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What is real-time scheduling theory (1)

• Many real-time systems are built with operating
systems providing multitasking facilities, in order to:

Ease the design of complex systems (one function =
one task).

Increase efficiency (I/O operations, multi-processor
architecture).

Increase re-usability.

But, multitasking makes the predictability analysis
difficult to do : we must take the task scheduling into
account in order to check temporal constraints =⇒
schedulability analysis.
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What is real-time scheduling theory (2)

• Example of a software embedded into a car:

1. Tasks are released several times and have a job to do for each
release.

2. Each task completes its current job before it has been released for
the next one.

3. A task displays every 100 milliseconds the current speed of the car.

4. A task reads a speed sensor every 250 milliseconds.

5. A task performs an engine monitoring algorithm every 500
milliseconds.

=⇒ How can we check that tasks will be run at the proper rate? Do they meet their timing
requirements? Do we have enough processor resource?

=⇒ If the system is complex (e.g. large number of tasks), the designer must be helped to
perform such an analysis.
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What is real-time scheduling theory (3)

• The real-time scheduling theory provides:

1. Algorithms to share a processor (or any resources)
by a set of tasks (or any resource users) according to
some timing requirements =⇒ take urgency of the tasks
into account.

2. Analytical methods, called feasibility tests or
schedulability tests , which allow a system designer to
early analyze/"compute" the system behavior before
implementation/execution time.
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Scheduling algorithms (1)

• Different kinds of real-time schedulers:

On-line/off-line scheduler: the scheduling is
computed before or at execution time?

Static/dynamic priority scheduler: priorities may
change at execution time?

Preemptive or non preemptive scheduler: can we
stop a task during its execution ?
1. Preemptive schedulers are more efficient than non

preemptive schedulers (e.g. missed deadlines).
2. Non preemptive schedulers ease the sharing of

resources.
3. Overhead due to context switches.
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Scheduling algorithms (2)

• Different kinds of real-time schedulers:

Feasibility tests (schedulability tests) exist or not:
can we prove that tasks will meet deadlines before
execution time?

Complexity: can we apply feasibility tests on large
systems (e.g. large number of tasks)?

Suitability: can we implement the chosen scheduler in
a real-time operating system?
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Models of task (1)

• Task : sequence of statements + data + execution context
(processor and MMU). Usual states of a task.

• Usual task types :

Urgent or/and critical tasks.

Independent tasks or dependent tasks.

Periodic and sporadic tasks (critical tasks). Aperiodic
tasks (non critical tasks).
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Models of task (2)

• Usual parameters of a periodic task i:

Period: Pi (duration between two periodic release times). A task
starts a job for each release time.

Static deadline to meet: Di, timing constraint relative to the
period/job.

First task release time (first job): Si.

Worst case execution time of each job: Ci (or capacity).

Priority: allows the scheduler to choose the task to run.
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Models of task (3)

• Assumptions for this lecture (synchronous periodic
task with deadlines on requests) [LIU 73]:

1. Tasks are periodic.

2. Tasks are independent.

3. Tasks have deadline on request, e.g. ∀i : Pi = Di : a task must end
its current job before its next release time.

4. Tasks are synchronous, e.g. ∀i : Si = 0 =⇒ called critical instant
(worst case on processor demand).
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Usual real-time schedulers

1. Fixed priority scheduler: Rate Monotonic priority
assignment (sometimes called Rate Monotonic
Scheduling or Rate Monotonic Analysis, RM, RMS,
RMA).

2. Dynamic priority scheduler: Earliest Deadline First
(or EDF).
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Fixed priority scheduling (1)

• Assumptions/properties of fixed priority scheduling :

Scheduling based on fixed priority =⇒ static and critical
applications.

Priorities are assigned at design time (off-line).

Efficient and simple feasibility tests.

Scheduler easy to implement into real-time operating
systems.

• Assumptions/properties of Rate Monotonic
assignment:

Optimal assignment in the case of fixed priority
scheduling.

Periodic tasks only.
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Fixed priority scheduling (2)

• How does it work:

1. "Rate monotonic" task priority assignment: the
highest priority tasks have the smallest periods.
Priorities are assigned off-line (e.g. at design time,
before execution).

2. Fixed priority scheduling: at any time, run the ready
task which has the highest priority level.
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Fixed priority scheduling (3)

• Rate Monotonic assignment and preemptive scheduling:

Assuming VxWorks priority levels (high=0 ; low=255)

T1 : C1=6, P1=10, Prio1=0

T2 : C2=9, P2=30, Prio2=1
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Fixed priority scheduling (4)

• Rate Monotonic assignment and non preemptive
scheduling:

Assuming VxWorks priority levels (high=0 ; low=255)

T1 : C1=6, P1=10, Prio1=0

T2 : C2=9, P2=30, Prio2=1
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Fixed priority scheduling (5)

• Feasibility/Schedulability tests:
1. Run simulations on hyperperiod = [0, LCM(Pi)]. Sufficient and

necessary (exact result). Any priority assignment and
preemptive/non preemptive scheduling.

2. Processor utilization factor test :

U =
n
∑

i=1

Ci

Pi

≤ n(2
1

n − 1)

Rate Monotonic assignment and preemptive scheduling. Sufficient
but not necessary. Does not compute an exact result.

3. Task worst case response time, noted ri =⇒ delay between task
release time and task end time. Can compute an exact result. Any
priority assignment and preemptive scheduling.
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Fixed priority scheduling (6)

• Compute ri, the task worst case response time:

Assumptions: preemptive scheduling, synchronous periodic tasks.

task i response time = task i capacity + delay the task i has to wait
due to higher priority task j. Or:

ri = Ci +
∑

j∈hp(i)

WaitingT imej

or:

ri = Ci +
∑

j∈hp(i)

⌈

ri

Pj

⌉

Cj

hp(i) is the set of tasks which have a higher priority than task i. ⌈x⌉
returns the smallest integer not smaller than x.
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Fixed priority scheduling (7)

• To compute task response time : compute wk
i with:

wn+1
i = Ci +

∑

j∈hp(i)

⌈

wn
i

Pj

⌉

Cj

• Start with w0
i = Ci.

• Compute w1
i , w

2
i , w

3
i , ... wk

i upto:

If wk
i > Pi. No task response time can be computed for

task i. Deadlines will be missed !

If wk
i = wk−1

i . wk
i is the task i response time. Deadlines

will be met.
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Fixed priority scheduling (8)

• Example: T1 (P1=7, C1=3), T2 (P2=12, C2=2), T3 (P3=20, C3=5)

w0
1 = C1 = 3 =⇒ r1 = 3

w0
2 = C2 = 2

w1
2 = C2 +

⌈

w0

2

P1

⌉

C1 = 2 +
⌈

2
7

⌉

3 = 5

w2
2 = C2 +

⌈

w1

2

P1

⌉

C1 = 2 +
⌈

5
7

⌉

3 = 5 =⇒ r2 = 5

w0
3 = C3 = 5

w1
3 = C3 +

⌈

w0

3

P1

⌉

C1 +
⌈

w0

3

P2

⌉

C2 = 5 +
⌈

5
7

⌉

3 +
⌈

5
12

⌉

2 = 10

w2
3 = 5 +

⌈

10
7

⌉

3 +
⌈

10
12

⌉

2 = 13

w3
3 = 5 +

⌈

13
7

⌉

3 +
⌈

13
12

⌉

2 = 15

w4
3 = 5 +

⌈

15
7

⌉

3 +
⌈

15
12

⌉

2 = 18

w5
3 = 5 +

⌈

18
7

⌉

3 +
⌈

18
12

⌉

2 = 18 =⇒ r3 = 18
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Fixed priority scheduling (9)

• Analysis of the car with embedded software example:

1. Tdisplay: task which displays speed. P=100, C=20.

2. Tspeed: task which reads speed sensor. P=250, C=50.

3. Tengine: task which runs an engine monitoring
program. P=500, C=150.

• Processor utilization test:
U =

∑n
i=1

Ci

Pi

= 20/100 + 150/500 + 50/250 = 0.7

Bound = n(2
1

n − 1) = 3(2
1

3 − 1) = 0.779
U ≤ Bound =⇒deadlines will be met.

• Task response time: rTengine = 330, rTdisplay = 20,

rTspeed = 70.
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Fixed priority scheduling (11)

• ... and check on the computed scheduling

• Run simulations on scheduling period = [0, LCM(Pi)] =
[0, 500].

Univ. Brest/Lab-STICC Page 22/49



Earliest Deadline First (1)

• Assumptions and properties:

Dynamic priority scheduler =⇒ suitable for dynamic
real-time systems.

Is able to schedule both aperiodic and periodic tasks.

Optimal scheduler: can reach 100 % of the cpu usage.

But difficult to implement into a real-time operating
system.

Becomes unpredictable if the processor is over-loaded
=⇒not suitable for hard-critical real-time systems.
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Earliest Deadline First (2)

• How does it work:

1. Compute task priorities (called "dynamic
deadlines") =⇒Di(t) is the priority/dynamic deadline
of task i at time t:

Aperiodic task : Di(t) = Di + Si.
Periodic task: Di(t) = k + Di, where k is the task
release time before t.

2. Select the task: at any time, run the ready task which
has the shortest dynamic deadline.
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Earliest Deadline First (3)

• Preemptive case: (T1/blue, T2/yellow, C1=6; P1=10;
C2=9; P2=30)

t D1(t) D2(t)

0..9 k +D1 = 0 + 10 = 10 k +D2 = 0 + 30 = 30

10..19 k +D1 = 10 + 10 = 20 30

20..29 k +D1 = 20 + 10 = 30 30
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Earliest Deadline First (4)

• Non preemptive case:
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Earliest Deadline First (5)

• Feasibility tests/schedulability tests:

1. Run simulations on hyperperiod = [0, LCM(Pi)].
Sufficient and necessary (exact result).

2. Processor utilization factor test (e.g. preemptive
case):

U =

n
∑

i=1

Ci

Pi
≤ 1

Sufficient and necessary. Difficult to use in real life
applications. Compute an exact result.

3. Task response time: a bit more complex to compute
(dynamic scheduler) !
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EDF vs RM: summary [BUT 03]

• Aperiodic task = non critical task.
• Periodic task = critical task.

FP/RM EDF

Applications critical, static dynamic, less critical
RTOS easy more difficult
implementation
Tasks Periodic only Aperiodic and periodic
Efficiency upto 69 % upto 100 %

Predictability high less than FP/RM if U > 1

• Warning: the real picture is more complicated: aperiodic
tasks scheduling with FP/RM, U=1 with FP/RM, ...
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POSIX 1003.1b standard (1)

• POSIX 1003.1b [GAL 95] = POSIX extensions to
implement real-time application.

• Scheduling model:

Preemptive fixed priority scheduling. At least 32 priority
levels.

Several scheduling policies to cope with same priority
tasks.

Two-levels scheduling.
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POSIX 1003.1b standard (2)

• Two-levels scheduling:

1. Choose the queue which has the highest priority level with at least
one ready task.

2. Choose a task from the queue selected in (1) according to a policy .
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POSIX 1003.1b standard (3)

• POSIX policies:

1. SCHED_FIFO : similar to the FIFO_Within_Priorities. Ready
tasks of a given priority level get the processor according to their
order in the queue.

2. SCHED_RR : SCHED_FIFO with a time quantum. A time
quantum is a maximum duration that a task can run on the processor
before preemption by an other task of the same queue. When the
quantum is exhausted, the preempted task is moved to the tail of the
queue.

3. SCHED_OTHER : implementation defined (usually implements a
time sharing scheduler).
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POSIX 1003.1b standard (4)

• Example:

Tasks Ci Si Priority Policy

a 1 7 1 FIFO

b 5 0 4 RR

c 3 0 4 RR

d 6 4 2 FIFO

cb b c d d d a d d d b c b b

0 5 10 1574

• Quantum SCHED_RR = 1 unit of time
• Higher priority level: 1
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POSIX 1003.1b standard (5)

• POSIX policies:
#define SCHED_OTHER 0
#define SCHED_FIFO 1
#define SCHED_RR 2

• Read system properties/capabilities:
int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);
int sched_rr_get_interval(pid_t pid,

struct timespec *tp);

• Release processor:
int sched_yield(void);
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POSIX 1003.1b standard (6)

• Scheduling parameters:
struct sched_param

{

int sched_priority;

...

};

• Read or update scheduling policy:
int sched_setscheduler(pid_t pid, int policy,

const struct sched_param *p);

int sched_getscheduler(pid_t pid);

• Read or update scheduling parameter:
int sched_getparam(pid_t pid,

struct sched_param *p);

int sched_setparam(pid_t pid,

const struct sched_param *p);
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POSIX 1003.1b standard (6)

• Example of slide number 15
struct sched_param parm;

int res=-1;

...

/* Task T1 ; P1=10 */

parm.sched_priority=15;

res=sched_setscheduler(pid_T1,SCHED_FIFO,&parm);

if(res<0)

perror("sched_setscheduler task T1");

/* Task T2 ; P2=30 */

parm.sched_priority=10;

res=sched_setscheduler(pid_T2,SCHED_FIFO,&parm);

if(res<0)

perror("sched_setscheduler task T2");
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Shared resources (1)

• In real-time scheduling theory, a shared resource is
modeled by a semaphore:

               task_is_released();

access_shared_resource(k)

P(sem)

V(sem)

Task j

access_shared_resource(k)

P(sem)

V(sem)

Task i

        {

               }                
         }

V(s)

        s.cpt=s.cpt+1;

               {
        if (s.cpt<=0)

        s.cpt=s.cpt−1;
        if (s.cpt<0)

               }                

P(s)
        {

         }

               {

               task_is_blocked();
               remove_task_from_the_queue(s.file);               add_task_to_the_queue(s.file);

Semaphore = counter + a FIFO queue.

A semaphore may be used to model a critical section.

We use special semaphores in real-time scheduling systems.
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Shared resources (2)

• What is Priority inversion: a low priority task blocks a high priority
task ... allowing a medium priority task to held the processor =⇒ a non
critical task runs before a critical task !

• Bi = bound on the shared resource waiting time.
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Shared resources (3)

How to reduce priority inversion?

How long a task must wait for the access to a shared
resource? How to compute Bi?

=⇒To reduce priority inversion, we use priority
inheritance.

• Priority inheritance protocols provide a specific
implementation of P () and V () of semaphores.
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Shared resources (4)

• Priority Inheritance Protocol or PIP:

A task which blocks a high priority task due to a critical section, sees
its priority to be increased to the priority level of the blocked task.

Bi = sum of the critical sections of the tasks which have a priority
smaller than i.
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Shared resources (5)

PIP can not be used with more than one shared
resource due to deadlock.

PCP (Priority Ceiling Protocol) [SHA 90] is used
instead.

Implemented in most of real-time operating systems
(e.g. VxWorks).

Several implementations of PCP exists: OPCP, ICPP, ...
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Shared resources (6)

• ICPP (Immediate Ceiling Priority Protocol):

Ceiling priority of a resource = maximum static priority of the tasks
which use it.

Dynamic task priority = maximum of its own static priority and the
ceiling priorities of any resources it has locked.
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Shared resources (7)

• How to take into account the blocking time Bi with
the processor utilization factor test:

Preemptive RM feasibility test:

∀ i, 1 ≤ i ≤ n :

i−1
∑

k=1

Ck

Pk

+
Ci + Bi

Pi
≤ i(2

1

i − 1)

Preemptive EDF feasibility test:

∀ i, 1 ≤ i ≤ n :

i−1
∑

k=1

Ck

Pk

+
Ci +Bi

Pi
≤ 1
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Shared resources (8)

• How to take into account the blocking time Bi with
the worst case response time ri of the task i (example
of a preemptive RM scheduler):

ri = Ci +Bi +
∑

j∈hp(i)

⌈

ri
Pj

⌉

Cj

with hp(i) the set of tasks which has a lowest priority than
task i.

• Which can be computed by:

wn+1
i = Ci +Bi +

∑

j∈hp(i)

⌈

wn
i

Pj

⌉

Cj
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Conclusion

1. Classical schedulers (Rate Monotonic, Earliest
Deadline First) and task models (periodic task).

2. Feasibility tests and early verification: at design step, on
architecture models. Can be made automatically.

3. Most of real-time operating systems provide fixed
priority scheduling.

4. POSIX standard.

5. Shared resources and inheritance protocols.
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