
Programming Real-Time Embedded
systems : C/POSIX and RTEMS

Frank Singhoff

Bureau C-203

University of Brest, France

Lab-STICC UMR CNRS 6285

singhoff@univ-brest.fr

Univ. Brest/Lab-STICC Page 1/63

Summary

1. Introduction

2. Operating systems for Real-Time applications

3. Market

4. POSIX 1003 Standard

5. RTEMS operating system
(a) POSIX thread model of RTEMS and fixed priority

scheduling
(b) Synchronization tools
(c) Clocks and timers management

6. Summary

7. References

Univ. Brest/Lab-STICC Page 2/63

Introduction

• Properties/constraints of embedded real-time
systems:

1. As any real-time systems: functions and timing
behavior must be predictable.

2. Extra requirements or constraints:

Limited resources: memory footprint, power, ...
Reduced accessibility for programmers.
High level of autonomy (predictability).
Interact with their environment, with
sensors/actuators (predictability).

• Various kinds of execution platforms.

Univ. Brest/Lab-STICC Page 3/63

Summary

1. Introduction

2. Operating systems for Real-Time applications

3. Market

4. POSIX 1003 Standard

5. RTEMS operating system
(a) POSIX thread model of RTEMS and fixed priority

scheduling
(b) Synchronization tools
(c) Clocks and timers management

6. Summary

7. References

Univ. Brest/Lab-STICC Page 4/63

Execution platform (1)

• Main features/criteria

Real-time abstractions: tasks, scheduling, interrupts,
synchronization and communication tools, ...

Portability: by the architecturen the standards (POSIX 1003, Ada
2005).

Configurability: mandatory versus optional parts. Adaptation to
application requirements. Memory footprint.

Isolation: boundary of memory protection mechanisms.

Support of real-time languages: mainly C, C++ and Ada.

Ease access to hardware resources/devices.

Level of predictability.

Programming/compiling environment.

Univ. Brest/Lab-STICC Page 5/63

Execution platform (2)

• Types of execution platforms

Bare-metal runtime: no operating system (OS).

Real-time operating systems (RTOS): OS but usually no
system calls and memory protection.

Real-time unix: OS, system calls, memory protection,
spacial isolation.

Time and space partitioned systems (TSP): both
memory and time isolation (by scheduling).

Univ. Brest/Lab-STICC Page 6/63

Execution platform (3)

• Bare-metal

Highest level of predictability. Full access to hardware.

No memory protection : system and application are linked alltogether

High development cost if system re-design.

System services ; e.g. off-line scheduling, no concurrent tasks.

Think about a library linked with your application.
Univ. Brest/Lab-STICC Page 7/63

Execution platform (4)

• RTOS, Real-Time operating system

High predictability. Full access to hardware.

Concurrent tasks and online ressource managment (scheduling).

System needs configuration (agencies). More flexible if system
re-design. Portability brought by layers: kernel and BSP.

No memory protection. Both application tasks and kernel tasks share
the same address space.

Univ. Brest/Lab-STICC Page 8/63

Execution platform (5)

• Real-time Unix

A Unix, but with higher preemptivity and real-time scheduling
features.

Lower level of predictibility.

Usual programming environnment (i.e. no need to cross-compiler).

Classical Unix Process/thread memory protection : kernel and user
space + system calls.

Univ. Brest/Lab-STICC Page 9/63

Execution platform (6)

• Time and space Paritionning execution platform

Concepts of partitions and processes.

Enforce both temporal and space isolation.

2 levels of OS, of scheduling (off-line partition scheduling + online
process scheduling), of communication/synchronization (intra and
inter partitions).

Univ. Brest/Lab-STICC Page 10/63

RTOS: Real-time operating system (1)

• Portability of programs: layered architecture to increase portability

Language runtimes: allow to run a program written with a given
language (C or Ada).

BSP/Board support package: allows to port a system on different
hardware devices/processors. Contains drivers.

Univ. Brest/Lab-STICC Page 11/63

RTOS: Real-time operating system (2)

• Configurability : required because small amount of resources : we only
put into the system the mandatory agencies.

Kernel: mandatory part of the monitor.

Agencies: optional parts, depending on the hardware, on the
application/system requirements. Univ. Brest/Lab-STICC Page 12/63

RTOS: Real-time operating system (3)

NFS disk

Host machine Target machine

Monitor

. TCP/IP, FTP, serial link, ...

Windows/Linux

rsh

GDB rGDB

Cross-compiling : because targets have a limited
amount of resource (configurability) and are composed
of specific hardware/software (timing behavior).

Host: where we compile the program.

Target: where we run the program.

Univ. Brest/Lab-STICC Page 13/63

RTOS: Real-time operating system (4)

• Performances are a priori known and deterministic

Allow schedulability analysis (task capacities).

Use of benchmarks (e.g. Rhealstone, Hartstone, etc).

• Main criteria

Latency on interrupt.

Latency on context switches.

Latency on preemption.

Semaphore shuffle (latency between the release of a semaphore and
its allocation by a waiting task).

Worst case response time of each system call, each subprogram of
each library, ...

etc

Univ. Brest/Lab-STICC Page 14/63

Summary

1. Introduction

2. Operating systems for Real-Time applications

3. Market

4. POSIX 1003 Standard

5. RTEMS operating system
(a) POSIX thread model of RTEMS and fixed priority

scheduling
(b) Synchronization tools
(c) Clocks and timers management

6. Summary

7. References.

Univ. Brest/Lab-STICC Page 15/63

Market (1)

Cho
ru

sO
S

21.42
19.7

12.84

10.19

6.645.96
4.69

2.86
3.89

2.41 2.3 1.951.83 1.611.72

Oth
er

s

RT−L
inu

x

RTX

Nuc
leu

s+

W
ind

ow
s C

E

iR
M

XIII

Ly
nx

OS

VRTX

OS9

W
ind

ow
s N

T

5

10

15

20

25

30

Real Time Operating Systems

P
er

ce
nt

s

vx
W

or
ks

pS
OS

QNX

Hom
e

m
ad

e
RTOS

Number of company using each RTOS

• Specificities of this market [TIM 00]

Large number of products: each product is devoted to a very few
application types or domains.

Many "home made" products.

Univ. Brest/Lab-STICC Page 16/63

Market (2)

• Commercial

VxWorks (RTOS, large spectrum of use e.g. Pathfinder, french
satellite).

pSOS (RTOS, mobile phone, military systems).

VRTX (RTOS, mobile phone, military systems).

LynxOs (real-time unix).

PikeOS (TSP).

• Open-source

OSEK-VDX (RTOS, automotive systems).

RTEMS (RTOS, space and military applications).

eCos (RTOS).

RT-Linux, RTAI, Xenomai (real-time unix).

POK (TSP).
Univ. Brest/Lab-STICC Page 17/63

Summary

1. Introduction

2. Operating systems for Real-Time applications

3. Market

4. POSIX 1003 Standard

5. RTEMS operating system
(a) POSIX thread model of RTEMS and fixed priority

scheduling
(b) Synchronization tools
(c) Clocks and timers management

6. Summary

7. References.

Univ. Brest/Lab-STICC Page 18/63

POSIX 1003 standard (1)

• Define a standardized interface of an operating system similar to UNIX
[VAH 96].

• Published by ISO and IEEE. Organized in chapters:

Chapters Meaning

POSIX 1003.1 System Application Program Interface

(e.g. fork, exec)

POSIX 1003.2 Shell and utilities (e.g. sh)

POSIX 1003.1b [GAL 95] Real-time extensions.

POSIX 1003.1c [GAL 95] Threads

POSIX 1003.5 Ada POSIX binding

...

• Each chapter provides a set of services. A service may be mandatory
or optional.

Univ. Brest/Lab-STICC Page 19/63

POSIX 1003 standard (2)

Example of operating systems providing 1003.1b: Lynx/OS,
VxWorks, Solaris, Linux, QNX, etc .. (actually, most of real-time
operating systems).

POSIX 1003.1b services :

Name Meaning

_POSIX_PRIORITY_SCHEDULING Fixed priority scheduling

_POSIX_REALTIME_SIGNALS Real-time signals

_POSIX_ASYNCHRONOUS_IO Asynchronous I/O

_POSIX_TIMERS WatchDogs

_POSIX_SEMAPHORES Synchronization tools

...

Univ. Brest/Lab-STICC Page 20/63

Summary

1. Introduction

2. Operating systems for Real-Time applications

3. Market

4. POSIX 1003 Standard

5. RTEMS operating system
(a) POSIX thread model of RTEMS and fixed priority

scheduling
(b) Synchronization tools
(c) Clocks and timers management

6. Summary

7. References.

Univ. Brest/Lab-STICC Page 21/63

Introducing RTEMS (1)

• RTEMS operating system

RTEMS: GNU GPL real-time operating system for C and Ada small
hard real-time systems.

Available for numerous BSP (included processor Leon : 32 bits,
VHDL open-source, compliant with SPARC).

RTEMS has several API: native, Itron, POSIX and Ada (GNAT/Ada
2005 compiler from AdaCore).

Well adapted for space/aircraft applications.

Cross-compiling: compile on Linux, run on Leon.
Univ. Brest/Lab-STICC Page 22/63

Introducing RTEMS (2)

• RTEMS model of concurrency

Single process/address space and multiple threads

All flows of control (threads) share the same address
space.

Why one address space only
Simple memory model implies more deterministic
behavior.
Real-time system: only one application started when
the system is switched on: no need to isolate several
applications.
Ease flows of control communication and make them
efficient.

Univ. Brest/Lab-STICC Page 23/63

Introducing RTEMS (3)

• Process in Unix = execution context + private address space (i.e. not
shared with the other Unix processes).
• For safety, each process has its own address space.

#include <stdio.h>

int a=100;

int main(int argc, char* argv[]) {

if(fork()==0)

a+=100;

else a+=200;

printf("a = %d\n",a);

}

What is displayed with Unix?

And with RTEMS?

Univ. Brest/Lab-STICC Page 24/63

Introducing RTEMS (4)

• Simple RTEMS C program

de f ine CONFIGURE_MAXIMUM_POSIX_THREADS 10

de f ine CONFIGURE_MAXIMUM_POSIX_MUTEXES 7

de f ine CONFIGURE_MAXIMUM_POSIX_TIMERS 16

de f ine CONFIGURE_MAXIMUM_POSIX_QUEUED_SIGNALS 40

de f ine CONFIGURE_APPLICATION_NEEDS_CLOCK_DRIVER

def ine CONFIGURE_APPLICATION_NEEDS_TIMER_DRIVER

inc lude < s t d i o . h>

vo id * POSIX_Ini t (vo id * argument) {

p r i n t f (" He l lo wor ld RTEMS\ n ") ;

e x i t (0) ;

r e tu rn NULL;

}

Univ. Brest/Lab-STICC Page 25/63

Introducing RTEMS (5)

POSIX_Init(): main entry point. High priority level flow
of control that initializes the application => the
application starts at POSIX_Init() completion =>
critical instant (real-time scheduling theory).

exit(): stops the application. We can switch off the
board!

C macros: to select embedded agencies and resource
requirements (number of threads, number of
semaphores) => constraints of embedded systems.
Defined in system.h in the sequel.

Univ. Brest/Lab-STICC Page 26/63

Introducing RTEMS (6)

• Cross compiling
1. Compile on Linux and generate a SPARC binary:

#make

sparc −rtems4 .8 −gcc −−pipe −B/home / s i n g h o f f /ADA/ rtems − 4 . 8 / / sparc −rtems

−g −Wall −O2 −g −g −mcpu=cypress −msoft − f l o a t

−o o−opt imize / h e l l o . exe o−opt imize / i n i t . o

sparc −rtems4 .8 −nm −g −n o−opt imize / h e l l o . exe > o−opt imize / h e l l o .num

sparc −rtems4 .8 − s ize o−opt imize / h e l l o . exe

t e x t data bss dec hex f i lename

109840 3652 5360 118852 1d044 o−opt imize / h e l l o . exe

f i l e o−opt imize / h e l l o . exe

o−opt imize / h e l l o . exe : ELF 32− b i t MSB executable , SPARC, vers ion 1 (SY

f i l e / b in / l s

/ b in / l s : ELF 32− b i t LSB executable , I n t e l 80386 , ve rs ion 1 (SYSV) ,

dynamica l ly l i n ke d (uses shared l i b s) , f o r GNU/ Linux 2 .6 .15 , s t r i p p e d

Univ. Brest/Lab-STICC Page 27/63

Introducing RTEMS (7)

• Cross-compiling (cont)
2. Send the binary to the Board/Leon processor (TCP/IP, serial link, ...).

3. Run the program on the board/Leon processor. Software emulator
tsim (Leon 3 processor emulator).

ts im o−opt imize / h e l l o . exe

TSIM /LEON3 SPARC s imu la to r , ve rs ion 2.0 .15 (eva lua t i on vers ion)

a l l o ca te d 4096 K RAM memory , i n 1 bank (s)

a l l o ca te d 32 M SDRAM memory , i n 1 bank

a l l o ca te d 2048 K ROM memory

read 2257 symbols

tsim > run

resuming a t 0x40000000

* * I n i t s t a r t * *

* * I n i t end * *
He l lo wor ld RTEMS

Program ex i ted normal ly .

ts im > q u i t
Univ. Brest/Lab-STICC Page 28/63

Summary

1. Introduction

2. Operating systems for Real-Time applications

3. Market

4. POSIX 1003 Standard

5. RTEMS operating system
(a) POSIX thread model of RTEMS and fixed priority

scheduling
(b) Synchronization tools
(c) Clocks and timers management

6. Summary

7. References.

Univ. Brest/Lab-STICC Page 29/63

POSIX threads with RTEMS (1)

Compliant with chapter POSIX 1003.1c. Define both
thread and synchronization tools.

POSIX_Init(): main thread of the application

exit(): stops all threads. We can switch off the board!

A thread inherit scheduling parameters from its creating
thread.

system.h: configure RTEMS kernel according to the
number of threads (and semaphores too) => we cannot
create threads as much as we want (deterministic
system).

Univ. Brest/Lab-STICC Page 30/63

POSIX threads with RTEMS (2)

pthread_create Spawn a thread.
Parameters : code, attributes, arg.

pthread_exit Terminate a thread.
Parameters : return code.

pthread_self Return thread id
pthread_cancel Delete a thread.

Parameters : thread id.
pthread_join Wait for

the completion of a son.
pthread_detach Delete relationship between

a son and its father.
pthread_kill Send a signal to a thread.
pthread_sigmask Change signal mask

of a thread. Univ. Brest/Lab-STICC Page 31/63

POSIX threads with RTEMS (3)

vo id * th (vo id * arg) {

p r i n t f (" Thread %d i s running \ n " , p th read_se l f ()) ;

p th read_ex i t (NULL) ;

}

vo id * POSIX_Ini t (vo id * argument) {

p thread_t id1 , id2 ;

i f (p thread_create (& id1 ,NULL, th ,NULL) ! = 0)

pe r ro r (" p thread_create1 ") ;

i f (p thread_create (& id2 ,NULL, th ,NULL) ! = 0)

pe r ro r (" p thread_create2 ") ;

i f (p th read_ jo in (id1 ,NULL) ! = 0)

pe r ro r (" p th read_ jo in 1 ") ;

i f (p th read_ jo in (id2 ,NULL) ! = 0)

pe r ro r (" p th read_ jo in 2 ") ;

p r i n t f (" End o f the a p p l i c a t i o n \ n ") ;

e x i t (0) ;

}
Univ. Brest/Lab-STICC Page 32/63

POSIX threads with RTEMS (4)

• Compile and run
#make

sparc −rtems4 .8 −gcc . . .

#

ts im o−opt imize / j o i n . exe

tsim > run

Thread 184614914 i s running

Thread 184614915 i s running

End o f a p p l i c a t i o n

Program ex i ted normal ly .

ts im > q u i t

Univ. Brest/Lab-STICC Page 33/63

POSIX 1003 scheduling (1)

• POSIX real-time scheduling model

Preemptive fixed priority scheduling. At least 32 priority levels.

Scheduling parameters are either inherited (PTHREAD_INHERIT_SCHED

attribute) of explicitly changed (PTHREAD_EXPLICIT_SCHED attribute).

Two-levels scheduling:

1. Choose the queue which has the highest priority level with at least one ready
process/thread.

2. Choose a process/thread from the queue selected in (1) according to a policy .

Univ. Brest/Lab-STICC Page 34/63

POSIX 1003 scheduling (2)

• POSIX policies:

1. SCHED_FIFO: when a thread becomes ready, it is inserted in the tail of its
corresponding priority queue. Give the processor to the thread in the head of the
queue. When blocked or terminated, a thread leaves the queue and the next
process/thread in the queue gets the processor.

2. SCHED_RR: SCHED_FIFO with a time quantum. A time quantum is a maximum
duration that a thread can run on the processor before preemption by an other thread
of the same queue. When the quantum is exhausted, the preempted thread is moved
to the tail of the queue.

3. SCHED_OTHER: implementation defined (may implement a time sharing
scheduler).

Univ. Brest/Lab-STICC Page 35/63

POSIX 1003 scheduling (3)

• Example:

Task Ci Si Priority Policy

a 1 7 1 FIFO

b 5 0 4 RR

c 3 0 4 RR

d 6 4 2 FIFO

cb b c d d d a d d d b c b b

0 5 10 1574

• Quantum SCHED_RR = 1 unit of time.
• Highest priority level 1.

Univ. Brest/Lab-STICC Page 36/63

POSIX 1003 scheduling (4)

• POSIX policy
#define SCHED_OTHER 0
#define SCHED_FIFO 1
#define SCHED_RR 2

• Scheduling parameters
struct sched_param
{

int sched_priority;
...

};

• We can perform scheduling parameter updates

1. When threads are created (with attribute or inheritance).

2. At any time (with specific POSIX functions).
Univ. Brest/Lab-STICC Page 37/63

POSIX 1003 scheduling (5)

sched_get_priority_max Read maximum

priority level

sched_get_priority_min Read minimum

priority level

sched_rr_get_interval Read quantum

sched_yield Release the processor

pthread_setschedparam Assign priority/policy

pthread_getschedparam Read priority/policy

Univ. Brest/Lab-STICC Page 38/63

Thread attributes (1)

• Attributes: properties of a thread that are set at thread
creation.

Have a default value (e.g. stacksize).

Attribute name Meaning

detachstate pthread_join possible or not

schedpolicy scheduling policy

schedparam fixed priority (and other parameters)

inheritsched inheriting scheduling parameters

stacksize thread memory requirement

stackaddr address of the thread stack

=⇒ Allow to customize threads for real-time systems

Specification of resource requirements: memory/stack.

Specification of scheduling parameters.

Univ. Brest/Lab-STICC Page 39/63

Thread attributes (2)

• pthread_attr_t type: store attribute data. Must be
initialized before thread creation.

pthread_attr_init Allocate an attribute
pthread_attr_delete Remove an attribute
pthread_attr_setATT Set a value to an attribute
pthread_attr_getATT Read the value of an attribute

with ATT , the name of the attribute.

Univ. Brest/Lab-STICC Page 40/63

Thread attributes (3)

vo id * th (vo id * arg) . . .

vo id * POSIX_Ini t (vo id * argument) {

p t h r e a d _ a t t r _ t a t t r ;

p th read_t i d ;

s t r u c t sched_param param ;

p t h r e a d _ a t t r _ i n i t (& a t t r) ;

i f (p t h r e a d _ a t t r _ se t i n h e r i t s c h e d (& a t t r ,PTHREAD_EXPLICIT_SCHED) ! = 0)

pe r ro r (" p t h r e a d _ a t t r _ se t i n h e r i t s ch e d ") ;

i f (p th read_a t t r_se tschedpo l i cy (& a t t r ,SCHED_RR) ! = 0)

pe r ro r (" p th read_a t t r_se tschedpo l i cy ") ;

param . s c h e d _ p r i o r i t y =130;

i f (pthread_attr_setschedparam (& a t t r ,¶m) ! = 0)

pe r ro r (" pthread_attr_setschedparam ") ;

i f (p thread_create (& id ,& a t t r , th ,NULL) ! = 0)

pe r ro r (" p thread_create ") ;
Univ. Brest/Lab-STICC Page 41/63

Summary

1. Introduction

2. Operating systems for Real-Time applications

3. Market

4. POSIX 1003 Standard

5. RTEMS operating system
(a) POSIX thread model of RTEMS and fixed priority

scheduling
(b) Synchronization tools
(c) Clocks and timers management

6. Summary

7. References

Univ. Brest/Lab-STICC Page 42/63

Synchronization tools (1)

• Different types

1. Mutexes

2. Counting semaphores

3. Conditional variables

Univ. Brest/Lab-STICC Page 43/63

Mutexes versus semaphores (1)

• Mutexes

Optimized for critical section only:
P() and V() of the same mutex in this order only.
The task who does the last P() of a mutex must be
the one who will do the next V() on that mutex.
Inner P() of nested P() of a mutex, called by the
same task, may be not blocking.
Cannot be used otherwise.

Most of the time based on efficient hardware
mechanisms, i.e. spinlock, test-and-set.

Univ. Brest/Lab-STICC Page 44/63

Mutexes versus semaphores (2)

• Counting semaphores

Less efficient than mutexes.

No priority inheritance (no PCP like protocol).

Can be used to build any synchronization
P() and V() can be called in any order.
P() and V() of the same semaphore can be called by
different tasks.

Univ. Brest/Lab-STICC Page 45/63

Mutex (1)
Semaphores that are optimized for critical section.

Composed of a queue and a boolean.

Semaphore queue : threads are sorted according to their priority if SCHED_FIFO

or SCHED_RR.

Behavior can be tailored with attributes:

Attribute name Meaning

protocol Inheritance protocol

pshared not used with RTEMS

prioceiling PCP/PIP priority ceiling

• protocol can have the following values:

PTHREAD_PRIO_NONE: blocking order is FIFO.

PTHREAD_PRIO_INHERIT : blocking order is priority with PIP.

PTHREAD_PRIO_PROTECT : blocking order is priority with PCP.

Univ. Brest/Lab-STICC Page 46/63

Mutex (2)

pthread_mutex_init Initialize a mutex
pthread_mutex_lock Lock ;

may be blocking
pthread_mutex_trylock Try to lock ;

unblocking primitive
pthread_mutex_unlock Unlock
pthread_mutex_destroy Delete a mutex
pthread_mutexattr_init Initialize an

attribute
pthread_mutexattr_setATT Set an attribute
pthread_mutexattr_getATT Read an attribute

with ATT , the name of the attribute.

Univ. Brest/Lab-STICC Page 47/63

Counting semaphore (1)

Can be used for any synchronization, and not only
critical section.

Semaphore composed of a queue and an integer.

No attribute.

Semaphore queue: threads are sorted according to
their priority if SCHED_FIFO or SCHED_RR.

Univ. Brest/Lab-STICC Page 48/63

Counting semaphore (2)

sem_init Initialize a semaphore
sem_destroy Delete a semaphore
sem_post Unlock semaphore.
sem_wait Lock a semaphore ;

may be blocking
sem_trywait Unblocking locking semaphore

Univ. Brest/Lab-STICC Page 49/63

Counting semaphore (3)
• Example:

sem_t sem;

vo id * POSIX_Ini t (vo id * argument) {

p thread_t i d ; s t r u c t t imespec delay ;

i f (sem_in i t (&sem, 0 , 0) ! = 0)

pe r ro r (" sem_in i t ") ;

i f (p thread_create (& id ,NULL, th ,NULL) ! = 0)

pe r ro r (" p thread_create ") ;

delay . tv_sec =4; delay . tv_nsec =0;

nanosleep(& delay ,NULL) ;

p r i n t f (" Main thread %d : unlock thread %d \ n " , p th read_se l f () , i d) ;

i f (sem_post(&sem) ! = 0)

. . .
Univ. Brest/Lab-STICC Page 50/63

Counting semaphore (4)

• Example (cont):

vo id * th (vo id * arg) {

p r i n t f (" thread %d i s blocked \ n " , p th read_se l f ()) ;

i f (sem_wait (&sem) ! = 0)

pe r ro r (" sem_wait ") ;

p r i n t f (" thread %d i s re leased \ n " , p th read_se l f ()) ;

}

• Compile and run:

$make

sparc −rtems4 .8 −gcc . . .

$

$ts im o−opt imize / sem . exe

tsim >run

thread 184614914 i s blocked

Main thread 184614913 : unlock the thread 184614914

thread 184614914 i s re leased

Univ. Brest/Lab-STICC Page 51/63

Summary

1. Introduction

2. Operating systems for Real-Time applications

3. Market

4. POSIX 1003 Standard

5. RTEMS operating system
(a) POSIX thread model of RTEMS and fixed priority

scheduling
(b) Synchronization tools
(c) Clocks and timers management

6. Summary

7. References

Univ. Brest/Lab-STICC Page 52/63

Clocks and Timers (1)

• We look for means to

Set and read clocks, sometimes with different levels of
precision/accuracy.

Suspend the execution (sleep) of a task.

Implement periodic releases of periodic tasks.

Univ. Brest/Lab-STICC Page 53/63

Clocks and Timers (2)

• Real-time system may have specific clock hardware.
POSIX 1003.1b provides a generic interface, for any
hardware/operating system.
• Real-time extensions of clock service from POSIX
1003.1b

A system may have several "real-time" clocks
(CLOCK_REALTIME identifier).

Any POSIX 1003.1b must have at least one "real-time"
clock.

Constraints on accuracy/precision: at least 20 ms. But
actual precision depends on hardware and operating
system.

Clocks can be used to create timers.

Univ. Brest/Lab-STICC Page 54/63

Clocks and Timers (3)

• What is a timer

A timer is an entity that is counting down events.

A timer as an initial value. When it reaches zero, it
usually triggers the execution of a suprogram:
RTEMS/POSIX triggers a signal in this case.

• What is a signal

Signal: event/message asynchronously sent to a
process or a thread. Each signal has a known number
(e.g. signal.h).

Signals can be ignored/masked, pended or delivered.
Behavior can be specified by the programmer (signal
table).

Univ. Brest/Lab-STICC Page 55/63

Clocks and Timers (4)

clock_gettime Return current time
clock_settime Give a value to a clock
clock_getres Read precision

of a clock
timer_create Create a timer
timer_delete Delete a timer
timer_getoverrrun Return the number

of pending signal for a timer
timer_settime Start the timer
timer_gettime Read remaining time

before a timer has exhausted
nanosleep Block a thread

for an amount of time
Univ. Brest/Lab-STICC Page 56/63

Clocks and Timers (5)

• Example of a timer with SIGALRM signal
void *POSIX_Init(void *argument) {

timer_t myTimer;

struct timespec waittime;

struct sigaction sig;

struct itimerspec ti;

struct sigevent event;

sigset_t mask;

sig.sa_flags=0;

sig.sa_handler=handler;

sigemptyset(&sig.sa_mask);

sigaction(SIGALRM,&sig,NULL);

sigemptyset(&mask);

sigaddset(&mask,SIGALRM);

sigprocmask(SIG_UNBLOCK,&mask,NULL);

Univ. Brest/Lab-STICC Page 57/63

Clocks and Timers (6)

• Example of a timer with SIGALRM signal (cont)
event.sigev_notify=SIGEV_SIGNAL;

event.sigev_value.sival_int=0;

event.sigev_signo=SIGALRM;

timer_create(CLOCK_REALTIME,&event,&myTimer);

ti.it_value.tv_sec=1;

ti.it_value.tv_nsec=0;

ti.it_interval.tv_sec=0;

ti.it_interval.tv_nsec=0;

timer_settime(myTimer,0,&ti,NULL);

printf("Wait for timer ...\n");

waittime.tv_sec=10;

waittime.tv_nsec=0;

nanosleep(&waittime, NULL);

exit(0);

return NULL;

}
Univ. Brest/Lab-STICC Page 58/63

Clocks and Timers (7)

• Example of a timer with SIGALRM signal (cont)
void handler(int sig)

{

printf("Signal %d received : timer exhausted\n",sig);

}

• Compile and run:
$make

sparc-rtems4.8-gcc ...

$tsim o-optimize/alarm.exe

tsim> run

resuming at 0x40000000

Wait for timer ...

Signal 14 received : timer exhausted

Program exited normally.

tsim> q

Univ. Brest/Lab-STICC Page 59/63

Summary

1. Introduction

2. Operating systems for Real-Time applications

3. Market

4. POSIX 1003 Standard

5. RTEMS operating system
(a) POSIX thread model of RTEMS and fixed priority

scheduling
(b) Synchronization tools
(c) Clocks and timers management

6. Summary

7. References

Univ. Brest/Lab-STICC Page 60/63

Summary

RTOS: portability (architecture), configurability
(resource available),cross-compiling, RTOS adapted to
each domain/application.

RTEMS: one process/several threads, several API
including POSIX.

POSIX API for real-time systems : thread and fixed
priority scheduling, semaphore/mutex and inheritance
protocols, timer/clock and periodic thread releases. =⇒
may lead to the development of real-time
applications that can be compliant with real-time
scheduling theory.

Univ. Brest/Lab-STICC Page 61/63

Summary

1. Introduction

2. Operating systems for Real-Time applications

3. Market

4. POSIX 1003 Standard

5. RTEMS operating system
(a) POSIX thread model of RTEMS and fixed priority

scheduling
(b) Synchronization tools
(c) Timers and signal management

6. Summary

7. References.

Univ. Brest/Lab-STICC Page 62/63

References

[GAL 95] B. O. Gallmeister. POSIX 4 : Programming for the Real World . O’Reilly and
Associates, January 1995.

[TIM 00] M. Timmerman. « RTOS Market survey : preliminary result ». Dedicated System
Magazine, (1):6–8, January 2000.

[VAH 96] U. Vahalia. UNIX Internals : the new frontiers. Prentice Hall, 1996.

Univ. Brest/Lab-STICC Page 63/63

	Summary
	Introduction
	Summary
	Execution platform (1)
	Execution platform (2)
	Execution platform (3)
	Execution platform (4)
	Execution platform (5)
	Execution platform (6)
	RTOS: Real-time operating system (1)
	RTOS: Real-time operating system (2)
	RTOS: Real-time operating system (3)
	RTOS: Real-time operating system (4)
	Summary
	 Market (1)
	Market (2)
	Summary
	POSIX 1003 standard (1)
	POSIX 1003 standard (2)
	Summary
	Introducing RTEMS (1)
	Introducing RTEMS (2)
	Introducing RTEMS (3)
	Introducing RTEMS (4)
	Introducing RTEMS (5)
	Introducing RTEMS (6)
	Introducing RTEMS (7)
	Summary
	POSIX threads with RTEMS (1)
	POSIX threads with RTEMS (2)
	POSIX threads with RTEMS (3)
	POSIX threads with RTEMS (4)
	POSIX 1003 scheduling (1)
	POSIX 1003 scheduling (2)
	POSIX 1003 scheduling (3)
	POSIX 1003 scheduling (4)
	POSIX 1003 scheduling (5)
	Thread attributes (1)
	Thread attributes (2)
	Thread attributes (3)
	Summary
	Synchronization tools (1)
	Mutexes versus semaphores (1)
	Mutexes versus semaphores (2)
	Mutex (1)

	 Mutex (2)

	Counting semaphore (1)
	Counting semaphore (2)
	Counting semaphore (3)
	Counting semaphore (4)
	Summary
	Clocks and Timers (1)
	Clocks and Timers (2)
	Clocks and Timers (3)
	Clocks and Timers (4)
	Clocks and Timers (5)
	Clocks and Timers (6)
	Clocks and Timers (7)
	Summary
	Summary
	Summary
	References

