierarchical schedul-
ing using linear hybrid automata”. In: ERTCS (Aug. 20–22, 2014).
Chongqing, China: IEEE Computer Society, 2014, pp. 1–10. doi: 10.1109/

RTCSA.2014.6910502 (cit. on p. 3).

[TLR09] Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux. “Parametric
Model-Checking of Stopwatch Petri Nets”. In: Journal of Universal Com-
puter Science 15.17 (2009), pp. 3273–3304. doi: 10.3217/jucs-015-17-3273

(cit. on p. 4).

[WME92] Farn Wang, Aloysius K. Mok, and E. Allen Emerson. “Formal Specifi-
cation of Synchronous Distributed Real-Time Systems by APTL”. In:
ICSE (May 11–15, 1992). Ed. by Tony Montgomery, Lori A. Clarke, and
Carlo Ghezzi. Melbourne, Australia: ACM Press, 1992, pp. 188–198. doi:

10.1145/143062.143113 (cit. on p. 3).

[YMW97] Jin Yang, Aloysius K. Mok, and Farn Wang. “Symbolic Model Checking
for Event-Driven Real-Time Systems”. In: ACM Transactions on Pro-
gramming Languages and Systems 19.2 (1997), pp. 386–412. doi: 10.1145/

244795.244803 (cit. on p. 3).

35

http://beru.univ-brest.fr/singhoff/cheddar/
https://doi.org/10.1109/REAL.2003.1253249
https://doi.org/10.1145/2659787.2659814
https://doi.org/10.1007/978-3-319-05416-2_14
https://doi.org/10.1109/RTCSA.2014.6910502
https://doi.org/10.1109/RTCSA.2014.6910502
https://doi.org/10.3217/jucs-015-17-3273
https://doi.org/10.1145/143062.143113
https://doi.org/10.1145/244795.244803
https://doi.org/10.1145/244795.244803

A Full scheduler

We give in Fig. 17 the full version of the scheduler with three threads and the switch
time between threads.

Figure 17: Encoding the FPS scheduler with switches (full version)

B Parametric analyses without reactivities

B.1 Parametric offsets

The constraint synthesized by IMITATOR for the model with parametric offsets is given
in Fig. 18.

In order to exemplify admissible values, we exhibit in Table 11 some valuations
satisfying the constraint in Fig. 18.

B.2 Parametric deadlines

We exhibit in Table 12 some valuations satisfying the constraint given in Section 8.2.3.

36

5 ≥ offsetT2
∧ offsetT3 + 5 > offsetT2
∧ offsetT3 ≥ 0
∧ offsetT2 ≥ 0
∧ 1 ≥ offsetT3
∧ offsetT1 = 0
OR
offsetT1 ≥ 0
∧ 11 ≥ offsetT3
∧ offsetT3 > 1 + offsetT1
∧ 4 ≥ offsetT1
∧ offsetT2 = 0
OR
offsetT3 > 1
∧ 11 ≥ offsetT3
∧ offsetT2 > 0
∧ 1 ≥ offsetT2
∧ offsetT1 = 0

OR
offsetT1 > 0
∧ offsetT2 ≥ 0
∧ 11 ≥ offsetT2
∧ 4 ≥ offsetT1
∧ offsetT3 = 0
OR
11 ≥ offsetT2
∧ offsetT3 ≥ 0
∧ offsetT2 > 9
∧ 1 ≥ offsetT3
∧ offsetT1 = 0
OR
offsetT1 + 1 ≥ offsetT3
∧ offsetT1 > 0
∧ offsetT3 > 0
∧ 4 ≥ offsetT1
∧ offsetT2 = 0

OR
offsetT2 > 5
∧ 9 ≥ offsetT2
∧ offsetT3 > 0
∧ 1 ≥ offsetT3
∧ offsetT1 = 0
OR
offsetT2 ≥ 5
∧ 9 ≥ offsetT2
∧ offsetT1 = 0
∧ offsetT3 = 0

Figure 18: Parametric offsets

Table 11: Possible offset valuations (without reactivities)

Valuation offsetT1 offsetT2 offsetT3 |= K
v1 0 2 1

√

v2 4 0 11
√

v3 2 11 0
√

v4 0 9 0
√

v5 2 12 1 ×
v6 5 9 0 ×

B.3 Parametric offsets and deadlines

The constraint synthesized by IMITATOR for the model with both parametric offsets
and parametric deadlines is given in Fig. 19.

C Parametric analyses with reactivities

C.1 Parametric offsets

The constraint synthesized by IMITATOR for the model with the 3 reactivities and
parametric offsets is given in Fig. 20.

Table 12: Possible deadline valuations (without reactivities)

Valuation deadlineT1 deadlineT2 deadlineT3 |= K
v1 5 20 60

√

v2 4 11 60
√

v3 5 15 60
√

v4 4 20 60
√

v5 3 11 60 ×
v6 4 9 55 ×

37

deadlineT2 > 11
∧ 11 ≥ offsetT3
∧ deadlineT1 ≥ 4
∧ offsetT3 > offsetT2
∧ 20 ≥ deadlineT2
∧ offsetT2 > 0
∧ 5 ≥ deadlineT1
∧ 1 ≥ offsetT2
∧ offsetT1 = 0
∧ deadlineT3 = 60
OR
offsetT1 > 0
∧ deadlineT1 ≥ 4
∧ 20 ≥ deadlineT2
∧ offsetT3 > 5
∧ deadlineT2 ≥ 15
∧ 11 ≥ offsetT3
∧ 5 ≥ deadlineT1
∧ deadlineT1 ≥ 1 + offsetT1
∧ offsetT2 = 0
∧ deadlineT3 = 60
OR
offsetT1 > 0
∧ offsetT1 + 1 ≥ offsetT3
∧ deadlineT2 ≥ 15
∧ 20 ≥ deadlineT2
∧ 4 ≥ offsetT1
∧ offsetT3 ≥ 0
∧ deadlineT1 = 5
∧ offsetT2 = 0
∧ deadlineT3 = 60
OR
deadlineT2 > 11
∧ 11 ≥ offsetT3
∧ deadlineT1 ≥ 4
∧ offsetT3 > deadlineT1
∧ 20 ≥ deadlineT2
∧ 5 ≥ deadlineT1
∧ offsetT2 = 0
∧ offsetT1 = 0
∧ deadlineT3 = 60

OR
deadlineT2 > 11
∧ offsetT3 > 0
∧ 20 ≥ deadlineT2
∧ 5 ≥ offsetT3
∧ offsetT2 = 0
∧ deadlineT1 = 5
∧ offsetT1 = 0
∧ deadlineT3 = 60
OR
20 ≥ deadlineT2
∧ deadlineT1 ≥ 4
∧ offsetT1 > 0
∧ deadlineT1 ≥ 1 + offsetT1
∧ deadlineT2 > 11
∧ offsetT3 > 1 + offsetT1
∧ 5 ≥ deadlineT1
∧ 5 ≥ offsetT3
∧ offsetT2 = 0
∧ deadlineT3 = 60
OR
offsetT1 >= 0
∧ deadlineT2 > 11
∧ offsetT1 + 1 ≥ offsetT3
∧ deadlineT1 ≥ 4
∧ deadlineT2 ≥ 11 + offsetT1
∧ 20 ≥ deadlineT2
∧ offsetT3 ≥ 0
∧ 5 > deadlineT1
∧ deadlineT1 ≥ 1 + offsetT1
∧ offsetT2 = 0
∧ deadlineT3 = 60
OR
offsetT2 > 5
∧ 20 ≥ deadlineT2
∧ offsetT1 ≥ 0
∧ deadlineT1 ≥ 4
∧ deadlineT2 ≥ 10 + offsetT2
∧ 5 ≥ deadlineT1
∧ deadlineT1 ≥ 1 + offsetT1
∧ deadlineT2 ≥ 19
∧ offsetT3 = 0
∧ deadlineT3 = 60

OR
deadlineT2 > 11
∧ 1 ≥ offsetT3
∧ deadlineT2 ≥ 10 + offsetT2
∧ offsetT2 ≥ 1
∧ 20 ≥ deadlineT2
∧ deadlineT1 ≥ offsetT2
∧ 5 > deadlineT1
∧ offsetT3 ≥ 0
∧ deadlineT1 ≥ 4
∧ offsetT1 = 0
∧ deadlineT3 = 60
OR
deadlineT2 > 11
∧ 19 > deadlineT2
∧ offsetT2 ≥ 1
∧ 5 > offsetT2
∧ offsetT3 > 0
∧ deadlineT2 ≥ 10 + offsetT2
∧ 1 ≥ offsetT3
∧ offsetT1 = 0
∧ deadlineT1 = 5
∧ deadlineT3 = 60
OR
deadlineT2 > 11
∧ deadlineT1 ≥ 4
∧ 5 ≥ deadlineT1
∧ offsetT3 > 0
∧ 1 > offsetT2
∧ 20 ≥ deadlineT2
∧ offsetT2 ≥ offsetT3
∧ offsetT1 = 0
∧ deadlineT3 = 60
OR
19 > deadlineT2
∧ offsetT3 ≥ 0
∧ offsetT2 > deadlineT1
∧ deadlineT2 ≥ 10 + offsetT2
∧ 5 > offsetT2
∧ 1 ≥ offsetT3
∧ deadlineT1 ≥ 4
∧ offsetT1 = 0
∧ deadlineT3 = 60

Figure 19: Parametric offsets and deadlines

11 >= offsetT2
∧ offsetT3 >= 0
∧ offsetT2 >= offsetT3
∧ 1 >= offsetT3
∧ offsetT1 = 0
OR
offsetT3 > offsetT2
∧ 1 >= offsetT2
∧ offsetT2 >= 0
∧ 11 >= offsetT3
∧ offsetT1 = 0

OR
offsetT2 >= 0
∧ offsetT1 > 0
∧ 11 >= offsetT2
∧ 4 >= offsetT1
∧ offsetT3 = 0
OR
offsetT1 > 0
∧ 11 >= offsetT3
∧ offsetT3 > 0
∧ 4 >= offsetT1
∧ offsetT2 = 0

Figure 20: Parametric offsets for model with the 3 reactivities

38

C.2 Parametric deadlines

The constraint synthesized by IMITATOR for the model with the 3 reactivities and
parametric deadlines in Fig. 21.

deadlineT2 >= 11
∧ deadlineT1 >= 4
∧ 5 >= deadlineT1
∧ 20 >= deadlineT2
∧ deadlineT3 = 60

Figure 21: Parametric deadlines for model with the 3 reactivities

D Parametric analyses with switch time with-
out reactivities

D.1 Parametric offsets

The constraint synthesized by IMITATOR for the model with parametric offsets and
the context switch time is given in Fig. 22.

offsetT3 ≥ 10
∧ 7 ≥ 2 ∗ offsetT1
∧ 2 ∗ offsetT1 > 5 + 2 ∗ offsetT2
∧ 23 ≥ 2 ∗ offsetT3
∧ offsetT1 ≥ 3
∧ 2 ∗ offsetT2 + 7 > 2 ∗ offsetT1
∧ offsetT2 ≥ 0
∧ offsetT1 > 2 + offsetT2
OR
offsetT2 + 2 ∗ offsetT3 + 3 > 3 ∗ offsetT1
∧ offsetT2 ≥ 0
∧ 2 ∗ offsetT3 > 1 + 2 ∗ offsetT1
∧ 19 ≥ 2 ∗ offsetT3
∧ 2 ∗ offsetT2 + 7 > 2 ∗ offsetT1
∧ offsetT1 ≥ 3 + offsetT2
∧ 7 ≥ 2 ∗ offsetT1
OR
offsetT3 > 3
∧ offsetT3 ≥ 3 + offsetT2
∧ 2 ∗ offsetT3 > 5 + 2 ∗ offsetT2
∧ offsetT1 + offsetT3 > 6 + 2 ∗ offsetT2
∧ offsetT1 ≥ 3 + offsetT2
∧ offsetT2 ≥ 0
∧ 2 ∗ offsetT1 + 1 ≥ 2 ∗ offsetT3
∧ 7 ≥ 2 ∗ offsetT1

OR
19 ≥ 2 ∗ offsetT3
∧ offsetT1 ≥ 0
∧ offsetT3 > 5
∧ offsetT2 > 1 + offsetT1
∧ 2 > offsetT2
OR
offsetT1 ≥ 0
∧ offsetT2 > 0
∧ offsetT3 > 5 + offsetT2
∧ offsetT2 ≥ offsetT1
∧ offsetT1 + 1 ≥ offsetT2
∧ 1 > 2 ∗ offsetT1
∧ 19 ≥ 2 ∗ offsetT3
OR
offsetT2 ≥ 5
∧ 23 ≥ 2 ∗ offsetT2
∧ offsetT1 ≥ 0
∧ offsetT3 > 1 + offsetT1
∧ 3 ≥ 2 ∗ offsetT3

OR
23 ≥ 2 ∗ offsetT2
∧ offsetT3 ≥ 0
∧ offsetT2 ≥ 5
∧ 1 ≥ offsetT3
∧ offsetT1 = 0
OR
2 ∗ offsetT2 > 7
∧ 3 ∗ offsetT2 > 4
∧ offsetT2 + 8 > 0
∧ 10 > offsetT2
∧ 2 ∗ offsetT1 = 7
∧ offsetT3 = 0

Figure 22: Parametric offsets for model with switch time

D.2 Parametric deadlines

The constraint synthesized by IMITATOR for the model with parametric deadlines and
the context switch time is given in Fig. 23.

39

2 ∗ deadlineT2 ≥ 9
∧ 2 ∗ deadlineT1 ≥ 9
∧ 5 ≥ deadlineT1
∧ 20 ≥ deadlineT2
∧ deadlineT3 = 60

Figure 23: Parametric deadlines for model with switch time

E Parametric analyses with reactivities and
with switch time

E.1 Parametric offsets

The constraint synthesized by IMITATOR for the model with parametric offsets, reac-
tivities constraints the context switch time is given in Fig. 24.

E.2 Parametric deadlines

The constraint synthesized by IMITATOR for the model with parametric deadlines,
reactivities constraints and the context switch time is given in Fig. 25.

40

offsetT3 >= 10
∧ 7 >= 2 ∗ offsetT1
∧ 2 ∗ offsetT1 > 5 + 2 ∗ offsetT2
∧ 23 >= 2 ∗ offsetT3
∧ offsetT1 >= 3
∧ 2 ∗ offsetT2 + 7 > 2 ∗ offsetT1
∧ offsetT2 >= 0
∧ offsetT1 > 2 + offsetT2
OR
offsetT2 + 2 ∗ offsetT3 + 3 > 3 ∗ offsetT1
∧ offsetT2 >= 0
∧ 2 ∗ offsetT3 > 1 + 2 ∗ offsetT1
∧ 19 >= 2 ∗ offsetT3
∧ 2 ∗ offsetT2 + 7 > 2 ∗ offsetT1
∧ offsetT1 >= 3 + offsetT2
∧ 7 >= 2 ∗ offsetT1
OR
offsetT2 >= 5 ∧ offsetT3 >= 0
∧ 23 >= 2 ∗ offsetT2
∧ 1 >= offsetT3 ∧ offsetT1 = 0
OR
offsetT1 >= 0 ∧ offsetT2 > 0
∧ offsetT3 > 5 + offsetT2
∧ offsetT2 >= offsetT1
∧ offsetT1 + 1 >= offsetT2
∧ 1 > 2 ∗ offsetT1
∧ 19 >= 2 ∗ offsetT3
OR
19 >= 2 ∗ offsetT3
∧ offsetT1 >= 0 ∧ offsetT3 > 5
∧ offsetT2 > 1 + offsetT1
∧ 2 > offsetT2
OR
23 >= 2 ∗ offsetT2
∧ offsetT2 >= 5 ∧ offsetT1 >= 0
∧ offsetT3 > 1 + offsetT1
∧ 3 >= 2 ∗ offsetT3
OR
2 ∗ offsetT3 + 1 > 2 ∗ offsetT1 + 2 ∗ offsetT2
∧ offsetT3 >= 3 + offsetT2
∧ 2 ∗ offsetT3 > 5 + 2 ∗ offsetT2
∧ offsetT1 + offsetT3 > 6 + 2 ∗ offsetT2
∧ offsetT1 >= 3 + offsetT2
∧ 2 ∗ offsetT1 + 1 >= 2 ∗ offsetT3
∧ 7 >= 2 ∗ offsetT1
∧ offsetT2 >= 0
OR
2 ∗ offsetT1 > 7
∧ offsetT2 >= 0 ∧ offsetT3 > 5
∧ offsetT1 > 3 + offsetT2
∧ 19 >= 2 ∗ offsetT3 ∧ 4 >= offsetT1
OR
offsetT2 >= 0
∧ offsetT1 >= 3 + offsetT2
∧ offsetT3 >= offsetT2
∧ 4 ∗ offsetT2 + 7 > 2 ∗ offsetT1
∧ offsetT2 + 3 > offsetT3
∧ 2 ∗ offsetT2 + 7 >= 2 ∗ offsetT1
∧ 1 >= 2 ∗ offsetT2
OR
2 ∗ offsetT2 > 7
∧ 68 ∗ offsetT2 > 13
∧ 6 ∗ offsetT2 + 43 > 0
∧ 5 ∗ offsetT2 + 52 > 0
∧ 10 > offsetT2
∧ 2 ∗ offsetT1 = 7 ∧ offsetT3 = 0

OR
offsetT3 > 11
∧ offsetT1 + 1 >= offsetT2
∧ offsetT1 >= 0
∧ 1 > 2 ∗ offsetT1
∧ offsetT2 > 0
∧ offsetT2 >= offsetT1
∧ 23 >= 2 ∗ offsetT3
OR
1 > 2 ∗ offsetT1
∧ offsetT3 > 5
∧ offsetT1 + 1 >= offsetT2
∧ offsetT2 > offsetT1
∧ 2 ∗ offsetT2 > 1 + 2 ∗ offsetT1
∧ offsetT2 + 5 >= offsetT3
∧ offsetT1 >= 0
OR
offsetT1 >= 0
∧ 2 ∗ offsetT2 + 19 >= 2 ∗ offsetT3
∧ 6 ∗ offsetT2 + 35 > 4 ∗ offsetT3
∧ offsetT3 >= 10
∧ 2 ∗ offsetT2 >= 3
∧ 2 > offsetT2
∧ offsetT2 > 1 + offsetT1
OR
5 >= offsetT3
∧ 9 > offsetT1 + offsetT3
∧ 5 > offsetT1
∧ offsetT3 > offsetT1
∧ 2 ∗ offsetT3 > 1 + 2 ∗ offsetT1
∧ 4 >= offsetT1
∧ 2 ∗ offsetT1 >= 7 + 2 ∗ offsetT2
∧ offsetT2 >= 0
OR
3 >= 2 ∗ offsetT2
∧ offsetT3 >= 3 + offsetT2
∧ offsetT2 > 0
∧ 5 > offsetT3 ∧ offsetT1 = 0
OR
offsetT2 + 3 >= offsetT3
∧ 2 ∗ offsetT1 + offsetT2 + 3 > offsetT3
∧ offsetT3 >= offsetT2
∧ offsetT1 >= 0 ∧ offsetT2 > 1 + offsetT1
∧ 3 >= 2 ∗ offsetT2
OR
4 ∗ offsetT2 + 5 > 2 ∗ offsetT1 + 2 ∗ offsetT3
∧ 2 ∗ offsetT1 + 2 ∗ offsetT2 + 2 > offsetT3
∧ 2 ∗ offsetT2 + 2 > offsetT3
∧ 4 ∗ offsetT1 + 2 ∗ offsetT2 > 3
∧ 2 ∗ offsetT2 >= 3 ∧ offsetT1 >= 0
∧ offsetT3 > 3 + offsetT2
∧ offsetT2 > 1 + offsetT1
∧ 5 >= offsetT3
OR
offsetT3 >= 10
∧ 2 ∗ offsetT1 >= 7 + 2 ∗ offsetT2
∧ 23 >= 2 ∗ offsetT3
∧ 4 >= offsetT1
∧ offsetT2 >= 0
OR
offsetT3 >= 10
∧ offsetT2 >= 1 + offsetT1
∧ 2 > offsetT1 + offsetT2
∧ 3 > 2 ∗ offsetT2
∧ 2 ∗ offsetT2 + 19 >= 2 ∗ offsetT3
∧ offsetT1 >= 0

Figure 24: Parametric offsets for model with reactivities and with switch time

41

2 ∗ deadlineT2 >= 9
∧ 2 ∗ deadlineT1 >= 9
∧ 5 >= deadlineT1
∧ 20 >= deadlineT2
∧ deadlineT3 = 60

Figure 25: Parametric deadlines for model with reactivities and with switch
time

42

	1 Introduction
	1.1 Contribution
	1.2 Outline

	2 Related works
	2.1 Scheduling
	2.2 Scheduling with model checking
	2.3 Scheduling with parameters

	3 Description of the system and problem
	3.1 Threads and deterministic communications
	3.2 Reactivities
	3.3 Processings and assignment into threads
	3.4 A formal framework for real-time systems
	3.5 Formalization of the case study
	3.5.1 Processings
	3.5.2 Threads
	3.5.3 Reactivities

	3.6 Objectives

	4 Parametric stopwatch automata
	4.1 Clocks, parameters, constraints
	4.2 Parametric stopwatch automata

	5 Specifying the system
	5.1 Architecture of the solution
	5.1.1 A modular solution
	5.1.2 Encoding elements and constraints as automata

	5.2 Modeling periodic processing activations
	5.3 Modeling threads
	5.4 Modeling the FPS scheduler
	5.5 Reachability synthesis

	6 Compositional verification of reactivities
	6.1 Observer construction
	6.2 Compositional verification and synthesis

	7 Enhancing the analysis with context switches
	7.1 Problem
	7.2 Modeling the context switch

	8 Experiments
	8.1 Experimental environment
	8.2 Verification and synthesis without reactivities
	8.2.1 Non-parametric model
	8.2.2 Parameterized offsets
	8.2.3 Parameterized deadlines

	8.3 Compositional verification of reactivities
	8.4 Switch time

	9 Comparison with other tools
	9.1 Comparison of our results with non-parametric tools
	9.1.1 Non-parametric comparison with Cheddar
	9.1.2 Non-parametric comparison with Uppaal
	9.1.3 Summary of comparisons

	9.2 ``Testing'' the parametric analysis
	9.2.1 Using non-parametric model checking
	9.2.2 Using constraints comparisons

	10 Conclusion and perspectives
	A Full scheduler
	B Parametric analyses without reactivities
	B.1 Parametric offsets
	B.2 Parametric deadlines
	B.3 Parametric offsets and deadlines

	C Parametric analyses with reactivities
	C.1 Parametric offsets
	C.2 Parametric deadlines

	D Parametric analyses with switch time without reactivities
	D.1 Parametric offsets
	D.2 Parametric deadlines

	E Parametric analyses with reactivities and with switch time
	E.1 Parametric offsets
	E.2 Parametric deadlines

