
EE66C Real Time Systems

updated: 7th July 2006– CLR

Course Code: EE66C
Course Title: Real Time Systems
Course Dept: Department of Electrical and Computer Engineering
Course Instructor: Cathy Radix (cradix@eng.uwi.tt),

Aims Provide an understanding of real time systems (RTS) theory, and the practical issues
involved when applying RTS principles to digital control systems.

Learning Objectives

• Given a description of an applied real-time system, identify the real-time characteristics of
the application, and explain how they have been addressed.

• For control-related scenarios, utilise available techniques for

1. translating application-based specifications into (a)periodic/deadline specifications;

2. mapping ideal priority levels onto available OS priorities;

3. alleviating the constraints placed on the real time systems by hardware and inter-process
communications.

• Given the (a)periodic/deadline specifications for a real time control system, produce a sched-
ule for a cyclic executive, ideal DM, RM or EDF systems (if possible), and demonstrate it’s
validity by applying utilization and response-time based criteria.

• Given a real time operating system specification/standard, identify the real-time specific
features, and contrast the OS with an ideal “open” real-time OS.

• Given a real time system scenario, produce a graphical representation of the system/solution
using UML and related techniques.

• Analyse an existing real time system in terms of its reliability and fault tolerance, and rec-
ommend changes which would improve performance in either of these areas.

• Propose a solution for a real-time scenario involving hardware control, and implement the
solution utilising a real-time operating system kernel.

Course Overview Developments in real time systems theory could be applied to improve the
performance of computer-based hardware controllers; in practice they rarely are. This is primarily
due to the number of compromises which need to be made to the ”ideal” real time system in
order to address the needs of hardware control. In this course, the characteristic requirements of
real-time applications, and the constraints these (and other) factors place on the application of
real-time systems theory are examined. Typical compromises and design techniques are identified.
The intent is to provide the student with the ability to apply real-time system theory, and assess
whether it will be of benefit in a particular digital-control application.

EE66C 7th July 2006 2

Prerequisites None: however a basic understanding of statistics, computer architecture, oper-
ating systems, and digital control theory is required.
Programming experience, particularly using Assembler/C/C++ would be an asset.
Relevant undergraduate courses include: EE25M, EE26A, EE33A, CS31A, EE39B
Course content will complement: EE66U, EE66V, EE66L.

Weighting 3 credits; 3 lecture hours/week for 12 weeks; additional 9-12 lab hours.

Evaluation & Ungraded Assignments :
Type of Evaluation Description %
End of Semester exam Three hours long. Answer all questions. 50%
Mini-Project RT Scenario: design & implement [Rcv Wk 8; Present Wk 12] 30%
Presentations Academic paper review [Rcv Wk 3/5; Present Wk 7] 10%
Problem Sets Five assignments will be provided [Due Wk 5,7,9,11,13] 10%

Lecture Topics

Section # Weeks Topic
1 2 Real Time Overview
2 1 RT Theory and Digital Control
3 2 Operating System Support for Concurrency
4 2 RT Specification, Design, Modelling
5 2 Performance, Reliability and Fault Tolerance
6 2 RT Scenario/System Development

1 Paper Presentations

References

[BW01] Alan Burns and Wellings. Real-Time Systems and Programming Languages. 3rd edition,
2001.

[Dou99] Bruce Powell Douglass. Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks and Patterns. Object Technology Series. Addision-Wesley, 1999.

[KS97] C.M. Krishna and Kang G. Shin. Real-Time Systems. McGraw-Hill, 1997.

[Liu00] Jane W.S. Liu. Real-Time Systems. Prentice-Hall, 2000.

[RIoD02] KTH Royal Institute of Design. Real-time computer control systems course.
http://www.md.kth.se/RTC/RTCC, Spring 2002.

[Son95] Sang H. Son, editor. Advances in Real-Time Systems. Prentice-Hall, 1995.

Laboratory Tools

PC/PC compatible system(s) with 1 terminal/PC per student running: a real-time operating
system(eCos, µCOS-II, IRMX 2.2) with an appropriately configured C compiler; the Cheddar real
time simulator; MATLAB 6 with the Real Time Kernel toolbox installed; a UML CASE tool
capable of supporting all 9 Case diagrams, as well as timing diagrams.

EE66C Real Time Systems

updated: 7th July 2006– CLR

Course Outline

1 Real Time Overview

Learning objectives:

• Given a description of an applied real-time system, identify the real-time characteristics of
the application, and explain how they have been addressed.

– Identifiable characteristics of a Real Time system

∗ Large and Complex
∗ Concurrent control of separate system components
∗ Facilities to interact with special purpose hardware
∗ Guaranteed response times
∗ Extreme reliability
∗ Efficient implementation

– Appropriate use/comprehension of real-time scheduling terminology

• Given the (a)periodic/deadline specifications for a real time control system, produce a sched-
ule for a cyclic executive, ideal DM, RM or EDF systems (if possible), and demonstrate it’s
validity by applying utilization and response-time based criteria.

Readings

• Slides from [BW01, www.cs.york.ac.uk/rts/RTSBOOKThirdEdition.html].

• Case studies from [Liu00, Chapters 1,2]

• Graphs from: [Eng02]

Review

Read [Bur95], paying particular attention to the response time prediction models which may be
used to determine system feasibility in a variety of cases.

EE66C 7th July 2006 2

References

[Bur95] Alan Burns. Pre-emptive Priority Based Scheduling: An Appropriate Engineering Ap-
proach, chapter 10, pages 225–248. Prentice-Hall, 1995.

[BW01] Alan Burns and Wellings. Real-Time Systems and Programming Languages. 3rd edition,
2001.

[DoAC02] Lund Institute of Technology Dept. of Automatic Control. Real-time systems course –
FRT031. http://www.control.lth.se/k̃urstr/, Spring 2002.

[Eng02] Jakob Engblom. Effects of branch predictors on execution time. Technical Report 2002-
013, Dept. of Information Technology, Uppsala University, P.O. Box 337, SE-751 05
Uppsala, Sweden, April 2002. Author: jakob@it.uu.se / http://www.docs.uu.se/̃jakob
Document: http://www.it.uu.se/research/reports/2002-013/2002-013-nc.pdf.

[KS97] C.M. Krishna and Kang G. Shin. Real-Time Systems. McGraw-Hill, 1997.

[LaP93] Phillip A. LaPlante. Real-Time Systems: Design and Analysis, An Engineer’s Handbook.
IEEE Press, 1993.

[Liu00] Jane W.S. Liu. Real-Time Systems. Prentice-Hall, 2000.

[oY96] University of York. Cs final exam: Real time systems and their programming languages.
http://www.cs.york.ac.uk/rts/RTSbookThirdEdition/rtse96.ps, 1996.

[oY99] University of York. Cs final exam: Real time systems and their programming languages.
http://www.cs.york.ac.uk/rts/RTSbookThirdEdition/rtse99.pdf, 1999.

[oY00] University of York. Cs final exam: Real time systems and their programming languages.
http://www.cs.york.ac.uk/rts/RTSbookThirdEdition/rtse00.pdf, 2000.

[oY01] University of York. Cs final exam: Real time systems and their programming languages.
http://www.cs.york.ac.uk/rts/RTSbookThirdEdition/rtse01.ps, 2001.

[oY02] University of York. Cs final exam: Real time systems and their programming languages.
http://www.cs.york.ac.uk/rts/RTSbookThirdEdition/rtse02.pdf, 2002.

[Sea04] Frank Singhoff and Jerome Legrand et al. The cheddar project. http://beru.univ-
brest.fr/ singhoff/cheddar/, September 2004. Release 1.3p4 patched version.

EE66C 7th July 2006 3

Review Questions

1. [oY96, Question 1] The following formulae are used to analyse a fixed priority system of tasks
to determine if they will meet their completion time requirements:

Ri = Ci + Bi +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
.Cj

Ri ≤ Di

(a) Define all the terms used in the above equations.

(b) How would the Ci term be determined?

(c) How would the Bi term be determined?

(d) How could the first equation be solved?

(e) What is release jitter, and how could the first equation be modified to include this
behaviour ?

(f) How can the following task set be optimally scheduled (using fixed priority scheduling)?
Is this task set schedulable?

T C B D
Task 1 8 4 2 8
Task 2 10 2 2 5
Task 3 30 5 2 30

2. (a) [oY00, Question 6(i)] Briefly compare and contrast the use of recovery blocks and ex-
ception handlers for programming fault tolerance.

(b) [oY00, Question 6(iii)] Illustrate how the response time equation is used by calculating
the worst-case response times (R) of the following process set (assuming priorities have
been assigned in rate monotonic order).
Process Period Computation Time Deadline Response Time

T C D R
P1 10 3 10 ?
P2 20 8 20 ?
P3 25 4 25 ?

(c) [oY00, Question 6(iv)] If a set of processes is subject to a single fault in one of the
processes (that is tolerated by either the execution of a recovery block or an exception
handler), consider how the response time equation can be modified to accommodate
the extra computation. Would the above process set remain schedulable if there were a
single fault and each of the processes had an exception handler? Assume the worst-case
execution times for the handlers are 2, 3, and 1 respectively for the three process P1, P2
and P3.

EE66C 7th July 2006 4

3. [oY02, Question 5 (iii)] The following table gives some of the parameters for three processes
[scheduled using a fixed priority pre-emptive scheduling]. All time values are in milliseconds.
Process Period Deadline Computation Time Response Time

PA 20 20 CA 16
PB 25 12 CB 10
PC 50 50 CC 38

(a) Have these processes been scheduled in deadline monotonic priority ordering?
(b) Calculate what the missed computation time parameters are (CA, CB, CC).

4. (a) [oY99, Question 2(i)] Define what is meant by blocking time. Compare and contrast the
original ceiling priority protocol with the immediate ceiling priority protocol for single
processor systems.

(b) [oY99, Question 2(ii)] A program consists of five tasks, A,B,C,D,E (these are listed
in priority order with A having the highest priority), and six resources R1, ... R6
(protected by semaphores implementing the Original Priority Ceiling Protocol). The
resource accesses have worst-case execution times given:

R1 R2 R3 R4 R5 R6
10ms 30ms 20ms 60ms 50ms 40ms

Resources are used by the tasks according to the following table:
Task Uses
A R3
B R1,R2
C R3,R4,R5
D R1,R5,R6
E R2,R6

Calculate the blocking time for each task in the above table.

5. [oY02, Question 1 (ii)] A POSIX application consists of three threads with the following
characteristics:
Thread Period (ms) Computation Time (ms) Priority

A 4 1 5
B 10 2 3
C 20 2 2

All three tasks share a critical instant at time 0. To handle aperiodic activity, the program
has a sporadic server thread with the following characteristics:

• Replenishment period = 5 milliseconds
• Budget = 2 milliseconds
• High priority = 4
• Low priority = 1

Assuming that

• aperiodic events arrive at times, 3, 4, 5 and 6 milliseconds after a critical instant, and
• to handle each event requires 2 milliseconds of execution time from the sporadic server,

illustrate the execution of the threads between time 0 and time 20 milliseconds. When showing
the sporadic server executing, indicate at what priority level it is running.

EE66C 7th July 2006 5

6. [oY01, Question 4] Three periodic tasks (A, B and C) monitor environmental inputs and
log these readings in a central store. A further periodic task (D) reads the store and up-
dates an operator’s screen. The final task (E) is sporadic, it is released for execution if two
of the input readings are too high. It then sounds a warning bell for 1 minute. Task E
will then wait 1 further minute before it calls back into the store. Hence, the minimum
interarrival time for E is 120 seconds. The table gives the temporal characteristics of the
five tasks. The units are tenths of a second. One unit of time is spent in the store by
each task (but this time has already been added into the computation time for each task).
Task Period Deadline Computation Time
A 15 15 1
B 18 18 2
C 12 12 3
D 35 35 10
E 1200 5 3

(a) What would the optimal priority assignment be for these five tasks if preemptive priority-
based scheduling is used.

(b) Using response time analysis, decide if this system of tasks would meet all its deadlines.

7. (a) [KS97, Question 3.1] Construct a set of periodic tasks (with release times, [deadlines],
execution times, and periods), which can be scheduled feasibly by the EDF algorithm
but not by the RM [or DM] algorithms.

(b) Describe two or more techniques (apart from period transformation) which may be used
to make a digital system schedulable.

(c) [KS97, Question 3.5] Consider a set of five tasks with the following characteristics:
Task Worst Case Execution Time Average Execution Time Period

1 30 5 100
2 10 5 130
3 20 15 140
4 80 10 140
5 10 10 200

Tasks 1, 3, 5 are critical but Tasks 2,4 are not. Carry out a period transformation for
this task set to ensure that the critical tasks always meet their deadlines.

8. (a) [DoAC02, Question 2, Dec 2001 Exam] Automatic garbage collection is a nice feature in
Java. However, for realtime applications garbage collection may cause problems. What
are the problems?

(b) [LaP93, Based on Questions 9.7/8] A 16 bit computer has instructions that require two
bus cycles, one to fetch the instruction from memory and one to fetch the data from
memory. The bus is 16 bits wide and each bus cycle takes 250 nanoseconds. Basic
data processing instructions take a total of 500 nanoseconds to execute (i.e. the internal
processing time is negligible). The processor also has special instructions which support
fixed and floating point manipulation. Fixed point instructions take 6 microseconds, and
floating point instructions take 60 microseconds.
A program to be implemented on this computer requires the multiplication of a 32 bit
A/D result by a real constant. What are the relative merits of a lookup table, a fixed
point implementation and a floating point implementation respectively?

EE66C 7th July 2006 6

(c) List (at least) 4 enhanced features of modern processors/computers which can adversely
affect the prediction of worst case execution times.

(d) Comment on the potential effects of cache memory and DMA on the speed of the pro-
gram, and the predictability of worst case execution times.

9. Discuss the following topics:

(a) the differences between RM scheduling and another scheduling algorithm of your choice,
(i.e. priority assignment, maximum utilisation, optimality, stability)

(b) how blocking time can be minimised through priority inheritance,

(c) how asynchronous events can be accommodated in scheduled systems,

(d) contributing factors to the overestimation of worst case execution time

(e) common features of real-time systems which do not appear in the “list”

(f) additional issues involved in multiprocessor scheduling

10. Cheddar is a real time scheduling simulator mainly designed for educational pur-
pose. This program provides services to automatically check temporal constraints
of real time tasks. Cheddar is developed and maintained by the LIMI/EA 2215
Team, University of Brest. [Sea04]

This version of Cheddar will allow you to explore the schedulability of tasks on processors
running preemptive or non-preemptive RM, DM, HPF, EDF or LLF scheduling.

(a) Install/run the Cheddar simulator on your system.

(b) Open the file ”sample” (do not type in an extension). This opens the project files
sample.proc (definition of the processor) and sample.tsk (definition of the tasks)

(c) Use the list functions (View/List tasks and View/List Processors) to examine the project
settings. The ”sample” files are for a single processor named ”cpu” which is running a
pre-emptive RM scheduler. The tasks are as follows:

Task Execution Time Period Deadline Manually Assigned Priority
taska 3 10 10 1
taskb 5 15 15 2
taskc 10 35 35 3

(Note: the priority and deadline information may be ignored by the RM scheduler)

(d) Check the system schedulability (Tools/Check scheduling). The software will report the
cpu utilization and task response times in the lower window.

(e) Draw the timing diagram (Tools/Draw scheduling). The software will generate the chart
in the upper window, and report the number of preemptions, and any missed deadlines
in the lower window.

(f) Clear both windows (Tools/Clear Workspace) and investigate the effects of changing the
scheduling algorithm used by the processor (Edit/Update processors). i.e. Repeat steps
10d,10e for non-preemptive RM, and preemptive/non-preemptive versions of all other
scheduling algorithms. Do the results concur with your understanding of the algorithms?

EE66C 7th July 2006 7

2 RT Theory and Digital Control

Learning objectives:

• For control-related scenarios, utilise available techniques for

1. translating application-based specifications into (a)periodic/deadline specifications;

Readings

• Slides based on:

– [WsÅ] Computer Control: An overview
– [Lei92, Chapters 5–7] Digital Control algorithms, Elements in the control loop, Tutorial

case histories and Review Questions.
– Slides from: Timing Problems in Control Applications

[RIoD02, /Material01/Lectures/RTCC timing properties.pdf]
– Slides from: [DoAC02, Lecture 5: http://www.control.lth.se/k̃urstr/L5 02 slides4.pdf]
– [ÅBE+99] Integrated Control and Scheduling

• [SLSS96, Section 3] On Task Schedulability in Real-Time Control Systems

Assignment A– 2%

1. Identify at least 2 assumptions that are made in conventional discretisation of an analogue
PID controller. 2 marks

2. There are several rules-of thumb used to select sampling time for a controller. For ONE of
these rules, describe how it is applied, explain the rationale for the rule, and identify possible
consequences/implications for real-time performance. 3 marks

3. Given a motor control program, and the length of time it takes to operate on a particular
processor, explain how you would determine the maximum number of motor controllers that
could safely run in a preemptive manner on a single processor. State any assumptions that
you make about the processor/motors/program. 5 marks

Review

Read/summarize at least one of the following papers:

• [RHS97, Streamlining Real-Time Controller Design: From Performance Specifications to end-
to-end timing constraints] Pay particular attention to the way in which the end-to-end timing
constraints are related to the control description parameters for step/ramp response.

• [LSA+00, Performance Specifications and Metrics for Adaptive Real-Time Systems] Pay at-
tention to the way in which control theory is applied to scheduling admission/rejection by
specifying the transient behaviour of the target utilization and the miss-ratio.

• [MFRF01, Jitter Compensation in Real-Time Control systems] Pay attention to the strategies
for adjusting control parameters to accommodate timing irregularities.

EE66C 7th July 2006 8

References

[ÅBE+99] K.-E. Årzén, B. Bernhardsson, J. Eker, A. Cervin, K. Nilsson, P. Persson, and L. Sha.
Integrated control and scheduling. Technical Report TFRT-7582, Department of Auto-
matic Control, Lund Institute of Technology, August 1999.

[Ben88] Stuart Bennett. Real-Time Computer Control: An Introduction. Prentice-Hall, 1988.

[Cer00a] A. Cervin. The real-time control systems simulator. http://www.control.lth.se/ an-
ton/rtkernel/, April 2000. Release 1.04.

[Cer00b] A. Cervin. The real-time control systems simulator reference manual. Technical Report
TFRT-7592, Department of Automatic Control, Lund Institute of Technology, April
2000.

[DoAC02] Lund Institute of Technology Dept. of Automatic Control. Real-time systems course –
FRT031. http://www.control.lth.se/k̃urstr/, Spring 2002.

[Lei92] J.R. Leigh. Applied Digital control: Theory, Design & Implementation. Prentice Hall,
second edition, 1992.

[LSA+00] Chenyang Lu, John A. Stankovic, Tarek F. Abdelzaher, Gang Tao, Sang H. Son, and
Micheal Marley. Performance specifications and metrics for adaptive real-time systems.
In Proceedings of the IEEE Real Time Systems Symposium, 2000.

[MFRF01] Pau Marti, Gerhard Fohler, Krithi Ramamritham, and Josep M. Fuertes. Jitter com-
pensation in real-time control systems. In Real-Time Systems Symposium, London, UK,
December 2001.

[MT98] William C. Messner and Dawn M. Tilbury. Control Tutorials For MATLAB And
Simulink: A Web-Based Approach. Addison-Wesley, 1998.

[RHS97] Minsoo Ryu, Seongsoo Hong, and Manas Saksena. Streamlining real-time controller de-
sign: From performance specifications to end-to-end timing constraints. In Proceedings
of the IEEE Real Time Systems Symposium, 1997.

[RIoD02] KTH Royal Institute of Design. Real-time computer control systems course.
http://www.md.kth.se/RTC/RTCC, Spring 2002.

[SLSS96] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin. On task schedulability in real-time
control systems. In Proceedings of the IEEE Real Time Systems Symposium, 1996.

[UC97] Universiy of Michigan and Carnegie Mellon. Control tutorials for matlab.
http://www.engin.umich.edu/group/ctm/, August 1997.

[WsÅ] Björn Wittenmark, Karl Johan ström, and Karl Erik Årzén. Computer control: an
overview. – http://www.control.lth.se/ kursdr/ifac.pdf.

EE66C 7th July 2006 9

Review Questions

1. [Lei92, Question 5.28] A designer of industrial control systems must frequently convert re-
quirements posed in general commercial terms (e.g. improve product consistency) into forms
that are directly applicable in control design (e.g. achieve a particular closed-loop bandwidth)

For the following applications suggest usable control criteria equivalent to the original re-
quirement:

(a) A mass of inertia J has to be rotated from an arbitrary rest position to any other angular
rest position within 180◦ in not longer than T1 seconds.

(b) A steerable aerial must not be moved out of alignment by more than e◦ by wind forces

(c) Cans are to be filled with 1kg of product to ensure negligible possibility of underweight
but with minimum ‘give-away’

(d) The thickness correction scheme for a flat product that is made in batches must satisfy
the requirements:

• Product to be within thickness specification within l meters of the start of each
batch

• Product to be kept within thickness specification during the batch despite the effect
of random disturbances

(e) An endless strip of plate glass of width w meters moves forward at a speed of s me-
ters/second. It is to be cut into lengths of l ± e meters by a diamond cutter that must
be arranged to traverse the strip at right angles using two servomechanisms.

2. [Lei92, Based on Question 6.10] What are the principal parameters, from a control systems
viewpoint, that characterize each of the following: a sensor; an actuator; a D/A convertor;
an A/D converter; a sample and hold;

3. Based on [Lei92, Question 5.15]

(a) Explain why, in the digital control of a continuous process, it is important to choose a
sampling interval that matches the application.

(b) Describe briefly some of the approaches that are available for determination of a suitable
sampling interval.

(c) Discuss how the actual sampling interval is influenced by(implemented using) code run-
ning on a real-time system.

(d) Identify (at least two) techniques appropriate for period/task transformation in a real-
time control system.

4. A pre-emptive priority based scheduler, may be used to implement an engineering control
system. The choice of task period, presence of computation delay, and the development of
timing jitter all degrade the performance of an implemented control system relative to the
”ideal” designed control system.

(a) Using an example, explain how delay jitter and period jitter arise in a pre-emptive
priority based control system. Highlight at least one strategy which may be used to
minimise jitter in such a system.

EE66C 7th July 2006 10

(b) A continuous-time motor speed controller was derived for a motor. The step response
of the ”ideal” controlled system is shown in Figure 1. Choose an appropriate value of
sampling time for a discrete implementation of the controller, and justify your choice.

Figure 1: Controlled system step response for Section A 4b

(c) Multiple digital controllers (each for a different motor) were implemented for a suitably
selected sampling interval, on an embedded system running a RTOS. The actual and
ideal responses for a single motor are shown in Figure 2. Suggest at least two possible
reasons for the observed differences in the control response.

Figure 2: Controlled system step response for Section A 4c

EE66C 7th July 2006 11

(d) You have been asked to implement a controller for a temperature control task. The
analogue controller should be designed using the Ziegler Nichols open loop method. The
system step response displays deadtime a = 5 seconds, rise time b = 10 seconds for a
process gain G = (0.8−0.9)

(25−35) = 0.01.
The equation for the Ziegler Nichols controller follows:

u(t) = K

[
e(t) + 1

Ti

t∫
e(s).ds + Td

de(t)
dt

]

K Ti Td

P b
Ga

PI 0.9b
Ga 3a

PID 1.2b
Ga 2a 0.5a

Justify your choice of P, PI, or PID controller, and write down the final controller
equation.

(e) Your task is to implement the controller from 4d using a C program on a microprocessor,
whose kernel supports time and delay functions with resolutions of 0.1 seconds, and which
is running other tasks simultaneously with the temperature control task. Choose from
the code in Figure 3: will you use R or Q to update the control signal? will you use W or
Z to time the task? Briefly justify your choices.

void update() // Version R
{

e=y-oldy;
esum=esum+p*e;
u=K*(e+esum/Ti+Td*e/p);
oldy=y;

}//-- WCET 0.040 seconds

void update() // Version Q
{

e=y-oldy;
u=u+K*((e-olde)+p*e/Ti+Td*(e-olde-oldde)/p);
oldy=y;
olde=e;
oldde=e-olde;

}// -- WCET 0.044 seconds

void task()// Version W
{

while(true)
{

update();
delay(p);

}
}

void task() // Version Z
{

while(true)
{

start=timenow();
update();
if (timenow()<start+p) delay(p-start);

}
}

Figure 3: Code alternatives for 4d

EE66C 7th July 2006 12

5. (a) An additional task is added to the system in example 3.1 in [SLSS96]:
unit 6 β6 = 0.8 C6 = 35 fm6 = 2 w6 = 6

Using the methods proposed, determine the optimal frequencies for a feasible EDF sched-
ule. Test to see if the tasks can also be scheduled using RM scheduling.

(b) For the example 3.1 in [SLSS96]:

i. Construct a cyclic executive schedule based on the specifications in Table 2.
ii. Determine the % CPU time the cyclic executive utilizes and the performance index

∆J for the cyclic executive.
iii. Comment on the % utilization and performance of the cyclic executive relative to

RM/EDF scheduler.

6. (a) [Lei92, Question 6.7] State the two common digital versions ((1) absolute and (2) incre-
mental) of the PID algorithm. Comment briefly on the relative advantages and disad-
vantages of each.

(b) [DoAC02, Question 7, April 1998]

i. There are numerous ways of implementing discretetime PI algorithms. One is the
following:

∆ut = K
(
(et − et−1) + h

Ti
et−1

)
ut = ut−1 + ∆ut

What is this implementation form called?
ii. Antiwindup for the system described above, simply consists of limiting the control

signal, i.e. replacing the second equation by

ut = sat(ut−1 + ∆ut, umin, umax)

Explain why this anti-windup scheme works.
iii. The traditional PI algorithm with antiwindup is given by:

vt = Ket + It

ut = sat(vt, umin, umax)
It+1 = It + Kh

Ti
et + h

Tr
(ut − vt)

For which choice of Tr are the two antiwindup schemes identical? Hint: First rewrite
the second PI algorithm in the form vt = vt−1 + ∆ut .

(c) [DoAC02, Question 2, Dec 1999 Exam] A young engineer who had not taken the Real
Time Systems course implemented a PD controller in the following way:

y := ADIn(ychan)
e := yref - y;
u := K*(beta*yref - y) + (Td/h)*(e - eold);
u := sat(u,umax,umin);
DAOut(u,uchan);
eold := e;

The PD controller was used in a control system where the setpoint changes were intro-
duced to the controllers as step changes.

EE66C 7th July 2006 13

i. When the controller was commissioned two types of problems occurred that reduced
the control performance. Describe the problems.

ii. Give a better implementation of a PD controller.
(d) [DoAC02, Question 3, Dec 1999 Exam] What is the problem with the following imple-

mentation of the integral part of a PID controller? How should it be changed?

...
v := K * (P + I + D);
...
I := I + (h / Ti)* error; (* plus tracking *)
...

(e) [DoAC02, based on Question 4, Dec 2001 Exam] PID controllers are often implemented
based on the following continuous representation

u(t) = K

(
βysp(t)− y(t) +

1
Ti

∫
(ysp(τ)− y(τ)) + Td

d (γysp(t)− y(t))
dt

)
i. What is the motivation for the introduction of the parameters β and γ.
ii. This can be re-stated as:

uff (t) = K(β − 1)ysp(t) + KTd(γ − 1)dysp

dt

ufb(t) = K
(
ysp(t)− y(t) + 1

Ti

∫
(ysp(τ)− y(τ)) + Td

d(ysp(t)−y(t))
dt

)
u(t) = uff (t) + ufb(t)

What benefit is obtained by re-stating in this form?

7. From [DoAC02, Question 7, Dec 2001 Exam] Working as a control engineer in a factory you
came across a control loop whose step response is shown. y is the process output and u is
the control signal to the process measured after the actuator. The controller is given by the
following state feedback control law

v(k) = −Lx(k) + lixi(k)

where v(k) is the control signal sent to the actuator, x(k) contains the measured states of the
process and L and li are controller parameters (L is a vector). xi is an extra state that is
supposed to provide integral action to the controller. It is given by

xi(k + 1) = xi(k) + h(yr(k)− y(k))

where yr(k) is the reference value.

(a) What is the likely cause of the behaviour shown in the figure?
(b) Suggest a modification of the control law that should fix the problem.
(c) Given that the process is in steady state, how can you guarantee bumpless transfer when

parameter li is changed?

8. The department has MATLAB 6 (Release 12), which can be used for modelling Control
Systems. If you are unfamiliar with the operation of MATLAB and Simulink for modelling
Control Systems, review the help files and tutorials supplied with MATLAB as well as the
Control Tutorials for MATLAB[UC97, http://www.engin.umich.edu/group/ctm/], [MT98].
Check your understanding of MATLAB and Simulink by performing the following exercises

EE66C 7th July 2006 14

(a) [Ben88, based on Questions 4.10,4.11].
The analog system described by the function k

s(s+a) with unity feedback, can be dis-
cretized using the z-transform plus zero order hold method. The resulting algorithm
is:

en = r − cn

cn =
(

k
a2

)
(Aen−1 + Ben−2) + (Ccn−1 −Dcn−2)

A = Tsa− 1 + e−aTs

B = 1− e−aTs − aTse
−aTs

C = 1 + e−aTs

D = e−aTs

Ts = samplinginterval

Write a program which will enable you to calculate the change in output of the system
(cn) with time. It is suggested that 50 values are calculated. The program should enable
different values of k, a,Ts, and r to be entered. Using this program, set k = 2, a = 1,r = 1
and investigate the response of the system for different values of Ts. It is suggested that
Ts = 0.02, 0.05, 0.1, 0.2, 0.5 Compare the results (e.g. in terms of maximum overshoot)
with the exact solution for the continuous system (maximum overshoot = 30.5 %).

(b) [Ben88, Question 4.9]The results of an open loop response to a unit step input for a
plant are:

EE66C 7th July 2006 15

Time(seconds) Output
0.1 0.01
0.2 0.02
0.3 0.06
0.4 0.14
0.5 0.24
0.6 0.34
0.7 0.44
0.8 0.54
0.9 0.64
1.0 0.71
1.1 0.76
1.2 0.79
1.3 0.80

Find

i. the approximate plant model,
ii. a suitable sampling interval for a digital PID controller and,
iii. estimates of the optimum controller settings for PI and PID control.

9. The Real-Time Control Systems Simulator[Cer00a] contains a set of Simulink models and
MATLAB files, which will allow you to explore the effects of changing scheduling parameters
on the performance of discrete controllers. The simulator supports HPF, RM, DM, and EDF
scheduling.

• In MATLAB, add the path to the real time kernel software (File/Set Path/Add Folder;
choose the ”kernel” directory on disk/CD; Save)

• Three examples are included in the simulator archive. The first example con-
cerns PID control of DC servos, the second describes subtask scheduling of
control tasks, and the third describes the use of mutexes and events. [Cer00b]

Carry out the exercises listed in Section 6 of [Cer00b]. Comment on your observations.

10. You have been asked to implement a digital PID controller based on a analogue controller
design. The analogue controller was designed using the Ziegler Nichols open loop method
where the system step response displays dead time a = 9 seconds, rise time b = 20 seconds.
Your task is to implement this using a C program on a microprocessor, which is running other
independent tasks simultaneously with the motor control task. The system kernel supports
time and delay functions with a resolution of 2 seconds.

(a) Select an appropriate value for the controller sampling period, and justify your choice.

(b) Derive the constants for the controller equation, and write a C routine to implement the
controller.

(c) Identify and explain ways in which control performance can be affected by the C program
implementation of the digital controller.

(d) Identify and explain the ways in which control performance can been affected by the
other tasks running on the microprocessor. Please state any assumptions you make
about the task/scheduler/microprocessor.

EE66C 7th July 2006 16

3 Operating System Support for Concurrency

Learning Objective:

• Given a real time operating system specification/standard, identify the real-time specific
features, and contrast the OS with an ideal “open” real-time OS.

– Characteristics of an “open” real-time OS.

– Overview of features of current standards(POSIX, EL/IX, µITRON), real time specific
(eCos, iRMX, QNX, VxWorks) and general (Linux, Windows) operating systems.

– Compromises:

∗ Mapping design priorities to OS priority levels for tasks/messages.
∗ Implementation of periodic tasks using a) sleep b) wait-timer functions
∗ Hardware interrupt handling: Split approach
∗ Thread scheduling: TCB’s, queue structures, pre-emption locks, usage monitor,

networking/messaging/signalling, memory protection.

• For control-related scenarios, utilise available techniques for

2. mapping ideal priority levels onto available OS priorities;

3. alleviating the constraints placed on the real time systems by hardware and inter-process
communications.

Readings

• Slides based on/from:

– “Operating Systems”[Liu00, Ch. 12]

– “POSIX thread and Real Time extensions”[Liu00, Appendix]

– “Real-Time scheduling”[But97, 5.5, pp. 172–188]

• µITRON for Small-Scale Embedded Systems [TS95]

Review Read/summarize at least one of the following papers:

• [JM01, High precision timing within Microsoft Windows: threads, scheduling and system
interrupts]. Pay attention to features of Windows which may be used for RT response and
the limitations of non-priority message passing.

• [HLSL96, BASEMENT: A Distributed Real-Time Architecture for Vehicle Applications]. Pay
attention to how safety-critical and non-safety-critical tasks are handled.

• [LID+03, A Comparison of the RTU Hardware RTOS with a Hardware/Software RTOS]. Pay
attention to how hardware can contribute to or replace real-time OS/kernel functions

EE66C 7th July 2006 17

References

[But97] David R. Butenhof. Programming with POSIX threads. Addison-Wesley, 1997.

[BW01] Alan Burns and Wellings. Real-Time Systems and Programming Languages. 3rd edition,
2001.

[Gal94] Bill Gallmeister. POSIX.4: Programming for the Real World. O’Reilly, 1994.

[HLSL96] Hans Hansson, H. Lawson, M. Strömberg, and Sven Larsson. Basement a distributed
real-time architecture for vehicle applications. Real-Time Systems, 11(3), 11 1996.

[JM01] A.P. Johnson and M.W.S. Macauley. High precision timing within Microsoft Windows:
threads, scheduling and system interrupts. Microprocessors and Microsystems, 25:297–
307, 2001.

[KS97] C.M. Krishna and Kang G. Shin. Real-Time Systems. McGraw-Hill, 1997.

[LID+03] Jaehwan Lee, Karl Ingström, Anders Daleby, Tommy Klevin, Vincent John Mooney III,
and Lennart Lindh. A comparison of the rtu hardware rtos with a hardware/software
rtos. In ASP-DAC 2003 (Asia and South Pacific Design Automation Conference 2003),
1 2003.

[Liu00] Jane W.S. Liu. Real-Time Systems. Prentice-Hall, 2000.

[TS95] Hiroaki Takada and Ken Sakamura. µITRON for small-scale embedded systems. IEEE
Micro, pages 46–54, December 1995.

Assignment B – 2%

1. [Liu00, Q 12.2] If the timer sleep() function allows only the specification of a time interval
for the calling thread to sleep, a periodic task can be implemented as follows:

timer sleep(firstReleaseTime-clock);
nextReleaseTime=firstReleaseTime
do forever

nextReleaseTime=nextReleaseTime + period;
statements in the program of the thread
timer sleep(nextReleaseTime-clock);

enddo;

where the value of clock is equal to the current time and firstReleaseTime is the delay to the
first release time of the thread.

(a) Discuss the factor(s) that may introduce release-time jitters and how large the release
time jitter can be. 4 marks

(b) If the thread overruns, nextReleaseTime may be earlier than the current time and the
argument of the timer sleep function is negative. What should be the semantic of the
function? 4 marks

EE66C 7th July 2006 18

2. Given a control system consisting of a set of independent tasks and periods, which have been
shown to be RM-schedulable, explain how you could adjust the system if the operating system
did not support

(a) sufficient priority levels 2 marks

(b) priority-based pre-emption 2 marks

3. The specifications for two real-time systems, and three OS’s are summarised in Figures 4
and 5. Select an appropriate OS for each system; you should justify your choices, making
reference to any assumptions you make about hardware/cost. 8 marks

Ink-Jet Printer Tasks:

1) Dedicated Serial Communication: status and data from PC at 9600 bits/s
2) Print-head control: pulse stepper motor (max. 100 steps across page)
3) Print-head control: pulse stepper motor (1 step/second).
4) Ink control: triggers ink-jet mechanisms before next print-head step.

Factory Tasks:

1) Network Communication: polling independent controllers; send setpoints
/ receive logs

2) Database: store/retrieve controller logs: guaranteed store; discard queries
after 1 minute

3) Monitors: calculate new set-points every 10 seconds

Figure 4: Real-time System Specifications for Q3

OSA OSB OSC
Interrupt Latency (milliseconds) 0.02 0.02 0.002

Context Switching Time (milliseconds) 0.2 0.2 0.002
Pre-emption None Priority-based Round-robin + priority

Priority assignment None Priority EDF
Priority Inheritance None Yes No

priority levels None 4 2
max # tasks 2 4 10

timers supported? Yes No Yes
semaphores/mutexes supported? Yes Yes No

Figure 5: OS specifications for Q3

EE66C 7th July 2006 19

Review Questions

1. (a) What is the thread control block, and how is it used in a real-time operating system?

(b) Some authors differentiate between the kernel and the operating system. What is the
motivation for making this differentiation?

(c) What advantage is gained by using ”split” interrupt handlers in a real-time operating
system?

2. [KS97, Q 2.4] There are two ways of implementing a time limit specified for executing a
loop. The first is for a compiler to set a maximum number of iterations that may be carried
out. The second is to maintain during execution a timer that determines if allowing another
iteration would cause the limit to be exceeded. Discuss the advantages and disadvantages of
each approach.

3. ([Liu00, Q12.4]) In an operating system, the resolution of the system clock and timers is x.
The processor time the scheduler takes to service each timer event is e, and a context switch
to the kernel takes no more than CS units of time. Suppose the kernel executes and services
timer events once every y units of time.

(a) In this part, we want to know how the actual timer resolution depends on these system
parameters.

i. Suppose that x and y are large (i.e. order of milliseconds) compared with e and CS
(e.g., in order of microseconds). What is the actual timer resolution?

ii. Suppose that x and y are comparable with e and CS. What is the actual timer
resolution?

(b) We expect that the lengths of intervals returned to a user thread which repeatedly calls
timer sleep(z) to deviate from the nominal interval length z. Measurements of many
real-time operating systems have found that the maximum deviation can be as large as
20 percent of the nominal value even when there is only one user thread. It was also
observed that an abnormally long interval is typically followed by an abnormally short
interval, which may in turn be followed by a long interval. Give an explanation of why
the lengths of consecutive intervals are correlated.

(c) Suppose that the number of timer events serviced by the kernel at each clock tick is
never greater then l. Derive a formula expressing the error in the time intervals returned
by the kernel. You may assume that there are no external interrupts or exceptions of
higher priorities while the kernel is servicing the timer calls.

4. ([Liu00, Q12.8]) An application consisting of 11 periodic threads with relative deadlines
1,2,5,6,12,19,21, 27,45,75 and 150 is scheduled on an EDF basis. Suppose the operating
system uses the queue structure described in Figure 12–6 (see handout) and supports four
distinct relative deadlines, that is, Ω′ = 4. Find a mapping from the relative deadlines
supported by the system. What is schedulable utilization of the system?

5. [Liu00, Q. 12.9] An operating system provides 256 priorities to threads in the system, but only
32 priorities levels for their messages exchanged through message queues. Suppose that each
sending thread chooses the priority of its messages by mapping the 256 thread priority levels
to 32 message priority levels. Compare the uniform mapping and constant ratio mapping

EE66C 7th July 2006 20

schemes. Which one is better and why? Here we measure the performance of a mapping
scheme by the average number of messages in each message queue found to have an identical
priority; the fewer, the better.

6. [Liu00, Q. 12.7]On a K-bit CPU, the scheduler makes at most Ω/K− 1+ log2K comparisons
to find the highest priority nonempty queue among Ω fixed-priority queues. Describe in detail
how this operation is done. (Hint: Consider the use of a bit vector containing 1 bit per priority
queue to keep the empty/non-empty status of the queues).

7. [Liu00, Q. 12.15]To deliver a per-process signal to a process containing a large number of
threads, some of which may have blocked the signal, the operating system must scan the
signal masks of all threads to find one that does not block the signal. If it finds none, it
queues the signal until some thread in the process unblocks the signal. The overhead of this
search is undesirable. How can this overhead be minimized?

8. Based on [BW01, Q 16.4]. A periodic process of period 40ms is controlled by a system with
a clock interrupt that has a granularity of 30ms. How can the worst case response time of
this process be calculated? Differentiate between clock resolution and clock granularity.

9. (a) Contrast the facilities offered by the POSIX[Gal94] and µITRON[TS95] standards, mak-
ing reference to their different origins.

(b) Discuss the pros and cons of implementing real-time functionality at the language level.

(c) The ideal ”open” real-time operating system, would allow the user to submit any job to
be scheduled under a known scheduling algorithm, requiring a specific amount of CPU
time, and guarantee that the job did not exceed it’s specified requirements. Outline, a
scheme for implementing such a system.

(d) Use the Internet to determine how many of the operating systems compared in [Liu00]
are still commercially available. Highlight the common features amongst the obsolete
and/or remaining systems.

(e) On the following page you will find descriptions of the eCos and iRMX operating systems.
If you had to choose one for a simple embedded control system, which would you choose
and why?

(f) Explore the task creation, communication, scheduling, priority manipulation, blocking
handling, and timing facilities available within eCos, Linux, µCOS-II, iRMX, or any
popularly used RTOS. Is the chosen OS POSIX/µITRON compliant?

10. For the motor speed controller described in Section 2 Review Question 4b on page 10; you
have been asked to select either a dedicated PLC, an embedded system running a real time
operating system, or a PC running Windows NT. Presume that cost is not an issue. Identify
which system you would select, and give at least two supporting arguments.

EE66C 7th July 2006 21

– from eCos web site

EL/IX is an application-programming interface (API) based on a subset of the POSIX.1 and ISO C stan-
dards plus extensions from Linux/GNU and BSD sockets that are applicable to embedded applications.
The result is an API that is more concise than the simple union of those standards because unnecessary
or duplicated functionality is eliminated. ... eCos, the embedded Configurable operating system, is an
open source real-time operating system for deeply embedded applications. It meets the requirements of
the embedded space that Linux cannot yet reach. Linux currently scales from a minimal size of around
500 kilobytes of kernel and 1.5MB of RAM, all before taking into consideration application and service
requirements. eCos provides the basic runtime infrastructure necessary to support devices with memory
footprints in the 10’s to 100’s of kilobytes, or with real-time requirements. eCos supports EL/IX Level
I, a Linux compatibility interface, for embedded applications in devices that are too small for even
stripped down versions of Linux or that require real-time capabilities. eCos provides engineers with
maximum control, flexibility and understanding over all aspects of their embedded solution. eCos is
highly customizable and adaptable, and can be easily configured using the eCos graphical configuration
tool to meet application-specific requirements. eCos also has an ITRON compatibility layer.

– From Introducing the iRMX Operating Systems

The iRMX(Intel’s Real-time Multitasking Executive) OS offers a broad range of real-time, object-based
functions and features:

• Real-time processing to monitor and control events

– Multitasking

– Preemptive priority-based scheduling

– Interrupt processing

– Predictable response time (determinism)

– Multiprogramming

• Objects to simplify application design and programming and to control resources

– Intertask coordination and communication

– Shared memory and dynamic memory allocation

– System calls that manipulate objects and control the computer

– Configurable layers of the OS, each with its own system calls

• Industry-standard bus support

The C library supports hundreds of C functions and macros for applications that run in the multi-tasking
iRMX OS environment. This includes many standard C functions that enable applications to perform
common I/O operations without making direct iRMX system calls (OS-independent). There is also
support for iRMX OSdependent operations such as multitasking, time-of-day, signal management, and
environment management; this enables you to create portable code using standard ANSI and POSIX
programming practices. You can mix C library calls with direct iRMX system calls.

– from µITRON specification

ITRON (Industrial - The Real-time Operating system Nucleus) is a real-time, multitasking OS spec-
ification intended for use in industrial embedded systems. Work on the ITRON specification began
in 1984 with the start of the TRON Project, and the first specification was released in 1987. That
specification is called the ITRON1 specification and was standardized for the major 16-bit micropro-
cessors of that time. After this, work was conducted on the µITRON specification (Ver. 2.0), for use
mainly on smaller 8-bit MCUs, and the ITRON2 specification, for use on higher performance 32-bit
microprocessors. Both specifications were made public in 1989. Since then the two specifications have
been merged. The µITRON4.0 Specification is the latest version of the µITRON real-time kernel spec-
ification, a de-facto industry standard in the embedded systems field. The µITRON4.0 specification
offers many improvements over previous versions. The most important among them is the definition of
the Standard Profile which strictly specifies a standard set of kernel functions for improving application
portability.

EE66C 7th July 2006 22

4 RT Specification, Design, Modelling

• Given a real time system scenario, produce a graphical representation of the system/solution
using UML and related techniques.

– Identify, and correctly interpret the different UML diagrams

– Given a system description, identify requirements, stakeholders, objects, and messages.

– Choose/use appropriate UML diagrams to illustrate systems/solutions

Readings

• Slides based on/Extracts from “UML for Systems Engineering” [Hol01]

– “Modelling” Ch. 2,

– “The UML diagrams” Ch. 5,

– “Modelling requirements” Ch. 7

• Slides based on/Extracts from “Doing Hard Time” [Dou99]:

– “Requirements Analysis of Real Time Systems”, Ch 5,

– “Key Strategies for Object Identification”, 6.3,

– “UML Statecharts”, 7.3,

– “The Role of scenarios in the definition of behaviour”, 7.4,

– “Mechanistic Design”, 9

• In class examples: Q.7.11.3 [Dou99]

Assignment C – 2%

1. Construct appropriate sets of UML diagrams for each system specified in Figure 4 on page
18. In each case, you should explain why you have choosen/omitted certain diagrams. 20 marks

Review Read/summarize at least one of the following papers:

• [GVKT00, ”Efficient System Modeling of Complex Real-Time Industrial Networks using the
ACCORD/UML methodology”]. Contrast the approach outlined in this paper to the Douglass
approach of [Dou99].

• [SR04, ”Using UML-Based Rate Monotonic Analysis to Predict Schedulability”]. Pay atten-
tion to the description of the UML Profile for Real-Time, then check out the current state of
the UML standard (http://www.omg.org/uml/).

• [PEL99, ”Experimenting with Real-time Specification Methods: The Model Multiplicity
Problem”]. Compare an alternate methodology involving single diagram, to UML with mul-
tiple diagrams. Try drawing your own UML diagrams for the case studies.

EE66C 7th July 2006 23

References

[Ben88] Stuart Bennett. Real-Time Computer Control: An Introduction. Prentice-Hall, 1988.

[Dou99] Bruce Powell Douglass. Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks and Patterns. Object Technology Series. Addision-Wesley, 1999.

[GVKT00] Sebastien Gerard, Nikos S. Voros, Christios Koulamas, and Fancois Terrier. Effi-
cient system modeling of complex real-time industrial networks using the accord/uml
methodology. In DIPES 2000, International IFIP WG 10.3/WG10.4/WG10.5 Work-
shop on Distributed and Parallel Embedded Systems, Paderborn, Germany, October
2000.

[Hol01] Jon Holt. UML for Systems Engineering: watching the wheels, volume 2 of IEE Pro-
fessional Applications of Computing Series II. The Institution of Electrical Engineers,
2001.

[Mar] Robert C. Martin. UML tutorials. – http://www.objectmentor.com/resources.

[PEL99] Experimenting with real-time specification methods: The model multiplicity problem.
In Proceedings of the Fourth CAiSE/IFIP8.1 International Workshop on Evaluation of
Modeling Methods in System Analysis and Design (EMMSAD99), Heidelberg, Germany,
June 1999.

[SR04] H. Saiedian and S. Raghuraman. Using uml-based rate monotonic analysis to predict
schedulability. Computer, 37(10):56–63, 2004.

Review Questions

1. (a) Describe each of the different types of UML diagram, and illustrate how they may be
used.

(b) [Dou99, Q 5.12.2]What is an actor and what does it contribute to the modeling of a
system?

(c) [Dou99, Q 5.12.4,5,6] What is the relation between:

i. a use case and a scenario?
ii. a use case and a statechart?
iii. a scenario and a statechart?

(d) Based on [Dou99, Q 7.11.2][With reference to UML diagrams] what is the definition of:

i. a state?
ii. a transition?
iii. an action?
iv. an activity?
v. a guard?

(e) [Dou99, Q 7.11.8] When would you use a timing diagram over a sequence diagram? How
about the reverse?

(f) [Dou99, Q 7.11.10] When would you use an activity diagram over a statechart? How
about the reverse?

EE66C 7th July 2006 24

(g) [Dou99, Q 7.11.9] What is the primary difference between normal states and activity
states?

2. (a) Identify the initial state, and final action in the state diagram of Figure 6.

Figure 6: State diagram for Questions 2a, 2b, 2c

(b) A sequence of events occurred in the system described by Figure 6. The sequence is
partially shown in Table 1. Fill in the blank spaces of the table. If the space is to be
left blank indicate with N/A.

OldState Event Guard Action NewState
state 1 e1 g1

e2 ActionA
e4

ActionE

ActionD

Table 1: Table for Question 2b

(c) The following timing constraints are associated with the state diagram of Figure 6.
Construct an appropriate UML diagram which expresses these timing requirements.

• Actions A and C are mutually exclusive routines. Guard g1 is used to ensure that
neither is running. Action A has a duration of 30s, and Action C has a duration of
80s.

• Event e1 is a sporadic event which has a minimum inter-arrival time of 5 ms.
• Event e2 is a periodic event with a period of 120 s.

(d) Construct a statechart for a traffic light system described below:

• If the light is green, it goes red, 2 minutes after going green.
• If the light is red, it goes green, when the car sensor is triggered.
• On initialisation or fatal error the light flashes yellow.

EE66C 7th July 2006 25

• On error (only detected when the light is red), the controller will attempt to recover,
only if the failure is not due to hardware.

(e) A design pattern may be used to convert a statechart into code. Identify at least one
advantage of using UML design patterns in constructing such a real time system.

Figure 7: Statechart for Question 3

3. (a) Figure 7 shows a statechart associated with placing a cell-phone call. Identify at least
one guard, transition event, transition action, and state.

(b) Making reference to the figure, identify and explain the features of statecharts which
make it possible to model exception handling.

(c) Describe/illustrate two methods by which timing, jitter or other real-time constraints
can be expressed using UML notation/diagrams.

(d) UML may be used for automatic code generation. What implications does this have for
system validation/testing?

4. Question 5.12.9 from [Dou99]. “

Define the use cases for a drive-by-wire automobile control computer, which mon-
itors and controls braking, turning, acceleration control and engine timing. What
are the actors?

”

5. Check out (http://www.objectsbydesign.com/tools/umltools byCompany.html) for a list of
available UML tools. What are the common features available? [Object Engineering down-
load]

EE66C 7th July 2006 26

6. A hand-held device for electricity meter readers, consists of a short-range wireless link (for
communication with meter(s) and a flash disk for data storage. Figure 8 contains a state-chart
for this device.

In automatic mode the device repeatedly runs three separate tasks:

• a whosthere task (period 30s; timeout 5s) which requests the ID of all meters within
range,

• a query task (period 0.5s; timeout 0.1s) which requests a reading from an individual
meter whose ID was previously received, and

• an interface task (period 1s; duration 0.01s) which polls the device buttons, and changes
mode.

In manual mode, the interface task runs repeatedly, but broadcast and query functions are
only executed once on request from the user.

Figure 8: Statechart for Question 6
(a) If possible, identify the initial system state, and a transition action in Figure 8.

(b) Describe “priority inversion”. For this application, identify at least one possible cause
of priority inversion, and explain one operating system/UML feature which can be used
to accommodate/prevent it.

(c) For this application, identify at least one “precedence constraint”, and explain one op-
erating system/UML feature which can be used to accommodate it. Your answer should
differentiate precedence constraints from priority inversion.

EE66C 7th July 2006 27

7. From 2002 Past Paper:

This question refers to the state diagram in Figure 9 which describes a system for the operation
of a two joint robotic arm, with a manipulator which can be opened or closed. The control
loops for each joint, and the manipulator are run concurrently. The robot must be refitted
to meet certain safety regulations:

(a) Draw a simplified state diagram, showing the two robot states, and the events which
transition between states. Identify the initial robot state.

(b) Identify a guarded event in the diagram.

(c) Redraw the full state diagram so that:

• the initial robot state will depend on the initial state of the proximity sensor ”p”. If
the proximity sensor is on, the initial state should be a new state called ”safetyStop”.

• the event ”evProxClear” will cause the robot to move from the ”safetyStop”state to
the idle state, only if the proximity sensor is not still on.

• wherever the proximity sensor trigger event ”evProxSensTrig” is received, transition
to ”safetyStop”.

Figure 9: State diagram of a robot arm/manipulator

EE66C 7th July 2006 28

8. Describe techniques which may be used to identify requirements, stakeholders, objects and
messages for a particular application. Apply these techniques to the following passage from
[Dou99, ”Doing Hard Time”] “

The Acme Cruise Control user interface consists of four buttons (On/Off, Set Ac-
celerator, Resume, and Coast). When the system is OFF the other buttons have
no effect. When the system is ON but a velocity has not been set, the system is en-
abled, but paused. When the system is active or paused, a momentary depression of
the Set Accelerator button sets the velocity, making the system active; holding the
button down more than 1.0 second acts identically to depressing the foot gas pedal,
elevating the car’s velocity. The Coast button temporarily pauses the system as
long as it is held down. Once released, the system reverts to active velocity control.
Any time the difference between the set velocity and the actual velocity exceeds
exceeds 10mph, the system pauses itself (is enabled, but not active. The system
also pauses if the brake pedal is depressed. When the system is paused, reactivating
the system by pressing the Resume button uses the previous set velocity.

”

9. Flight Controller Based on 2000 EE66C past paper:
We are required to develop a flight controller for flight control in an aircraft. The following
are the dominant time constants which were observed experimentally:

• Tpitch=500ms (actuator is the elevators on the tail plane)

• Troll=100ms (actuators are 2 Ailerons on wings)

• Tyaw= 200ms (actuator is rudder)

• Tlift = 1s (actuator is flaps)

• Tairspeed = 2s (actuator is engine)

Command Inputs: Speed altitude, direction, bank angle
Alarms: Stall, Pitch (high), Bank Angle (high), inadequate lift.

Programs are running on a 2 MIPS processor.

We are given the control program lengths as:
Algorithm Length (no. of instructions)
Pitch Control 1000
Roll 1400
Yaw 1000
Lift 2000
Speed 1000

(a) Choose & Construct appropriate UML diagrams.

(b) Determine minimum sampling frequency for each signal from the dominant time con-
stants.

(c) Develop an RM-scheme for, and verify it can be scheduled on the processor.

EE66C 7th July 2006 29

Plant Interface
Input from plant:
Outlet temperature: analog signal, range 0-10V, corresponding to 20◦C to 64◦C, linear relationship.

Output from plant:
Heater control: analog signal 0V to -10V corresponding to full heat (0V) to no heat (-10V), linear relationship.

Control
A PID controller with a sampling interval of 40ms is to be used. The sampling interval may be changes, but will not be less than 40 ms. The
controllers parameters are to be expressed to the user in standard analog form i.e. proportional band, integral action time and derivative action
time. The set-point is to be entered from the keyboard. The controller parameters are to be variable and are to be entered from the keyboard.

Operator communication

Display
The operator display is as shown below:

Set temperature : nn.n◦C Date : dd/mm/yyyy
Actual temperature : nn.n◦C Time : hh : mm
Error : nn.n◦C
Heater ouput : nn%FS Sampling interval : nn ms

Controller settings
Proportional band nnn %
Integral action nn.nn s
Derivative action nn.nn s

The values on the display will be updated every 5 s.

Operator input
The operator can at any time enter a new set point or new values for the control parameters. This is done by pressing the ’ESC’ key. In response
to ’ESC’ a menu is shown on the bottom of the display screen.

1. Set temperature=nn.n 2. Proportional band=nnn%
3. Integral action=nn.nn 4. Derivative action=nn.nn%
5. Sampling interval=nn 6. Management information
7. Accept entries
Select number of item to change >

In response to the number entered, the present value of the item selected will be deleted from the display and the cursor positioned ready for input
of a new value. The process will be repeated until Item 7 – Accept entries is selected at which time the bottom part of the display will be cleared
and the new values shown in the top part of the display.

Management Information
On selection of Item 6 of the operator menu a management summary of the performance of the plant over the previous 24 hours will be given. The
summary provides the following information:

(a) Average error in ◦C in 24 hour period.

(b) Average heat demand %FS in 24 hour period.

(c) For each 15 minute period:

i. average demanded temperature;

ii. average error; and

iii. average heat demand.

(d) Date and time of output.

General Information

There will be a requirement for a maximum of 12 control units. A single display and entry keyboard which can be switched between the units is

adequate.

Figure 10: Example 5.1 Hot-air blower specification from [Ben88, pp 134–135]

10. Based on [Ben88, Question 5.1] which makes reference to the Hot Air Blower specification
shown in Figure 10. Criticise the requirements specification. What information is missing (if
any)? Rewrite the specification to include the missing information.

Illustrate using UML diagrams (all types) as appropriate for a system which meets these
revised specifications.

EE66C 7th July 2006 30

5 Reliability and Fault Tolerance

• Analyse an existing real time system in terms of its reliability and fault tolerance, and rec-
ommend methods/changes which would improve performance in either of these areas

– Quantifying reliability

∗ Manipulation of probabilities / error models w.r.t evaluating hardware reliability
∗ Appreciation of methods proposed to determine software reliability.

– Error Masking (detection/correction)

∗ Hardware: NMR,
∗ Software: N-Version,
∗ Data : Checksums/Parity

– Error Recovery

∗ Hardware: Reconfigurable, High Availability, platforms: PC vs PLC
∗ Software: Optimal checkpoint placement for recovery blocks
∗ Scheduling: Redundant real-time scheduling: FT-RMA

– Error Reduction/Prevention

∗ Hardware/Software/Data: Validation/common standards – UML / IEC61131-3
∗ Software/Data/Scheduling: Power awareness/Power management

Readings

Slides based on:

• Fault Tolerance & Reliability Evaluation Techniques[KS97, Ch. 7–8]

• ”Integrating UML Real-Time and IEC 61131-3 with Function Block Adaptors” [HT01]

• ”Minimum Achievable Utilisation for Fault Tolerant Processing of Periodic Tasks”[PM98].

• ”A Survey of Rollback-Recovery Protocols in Message-Passing Systems” [EAWJ02]

• ”System-Level Power-Aware Design Techniques in Real-Time Systems” [UK03]

• ”SIFT: Design & Analysis of a fault tolerant computer for aircraft control”,[WLG+89]

• ”Integration Testing of Fixed Priority Scheduled Real-Time Systems”,[TPH01]

Assignment D

1. Describe two ways in which each of the systems specified in Figure 4 on page 18, could be
made more reliable and/or fault tolerant, while still achieving their real-time requirements. 20 marks

EE66C 7th July 2006 31

Review Read/summarize at least one of the following papers:

• [She93, McC92, ”A Fault-Tolerant Air Data/Inertial Reference Unit”]. Examine the different
ways in which fault tolerance/reliability have been achieved.

• [Sim97, ?, ”Real time recovery of fault tolerant processing elements”] Examine the different
ways in which fault tolerance/reliability have been achieved.

• [DDFB02, ?, ”Software-implemented fault-tolerance and separate recovery strategies enhance
maintainability (substation automation)”] Examine the different ways in which fault toler-
ance/reliability have been achieved.

• [SKL85, ”A unified method for evaluating real-time computer controllers and its application”]
Observe definition of fault-tolerance extended to entire system performance.

References

[Ben88] Stuart Bennett. Real-Time Computer Control: An Introduction. Prentice-Hall, 1988.

[BW01] Alan Burns and Wellings. Real-Time Systems and Programming Languages. 3rd edition,
2001.

[DDFB02] G. Deconinck, V. De Florio, and O. Botti. Software-implemented fault-tolerance and
separate recovery strategies enhance maintainability [substation automation]. IEEE
Transactions on Reliability, 51(2):158–165, 2002.

[EAWJ02] E. N. (Mootaz) Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B. Johnson. A
survey of rollback-recovery protocols in message-passing systems. ACM Comput. Surv.,
34(3):375–408, 2002.

[HT01] Torsten Heverhagen and Rudolph Tracht. Integrating uml-realtime and iec 61131-3
with function block adaptors. In Proceedings of the IEEE International Symposium on
Object Oriented Real Time Distributed Computing (ISORC 2001), 2001.

[KS97] C.M. Krishna and Kang G. Shin. Real-Time Systems. McGraw-Hill, 1997.

[LaP93] Phillip A. LaPlante. Real-Time Systems: Design and Analysis, An Engineer’s Hand-
book. IEEE Press, 1993.

[McC92] C.R. McClary. A fault-tolerant air data/inertial reference system. IEEE Aerospace and
Electronic Systems Magazine, 7(5):19–23, 1992.

[PM98] M. Pandya and M. Malek. Minimum achievable utilization for fault tolerant processing
of periodic tasks. IEEE Transactions on Computers, 47(10):1102–1112, 1998.

[She93] M.L. Sheffels. A fault-tolerant air data/inertial reference unit. IEEE Aerospace and
Electronic Systems Magazine, 8(3):48–52, 1993.

[Sim97] T. Sims. Real time recovery of fault tolerant processing elements. IEEE Aerospace and
Electronic Systems Magazine, 12(12):13–17, 1997.

EE66C 7th July 2006 32

[SKL85] Kang Shin, C. Krishna, and Yann-Hang Lee. A unified method for evaluating real-time
computer controllers and its application. IEEE Transactions on Automatic Control,
30(4):357–366, 1985.

[TPH01] Henrik Thane, Anders Pettersson, and Hans Hansson. Integration testing of fixed
priority scheduled real-time systems. In Steve Liu Iain Bate, editor, IEEE/IEE Real-
Time Embedded System Workshop. Technical Report, Department of Computer Science,
University of York, 12 2001.

[UK03] O.S. Unsal and I. Koren. System-level power-aware design techniques in real-time
systems. In Proceedings of the IEEE, volume 91, pages 1055–1069, 2003.

[WLG+89] J. H. Wensley, L. Lamport, J. Goldberg, M. W. Green, K. N. Levitt, P. M. Milliar-
Smith, R. E. Shostak, and C. B. Weinstock. Sift: Design and analysis of a fault-tolerant
computer for aircraft control. pages 560–575, 1989. Originally appeared in Proceedings
of the IEEE, 66(10):1240–1255, 1978.

Review Questions

1. (a) Differentiate between the terms: dependability, reliability and fault tolerance.

(b) [BW01, Q.5.1] Is a program reliable if it conforms to an erroneous specification of it’s
desired behaviour?

(c) [BW01, Q.5.8] Should the dependability of a system be judged by an independent asses-
sor?

2. Based on [LaP93, Q. 11.4.1-3]

(a) How is reliability measured?

(b) Draw the subsystem configuration for a system with four sub-systems and an overall
reliability function given by: r1(t)r2(t) + r3(t)r4(t)− r1(t)r2(t)r3(t)r4(t)

(c) Calculate the system failure function for a system whose reliability function is r1(t)r3(t)+
r2(t)r3(t)− r1(t)r2(t)r3(t)

(d) Explain how N-modular redundancy improves system reliability. What added overhead
does this introduce into a real time system?

(e) The ‘ezplot’ function in MATLAB will draw a graph for a symbolic expression. Use this
function to explore:

i. the reliability of clusters as cluster size changes,[KS97, p.335 eqn 8.14]
ii. the critical ratio of voter reliability when deciding on a cluster size. [KS97, p. 336-7

eqn 8.20]

(f) Use the Fault Tolerant Computing simulator located at (http://euler.ecs.umass.edu/ece655/simulator/)
to explore the reliability of systems which are not in series-parallel form.

EE66C 7th July 2006 33

3. (a) Differentiate between forward and backward error recovery. Highlight their respective
effects on task response times and hence overall real time system performance.

(b) [BW01, Q.6.1] Compare and contrast the exception handling and recovery block ap-
proaches to software fault tolerance.

(c) What is a watchdog timer, and what role can it play in error recovery in a reliable,
fault-tolerant real-time control system.?

(d) [KS97, Q.7.6] What factors govern the optimal placement of checkpoints? Assume that
the purpose is to minimize the probability of missing deadlines.

(e) [Ben88, Question8.1] Examine the list of run-time errors generated by any language
system which you use, or for which you have a guide. List the error conditions for which
you think the system could either recover or be closed down in a safe manner. Which
conditions would require a resort to the run-time support error handling?

4. A solar powered space probe must be designed to run reliably through situations when the
supply voltage fluctuates and/or fails. Reliable operation is defined as the accurate mea-
surement, conversion, and transmission of sensor readings within a fixed time frame.

System reliability may be achieved in three main ways: fault tolerance, redundancy and error
detection/recovery. These methods may be applied to each of the four aspects of a system:
hardware, software, information & task scheduling.

(a) Identify and explain (at least two) method-aspect combinations which are most appro-
priate.

(b) What are the implications, of the chosen combinations, for meeting real-time deadlines?

5. (a) How is reliability typically quantified for hardware, and real-time task schedulers?

(b) Define the terms ”reliability” and ”fault tolerance” as they apply to hardware/software
systems. How can they be quantified (if at all)?

(c) [KS97, Q.8.8] A processor has suffered intermittent failure. The characteristics of this
failure are that it is in the failed state for a mean time of 1/x and in the non-failed
state for a mean time of 1/y. Both times are exponentially distributed. At time 0, the
processor is in the failed state. What is the probability that it is in the failed state at
time t.

(d) [KS97, Question 8.11] Suppose processor failure rates are a function f(u) of the processor
utilization u. Given seven processors in all, we have the choice of using them either as
one 7-MR cluster, or as two 3-MR clusters (with one processor as spare). If two clusters
are used, the processor utilization is half that of the single cluster case.

f(u) = (1− e−u)× 10−5

For what values of total workload are two clusters better than one given a mission time
of t? The total workload is given in terms of the processor utilization.

EE66C 7th July 2006 34

6. (a) [KS97, Question 7.12] Which of the following codes are separable: parity, checksum,
cyclic? Explain your answer.

(b) Which of the following codes is best suited for use in a real-time system: parity, check-
sum, cyclic? Explain your answer.

(c) [KS97, Question 7.5] Suppose you are asked to design a fault tolerant system that uses
memory scrubbing to get rid of transient errors. The only fault-tolerance scheme used
for the memory is an error-correcting code that can correct up to two bit errors per
word. Failure occurs if more than two bit errors occur in a word. Suppose the coded
word is 32 bits long, and that memory cells have a probability p of being corrupted in
each clock cycle. Assume that these transient cell failures are independent of each other.
Calculate the probability of a word suffering failure if the period between consecutive
memory scrubs is P clock cycles.

(d) [KS97, Question 7.13] Design an interlaced parity scheme where the uncoded word has
16 bits and can correct up to two bit errors.

7. (a) For the real-time scheduling algorithms (RM, EDF, VBS) discussed in Section 1, which
is the most reliable/fault tolerant when used with a fixed task set. Explain your answer.

(b) How can the operation of a digital PID controller be made more reliable, either when it
is operating solely, or when it is scheduled with other tasks?

(c) Re-attempt Section 3 Question 10 on page 20. Can you come up with alternate choices
and supporting arguments?

(d) Will using UML for design of a real-time system can improve final system reliability?
Explain your answer.

8. Based on Case Study RC5 - Remote Telecommunications System from http://blocksim.reliasoft.com/examples/rc5/index.htm.

A telecommunications system is to be constructed in an uninhabited stretch of jungle. The
system consists of a transmitter and receiver (100 units apart) with relay stations (which
cover up to 30 unit radius) to connect them. The transmitter and receiver are made up of
three subassemblies each, while the relay stations have two subassemblies each (all in series).
Specifically:

• Subassembly SPS1 (solar power supply) is common to all.

• The transmitter has two additional subassemblies, TRC1 and TRC2.

• The receiver also has two additional subassemblies, RCR1 and RCR2.

• Relay stations have a subassembly RLYC1 in addition to SPS1.

The following configurations have been proposed:

I use a single line of relay stations at 20 units apart

EE66C 7th July 2006 35

II use a single line of relay stations 10 units apart

III use two parallel lines (5 units apart) of relay stations at 20 units apart

(a) Presuming that all sub-assemblies have the same failure distributions, and the minimum
number of sub-assemblies are used, which configuration offers the best reliability?

(b) For your chosen configuration, identify possible single points of failure, and suggest how
these could be corrected.

9. (a) The following statement is taken from http://www.ieeetfcc.org/high-availability.html:

High Availability (HA for short) refers to the availability of resources in a com-
puter system, in the wake of component failures in the system. This can be
achieved in a variety of ways, spanning the entire spectrum ranging at the
one end from solutions that utilize custom and redundant hardware to ensure
availability, to the other end to solutions that provide software solutions us-
ing off-the-shelf hardware components. The former class of solutions provide
a higher degree of availability, but are significantly more expensive, than the
latter class.

Is this true in the controls industry? Justify your answer(s).

(b) Can a power-aware system be highly available? Can aa power-aware system be depend-
able? Are these conflicting requirements?

10. (a) Which is more appropriate for use in testing a real-time system: white-box or black-box
testing? Justify your answer.

(b) How does the use of UML in the design of a real-time system facilitate system validation?

(c) Investigate the ISO/ITU/IEC standards for fault-tolerant, safety-critical, real-time sys-
tems. How is conformity to standards assessed?

EE66C 7th July 2006 36

6 Real Time Scenarios/Hardware

• Propose a solution for a real-time scenario involving hardware control, and implement the
solution utilising a real-time operating system kernel.

Assignment E

[Nis97, “Railway Signalling”, Appendix A: Real Time Scenarios, Section A.4 pp 392–397]; Answer
the same questions that were used for all scenarios.

Review Questions

In the scenarios given, answer the following questions in each case:

(a) Identify the use cases, actors, and external events, and use the information to prepare a Use
Case diagram, and an event table. (4 marks)

(b) Create system models, using UML (and/or any other) diagrams. Identify any additional
information which should be specified for this application. (6 marks)

(c) Choose a set of tasks, and make estimates of periods, event arrival rates, deadlines and execu-
tion times, from the information provided. Identify any opportunities for shared data/inter-
task communication, and thus estimate task blocking time(if any). Justify all choices. (4
marks)

(d) Choose a suitable scheduling algorithm, and verify that your system is schedulable.(2 marks)

(e) (As applicable) recommend strategies for: (2 marks)

– sampling asynchronous signals

– cases where not all tasks are schedulable.

– mapping on to an OS with less priority/messaging than specified.

– fault tolerance/reliability (failure/corruption).

– dealing with interlocking control loops.

(f) Identify any specific real-time features of the Operating System or hardware, which are re-
quired to implement the system you have just designed.(2 marks)

(g) Block out pseudo-code for each of your tasks using the real-time OS/hardware features previ-
ously identified. Identify any parts of your code which may lead to delay, jitter, or transient
errors in the control signals/system response times. (6 marks)

(h) Suggest ways in which the system could be made reliable/fault tolerant. Assess any effects
your suggestions may have on the real time performance of the system. (2 marks)

(i) Recommend ways in which the specifications could be enhanced/clarified. (2 marks)

Additional case studies for review/practice can be found throughout the course readings, for ex-
ample: Motor/Robot Control [Dou99], Temperature Control [SLSS96], Hot Air Blower [Ben88],
Radar System [Liu00], Flight Controller

EE66C 7th July 2006 37

References

[Ben88] Stuart Bennett. Real-Time Computer Control: An Introduction. Prentice-Hall, 1988.

[Dou99] Bruce Powell Douglass. Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks and Patterns. Object Technology Series. Addision-Wesley, 1999.

[LBC+01] L. J. Lagin, R. C. Bettenhausen, R. A. Carey, C. M. Estes, J. M. Fisher, J. E. Krammen,
R. K. Reed, P. J. VanArsdall, and J. P. Woodruff. The overview of the national ignition
facility distributed computer control system. In Proceedings of the 8th International
Conference on Accelerator & Large Experimental Physics Control Systems, 2001. San
Jose, California.

[Lei92] J.R. Leigh. Applied Digital control: Theory, Design & Implementation. Prentice Hall,
second edition, 1992.

[Liu00] Jane W.S. Liu. Real-Time Systems. Prentice-Hall, 2000.

[Nis97] Nimal Nissanke. Realtime Systems. Prentice Hall, 1997.

[SLSS96] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin. On task schedulability in real-time
control systems. In Proceedings of the IEEE Real Time Systems Symposium, 1996.

1. Scenario A – Submarine Sonar system

from [Nis97, Appendix A: Real Time Scenarios, Section A.5 pp 398–403];

EE66C 7th July 2006 38

2. Scenario B – Intruder Alarm

from [Nis97]

An intruder alarm receives information about the state of the monitored building from a
number of sensors located at every possible entrance and exit. Sensors function basically as
switches, indicating whether a given sensor has detected an intruder or not. The alarm is
located inside the building. It is set (armed) and reset (disarmed) from inside the building.
A digital code of fixed length is required for both setting and resetting the alarm. One of the
entrances, which also functions as an exit, is nominated as the entrance and the exit after the
alarm has been set.

Timing information is crucial for the proper functioning of an intruder alarm. When the
alarm is initially set, a specific time delay is allowed for the user to leave the building through
the nominated exit. When the alarm is set, the use of any of the entrances other than the
nominated one for re-entry activates the alarm instantly, or at most, within a matter of a
few seconds. The sensors monitoring the entrance maintained for re-entry and the route to
the alarm control point do not activate the alarm until a set time has elapsed. This set time
allows the user to enter the building and disarm the alarm by entering the correct digital
code. If this is not done successfully, the alarm is activated at the end of the set time.

The alarm has a siren and a strobe and these are located outside the building. If the intruder
is detected or the alarm is not disarmed by the person entering the building through the
nominated entrance during the required time, the siren begins to sound and the strobe begins
to flash immediately, as mentioned above. In this event, the siren continues to sound for a
specified time, usually for a few minutes, and then stops, but the strobe continues to flash.
The alarm can be rest by the user only by entering the correct code. If the alarm has already
been triggered, this would turn the alarm off. The correct code is the most up to date code
entered when arming the system.

When entering the code for disarming the alarm, the user is allowed a maximum period to
complete the task. If the user fails to complete this within the given time, the system discards
the partial entry and awaits for the next attempt. The user is allowed as many attempts as
possible to enter the correct code within the allocated time. If the alarm has already been
set off, after this period it cannot be reset except by an appointed independent authority.

Some reasonable limiting values for the timing parameters involved are:

• Time allowed for setting the alarm and leaving the building – 30 seconds

• Time between detecting an intruder and triggering the alarm off – 5 seconds

• Time allowed for re-entry through the nominated entrance and start resetting the alarm
– 2 minutes

• Duration for resetting the alarm after re-entry – 1 minute

• Maximum duration for entering the code at each attempt – 20 seconds

• Duration of the siren sound – 5 minutes

EE66C 7th July 2006 39

3. Scenario C – Postal Address recognition

from [Nis97]

Postal address recognition systems are used for automatic sorting of small postal packages
such as letters. Sorting is done using a post-code (zip-code in the USA) given as part of the
destination address. Sorting involves the recognition of the postcode in the address given on
the envelope, establishing the address catchment area by consulting a postal address database
according to the recognized postcode and verifying the catchment area using other features
such as the street name detected in the address. Packages failing this verification are rejected
and are directed for manual sorting

Automatic postcode and address feature recognition use an image of the address produced
by a camera. It is a computationally complex task, not only because of the complexity of
image processing tasks in general, but also because of the significant variations in handwritten
scripts. As a result, the algorithms concerned involve a significant element of heuristics.

Timing of automated sorting is constrained by such requirements as the number of pack-
ages processed by each machine per unit time and the capacity of the associated mechanical
pipeline. Cuhadar and Downton cite a figure of ten envelopes per second for the processing
rate, and 90 envelopes for the maximum capacity of the mechanical pipeline. Downton gives
the following statistics for the execution times of the computational tasks and the size of the
data.
Processing Time Approx. execution Data packet
function sec/image time ratios size (bytes)
Preprocessing 4.48 3 2114
(feature extraction)
Classification 4.45 3 54
(postcode identification)
Dictionary 1.50 1 202
(data base search)
Complete processing 10.43

EE66C 7th July 2006 40

4. Radar Signal Processing[Liu00]

To search for objects of interest in it’s coverage area, the radar scans the area by pointing its
antenna in one direction at a time. During the time the antenna dwells in a direction, it first
sends a short radio frequency pulse. It then collects and examines the echo signal returning
to the antenna.

The echo signal consists solely of background noise if the transmitted pulse does not hit any
object. On the other hand, if there is a reflective object (e.g. an airplane or storm cloud) at
a distance x meters from the antenna, the echo signal reflected by the object returns to the
antenna at approximately 2x/c seconds after the transmitted pulse, where c = 3×108 meters
per second is the speed of light.

The echo signal collected at this time should be stronger than when there is no reflected
signal. If the object is moving, the frequency of the reflected signal is no longer equal to that
of the transmitted pulse. The amount of frequency shift (called Doppler shift) is proportional
to the velocity of the object. Therefore by examining the strength and frequency spectrum of
the echo signal, the system can determine whether there are objects in the direction pointed
at by the antenna and if there are objects, what their positions and velocities are.

Specifically, the system divides the time during which the antenna dwells to collect the echo
signal into small disjoint intervals. Each time interval corresponds to a distance range, and
the length of the interval is equal to the range resolution divided by c. (For example, if
the distance resolution is 300 meters, then the range interval is one microsecond long.) The
digital sampled values of the echo signal collected during each range interval are placed in a
buffer, called a bin ... The sampled values in each bin are the inputs used ... to produce ...
a discrete Fourier Transform of the corresponding segment of the echo signal. Based on the
characteristics of the transform, the signal processor decides whether there is an object in
that distance range. If there is an object, it generates a track record containing the position
and velocity of the object and places the record in ... memory.

The time required for signal processing is dominated by the time required to produce the
Fourier Transforms, and this time is nearly deterministic ... it takes roughly 103 to 105 mul-
tiplications and additions to generate a Fourier Transform. ... the antenna dwells in each
direction for 100 milliseconds and the range of the radar is divided into 1000 range intervals.

extract from: ”Real-Time Systems” by Jane W.S. Liu, Prentice-Hall Publish-
ing, 2000. pp 15-16

EE66C 7th July 2006 41

5. Control of a 1000 tonne press

The control system for a 1000 tonne Fielding & Platt hydraulic forging press,
recently installed in the press shop of Thomas Wild Ltd in Sheffield, utilizes a
Quarndon electronics VME microcomputer system operating with a 1000 mm ana-
log position transducer, to accurately control the position and motion of the main
ram.
The system comprises:

XVME-600/1 68000/68010 processor module with SRAM/EPROM sockets
XVME-201 48 channel I/O module
XVME-500 16SE/8DI channel input module with 10 µs A/D converter
3U component unit – 5 channels of analog signal conditioning and one analog
output.

The CVME-201 handles 7 channels of digital input and 13 channels of digital out-
put, all via optical isolators, and includes 11 channels of addressed information. A
further 6 channels are used for pump control via the D/A converter on the compo-
nent board.
The XVME-500 handles five channels of conditioned S/E analog input from the
component unit.
AUTO FORGE CYCLE

During the approach sequence the ram speed is monitored, such that when the
speed is less than 10mm/s, it is assumed that the work has been contacted. At this
point, the ram position is stored and the press forge cycle initiated. The forging
speed is controlled by a variable delivery pump. The speeds are:

Fast approach 150mm/s
Slow approach 35mm/s
Forge speed 25mm/s
The system software runs in a multi-tasking PDos operating system loaded into
VME Prom 68000 cards.
–from 11.10 Case history C: Control of a 1000 tonne press[Lei92, p.431–2]

EE66C 7th July 2006 42

6. National Ignition Facility [LBC+01]

The Integrated Computer Control System (ICCS) for the National Ignition Facility (NIF) is a lay-
ered architecture of 300 front-end processors (FEP) coordinated by supervisor subsystems including
automatic beam alignment and wavefront control, laser and target diagnostics, pulse power, and
shot control timed to 30 ps. FEP computers incorporate either VxWorks on PowerPC or Solaris
on UltraSPARC processors that interface to over 45,000 control points attached to VME-bus or
PCI-bus crates respectively.

Typical devices are stepping motors, transient digitizers, calorimeters, and photodiodes. The
front-end layer is divided into another segment comprised of an additional 14,000 control points
for industrial controls including vacuum, argon, synthetic air, and safety interlocks implemented
with Allen-Bradley programmable logic controllers (PLCs). The computer network is augmented
asynchronous transfer mode (ATM) that delivers video streams from 500 sensor cameras mon-
itoring the 192 laser beams to operator workstations. Software is based on an object-oriented
framework using CORBA distribution that incorporates services for archiving, machine configura-
tion, graphical user interface, monitoring, event logging, scripting, alert management, and access
control.

Software coding using a mixed language environment of Ada95 and Java is one-third complete at
over 300 thousand source lines. Control system installation is currently under way for the first 8
beams, with project completion scheduled for 2008.

The NIF contains 192 laser beam lines that are focused on an inertial confinement fusion (ICF)
capsule at target chamber center. Each beam requires alignment, diagnostics, and control of
power conditioning and electro-optic subsystems. NIF will be capable of firing target shots every
8 hours, allowing time for the components to cool sufficiently to permit precise realignment of the
laser beams onto the target.

The NIF requires integration of about 60,000 atypical control points, must be highly automated
and robust, and will operate around the clock. Furthermore, facilities such as the NIF represent
major capital investments that will be operated, maintained, and upgraded for decades. Therefore,
the computers and control subsystems must be relatively easy to extend or replace periodically
with newer technology.

The ICCS architecture was devised to address the general problem of providing distributed control
for large scientific facilities that do not require real-time capability within the supervisory software.
The ICCS architecture uses the clientserver software model with event-driven communications.
Some real-time control is also necessary; controls requiring deterministic response are implemented
at the edges of the architecture in front-end computer equipment. The software architecture is
sufficiently abstract to accommodate diverse hardware, and it allows the construction of all the
applications from an object-oriented software framework that will be extensible and maintainable
throughout the project life cycle. This framework offers interoperability among different computers
and operating systems by leveraging a common object request broker architecture (CORBA).
The ICCS software framework is the key to managing system complexity. A brief summary of
performance and functional requirements follows

Selected ICCS performance requirements
Computer restart < 30 minutes

Post-shot data recovery < 5 minutes

Respond to broad-view status updates < 10 seconds

Respond to alerts < 1 second

Perform automatic alignment < 1 hour

Transfer and display digital motion video 10 frames per second

Human-in-the-loop controls response within 100 ms

Summary ICCS functional requirements:

• Provide graphical operator controls and equipment status.

• Maintain records of system performance and operational history.

• Automate predetermined control sequences (e.g., alignment).

• Coordinate shot setup, countdown, and shot data archiving.

• Incorporate safety and equipment protection interlocks.

EE66C 7th July 2006 43

Presentation – 10%

Selection criteria for papers:

• Between 10-20 journal pages in length

• At least two of the following key-words:

– distributed (embedded) systems,

– real-time: (real-time) operating systems, (real-time) scheduling, (real-time) control

– fault tolerance,

– (minimum) (processor/power) utilization,

– multi-processor task allocation,

– error recovery,

– UML.

For the assigned/selected paper:

• Acquire/Read the paper, and any relevant background/additional material.

• Prepare 1-2 sides of letter-sized paper containing a brief summary of the article content.
Highlight the real time systems characteristics found in this application and how they have
been addressed. Head your paper with the article title, author and/or source (a sample is
shown on page 46)

• Prepare a 20 minute presentation. An OHP projector, black(white) board and copying facil-
ities will be made available.

Marking Scheme:
Timing 0 to 8 minutes; over 20 minutes – 0% 2%

8 to 12 minutes – 1 %
12 to 14 minutes – 1.4 %

14 to 16 minutes; 18 to 20 minutes – 1.6%
16 to 18 minutes – 2%

Presentation Skills Assessed by each attendee /10 3%
Understanding Assessed by lecturer .5% deduction for each mis-conception in the Q & A session 2%
Summary Assessed by lecturer /10 3%

EE66C 7th July 2006 44

Suggestions for Papers

1. [SSK92]”The Chimera II Real-Time Operating System for Advanced Sensor-Based Control
Applications,” IEEE Trans. on Systems, Man, and Cybernetics, Vol. 22, No. 6, December,
1992, pp. 1282-1295 (15 pages)

2. [PABD+99]”GUARDS: A generic upgradeable architecture for real-time dependable systems”,
IEEE Transactions on Parallel and Distributed systems, v. 10 n. 6, June 1999 pp 80–97 (18
pages)

3. [CS00]”A unified wireless LAN architecture for real-time and non-real-time communication
services”, IEEE/ACM Transactions on Networking, Feb. 2000, Volume: 8 , Issue: 1, pp. 44
- 59 (16 pages)

4. [ZS01]”EMERALDS: A small-memory real-time micro-kernel”, IEEE Transactions on Soft-
ware Engineering, Vol 27, No. 10, October 2001 (18 pages)

5. [CBT05]”Efficient reclaiming in reservation-based real-time systems with variable execution
times”, IEEE Transactions on Computers, Feb. 2005, Volume: 54, Issue: 2, pp. 198- 213(16
pages)

The IEEE and ACM both publish journals (stocked in our library) which may contain articles on
these topics. The following list includes most of these, but is not comprehensive:

• IEEE Transactions on Computers

• IEEE Transactions on Parallel and Distributed systems

• IEEE Transactions on Software Engineering

• IEEE Transactions on Knowledge and Data Engineering

• IEEE Transactions on Automatic Control

• IEEE Transactions on Control System Technology

• ACM transactions on computer systems

• ACM transactions on database systems

• ACM transactions on information systems.

• ACM transactions on programming languages and systems.

• ACM transactions on software engineering and methodology

Apart from the IEEE/ACM journals/transactions, the library also stocks the following journals
which may contain relevant articles. Again the list is not comprehensive.

• Microprocessors& Microsystems

• Automatica

EE66C 7th July 2006 45

Online discussion groups:
To find out what the current ”buzz” is about try reading comp.realtime and/or comp.risk.
Online reference pages:

• http://cs-www.bu.edu/pub/ieee-rts/Home.html

• http://dsonline.computer.org/embedded/rts references.htm

Online databases:
If you want to try searching by keywords, instead of browsing journals, there are several index
databases available from the library web site. You may also want to try the more general citeseer
(http://citeseer.nj.nec.com/cs), and google (http://www.google.com).

References

[CBT05] M. Caccamo, G.C. Buttazzo, and D.C. Thomas. Efficient reclaiming in reservation-
based real-time systems with variable execution times. IEEE Transactions on Com-
puters, 54(2):198–213, 2005.

[CS00] Sunghyun Choi and K.G. Shin. A unified wireless lan architecture for real-time
and non-real-time communication services. IEEE/ACM Transactions on Networking,
8(1):44–59, 2000.

[PABD+99] D. Powell, J. Arlat, L. Beus-Dukic, A. Bondavalli, P. Coppola, A. Fantechi, E. Jenn,
C. Rabejac, and A. Wellings. Guards: a generic upgradable architecture for real-
time dependable systems. Parallel and Distributed Systems, IEEE Transactions on,
10(6):580–599, 1999.

[SE98] J. Hamilton Slye and E.N. Elnozahy. Support for software interrupts in log-based
rollback-recovery. 47(10), October 1998.

[SSK92] David B. Stewart, Donald E. Schmitz, and Pradeep Khosla. The chimera ii real-time
operating system for advanced sensor-based control applications. IEEE Trans. on
Systems, Man, and Cybernetics, 22(6):1282–1295, December 1992.

[ZS01] Khawar M. Zuberi and Kang G. Shin. Emeralds: A small-memory real-time microker-
nel. IEEE Trans. Softw. Eng., 27(10):909–928, 2001.

EE66C 7th July 2006 46

Presentation – Sample Summary

Support for Software Interrupts in Log-Based Rollback recovery
J. Hamilton Slye and E.N. Elnozahy
IEEE Transactions on Computers, v. 47, no. 10, October 1998

This paper presents an approach to log-based roll-back recovery which allows the replay of asyn-
chronous signals and interrupts in a multi-threaded system, without adding too much over-
head (time and code size) to the original code. They focus on ”instrument”ing the code to
record/maintain information which can be used to generate logs/checkpoints. The authors inten-
tionally omit any discussion of checkpoint and logging protocols, and their respective overheads,
as these will be in addition to the instrumentation overhead.

Instrumentation is performed in two steps. Firstly, they alter the compiled code so that it main-
tains a register-based instruction counter in software. While hardware instruction counters count
individual instructions, the software emulation, used in this work, only counts backward branches
(within section/page), jumps (out of section/page) and subroutine calls. To alter the code, they
search for the relevant instruction (branch, jump, call) and replace it with template instruction
code which updates the register. Secondly, they modify the asynchronous signal/interrupt han-
dlers to make log entries using the value of the instruction counter, and/or set/reset/restore
the instruction counter. With this information, it is possible to determine precisely when a sig-
nal/interrupt was received by a particular thread, and what associated action was taken.

One concern with this work is that the additional code size/run time of code for operation of
the instrument will adversely affect system performance. This has been addressed by generating
a pair of binaries, one for normal operation and the other for replay. The former is optimized for
size and speed. Test results presented on single threaded and multi-threaded tasks, show that
the increase in code and run time (during normal operation) on the test applications are less than
30%, on two separate platforms; and in some cases (suggested due to anomalies with cache)
the run time even improved for the instrumented code. Replay times and code sizes are slightly
larger.

The primary problems with using Backward Error Recovery methods in Real Time Systems are

1. the amount of additional time required for successful checkpointing/logging

2. the non-deterministic amount of time required for recovery and

3. the inability to reproduce asynchronous events.

The work presented here has solved 3, and reduced 1. Bounds for recovery time (i.e. 2) may be
addressed through the judicious use of appropriate checkpointing/logging protocols; issues which
are not discussed here.

EE66C 7th July 2006 47

Mini-Project

The purpose of this mini-project is to explore the effects of timing (and other) services (as provided
by an RTOS) on control loop performance. It is based on the DC Servo experiments listed in [Cer00],
the Control Loop Design Pattern in [Dou99] and the OS performance analysis of [WKSK02].

References

[Cer00] A. Cervin. The real-time control systems simulator reference manual. Technical Report
TFRT-7592, Department of Automatic Control, Lund Institute of Technology, April
2000.

[Dou99] Bruce Powell Douglass. Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks and Patterns. Object Technology Series. Addision-Wesley, 1999.

[WKSK02] Shige Wang, Sharath Kodase, Kang G. Shin, and Daniel L. Kiskis. Measurement
of os services and its application to performance modeling and analysis of integrated
embedded software. In Proceedings of the Real-Time and Embedded Technology and
Applications Symposium, pages 113–122. IEEE, September 2002.

Description

A: Either 8 marks

• Write a C program for the IRMX/µCOS-II operating system/kernel which presumes
that the following global variables are declared:

#define TASKN
void far (*task[TASKN])(void);
int far period[TASKN];

and performs the following functions:

– The main program runs each task for a fixed number of iterations and determines
the individual response times.

– The main program creates several instances of a standard task procedure with dif-
ferent priority levels, sleeps, deletes the tasks and then exits

– The standard task procedure determines what priority level it is running at, in order
to know which specific task procedure to invoke.

– The standard task should repeatedly invoke the specific task procedures provided,
and sleep until it is time for the next task invocation.

OR

• Implement a MATLAB/Simulink model which includes the four task blocks provided
and generate/run code for a generic Real-Time target using Real-Time Workshop.

EE66C 7th July 2006 48

B For the task procedures/blocks provided: 8 marks

• Using the framework from A, measure computation time for each task when run singly.

• Using the Cheddar simulator, assign periods longer than computation times so that the
system has utilization greater than 20% but is schedulable using RMA. What are the
predicted response times of each task under both RMA and round-robin scheduling?

• Using the framework from A, measure actual response times on the system when tasks
are started with priority ordering according to RMA.

• Using the framework from A, measure actual response times on the system when tasks
are started with the same priorities(i.e. round-robin/single-tasking).

C Modify the framework used in A, in order to identify the clock overhead, and observe the
behaviour of interval jitter and context switching time as the clock resolution, and task queue
length is varied, as per [WKSK02]. Use task4 for this investigation. 6 marks

D Modify the framework used in A, with an exception handler to trap floating point overflows,
and implement forward error recovery. Pass task4 a ”bad” argument and measure the error
recovery time for your handler. 6 marks

E Modify the MATLAB TrueTime simulation example for control of multiple DC Servo’s, in order
to accommodate the timing variations discovered above (Suggestion: use randomly generated
jitter intervals). Plot the step response of the DC Servo with/without timing variations. 6 marks

F Write a report which includes, your code for each experiment, the collected data, the clock
resolution and speed of the test system/OS and a discussion of/rationale for: 10 marks

• the differences observed between the measured and predicted response times for RMA
and round-robin scheduling.

• the effect of clock overhead and resolution on interval jitter, and context switching

• the effects of error recovery on response times, and system reliability

• the effects of timing on the overall control system

Compare task4 to the standard Control Loop Design Pattern (as described in UML in
[Dou99]). Are there any differences which would affect the performance of the control loop?

EE66C 7th July 2006 49

For testing, use the four tasks specified below (and on the following page).

/*Task 1 samples, and performs a calculation on the sampled data */

void task1(void *v) {

int sample = *(int*)v;

double d=sqrt((double)*(int *)v);

}

/* Task 2 samples, and converts the sample to a string for logging */

void task2(void *v) {

int sample = *(int*)v;

char log[100];

sprintf(log,"Sampled value is %i", sample);

}

EE66C 7th July 2006 50

/* Task 3 accesses the system time to perform low pass filtering on the sample */

void task3(void *v) {

static double cum=0;

static time_t last=0;

int sample = *(int*)v;

time_t now=time(NULL);

int frac;

/* Filter over 1000 time steps */

frac=now-last;

frac=(frac<0?0:(frac>1000?1000:frac));

cum=0.001*(cum*(1000-frac)+sample*(frac));

last=now;

}

/* Task 4 implements a PID control loop.

The constants and filter parameter are defined. The prior values are stored.

The sampled values are received, and the result returned in an array of

doubles whose address is passed to the procedure. */

void task4(void *v) {

#define K 0.96

#define N 10

#define Td 0.049

#define Ti 0.12

static double Iold=0;

static double Dold=0;

static double yold=0;

static time_t last=0;

double sample_r = ((double *)v)[1];

double sample_y = ((double *)v)[0];

time_t now=time(NULL);

frac=now-last;

frac=(frac<0?0:(frac>1000?1000:frac));

double P = K*(sample_r-sample_y);

double I = Iold + K*frac/Ti*(sample_r-sample_y);

double D = Td/(N*frac + Td)* Dold + N*K*Td/(N*frac+Td)*(yold-sample_y);

double u = ((double *)v)[2] = P + I + D;

Iold = I;

Dold = D;

yold = y;

last=now;

#undef K

#undef Ti

#undef Td

#undef N

}

#define TASKN 4

void far (*task[TASKN-1])(void)={task1,task2,task3,task4};

unsigned int far period[TASKN-1]={0,0,0,0};

EE66C 7th July 2006 51

Exam Review

The exam will be 3 hours long. Exam format: 4 structured questions based on the coursework
and review questions worth a total of 40 marks; 1 scenario/case study worth 60 marks. There is
no choice of questions. You are expected to know the following topics, or be able to perform the
following tasks:

• Typical RTOS services and characteristics

– Define/explain terms used in RT systems

– Understand operation, properties and analysis of the common scheduling algorithms
RM, EDF, LLF, SJF, cyclic executive, round robin, FIFO

– Utilise techniques for implementing ideal task schedules on ”non-ideal” RTOS’s

– Apply rules for deduction of appropriate sampling intervals for (simple control) tasks.

– Understand techniques for period transformation, and the implications for control loops.

• Understand UML diagram syntax and usage; apply techniques for developing UML diagrams
from requirements

• Assessment & Improvement: discuss the relative merits of various hardware/software solutions
for a RT system including

– Techniques for(drawbacks of) software/hardware redundancy/fault tolerance/reliability.

– Voting schemes used in NMR and in N version software programming,

– Exception handling mechanisms, and recovery block checkpoint placement issues,

– Power/Resource management and their effects on RT performance

– Implications/dangers of single-points of failure

– Troubleshooting digital control systems based on step response graphs

• Remember Formulae for

– Utilisation;

– Utilisation bounds for all scheduling algorithms;

– Response Time Analysis;

– Poisson distribution as hardware reliability model;

