
Università degli Studi di Verona
Université de Bretagne Occidentale

DEPARTMENT OF COMPUTER SCIENCE

Degree in Computer Science

Data flow analysis for cache optimization
in real-time scheduling

Candidate:

Efrem Agnilleri
Student ID VR094272

Thesis advisors:

Prof. Fausto Spoto
Prof. Valérie-Anne Nicolas

Academic Year 2014–2015

Abstract

Nowadays we entrust our lives to planes, cars, trains, medical equipment, and many
other things that are driven by real-time systems. Most real-time systems have to
handle safety-critical applications and many embedded computer systems are real-time
systems.
Real-time systems are computer systems that have to perform their actions with
accomplishment of timing constraints. A real-time application typically consists of a
set of cooperating tasks which are activated at regular intervals or on particular events.
A task usually senses the state of the system, performs certain computations and, if
necessary, sends commands to change the state of the system. Each task should finish
its execution before a certain time, called the deadline.
Scheduling of tasks involves the allocation of processors and time to tasks. Task
scheduling can be either preemptive or non-preemptive. In non-preemptive scheduling
once a task starts its execution on a processor, it finishes. A preemptive scheduling,
on the other hand, allows that the execution of a task on a certain processor can be
interrupted and resumed later. For instance, a task can preempt the one in execution
because it has higher priority.
Preemptive scheduling offers better schedulability but brings an overhead because of
the context switches involved. State of the art scheduling algorithms are not able to
compute the context switch time precisely, so they take a safe value which is always
overestimated. Because of that, the time required for the context switches may be a
significant fraction of the total execution time.
The objective of this dissertation is to contribute to the minimization of the time
estimated to perform context switches. More precise estimations imply more efficient
task schedulings.
Cheddar is a free real-time scheduling framework used to simulate the scheduling of
real-time tasks, and the aim of the thesis is to add the data flow analysis functionality
to the Cheddar tool. This kind of analysis gives useful information about the memory
usage of a task. For instance, we can analyze a real-time task and discover that if
it will be interrupted on a certain time, when restored its possible to not load into
memory some variables which will be no more used by the task.
The aim is achieved by studying, and implementing in Ada programming language,
static and dynamic analysis, as well as a novel model of analysis, called hybrid analysis.

iii

iv

Sommario

Al giorno d’oggi affidiamo le nostre vite ad aerei, automobili, treni, apparecchiature
mediche, e a molte altre strumentazioni che sono controllate da sistemi real-time. La
maggioranza di questi sistemi deve gestire applicazioni in cui la sicurezza gioca un
ruolo essenziale, e molti sistemi embedded sono sistemi real-time.
I sistemi real-time sono sistemi informatici che devono svolgere i loro compiti entro
determinati vincoli temporali. Un’applicazione real-time normalmente è composta da
un insieme di task cooperanti, i quali sono attivati ad intervalli regolari o al verificarsi
di determinati eventi. Un task di solito rileva lo stato del sistema, esegue alcuni calcoli
e, se necessario, invia dei comandi per cambiare lo stato del sistema. Ogni task deve
finire la sua esecuzione entro un tempo prestabilito, chiamato deadline.
Lo scheduling dei task si occupa dell’assegnamento dei processori ai singoli task e di
stabilire per quanto tempo un task deve rimanere in esecuzione. Lo scheduling può
essere preemptive o non preemptive. Nello scheduling non preemptive, se un processore
inizia l’esecuzione di un task, quest’ultima viene portata a termine. Al contrario, nello
scheduling preemptive è possibile che l’esecuzione di un task venga interrotta e ripresa
successivamente. Per esempio, l’esecuzione di un task può essere interrotta perché un
altro task, con priorità maggiore, deve essere eseguito.
Lo scheduling preemptive offre una migliore gestione dei task, ma porta con se un
overhead a causa dei context switch. Nemmeno i più recenti algoritmi di scheduling
possono calcolare precisamente il tempo necessario per compiere un context switch.
Normalmente si stima per eccesso questo tempo. A causa di questo, il tempo richiesto
per i context switch può essere una considerevole parte del tempo di esecuzione di un
task.
L’obbiettivo di questa tesi è quello di contribuire alla minimizzazione del tempo stimato
dei context switch. Da stime più precise derivano scheduling dei task più efficienti.
Cheddar è un framework gratuito per lo scheduling real-time, ed è usato per simulare
lo scheduling di applicazioni real-time. Lo scopo di questo lavoro è aggiungere una fun-
zionalità di analisi di data flow a Cheddar. Questo tipo di analisi calcolerà informazioni
utili riguardo all’uso della memoria di un task. Per esempio si potrà analizzare un task
real-time e scoprire che se sarà interrotto in un determinato momento, quando sarà
ripristinato sarà possibile non caricare in memoria alcune variabili che non saranno
più usate.
L’obiettivo è stato raggiunto studiando e implementando nel linguaggio Ada l’analisi
statica e dinamica, oltre che un nuovo modello di analisi chiamato analisi ibrida.

Contents

Preface 1

1 Introduction 3
1 Background and context . 3

1.1 Real-time systems . 3
1.2 The Cheddar project . 4

2 Scope and achievements . 5
3 Relevant technologies . 5
4 Overview of the dissertation . 6

2 Preliminaries 7
1 Notes on graph theory . 7
2 Program representation . 8

2.1 Basic blocks . 8
2.2 Control flow graphs . 10

3 Static analysis 13
1 Reaching definitions . 13
2 Algorithms . 14

2.1 The round-robin algorithm . 14
2.2 The worklist algorithm . 18

3 Def-use associations . 18
3.1 The def-use algorithm . 19

4 Forward def-use associations . 20
5 Minimal information in basic blocks 21

4 Dynamic analysis 23
1 The idea . 23
2 Algorithm . 23

5 Hybrid analysis 27
1 The idea . 27
2 Computing of the Succ∗ set . 29
3 Algorithm . 29

6 Conclusions 31

v

vi CONTENTS

Appendix 33
1 Instances of printouts . 33

1.1 Static analysis printouts . 33
1.2 Dynamic analysis printouts . 37
1.3 Hybrid analysis printouts . 43

2 Source code . 47

Bibliography 49

Preface

This degree thesis was done in Brest, France, at Université de Bretagne Occidentale,
in the department of Computer Science, during the period January 2015 to May 2015,
as a part of the bachelor education in Computer Science at Università degli Studi
di Verona, Italy. Moreover, it’s the outcome of an intensive and incredible foreign
experience that I did thanks to the Erasmus+ european programme.

I would like to thank my french supervisor, Prof. Valérie-Anne Nicolas, for giving me
the opportunity for writing this thesis and the overall support during its development.
I’m also grateful to my italian supervisor, Prof. Fausto Spoto, that helped me choosing
a good foreign destination and for always being available and helpful.
Finally, I would like to thank my family, my friends and all the amazing people that
made this abroad period one of the most exiting I ever had so far.

1

Chapter 1

Introduction

1 Background and context

1.1 Real-time systems

Real-time systems span several domains of computer science. Their application area
varies from every day life to very critical systems. A real-time system is any system led
by a real-time program in which the time at which output is produced is significant.
A non-real-time program is correct when the output meets the specifications. The
correctness of a real-time program depends on both the correctness of the outputs and
their compute time. A real-time program that calculates the correct output after the
deadline1 has passed is incorrect.

Real-time systems may be classified as either hard or soft. A hard real-time system
is one in which a single missed deadline causes the complete failure of the system. Some
circumstances involving hard real-time systems are the airbag inflation after a crash,
the landing gear and the fly-by-wire systems of a plane, the over-temperature monitor
in nuclear power plants, ECG medical monitor and many others. In soft real-time
system there is some flexibility in the real-time requirement, and the missing of a
deadline produces only an inconvenience but not the failure of the system. For instance,
is a soft real-time system the live streaming of a video. Streaming applications require
timely delivery of information, but a lag of some TCP packages doesn’t compromise
the integrity of the system.

Embedded real-time systems and context switches

Hard real-time systems are usually embedded systems and vice versa. Most of
real-time embedded systems are implemented with a single core processor, and most of
these systems have multiple real-time program operations running concurrently. In
general, many embedded real-time systems have more concurrent tasks than processors,
and the result is that each embedded processor may be responsible for a number
of related control procedures. Running concurrent operations on a single processor
requires the interleaving of instructions from each process. This is managed by a task
scheduler, which aim is to determine the execution order and the time slice for each
concurrent process. Switching the processor from executing the instructions of one
process to those of another process is known as a context switch. A context switch

1A deadline is a given time by which an activity must be completed.

3

4 CHAPTER 1. INTRODUCTION

requires the scheduler to save the current state of the processor and restore the state
of the process being resumed. The state of a process includes all the registers that the
process may be using, the program counter and the state of the memory.
There are many ways to manage the task scheduling: in many scheduling algorithms,
a task may be preempted by the scheduler because a higher priority task is now ready
or the task has used up its allotment of processor time.

1.2 The Cheddar project

Cheddar is a free real-time scheduling framework developed by a team from the
Lab-STICC, of Université de Bretagne Occidentale. The development of the project
started in 2002, motivated by the lack of free, flexible and open scheduling tools. For
portability and maintainability reasons it’s written in Ada, and the graphical editor is
made with GtkAda2. Cheddar runs on all main systems such Solaris, Linux, Windows
and on every platform supporting GNAT/GtkAda. The framework is designed for
checking the temporal behaviour of real-time applications, which most of the time have
to comply with temporal constraints like response times, execution rates or deadlines.
Detailed information about Cheddar can be found in [8] and [9].

Applications are defined in Cheddar by a set of processors, buffers, shared resources,
messages and tasks. Each periodic task ti represents a different concurrent operation,
and it is defined by its deadline Dti , its period Pti and its capacity Cti . The task ti
is woken up every Pti units of time, then it does his job whose execution is bounded
by Cti units of time. The job has to end before Dti units of time after the task wake
up moment. Starting from a set of tasks, cheddar provides two kind of features: a
simulation engine and feasibility tests.

Simulation engine

Scheduling simulation consists in predicting, for each unit of time and for each
processor, which task will be executed and on which processor the task will perform
its execution. Cheddar is able to simulate the scheduling with most of usual real-time
algorithms and provides a set of useful information such worst, best, average case
response time and blocking time, number of preemptions, number of context switches
and buffer utilization factor.

Feasibility testing

Feasibility tests allow the study of real-time applications, without computing a task
scheduling, in the case of single core processors, multi core processors and distributed
systems3. Cheddar also provides feasibility tests focused on systems which are less
studied by the community, like shaded-buffer systems or systems with task priority.
Feasibility tests can be applied instead of a scheduling simulation in certain situations,
for instance if a scheduling simulation is too long to compute. Cheddar provides
feasibility tests based on different properties: processor utilization factor, task response
time, buffer utilization factor, probabilistic properties on task deadlines and many
others.

2GtkAda is an Ada graphical toolkit providing the complete set of Gtk+ widgets using the
object-oriented features of this language.

3A distributed system is one whose concurrent processes are assigned to different computers
connected by a network.

2. SCOPE AND ACHIEVEMENTS 5

2 Scope and achievements
The main goal of this thesis is to implement data flow analysis that will be integrated

into the Cheddar framework. In addition to conventional static and dynamic analysis,
a new kind of analysis, called hybrid analysis, is presented and implemented. Data
flow analysis allows a precise analysis of useful data to save when performing context
switches in preemptive scheduling, which are computationally intensive and expensive
in terms of time.
It follows that more precise estimates of memory usage allow to minimize the amount
of data that have to be saved, and restored, during context switches. Cheddar will
benefit from this work: the less time each context switch takes, the more efficient will
be the task scheduling.

The final result of this thesis is a reliable and efficient stand-alone Ada application
which can be easily integrated in the Cheddar framework. Each module of the software
was tested with more than ten different control flow graphs and optimized for reaching
good performances in terms of speed.

3 Relevant technologies
The algorithms proposed in the following chapters were developed in Ada. All

the code work was written and compiled on a Linux system, and the used compiler
is GNAT4. The choice of Ada was driven by the previous work made with Cheddar,
which is written in Ada as well.

The ADA language

Ada is a modern high-level programming language designed for large, long-lived and
embedded applications, where reliability and efficiency are essential. It was originally
developed in 1977 by the U.S. Department of Defense, and was revised and enhanced
in the early 1990s. The resulting language, Ada 95, was the first internationally
standardized object-oriented language. The name “Ada” was chosen in honor of
Augusta Ada Lovelace (1815-1852), a mathematician who is sometimes regarded as
the world’s first programmer because of her work with Charles Babbage. Ada is seeing
significant usage worldwide in high-integrity, safety-critical and high-security domains
including commercial and military aircraft avionics, air traffic control, railroad systems,
and medical devices.
Ada is a good teaching language for both introductory and advanced computer science
courses, and it has been the subject of significant university research especially in the
area of real-time technologies.

Instances of systems, in operation or under active development, in which Ada is
used at least to a significant degree, are:

• the air traffic management system of many countries in the world, including the
European air traffic flow management and the one of China, France, Germany,
United Kingdom;

• the metrorail systems of more than 10 cities including Hong Kong, London and
Paris;

• French national railways, Channel Tunnel and the TGV French high-speed rails;
4GNAT is a free compiler for Ada95, integrated into the GCC compiler system.

6 CHAPTER 1. INTRODUCTION

• commercial rockets Atlas V, Delta II and Delta IV;

• NASA space shuttle training aircrafts;

• X-35 joint strike fighter;

• banking and financial systems of at least eight large European financial institu-
tions;

• ISS flight software;

• Czech nuclear shutdown system;

• Pratt & Whitney aircraft engines;

4 Overview of the dissertation
This thesis addresses several techniques of data flow analysis and presents an Ada

application that implements each algorithm exposed in the dissertation.
In chapter 2 we give the basics of graph theory and some notes about the data structures
used in program analysis, which are essential to understand the underlying idea behind
the different types of analysis.
Static analysis is presented in chapter 3 as well as the most typical example of static
analysis: the reaching definitions analysis. In the chapter are also defined some concepts
used in later chapters.
In chapter 4 is shown dynamic analysis that, despite the static one, takes into account
the real execution of a program.
Further, a novel approach to data flow analysis is introduced in chapter 5. Hybrid
analysis considers executions of part of the code and makes inferences about definitions
and uses of variables.
Finally, the conclusions of the work are presented in chapter 6. Some printouts of the
application developed in Ada, which implements all the three kind of analysis, will be
found in the appendix section.

Chapter 2

Preliminaries

1 Notes on graph theory

Conceptually, a graph is formed by vertices, or nodes, and edges connecting the
vertices. Graphs can be used to visualize related data, show knowledge in a graphical
way and represent many discrete structures. Graph theory provides algorithms to solve
multiple kind of problems, such the finding of the shortest path from one vertex to
another vertex. Below a more formal definition of graph is provided.

Definition 2.1 (Graph). A graph G consists of a finite nonempty set V , together
with a symmetric binary relation δ on V such that v 6 δ v ∀v ∈ V . According to [2],
we can define a graph in a different but equivalent way: a grapth G as an ordered
pair G = (V,E) where V 6= ∅ and E is a set of subsets of V having cardinality 2. The
elements of V are called vertices of the graph, and the elements of E are called edges
of the graph.

Therefore, the two edges (v1, v2) and (v2, v1), with v1, v2 ∈ V , are the same. In
other words, the pair is not ordered.

v1

v2 v3

v4

e 1

e
2

e3

e
4

Figure 1: Graph example

It’s possible to represent directed edges1 just removing the symmetric property
from the binary relation of the graph. What we obtain is called directed graph.

1An edge represented by an ordered pair.

7

8 CHAPTER 2. PRELIMINARIES

Definition 2.2 (Directed graph). A directed graph D, also called digraph, is a finite
nonempty set V with a binary relation E on V . Therefore E ⊆ V × V . Likewise to
the previous definition, the elements of V are called vertices of the directed graph, and
the elements of E are called edges of the directed graph.

v1

v2 v3

v4

e 1
e
2

e3

e4

e 5
e
6

Figure 2: Directed graph example

Given a graph G = (V,E), a walk or path is a sequence v0, e1, v1, . . . , vk, where
vi ∈ V and ei ∈ E, such that for 1 ≤ i ≤ k, the edge ei has endpoints vi−1 and vi. The
length of a walk is its number of edges.

In the following sections, we will represent a program as a directed graph.

2 Program representation

Analyses are performed on programs, which are given as a sequence of instructions.
Instructions are either machine instructions or more generally minimal statements in
the language the analysis works on. The given sequence of instructions is split into
basic blocks, which are the basics of analysis.

In this discussions we will refer to a particular instruction by using its line number.

2.1 Basic blocks

A basic block is a maximal sequence of consecutive statements of a program with a
single entry point, a single exit point and no internal branches. The first statement of
a basic block is the leader of the basic block. Under these circumstances, whenever a
leader is executed, the remaining statements of the basic block are necessarily executed,
in order, exactly once.

Finding basic blocks

Giving the code of a program as input, the procedure for finding basic blocks is
divided in two parts:

1. identify the leaders in the code. Leaders are instructions which come under any
of the following 3 categories:

• the first instruction of the program is a leader;

• the target of a conditional or an unconditional jump instruction is a leader;

2. PROGRAM REPRESENTATION 9

• the instruction that immediately follows a conditional or an unconditional
jump instruction is a leader.

2. for each leader, the set of all following instructions until and not including the
next leader is the basic block corresponding to the considered leader.

Example 2.3 (Build basic blocks). Starting from the following C function, which
calculates Fibonacci numbers, we will identify basic blocks.

1 int fib(int n) {
2 int a = 0;
3 int b = 1;
4 int c, i;
5 if(n <= 1)
6 return n;
7 for (i = 2; i <= n; i++) {
8 c = a + b;
9 a = b;

10 b = c;
11 }
12 return b;
13 }

In order to better point out the jumps, in this example we will rewrite the function
using the three-address code. In a real case, this step is not needed and can be
substituited by replacing complex control structures with simpler statements.
We can apply the first step of the algorithm and recognise the leaders. Each leader is
underlined.

1 read n
2 a := 0
3 b := 1
4 if n <= 1 goto 13
5 i := 2
6 if i <= n goto 8
7 return b
8 c := a + b
9 a := b

10 b := c
11 i := i + 1
12 goto 6
13 return n

Then, we can create the basic blocks as indicated in the second step of the algorithm.

10 CHAPTER 2. PRELIMINARIES

b1

1 read n
2 a := 0
3 b := 1
4 if n <= 1 goto 13

b2

5 i := 2

b3

6 if i <= n goto 8

b4

7 return b

b5

8 c := a + b
9 a := b

10 b := c
11 i := i + 1
12 goto 6

b6

13 return n

2.2 Control flow graphs
Most static and dynamic analyses work along the control flow of a program. The

concept of control flow has to be approximated by a data structure for further analysis.
A control flow graph, or CFG, is a directed graph abstracting the control flow behaviour
of a program.

Definition 2.4 (Control flow graph). A control flow graph is a directed graph that
represents all the paths that might be traversed through a program during its execution.
The nodes of the directed graph represent basic blocks and edges represent possible
transfer of control flow from one basic block to another. From now on we will indicate
as B = {b1, b2, . . . , bn} the set of all basic blocks of a control flow graph.

Given two basic blocks b1 and b2, there is a directed edge from b1 to b2 if b2 can
immediately follow b1 in some execution sequence. That is if either:

• there is a branch from last statement in b1 to the leader of b2;

• b2 immediately follows b1, and b1 does not end with an unconditional branch.

We say that b1 is a predecessor of b2, and b2 is a successor of b1. The basic blocks
to which control may transfer after reaching the end of a basic block bi are called
block’s successors and they are indicated as Succ (bi), while the basic blocks from
which control may have come when entering a basic block are called block’s predecessors
and they are indicated as Pred (bi).

One node is distinguished as initial node. It is the basic block whose leader is the
first statement of the program and it has no predecessors. An artificial single entry
node can be created if there are multiple entries. The creation is trivial: just add an
edge from the artificial entry node to every original entry node.

Another special node is the exit node. It is the basic block whose last statement
is the last instruction of the program and it has no successors. If there are multiple
exit nodes, an artificial exit node can be created. The approach to create this node is
the same as the previous case. For simplicity we assume an unique entry node and an
unique exit node in later discussions.

Example 2.5 (Build control flow graph). Based on the example 2.3, an instance of
control flow graph is provided below.

2. PROGRAM REPRESENTATION 11

1 read n
2 a := 0
3 b := 1
4 if n <= 1

b1

5 i := 2

b2

6 if i <= n

b3

8 c := a + b
9 a := b

10 b := c
11 i := i + 1
12 goto 6

b5

7 return b

b4

13 return n

b6

Exit node

b7

Figure 3: Control flow graph example

Chapter 3

Static analysis

Static analysis is a technique of program analysis used for discovering useful
information about the behaviour of programs without executing them. It computes
information about the control and data flows for each program point in the program
being analyzed. This information is a pessimistic approximation of the properties of
the run-time behaviour of the program during each possible execution. This technique
of program analysis was originally designed in the context of optimization performed
by compilers and nowadays this remains the most common application. It’s also used
for reliability and correctness tests.
We will use the static analysis as the base for other forms of data flow analysis, presented
in the next chapters. There are lots of possible static analysis, some of them are:

• reaching definition analysis: determines which definitions may reach a given
point in the code;

• liveness analysis: calculates for each program point the variables that may be
potentially read before their next write;

• definite assignment analysis : ensures that a variable or location is always assigned
to before it is used;

• available expression analysis: determines for each point in the program the set
of expressions that need not be recomputed;

• constant propagation analysis: evaluates constant expressions at compile time
and simultaneously removes dead code.

For our purpose we will focus on the reaching definition analysis.

1 Reaching definitions
A definition is a statement where a variable initializes or changes its value.

Definition 3.1 (Reaching definition). A definition d of a variable var reaches a point
p if there exists a path from the point d to the point p such that var is not redefined
along that path. In that case, d is a reaching definition for the point p.

A definition d is an ordered pair d = (n, a) where n represents the name of the
defined variable, and a represents the line number containing the definition statement.

13

14 CHAPTER 3. STATIC ANALYSIS

Definition 3.2 (Generated definitions). The generated definitions Gen (bi) is the set
of definitions created in basic block bi.

Definition 3.3 (Killed definitions). The killed definitions Kill (bi) is the set of defini-
tions modified in basic block bi.

The reaching definitions analysis computes two sets for each node bi: the In (bi)
set, which contains all the definitions valid when the execution path enters the node bi,
and the Out (bi), which contains all the definitions valid when the execution path ends
the node bi.

The data flow equations which define the required analysis are:

In (bi) =
⋃

bp∈Pred(bi)

Out (bp) (3.1)

Out (bi) = Gen (bi) ∪ (In (bi)−Kill (bi)) (3.2)

In other words, the set of reaching definitions valid at the entry of a basic block bi
are all of the reaching definitions from the predecessors of bi. Pred (bi) consists of all
of the basic blocks that come immediately before bi in the control flow graph. The
reaching definitions coming out of bi are all reaching definitions of its predecessors
minus those reaching definitions whose variable is killed by bi plus any new definitions
generated within bi.

Reaching definitions analysis will be used later for connecting definitions to their
uses.

2 Algorithms
The most common way of solving the data-flow equations is by using an iterative

algorithm. It starts with an init stage that approximates the In (bi) and Out (bi) sets
of each basic block. From these, the In (bi) and the Out (bi) sets are updated by
applying the transfer functions 3.1 and 3.2. The latest step is repeated until we reach a
fixpoint: the situation in which the In (bi) sets (and the Out (bi) sets in consequence)
do not change.

2.1 The round-robin algorithm
A basic algorithm for solving reaching definitions equations is the round-robin

iterative algorithm:
for all nodes bi ∈ B do
In (bi) = ∅
Out (bi) = Gen (bi)

end for
while In-sets are still changing do
for all nodes bi ∈ B do
In (bi) =

⋃
bp∈Pred(bi)

Out (bp)

Out (bi) = Gen (bi) ∪ (In (bi)−Kill (bi))
end for

end while
The second for loop can be optimized by not executing the loop for the initial node,

which has no predecessors and consequently does not vary after the init stage.

2. ALGORITHMS 15

Example 3.4 (Execution round-robin algorithm). In the following example we simulate
the execution of the algorithm on the control flow graph shown in figure 7.

1 read a
2 read b
3 c := a
4 d := b

b1

5 if c == 0

b2

6 write d

b3

7 if d != 0

b4

8 if c > d

b5

9 c := c - d

b6

10 d := d - c

b7

11 write c

b8

Figure 4: Control flow graph

The first cycle of the algorithm initializes, for each basic block, the In (bi) set with
an empty set and the Out (bi) set with its generated definitions. After this step, this is
the state of the sets:

16 CHAPTER 3. STATIC ANALYSIS

Block In (bi) Out (bi)

b1 ∅ {(a, 1) , (b, 2) , (c, 3) , (d, 4)}

b2 ∅ ∅

b3 ∅ ∅

b4 ∅ ∅

b5 ∅ ∅

b6 ∅ {(c, 9)}

b7 ∅ {(d, 10)}

b8 ∅ ∅

Now we iterate the second cycle until a fixpoint is reached. After two iterations1 we
have these final sets:

1Iteration #2 have the same In (bi) and Out (bi) sets of iteration #1.

2. ALGORITHMS 17

Block
Initialization Iteration #1 Iteration #2

In (bi) Out (bi) In (bi) Out (bi) In (bi) Out (bi)

b1 ∅

{(a, 1),
(b, 2),
(c, 3),
(d, 4)}

∅ {(a, 1), (b, 2),
(c, 3), (d, 4)} - -

b2 ∅ ∅ {(a, 1), (b, 2),
(c, 3), (d, 4)}

{(a, 1), (b, 2),
(c, 3), (d, 4)} - -

b3 ∅ ∅ {(a, 1), (b, 2),
(c, 3), (d, 4)}

{(a, 1), (b, 2),
(c, 3), (d, 4)} - -

b4 ∅ ∅

{(a, 1), (b, 2),
(c, 3), (d, 4),
(c, 9),
(d, 10)}

{(a, 1), (b, 2),
(c, 3), (d, 4),
(c, 9), (d, 10)}

- -

b5 ∅ ∅

{(a, 1), (b, 2),
(c, 3), (d, 4),
(c, 9),
(d, 10)}

{(a, 1), (b, 2),
(c, 3), (d, 4),
(c, 9), (d, 10)}

- -

b6 ∅ {(c, 9)}

{(a, 1), (b, 2),
(c, 3), (d, 4),
(c, 9),
(d, 10)}

{(a, 1), (b, 2),
(d, 4), (c, 9),
(d, 10)}

- -

b7 ∅ {(d, 10)}

{(a, 1), (b, 2),
(c, 3), (d, 4),
(c, 9),
(d, 10)}

{(a, 1), (b, 2),
(c, 3), (c, 9),
(d, 10)}

- -

b8 ∅ ∅

{(a, 1), (b, 2),
(c, 3), (d, 4),
(c, 9),
(d, 10)}

{(a, 1), (b, 2),
(c, 3), (d, 4),
(c, 9), (d, 10)}

- -

The order in which nodes are taken out from the set B depends on the imple-
mentation of the algorithm. In the example above we can notice that the nodes
were visited in the order b1 → b2 → b3 → b4 → b5 → b6 → b7 → b8, and fixpoint
was reached after only two iterations. Intuitively this algorithm reaches its highest
efficiency when all predecessors of a basic block have been processed before the basic
block itself, since then the iteration will use the latest information. For instance, the
execution of the same algorithm where the nodes are visited in the reverse postorder
b8 → b7 → b6 → b5 → b4 → b3 → b2 → b1 takes 4 iterations. Thus, we can assert
that the efficiency of the algorithm is influenced by the order at which local nodes are
visited.

18 CHAPTER 3. STATIC ANALYSIS

2.2 The worklist algorithm

The worklist iterative algorithm improves on the round-robin algorithm by focusing
the iteration on regions in the graph where information is changing. Simple data-
structure modifications to the previous algorithm can make it more efficient:
Worklist = ∅
for all nodes bi ∈ B do
In (bi) = ∅
Out (bi) = Gen (bi)
Add bi to Worklist

end for
while Worklist 6= ∅ do
Remove a node bi from Worklist
In (bi) =

⋃
bp∈Pred(bi)

Out (bp)

Out (bi) = Gen (bi) ∪ (In (bi)−Kill (bi))
if the new In (bi) 6= old In (bi) then
Add Succ (bi) to Worklist, uniquely

end if
end while

The algorithm begins by initializing the sets for each node and constructing an
initial worklist. It then repeats the process of removing a node from the worklist and
updating its In and Out sets according to the data flow equations. If the update
changes the In (bi) set of the basic block, then all of the basic blocks that depend on the
changed information are added to the worklist In other words any of its successors that
are not already on the worklist are added to the worklist. In this way, the algorithm
avoids recomputing the equations of a basic block where none of the facts have changed.

3 Def-use associations

A use of a variable is a reference to the variable, either in a predicate or a
computation.

Reaching definitions analysis can be used for constructing def-use associations
which connect definitions to their uses, procuring more precise information on actual
values of variables. Static def-use information has been shown to be useful not only
for optimizing and parallelizing compilers but also for testing and maintenance of
programs. It’s also commonly used in debugging: with def-use chains it’s possible to
prevent uses of variables without having defined them before. Later in the discussion,
we will use def-use associations to test if a basic block contains minimal information.

Definition 3.5 (Variable uses). The variable uses set, indicated by Use (bi), is the
set whose elements are all the variable uses available in a basic block bi. A variable
use is indicated by an ordered pair u = (n, g) where n represents the name of the used
variable, and g represents the point in the program where the the variable is used.

Example 3.6 (Variable uses of a basic block). Below is represented the basic block b1
of the example shown in fugure 7.

3. DEF-USE ASSOCIATIONS 19

1 read a
2 read b
3 c := a
4 d := b

b1

The uses related to this node are:

Use (b1) = {(a, 3) , (b, 4)} (3.3)

Definition 3.7 (Def-use associations). A def-use association for variable n is an
ordered tuple du = (n, d, u) where n is the name of the variable, d is the point where
variable n is defined and u is the point where variable n is used, and is valid if there is a
path with no redefinitions from d to u. The set containing all the def-uses associations
of a basic block bi is indicated by DefUse (bi).

3.1 The def-use algorithm

The def-use algorithm computes the DefUse (bi) for a given basic block bi of the
control flow graph. This local algorithm is based on the result of the reaching definitions
algorithm explained before.
for all uses uj = (nj , gj) ∈ Use (bi) do
bti = the sub-block containing all the statements located before point gj
if Gen (bti) 6= ∅ and Gen (bti) contains at least a definition for variable nj then
Select dm = (nm, am) ∈ Gen (bti) closest to point gj having nm = nj
Add duj = (nj , am, gj) to DefUse (bi)

else
for all definitions dk = (nk, ak) ∈ In (bi) having nk = nj do
Add duj = (nj , ak, gj) to DefUse (bi)

end for
end if

end for
For every use uj = (nj , gj) of a node, the algorithm checks if there is a definition

for the variable nj . At first, the definition is searched inside the block: if there are
more than one definitions in the node itself, the one situated before the point gj and in
the nearest point is chosen, then the DefUse (bi) set is updated with the new def-use
element. If no definitions are present inside the block and before point gj , the search
continues in the In (bi) set. For each definition in that set, defined for the variable nj ,
a def-use element is added to the DefUse (bi) set. This is computed for each node of
the control flow graph.

Example 3.8 (Def-use associations of a basic block). In this example is presented
the computation of the DefUse (bi) set for just one node. In a realistic situation, the
computation must be extended at every node in the control flow graph.

Consider the control flow graph shown in figure 7 of the previous example, and
consider the computation of the DefUse (b5) for basic block b5. We already have the
sets In (bi), Out (bi) from the previous steps of the static analysis, and the Use (bi)
can be easily computed with a simple local algorithm.

20 CHAPTER 3. STATIC ANALYSIS

Block In (bi) Out (bi) Use (bi)

b1 ∅ {(a, 1), (b, 2), (c, 3),
(d, 4)} {(a, 3), (b, 4)}

b2
{(a, 1), (b, 2), (c, 3),
(d, 4)}

{(a, 1), (b, 2), (c, 3),
(d, 4)} {(c, 5)}

b3
{(a, 1), (b, 2), (c, 3),
(d, 4)}

{(a, 1), (b, 2), (c, 3),
(d, 4)} {(d, 6)}

b4
{(a, 1), (b, 2), (c, 3),
(d, 4), (c, 9), (d, 10)}

{(a, 1), (b, 2), (c, 3),
(d, 4), (c, 9), (d, 10)} {(d, 7)}

b5
{(a, 1), (b, 2), (c, 3),
(d, 4), (c, 9), (d, 10)}

{(a, 1), (b, 2), (c, 3),
(d, 4), (c, 9), (d, 10)} {(c, 8), (d, 8)}

b6
{(a, 1), (b, 2), (c, 3),
(d, 4), (c, 9), (d, 10)}

{(a, 1), (b, 2), (d, 4),
(c, 9), (d, 10)} {(c, 9), (d, 9)}

b7
{(a, 1), (b, 2), (c, 3),
(d, 4), (c, 9), (d, 10)}

{(a, 1), (b, 2), (c, 3),
(c, 9), (d, 10)} {(d, 10), (c, 10)}

b8
{(a, 1), (b, 2), (c, 3),
(d, 4), (c, 9), (d, 10)}

{(a, 1), (b, 2), (c, 3),
(d, 4), (c, 9), (d, 10)} {(c, 11)}

Now we must find the definitions related to every use in the set Use (b5) = {(c, 8),
(d, 8)}. For the first use (c, 8) there are no definitions in the statements of node b5
before line 8, so the definitions contained in the In (b5) set are checked: the two
definitions for the variable c are (c, 3) and (c, 9). Both the def-use associations are
added to the set, that becomes DefUse (b5) = {(c, 3, 8), (c, 9, 8)}. The computation of
the def-use associations for the second use (d, 8) is similar. The final set for block b5 is:

DefUse (b5) = {(c, 3, 8) , (c, 9, 8) , (d, 4, 8) , (d, 10, 8)} (3.4)

4 Forward def-use associations
For the purpose testing and debugging, the def-use association related to a node

bi works well. However, to optimize the context switch time, we introduce another
way to represent the same information. A node bi and its Gen (bi) set are given. To
know where each definition generated by the node bi is used, we must visit each node
bk ∈ Succ∗ (bi) and, for each node, visit its def-use associations.
Succ∗ (bi) represents the transitive closure of Succ (bi), and a simple algorithm to
compute this set is provided in section 2 of chapter 5. When a def-use association
duk = (nk, dk, uk) has nk and dk such that (nk, dk) ∈ Gen (bi), we know that the node
bk might use the variable nk defined in node bi.

With the forward def-use association it is possible to see this kind of information
at a glance.

Definition 3.9 (Forward def-use associations). A forward def-use association
ForwardDefUse (bi) is a sequence of n sets, where n is the number of basic blocks in
the control flow graph. The set in position k, where 1 ≤ k ≤ n, represents a subset of
DefUse (bk) whose elements refer to a variable defined in node bi and used in node bk.

5. MINIMAL INFORMATION IN BASIC BLOCKS 21

The idea behind the algorithm for computing this information is to visit the
DefUse set of each node and, for each def-use association, copy this association onto
the ForwardDefUse data structure of the appropriate node in the proper position.

The example 4.1 of chapter 4 will show the computation of the ForwardDefUse
set.

5 Minimal information in basic blocks
Static analysis is safe and pessimistic, because it must consider all the possible

behaviours of a program. The DefUse (bi) set of a node bi might contain multiple
entries for a given used variable: if this situation occurs, it means that the valid
definition of an used variable at a given point during execution, is known only at
run-time.
On the other hand, a basic block bi is said to have minimal information if each variable
used into it has exactly one reaching definition, or in other words, if for each variable
used in the node we know where the definition is located even before the execution of
the program.
When static analysis provides minimal information for a block, we know that this
information is the most precise.

Algorithm

This algorithm tests if a block has minimal information or not. The input of the func-
tion is aDefUse set, the output is a boolean value.
for k ← 1 to |DefUse (bi)| do
Let duk = (nk, dk, uk) be the k-element of DefUse (bi)
for j ← (k + 1) to |DefUse (bi)| do
Let duj = (nj , dj , uj) be the j-element of DefUse (bi)
if nk = nj and uk = uj then
return false

end if
end for

end for
return true
Note that the initial node of a control flow graph have always minimal information.

Chapter 4

Dynamic analysis

In chapter 3 we discussed about static analysis, which allows the testing and
evaluation of an application by examining the code without executing the program. It
is a conservative analysis because it produces information concerning all the possible
paths, in fact because there are many possible executions, the analysis must keep track
of multiple different possible states.
Dynamic analysis is able to capture and predict more precisely the behaviour of a
program, but despite static analysis, the dynamic one requires the path (or a part
of it) done over the control flow graph. That’s why this kind of analysis is done at
run-time. Because of that, the results of dynamic analysis cannot be generalized to
future executions of the program. However, these results can be useful for simulation
purposes.

1 The idea
The analysis starts from a control flow graph and a path b1, e1, b2, e2, . . . , bn of

nodes and edges representing a particular execution of the program. The idea is to
remove all the edges from the control flow graph and add them, one by one, at run-time
every time the execution of the program switches from a node to the next in the path.
When a switch is done an edge is created, and the previous one is deleted. Having this
control graph that still change at run-time, we can apply the static equations for the
reaching definition analysis for each node in the path and compute the def-use and the
forward def-use sets as well.

2 Algorithm
Given a path, representing a specific execution of the program, and a control flow

graph, the algorithm that performs the dynamic analysis is the following:
for all nodes bi in the execution path do
In (bi) =

⋃
bp∈Pred(bi)

Out (bp)

Out (bi) = Gen (bi) ∪ (In (bi)−Kill (bi))
Compute the def-use algorithm to node bi
if bi is not the last node in the execution path then
Let bi+1 be the node after bi in the execution path
Pred (bi+1) = {bi}

23

24 CHAPTER 4. DYNAMIC ANALYSIS

end if
end for
Compute the forward def-use algorithm

Note that after computing the information for a node, the algorithm transmits
the information to the following node simply setting itself as unique predecessor of its
successor node. In this way once the information of the successor are computed, the
equations to calculate the In set takes the info from the only predecessor in the list.
There is no need to check if the information in basic blocks are minimal or not, since
every node computed by dynamic analysis have minimal information. Every variable
used inside a node has only one definition, in fact in case of multiple definitions the
newer one overwrites the previous definition for that variable.

Example 4.1 (Dynamic analysis of a control flow graph). In figure 5 we have a control
flow graph in which is highlighted the following execution path:

path = b1, e1, b2, e2, b3, e3, b4, e4, b5, e5, b7, e6, b4, e7, b5, e8, b7, e9, b4, e10, b8 (4.1)

1 read a
2 read b
3 c := a
4 d := b

b1

5 if c == 0

b2

6 write d

b3

7 if d != 0

b4

8 if c > d

b5

9 c := c - d

b6

10 d := d - c

b7

11 write c

b8

e1

e2

e3

e4, e7

e5, e8

e6, e9

e10

Figure 5: Control flow graph

2. ALGORITHM 25

The algorithm for dynamic analysis is applied: every row in the following table
represents, in the order, a visited node.
We can notice that only the nodes belonging to the path are computed in the algorithm.
For instance the node b6, which is not in the path, is not present in the above table.
Notice also that node b4 is evaluated three times, but the information computed on
the second time has no differences between the third one. In our implementation of
the dynamic analysis we added this kind of control and the program prints only the
nodes whose information change during the execution.

26 CHAPTER 4. DYNAMIC ANALYSIS

Block In (bi) Out (bi) DefUse (bi) ForwardDefUse (bi)

b1 ∅

{(a, 1),
(b, 2),
(c, 3),
(d, 4)}

{(a, 1, 3),
(b, 2, 4)}

({(a, 1, 3), (b, 2, 4)},
{(c, 3, 5)}, {(d, 4, 6)},
{(d, 4, 7)}, {(c, 3, 8),
(d, 4, 8)}, {(c, 3, 9)},
{(d, 4, 10), (c, 3, 10)},
∅)

b2

{(a, 1),
(b, 2),
(c, 3),
(d, 4)}

{(a, 1),
(b, 2),
(c, 3),
(d, 4)}

{(c, 3, 5)} (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅)

b3

{(a, 1),
(b, 2),
(c, 3),
(d, 4)}

{(a, 1),
(b, 2),
(c, 3),
(d, 4)}

{(d, 4, 6)} (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅)

b4

{(a, 1),
(b, 2),
(c, 3),
(d, 4)}

{(a, 1),
(b, 2),
(c, 3),
(d, 4)}

{(d, 4, 7)} (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅)

b5

{(a, 1),
(b, 2),
(c, 3),
(d, 4)}

{(a, 1),
(b, 2),
(c, 3),
(d, 4)}

{(c, 3, 8),
(d, 4, 8)} (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅)

b7

{(a, 1),
(b, 2),
(c, 3),
(d, 4)}

{(a, 1),
(b, 2),
(c, 3),
(d, 10)}

{(d, 4, 10),
(c, 3, 10)}

(∅, ∅, ∅, {(d, 10, 7)},
{(d, 10, 8)}, {(d, 10, 9)},
{(d, 10, 10)}, ∅)

b4

{(a, 1),
(b, 2),
(c, 3),
(d, 10)}

{(a, 1),
(b, 2),
(c, 3),
(d, 10)}

{(d, 10, 7)} (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅)

b5

{(a, 1),
(b, 2),
(c, 3),
(d, 10)}

{(a, 1),
(b, 2),
(c, 3),
(d, 10)}

{(c, 3, 8),
(d, 10, 8)} (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅)

b7

{(a, 1),
(b, 2),
(c, 3),
(d, 10)}

{(a, 1),
(b, 2),
(c, 3),
(d, 10)}

{(d, 10, 10),
(c, 3, 10)}

(∅, ∅, ∅, {(d, 10, 7)},
{(d, 10, 8)}, {(d, 10, 9)},
{(d, 10, 10)}, ∅)

b4

{(a, 1),
(b, 2),
(c, 3),
(d, 10)}

{(a, 1),
(b, 2),
(c, 3),
(d, 10)}

{(d, 10, 7)} (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅)

b8

{(a, 1),
(b, 2),
(c, 3),
(d, 10)}

{(a, 1),
(b, 2),
(c, 3),
(d, 10)}

{(c, 3, 11)} (∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅)

Chapter 5

Hybrid analysis

We observed that information computed by static analysis are pessimistic but safe
estimates of the behaviour of a program, because it must consider all the possible
execution paths through the control flow graph.
Dynamic analysis, on the other hand, computes very precise information, but these
data are valid only for a specific execution path of a program, and cannot be generalized
for every possible execution. Moreover, dynamic analysis must know the execution
path a priori.
In real-time systems, as written in section 1 of chapter 1, the context switch time is
critical. Both static and dynamic analysis give some useful information that can be
used to optimize the time of context switches. In this chapter is presented a fresh
approach to data flow analysis that can be used to reduce that time as well.
Hybrid analysis is based on static analysis, but takes into account the moment when a
task is interrupted too (in a preemptive task scheduling).

1 The idea
Hybrid analysis makes some inferences to determine if there are some def-use

associations that will be no more valid after executing a certain basic block. It
starts from the information computed by static analysis and then, evermore statically,
computes the consequences, if any, of passing through a node.
The analysis considers all the nodes that define the same variable var and that are
mutually exclusive executed. For convenience we will call this set of nodes Bm. Later,
it checks if there are common descendant1 nodes between the nodes in Bm which use
the same variable var. If this situation occurs, we already know that static analysis
information will contain, for these nodes, multiple def-use associations for variable var.
The information that hybrid analysis adds, is that if a node bi ∈ Bm is executed, we
can delete from the common descendant nodes which use variable var all the def-use
associations related to nodes bk ∈ Bm where k 6= i.

Below we define a data structure suitable for storing that kind of information.

Definition 5.1 (Suppressible def-use associations). A suppressible def-use association
for variable n is an ordered tuple sdu = (b, n, d, u) where b is the index of a node, n is
a variable name, d is the point where variable n is defined and u is the point where
variable n is used.

1The notion of descendant and a practical way to compute the set is presented in section 2.

27

28 CHAPTER 5. HYBRID ANALYSIS

The set containing all the suppressible def-uses associations of a basic block bi is
indicated by SuppDefUse (bi). The intuitive meaning of the data structure is that if
block b is executed, we can delete the def-use association du = (n, d, u) from block bi.

When executing a task in a preemptive real-time system, we can trace which nodes
the program executes and dynamically delete the def-use associations which will be no
more valid, helping to decrease the amount of memory data for the task, and therefore
reduce the context switch time.

In the example below will be presented a possible use case and will be clarified the
concept behind hybrid analysis.

Example 5.2 (Possible application of hybrid analysis). The control flow graph in
figure 6 is not a complete one, but represents the interesting part of a control flow
graph. We can notice that b5 and b6 are mutually exclusive executed, which means
that if b5 will be executed, b6 will not, and vice versa.

7 a := c + d

b5

8 a := c / 2

b6

9 if a >= 0

b7

10 a := a - 1
11 c := c * c

b8

12 write c

b9

Figure 6: Part of a control flow graph

Both b5 and b6 contain a definition for variable a, and both of the nodes have
common descendant nodes using the variable a. These nodes are b7 and b8.

From static analysis we have this kind of def-use information for b7 and b8 related
to variable a:

DefUse (b7) = {(a, 7, 9) , (a, 8, 9) , (a, 10, 9) , . . . } (5.1)

DefUse (b8) = {(a, 7, 10) , (a, 8, 10) , (a, 10, 10) , . . . } (5.2)

Hybrid analysis will add the suppressible data structure:

SuppDefUse (b7) = {(6, a, 7, 9) , (5, a, 8, 9) , . . . } (5.3)

SuppDefUse (b8) = {(6, a, 7, 10) , (5, a, 8, 10) , . . . } (5.4)

For instance, the meaning of the first element of set 5.3 is that if node b6 is executed,
it is possible to delete the def-use association related to variable a defined in statement
7 and used in statement 9.

2. COMPUTING OF THE SUCC∗ SET 29

We can notice that when a task is interrupted, in order to delete all the def-use
definitions which are no more valid, we have to iteratively check the SuppDefUse set
of each node at run-time, adding an overhead to the context switch.
Is it possible to overcome this problem by computing this information in a static
way, before the execution of the program and saving it in a new data structure, the
ForwardSuppDefUse, which is conceptually similar to the ForwardDefUse data
structure seen in section 4 of chapter 3.

2 Computing of the Succ∗ set
Given a node bi, the set Succ∗ (bi) is the transitive closure of Succ (bi) and represents

the set containing the descendant nodes of bi. The set Succ∗ (bi) will be used in section
3 to perform hybrid analysis. The algorithm to compute this set is the following:

Add the elements of Succ (bi) to Succ∗ (bi)
repeat
NothingAdded = true
for all nodes bj ∈ Succ∗ (bi) do
Add the nodes of Succ (bj) to Succ∗ (bi)
if at least one new element was added then
NothingAdded = false

end if
end for

until NothingAdded = true
The algorithm might be optimized by adding a working list as done for the round-
robin algorithm in section 2.2 of chapter 3.

3 Algorithm
Given a control flow graph, the algorithm that performs hybrid analysis is the

following:
Compute static analysis
for all nodes bi ∈ B do
Compute Succ∗ (bi) set
for all nodes bj 6∈ Succ∗ (bi) and i 6= j do
for all dk = (nk, ak) such that dk ∈ Gen (bj) and Gen (bi) contains a definition
for var nk do
for all nodes bz ∈ Succ∗ (bi) do
for all def-use associations duy = (ny, ay, gy) ∈ DefUse (bz) for dk do
Add sduz = (i, nk, ak, gy) to SuppDefUse (bz)

end for
end for

end for
end for

end for

Chapter 6

Conclusions

The aim of this paper was to contribute to the reduction of the context switch
time in preemptive real-time systems. The objective was reached by studying and
developing algorithms for data analysis that will be easily integrated in Cheddar.
First of all, an overview about the Cheddar project and about real-time systems was
given. We explained the fundamentals of graph theory and program representation as
well, including the definitions of basic block and control flow graph.
Afterwards three kind of data flow analysis, and their related algorithms, were presented.
We started with static analysis, which statically computes information about the
definitions and uses of variables. Static analysis gives safe results that are always valid
regardless the path that a program can follow at runtime. Because of that, a basic block
must contain information about all the possible executions of the program passing
through that node. Sometimes static analysis gives the most precise information about
a node: in that case the basic block has minimal information.
Then, we focused on dynamic analysis, which overcomes some problems of static
analysis. Dynamic analysis provides precise information for any node in the control
flow graph: each node has minimal information, however dynamic analysis needs the
path that the program did along the control flow graph and, because of that, this type
of data analysis cannot provide general information about a program.
Finally, we introduced a novel technique of data analysis: the hybrid analysis. This
kind of analysis computes some inferences statically, and once the program is executed,
provides valuable information about the validity of definitions and uses of variables
which can be used to decrease the context switch time in real-time systems.
An algorithm was developed for all three types of data analysis. Additionally, all the
algorithms were written in Ada and tested with several examples.

The dissertation opens some possibilities for future work. First of all, hybrid
analysis information could be used to calculate some other related details about the
behaviour of a program. It could be interesting also to extend the idea of hybrid
analysis for other variety of analysis, for instance constant propagation analysis or
available expression analysis.
What is more, the Ada implementation of the algorithms can be improved in terms
of memory efficiency and speed execution, for example by caching some intermediate
results and replacing some data structure assignments.

On the personal side, this work allowed me to gain new skills and knowledge about
real-time systems, data flow analysis and Ada programming language.

31

Appendix

1 Instances of printouts

In this section are provided some printouts of the program. For each used example,
the control flow graph structure is printed besides.

1.1 Static analysis printouts

This instance of static analysis printout is based on the following control flow graph:

1 t1 := m - 1
2 t2 := m + n
3 k := a + 1
4 a := u1
5 e := 2 * c

b1

6 b := 2 * c
7 t1 := t1 + 1
8 t2 := t2 - 1
9 d := a + 1

10 if d < u1

b2

11 a := u2
12 d := 2 * c
13 c := m + n

b3

14 t1 := m - 1
15 b := 2 * c
16 c := a + 1

b4

Figure 7: Control flow graph

The printout representing the control flow graph is the following:

CFG with 4 blocks:
* Block #1 of type start_node

with statements:

33

34 APPENDIX

5 Statement #1
with def_var: t1
with used_vars: m

Statement #2
with def_var: t2

10 with used_vars: m, n
Statement #3

with def_var: k
with used_vars: a

Statement #4
15 with def_var: a

with used_vars: u1
Statement #5

with def_var: e
with used_vars: c

20 with previous nodes:
with next nodes: 2

* Block #2 of type middle_node
with statements:

25 Statement #6
with def_var: b
with used_vars: c

Statement #7
with def_var: t1

30 with used_vars: t1
Statement #8

with def_var: t2
with used_vars: t2

Statement #9
35 with def_var: d

with used_vars: a
Statement #10

with def_var:
with used_vars: d, u1

40 with previous nodes: 1, 3
with next nodes: 3, 4

* Block #3 of type middle_node
with statements:

45 Statement #11
with def_var: a
with used_vars: u2

Statement #12
with def_var: d

50 with used_vars: c
Statement #13

with def_var: c
with used_vars: m, n

with previous nodes: 2
55 with next nodes: 2

* Block #4 of type terminate_node
with statements:

1. INSTANCES OF PRINTOUTS 35

Statement #14
60 with def_var: t1

with used_vars: m
Statement #15

with def_var: b
with used_vars: c

65 Statement #16
with def_var: c
with used_vars: a

with previous nodes: 2
with next nodes:

The results of static analysis are the following:

Static info:
Info def_uses block # 1:

Def_in:
5 Def_out:

(t1,1)
(t2,2)
(k,3)
(a,4)

10 (e,5)
Use_out:

(m,1)
(m,2)
(n,2)

15 (a,3)
(u1,4)
(c,5)

Def_use_assos:
Forward_def_use_assos:

20 in block # 2:
(t1,1,7)
(t2,2,8)
(a,4,9)

in block # 4:
25 (a,4,16)

This block contains minimal information

Info def_uses block # 2:
Def_in:

30 (t1,1)
(t2,2)
(k,3)
(a,4)
(e,5)

35 (a,11)
(d,12)
(c,13)
(b,6)
(t1,7)

40 (t2,8)
Def_out:

36 APPENDIX

(b,6)
(t1,7)
(t2,8)

45 (d,9)
(k,3)
(a,4)
(e,5)
(a,11)

50 (c,13)
Use_out:

(c,6)
(t1,7)
(t2,8)

55 (a,9)
(d,10)
(u1,10)

Def_use_assos:
(c,13,6)

60 (t1,1,7)
(t1,7,7)
(t2,2,8)
(t2,8,8)
(a,4,9)

65 (a,11,9)
(d,9,10)

Forward_def_use_assos:
in block # 2:

(t1,7,7)
70 (t2,8,8)

(d,9,10)

Info def_uses block # 3:
Def_in:

75 (b,6)
(t1,7)
(t2,8)
(d,9)
(k,3)

80 (a,4)
(e,5)
(a,11)
(c,13)

Def_out:
85 (a,11)

(d,12)
(c,13)
(b,6)
(t1,7)

90 (t2,8)
(k,3)
(e,5)

Use_out:
(u2,11)

95 (c,12)

1. INSTANCES OF PRINTOUTS 37

(m,13)
(n,13)

Def_use_assos:
(c,13 ,12)

100 Forward_def_use_assos:
in block # 2:

(c,13,6)
(a,11,9)

in block # 3:
105 (c,13 ,12)

in block # 4:
(c,13 ,15)
(a,11 ,16)

This block contains minimal information
110

Info def_uses block # 4:
Def_in:

(b,6)
(t1,7)

115 (t2,8)
(d,9)
(k,3)
(a,4)
(e,5)

120 (a,11)
(c,13)

Def_out:
(t1,14)
(b,15)

125 (c,16)
(t2,8)
(d,9)
(k,3)
(a,4)

130 (e,5)
(a,11)

Use_out:
(m,14)
(c,15)

135 (a,16)
Def_use_assos:

(c,13 ,15)
(a,4,16)
(a,11 ,16)

140 Forward_def_use_assos:

1.2 Dynamic analysis printouts

In order to compute dynamic analysis the execution path is provided. It must
be written in a text file named dynamic_path.txt, located in the main folder of the
program, and must contain the sequence of number, representing the basic blocks,
separated by new lines.
Here the dynamic path provided for this example:

38 APPENDIX

1
2
3
4

5 5
7
4
5
7

10 4
8

The considered control flow graph is the one in example 3.4 of chapter 3. The printout
representing the control flow graph is the following:

CFG with 8 blocks:
* Block #1 of type start_node

with statements:
5 Statement #1

with def_var: a
with used_vars:

Statement #2
with def_var: b

10 with used_vars:
Statement #3

with def_var: c
with used_vars: a

Statement #4
15 with def_var: d

with used_vars: b
with previous nodes:
with next nodes: 2

20 * Block #2 of type middle_node
with statements:

Statement #5
with def_var:
with used_vars: c

25 with previous nodes: 1
with next nodes: 3, 4

* Block #3 of type middle_node
with statements:

30 Statement #6
with def_var:
with used_vars: d

with previous nodes: 2
with next nodes: 4

35
* Block #4 of type middle_node

with statements:
Statement #7

with def_var:

1. INSTANCES OF PRINTOUTS 39

40 with used_vars: d
with previous nodes: 2, 3, 6, 7
with next nodes: 5, 8

* Block #5 of type middle_node
45 with statements:

Statement #8
with def_var:
with used_vars: c, d

with previous nodes: 4
50 with next nodes: 6, 7

* Block #6 of type middle_node
with statements:

Statement #9
55 with def_var: c

with used_vars: c, d
with previous nodes: 5
with next nodes: 4

60 * Block #7 of type middle_node
with statements:

Statement #10
with def_var: d
with used_vars: d, c

65 with previous nodes: 5
with next nodes: 4

* Block #8 of type terminate_node
with statements:

70 Statement #11
with def_var:
with used_vars: c

with previous nodes: 4
with next nodes:

The results of dynamic analysis are the following:

Dynamic info:
Info def_uses block # 1:

Def_in:
5 Def_out:

(a,1)
(b,2)
(c,3)
(d,4)

10 Use_out:
(a,3)
(b,4)

Def_use_assos:
(a,1,3)

15 (b,2,4)
Forward_def_use_assos:

in block # 1:

40 APPENDIX

(a,1,3)
(b,2,4)

20 in block # 2:
(c,3,5)

in block # 3:
(d,4,6)

in block # 4:
25 (d,4,7)

in block # 5:
(c,3,8)
(d,4,8)

in block # 7:
30 (d,4,10)

(c,3,10)
in block # 8:

(c,3,11)

35 Info def_uses block # 2:
Def_in:

(a,1)
(b,2)
(c,3)

40 (d,4)
Def_out:

(a,1)
(b,2)
(c,3)

45 (d,4)
Use_out:

(c,5)
Def_use_assos:

(c,3,5)
50 Forward_def_use_assos:

Info def_uses block # 3:
Def_in:

(a,1)
55 (b,2)

(c,3)
(d,4)

Def_out:
(a,1)

60 (b,2)
(c,3)
(d,4)

Use_out:
(d,6)

65 Def_use_assos:
(d,4,6)

Forward_def_use_assos:

Info def_uses block # 4:
70 Def_in:

(a,1)

1. INSTANCES OF PRINTOUTS 41

(b,2)
(c,3)
(d,4)

75 Def_out:
(a,1)
(b,2)
(c,3)
(d,4)

80 Use_out:
(d,7)

Def_use_assos:
(d,4,7)

Forward_def_use_assos:
85

Info def_uses block # 5:
Def_in:

(a,1)
(b,2)

90 (c,3)
(d,4)

Def_out:
(a,1)
(b,2)

95 (c,3)
(d,4)

Use_out:
(c,8)
(d,8)

100 Def_use_assos:
(c,3,8)
(d,4,8)

Forward_def_use_assos:

105 Info def_uses block # 7:
Def_in:

(a,1)
(b,2)
(c,3)

110 (d,4)
Def_out:

(d,10)
(a,1)
(b,2)

115 (c,3)
Use_out:

(d,10)
(c,10)

Def_use_assos:
120 (d,4,10)

(c,3,10)
Forward_def_use_assos:

in block # 4:
(d,10,7)

125 in block # 5:

42 APPENDIX

(d,10,8)
in block # 7:

(d,10 ,10)

130 Info def_uses block # 4:
Def_in:

(d,10)
(a,1)
(b,2)

135 (c,3)
Def_out:

(d,10)
(a,1)
(b,2)

140 (c,3)
Use_out:

(d,7)
Def_use_assos:

(d,10,7)
145 Forward_def_use_assos:

Info def_uses block # 5:
Def_in:

(d,10)
150 (a,1)

(b,2)
(c,3)

Def_out:
(d,10)

155 (a,1)
(b,2)
(c,3)

Use_out:
(c,8)

160 (d,8)
Def_use_assos:

(c,3,8)
(d,10,8)

Forward_def_use_assos:
165

Info def_uses block # 7:
Def_in:

(d,10)
(a,1)

170 (b,2)
(c,3)

Def_out:
(d,10)
(a,1)

175 (b,2)
(c,3)

Use_out:
(d,10)
(c,10)

1. INSTANCES OF PRINTOUTS 43

180 Def_use_assos:
(d,10 ,10)
(c,3,10)

Forward_def_use_assos:
in block # 4:

185 (d,10,7)
in block # 7:

(d,10 ,10)

Info def_uses block # 8:
190 Def_in:

(d,10)
(a,1)
(b,2)
(c,3)

195 Def_out:
(d,10)
(a,1)
(b,2)
(c,3)

200 Use_out:
(c,11)

Def_use_assos:
(c,3,11)

Forward_def_use_assos:

1.3 Hybrid analysis printouts
The control flow graph of this example is the same of section 1.2. The results of

hybrid analysis are the following:

Hybrid info:
Info def_uses block # 1:

Def_in:
5 Def_out:

(a,1)
(b,2)
(c,3)
(d,4)

10 Use_out:
(a,3)
(b,4)

Def_use_assos:
(a,1,3)

15 (b,2,4)
Forward_def_use_assos:

in block # 1:
(a,1,3)
(b,2,4)

20 in block # 2:
(c,3,5)

in block # 3:
(d,4,6)

44 APPENDIX

in block # 4:
25 (d,4,7)

in block # 5:
(c,3,8)
(d,4,8)

in block # 6:
30 (c,3,9)

(d,4,9)
in block # 7:

(d,4,10)
(c,3,10)

35 in block # 8:
(c,3,11)

Suppressible_Def_Uses:
This block contains minimal information

40 Info def_uses block # 2:
Def_in:

(a,1)
(b,2)
(c,3)

45 (d,4)
Def_out:

(a,1)
(b,2)
(c,3)

50 (d,4)
Use_out:

(c,5)
Def_use_assos:

(c,3,5)
55 Forward_def_use_assos:

Suppressible_Def_Uses:
This block contains minimal information

Info def_uses block # 3:
60 Def_in:

(a,1)
(b,2)
(c,3)
(d,4)

65 Def_out:
(a,1)
(b,2)
(c,3)
(d,4)

70 Use_out:
(d,6)

Def_use_assos:
(d,4,6)

Forward_def_use_assos:
75 Suppressible_Def_Uses:

This block contains minimal information

1. INSTANCES OF PRINTOUTS 45

Info def_uses block # 4:
Def_in:

80 (a,1)
(b,2)
(c,3)
(d,4)
(c,9)

85 (d,10)
Def_out:

(a,1)
(b,2)
(c,3)

90 (d,4)
(c,9)
(d,10)

Use_out:
(d,7)

95 Def_use_assos:
(d,4,7)
(d,10,7)

Forward_def_use_assos:
Suppressible_Def_Uses:

100 (7,d,4,7)

Info def_uses block # 5:
Def_in:

(a,1)
105 (b,2)

(c,3)
(d,4)
(c,9)
(d,10)

110 Def_out:
(a,1)
(b,2)
(c,3)
(d,4)

115 (c,9)
(d,10)

Use_out:
(c,8)
(d,8)

120 Def_use_assos:
(c,3,8)
(c,9,8)
(d,4,8)
(d,10,8)

125 Forward_def_use_assos:
Suppressible_Def_Uses:

(6,c,3,8)
(7,d,4,8)

130 Info def_uses block # 6:
Def_in:

46 APPENDIX

(a,1)
(b,2)
(c,3)

135 (d,4)
(c,9)
(d,10)

Def_out:
(c,9)

140 (a,1)
(b,2)
(d,4)
(d,10)

Use_out:
145 (c,9)

(d,9)
Def_use_assos:

(c,3,9)
(c,9,9)

150 (d,4,9)
(d,10,9)

Forward_def_use_assos:
in block # 5:

(c,9,8)
155 in block # 6:

(c,9,9)
in block # 7:

(c,9,10)
in block # 8:

160 (c,9,11)
Suppressible_Def_Uses:

(6,c,3,9)
(7,d,4,9)

165 Info def_uses block # 7:
Def_in:

(a,1)
(b,2)
(c,3)

170 (d,4)
(c,9)
(d,10)

Def_out:
(d,10)

175 (a,1)
(b,2)
(c,3)
(c,9)

Use_out:
180 (d,10)

(c,10)
Def_use_assos:

(d,4,10)
(d,10 ,10)

185 (c,3,10)

2. SOURCE CODE 47

(c,9,10)
Forward_def_use_assos:

in block # 4:
(d,10,7)

190 in block # 5:
(d,10,8)

in block # 6:
(d,10,9)

in block # 7:
195 (d,10 ,10)

Suppressible_Def_Uses:
(6,c,3 ,10)
(7,d,4 ,10)

200 Info def_uses block # 8:
Def_in:

(a,1)
(b,2)
(c,3)

205 (d,4)
(c,9)
(d,10)

Def_out:
(a,1)

210 (b,2)
(c,3)
(d,4)
(c,9)
(d,10)

215 Use_out:
(c,11)

Def_use_assos:
(c,3,11)
(c,9,11)

220 Forward_def_use_assos:
Suppressible_Def_Uses:

(6,c,3 ,11)

2 Source code
The Ada implementation is divided into three main files:

• cfg.ads: contains the definitions of the data structures as well as the definitions
of the methods and procedures used in file cfg.adb;

• cfg.adb: here are defined the procedures for printing the results both on screen
and on file;

• run.adb: where the algorithms of static, dynamic and hybrid analysis are imple-
mented. There are also auxiliary functions.

The source code is available upon request.

Bibliography

[1] K. D. Cooper, T. J. Harvey, and K. Kennedy. Iterative data-flow analysis, revisited.
Tech. rep. Rice University, 2004.

[2] A. Facchini. Algebra e matematica discreta. Zanichelli, 2000.

[3] U. P. Khedker, A. Sanyal, and B. Karkare. Data Flow Analysis: Theory and
Practice. CRC Press, 2009.

[4] R. Mascetti. Fregasega di Ada: bitumazioni pratiche antanizzate. Monicelli, 1975.

[5] J. W. McCormick, F. Singhoff, and J. Hugues. Building Parallel, Embedded, and
Real-Time Applications with Ada. Cambridge University Press, 2011.

[6] R. Melandri and G. Necchi. Fregasega di Ada II: sbiriguda a posterdati avanzata.
Monicelli, 1982.

[7] G. Perozzi. Fregasega di Ada III: teoria del vaffanzum. Monicelli, 1985.

[8] F. Singhoff, J. Legrand, L. Nana, and L. Marcé. “Cheddar: a Flexible Real Time
Scheduling Framework”. International ACM SIGADA conference, Atlanta (2004).

[9] The Cheddar project: a free real time scheduling analyzer. Website. 2011. url:
http://beru.univ-brest.fr/~singhoff/cheddar/#Ref1.

49

http://beru.univ-brest.fr/~singhoff/cheddar/#Ref1

	Abstract
	Sommario
	Contents
	Preface
	1 Introduction
	1 Background and context
	1.1 Real-time systems
	1.2 The Cheddar project

	2 Scope and achievements
	3 Relevant technologies
	4 Overview of the dissertation

	2 Preliminaries
	1 Notes on graph theory
	2 Program representation
	2.1 Basic blocks
	2.2 Control flow graphs

	3 Static analysis
	1 Reaching definitions
	2 Algorithms
	2.1 The round-robin algorithm
	2.2 The worklist algorithm

	3 Def-use associations
	3.1 The def-use algorithm

	4 Forward def-use associations
	5 Minimal information in basic blocks

	4 Dynamic analysis
	1 The idea
	2 Algorithm

	5 Hybrid analysis
	1 The idea
	2 Computing of the Succ* set
	3 Algorithm

	6 Conclusions
	Appendix
	1 Instances of printouts
	1.1 Static analysis printouts
	1.2 Dynamic analysis printouts
	1.3 Hybrid analysis printouts

	2 Source code

	Bibliography

