Introducing critical real-time software
design and programming

]]
Frank Singhoff

University of Brest, Lab-STICC/CNRS UMR 6285, France

F N
; %
m O
e EUROPSKI STRUKTURNI € | e
Europska unja | INVESTICI)SKI FONDOVI 5 | yuosia
“Zajedno do fondova EU" F ENCIJAL
-

Projekt je financirala Europska unija iz Europskog Socijalnog fonda

=\

IEE T

Today agenda

1. Introduction to safety critical real-time software
2. Scheduling analysis
3. RTEMS Real-time operating systems

4. Labs on Cheddar and RTEMS, real-time
scheduling analysis and programming in C

 To get lecture/lab material: http://beru.univ-
brest.fr/split2022

Summary

1. Safety critical systems and software.
2. Critical real-time software.

3. Real-time operating systems and real-time
scheduling analysis

Safety critical systems

0 "A safety-critical system is a system whose
failure or malfunction may result in death or
serious injury to people, loss or severe
damage to equipment/property, ... °

O Examples: railway, aircraft, automotive, underground.
O Software contributes to the safety of the system.

O How to be sure that a software is safe”? Bug free?

0 Required by regulation (e.g. avionic systems).

O Today software embedded in critical systems is complex,
large.

4

Avionic systems (1)

O From SAVI
program (US SLOC doubles ab 4
oubles about every years—\ S ind
research 20 — affordabilty
program) who limit (2013)
. . 184
investigated about
- Q 16 } : : F-35 2012 (24M)
SOTtW'areFl’nt % | 687?7 " A330/A333522r306 -
A iB737. 47 : i A
aVIOHIC (eter § 14 B?ﬁ_f‘{?ﬁ[?OK \i(\ = A320 800,_5 e
Feiler) g | 7% 180 £ A310: 400K 22:1.7M
€ "|F-16a: 135 I
— 0 = A3?0FF: 40!2(
o SLOC, for Source 5 o
Line of Code. o ‘ S
— INS: 0.8K : : :
6 Y ' Y Y Y
1960 1970 1980 1990 2000 2010 2020
Year

Avionic systems (2)

O F35 has approximately 175 times the number of SLOC
as the F16.

O But, it is estimated to have required 300 times the
development effort.

O Software development effort, which increases
exponentially with SLOC, is increasing at an alarming
rate

O Doubled every 4 years

Summary

1. Safety critical systems and software.
2. Critical real-time software.

3. Real-time operating systems and real-time
scheduling analysis

Real-Time critical software (1)

O « The correctness of the system depends not only on the
logical result of computation, but also on the time at
which the results are produced » Stankovic, 1988.

O Properties we look for:

= Functions must be predictable: the same data input will produce
the same data output.

= Timing behavior must be predictable: must meet temporal
constraints (e.g. deadline).

O Predictable means ... we can compute the program
temporal behavior before execution time.

Real-Time critical software (2)

O Critical real-time systems: temporal constraints MUST
be met, otherwise defects could have a dramatic impact
on human life, on the environment, on the system,

O Examples of temporal constraints:
= Few milliseconds for radar systems.

= One second for machine-man interfaces (in an
aircraft for example).

= Up to several months or years for spacecrafts (Mars
Express, Voyager, ...).

Real-Time critical software (3)

Controled system

Sensors —»(m—» Actuators

O Real-time control and command software: computing
system/programs which reacts in a given time 1) from
sensor inputs 2) to send commands to actuators.

O How to prove that the software will react in a given
time/duration? deadline?

>

10

Space software

0 Apollo Guidance Computer (AGC).

O One of the first critical real-time system. 65000
SLOC in assembly language.

0 Quality project manager: Margaret Hamilton.

O Probably the first fixed priority operating system =>
alarm handling during Apollo 11 landing on moon.

11

Avionic real-time software (1)

Alrcralt

tgnari

Sy Pty

H filbes ol trtusche Fiber 3 Controliers track accuratelhy:

Az flay yertical acseleration FHey * Altitude [hc)

vir_filer vertical speed fifter * Yertical speed [Vzc)

0O _Fiter pitch rate FiRer i

Va _filter krue airs d filkes * Alrspeed commands (Vac)

ROSACE Aircraft flight control-command software (Pagetti 2014).
Objectives: control aircraft take off.

Inputs/sensors: airspeed, elevation, ...

Outputs/actuators: engine, ...

12

Avionic real-time software (2)

Task ________|WCET us | Period us |

aircraft_dynamics 200
Va ¢, h c 500

H_filter, Az_filter, 100
Va_filter, g_filter,
az_filter

delta e c 500
delta_th_c

Altitude hold, 100
va_control
Vz_control

Engine, elevator 100

5000
20000
10000

20000

20000

5000

O Period = fixed delay between each work ; WCET = worst case execution time
O Implemented as a set of 14 tasks. 2300 SLOC in C language.

O Fully open-source, i.e. POSIX C source code available.

13

Summary

1. Safety critical systems and software.
2. Critical real-time software.

3. Real-time operating systems and real-time
scheduling analysis

14

Scheduling analysis, what is it ?

0 Real-time software has temporal constraints to
meet (e.g. deadline).

a Many systems are built with operating systems
ﬁrowding multitasking facilities ... Tasks may
ave deadline.

a Take the task scheduling into account in order to
check task temporal constraints.

1 How the OS must schedule? How to predict?

15

Real-Time scheduling

1. Simplified tasks models (to model functions of the
system)

2. Analytical methods (called feasibility tests)
= Example:

] R
R. < Deadline R =C + Z F .Cj
Jep(i)| =

3. Scheduling algorithms: build the full scheduling/GANTT
diagram
G G

Task name=T1 Feriod= 5; Capscity= 1; Desdline= 5; Start time= 0, Priorily= 1;: Cpu=cpus

Tazk neme=T2 FPeriod= 10; Capacity= 2; Deadling= 10; Start time= 0; Prigrity= 1; Cou=cous

1 6 I—l—l———_—l—l———_ o, S— s S— s S— " —

Task name=T3 Feriod= 30; Capacity= 12; Deadline= 30; Siart time= 0, Priority=1; Cpu=cpus

Real-time scheduling: models of task

Task | capacity
Si Pi / Di

|
-
|

to t1 t2 t3 t4

Task | release times

O Usual parameters of a periodic task i:

= Period: Pi (duration between two release times). A task starts a job
for each release time.

Deadline to meet: Di, timing constraint to meet.

First task release time (first job): Si.

Worst case execution time of each job: Ci (or capacity or WCET).
Priority: allows the scheduler to choose the task to run

17

Uniprocessor fixed priority scheduling

O Fixed priority scheduling :
= Scheduling based on fixed priority => priorities do not
change during execution time.
= Priorities are assigned at design time (off-line).

= Scheduler easy to implement into real-time operating
systems.

O Rate Monotonic priority assignment :

= Optimal assignment in the case of fixed priority
scheduling and uniprocessor.

» Periodic tasks only.

18

Uniprocessor fixed priority scheduling

O Two steps:

1. Rate monotonic priority assignment: the
highest priority tasks have the smallest periods.
Priorities are assigned off-line (e.g. at design time,
before execution).

2. Fixed priority scheduling: at any time, run the
ready task which has the highest priority level.

19

Uniprocessor fixed priority scheduling

O Rate Monotonic assignment and preemptive

fixed priority scheduling: Tolisiprestiptad
Deadline
of T2
T2 LT EEEET L P [[]
Deadline Deadline Deadline
of T1 of T1 of T1
T1 I [[[PR | [| PR [O]
0 6 10 16 20 26 27 30

= Assuming VxWorks priority levels (high=0 ; low=255)
= T1:C1=6, P1=10, Prio1=0
= T2:C2=9, P2=30, Prio2=1 20

Uniprocessor fixed priority scheduling

0 Schedulability tests to predict on design-time if
deadline will be met:

1. Run simulations on feasibility interval = [0,LCM(Pi)].
Sufficient and necessary condition.

2. Processor utilization factor test:

1
U=)>-,Ci/Pi <n.(2n-1) (about69%)
Rate Monotonic assignment and preemptive scheduling.
Sufficient but not necessary condition.

3. Task worst case response time, noted Ri : delay between
task release time and task completion time. Any priority

assignment, preemptive scheduling.
21

Uniprocessor fixed priority scheduling

O Compute Ri, task i worst case response time:

» Task iresponse time = task i capacity + delay the task i
has to wait for higher priority task j. Or:

R =C + Zwaitingtimeduetoj or R =C, + Z % -G
j

jehp(i) Jen(®

= hp(i) is the set of tasks which have a higher priority than
task i.

= [x] returns the smallest integer not smaller than x.

22

Uniprocessor fixed priority scheduling

O To compute task response time: compute wi* with:

wi = Ci+ Y lwin=1/Pj|.Cj

jehp (i)
o Start with wi®=Ci.

0 Compute wil, wi?, wi3, ... wi* upto:

= If wi* >Pi. No task response time can be computed for
task i. Deadlines will be missed !

w If wi® = wi*=1. wik is the task i response time. Deadlines
will be met.

23

Uniprocessor fixed priority scheduling

o Example: T1(P1=7, C1=3), T2 (P2=12, C2=2), T3 (P3=20, C3=5)

wl®=(C1=3=>R1=3

w20 =C2=2
w2°] 2]
W21=C2+W.C1=2+7.3=5
w2l 5
W22=C2+H.C1=2+7.3:5:R2:5
w3 =(C3=5
'w3°] (w30]
W31=C3+WC1+WCZ=1O
5 (w31] (w31]
w3 =C3+ﬁCl+W62=13
(Ww3?] (w32?]
W33=C3+ WC].-F WC2=15
. (w33] (w33]
w3 =C3+W61+W62=18
. (w34] (w34]

24

Uniprocessor fixed priority scheduling

0 Example:
= “display_panel” thread which displays data. P=100, C=20.
= “receiver’ thread which sends data. P=250, C=50.
= “analyser” thread which analyzes data. P=500, C=150.

O Processor utilization factor test:
= U=20/100+150/500+50/250=0.7

= Bound=3.(23 — 1)=0.779
m U<Bound => deadlines will be met.
0 Worst case task response time: R, 41y5e-=330,
Rdisplay_panel=20a Rreceiver =70.
0 Run simulations on feasibility interval: [0,LCM(Pi)] = [0,500].

25

Uniprocessor fixed priority scheduling

Response times = 20

display panel T T T T T T T T T T T I T EET T I T T I T I T T I T T I T T eI I T ITT]
0 100 200 220 300 400 500
receiver | B [T TP P [[Tl
0 70\ 230 3;0\ Response time =50 200
Response time = 70 P
analyzer | T 7111 [[mim | oy [e [[[[[[T T TT T ITTITTT]
0 Response time = 330 /3'30 500

page 26

RTEMS operating system

Head <— Tail

Highest priority level

[] 8

= Compliant with the POSIX
real-time scheduling model

= Several threads inside one address space
= Preemptive fixed priority scheduling. At least 32 priority levels.
= Two-levels scheduling, choose:

1. The queue with the highest priority level ready thread.

2. The thread from the queue selected in (1) according to a policy (e.g.
SCHED _FIFO or SCHED_RR).

27

Conlusion/Summary

O Software is now of a major concern for safety
of critical systems

O Real-time critical software: software with
timing constraints to meet (deadline).
Concurrent software (i.e. tasks and
synchronization).

0 Specific development technologies (design,
verification, programming):
1. Scheduling/schedulability analysis.
2. Real-time operating systems. 28

