
Introducing critical real-time software
design and programming

Frank Singhoff

University of Brest, Lab-STICC/CNRS UMR 6285, France

Projekt je financirala Europska unija iz Europskog Socijalnog fonda

Today agenda

1. Introduction to safety critical real-time software

2. Scheduling analysis

3. RTEMS Real-time operating systems

4. Labs on Cheddar and RTEMS, real-time
scheduling analysis and programming in C

• To get lecture/lab material: http://beru.univ-
brest.fr/split2022

2

Summary

1. Safety critical systems and software.

2. Critical real-time software.

3. Real-time operating systems and real-time
scheduling analysis

3

Safety critical systems

 "A safety-critical system is a system whose
failure or malfunction may result in death or
serious injury to people, loss or severe
damage to equipment/property, ... “

 Examples: railway, aircraft, automotive, underground.

 Software contributes to the safety of the system.

 How to be sure that a software is safe? Bug free?

 Required by regulation (e.g. avionic systems).

 Today software embedded in critical systems is complex,
large. 4

Avionic systems (1)

 From SAVI
program (US
research
program) who
investigated about
software in
avionic (Peter
Feiler)

 SLOC, for Source
Line of Code.

5

Avionic systems (2)

6

 F35 has approximately 175 times the number of SLOC
as the F16.

 But, it is estimated to have required 300 times the
development effort.

 Software development effort, which increases
exponentially with SLOC, is increasing at an alarming
rate

 Doubled every 4 years

Summary

1. Safety critical systems and software.

2. Critical real-time software.

3. Real-time operating systems and real-time
scheduling analysis

7

Real-Time critical software (1)

 « The correctness of the system depends not only on the
logical result of computation, but also on the time at
which the results are produced » Stankovic, 1988.

 Properties we look for:
 Functions must be predictable: the same data input will produce

the same data output.

 Timing behavior must be predictable: must meet temporal
constraints (e.g. deadline).

 Predictable means ... we can compute the program
temporal behavior before execution time.

8

Real-Time critical software (2)

 Critical real-time systems: temporal constraints MUST
be met, otherwise defects could have a dramatic impact
on human life, on the environment, on the system,

 Examples of temporal constraints:

 Few milliseconds for radar systems.

 One second for machine-man interfaces (in an
aircraft for example).

 Up to several months or years for spacecrafts (Mars
Express, Voyager, ...).

9

Real-Time critical software (3)

 Real-time control and command software: computing
system/programs which reacts in a given time 1) from
sensor inputs 2) to send commands to actuators.

 How to prove that the software will react in a given
time/duration? deadline?

10

Control/command system

Space software

 Apollo Guidance Computer (AGC).

 One of the first critical real-time system. 65000
SLOC in assembly language.

 Quality project manager: Margaret Hamilton.

 Probably the first fixed priority operating system =>
alarm handling during Apollo 11 landing on moon.

11

Avionic real-time software (1)

 ROSACE Aircraft flight control-command software (Pagetti 2014).

 Objectives: control aircraft take off.

 Inputs/sensors: airspeed, elevation, ...

 Outputs/actuators: engine, ... 12

Avionic real-time software (2)

 Period = fixed delay between each work ; WCET = worst case execution time

 Implemented as a set of 14 tasks. 2300 SLOC in C language.

 Fully open-source, i.e. POSIX C source code available.
13

Summary

1. Safety critical systems and software.

2. Critical real-time software.

3. Real-time operating systems and real-time
scheduling analysis

14

 Real-time software has temporal constraints to
meet (e.g. deadline).

 Many systems are built with operating systems
providing multitasking facilities … Tasks may
have deadline.

 Take the task scheduling into account in order to
check task temporal constraints.

 How the OS must schedule? How to predict?

Scheduling analysis, what is it ?

15

1. Simplified tasks models (to model functions of the
system)

2. Analytical methods (called feasibility tests)
 Example:

3. Scheduling algorithms: build the full scheduling/GANTT
diagram

Real-Time scheduling

16

DeadlineRi j
ihpj j

i
ii C

P

R
CR

)(

Real-time scheduling: models of task

 Usual parameters of a periodic task i:
 Period: Pi (duration between two release times). A task starts a job

for each release time.

 Deadline to meet: Di, timing constraint to meet.

 First task release time (first job): Si.

 Worst case execution time of each job: Ci (or capacity or WCET).

 Priority: allows the scheduler to choose the task to run
17

Uniprocessor fixed priority scheduling

 Fixed priority scheduling :
 Scheduling based on fixed priority => priorities do not

change during execution time.

 Priorities are assigned at design time (off-line).

 Scheduler easy to implement into real-time operating
systems.

 Rate Monotonic priority assignment :
 Optimal assignment in the case of fixed priority

scheduling and uniprocessor.

 Periodic tasks only.

18

Uniprocessor fixed priority scheduling

Two steps:
1. Rate monotonic priority assignment: the

highest priority tasks have the smallest periods.
Priorities are assigned off-line (e.g. at design time,
before execution).

2. Fixed priority scheduling: at any time, run the
ready task which has the highest priority level.

19

Uniprocessor fixed priority scheduling

 Rate Monotonic assignment and preemptive
fixed priority scheduling:

 Assuming VxWorks priority levels (high=0 ; low=255)

 T1 : C1=6, P1=10, Prio1=0

 T2 : C2=9, P2=30, Prio2=1 20

Uniprocessor fixed priority scheduling

21

 Schedulability tests to predict on design-time if
deadline will be met:

1. Run simulations on feasibility interval = [0,LCM(Pi)].
Sufficient and necessary condition.

2. Processor utilization factor test:

-1) (about 69%)
Rate Monotonic assignment and preemptive scheduling.
Sufficient but not necessary condition.

3. Task worst case response time, noted Ri : delay between
task release time and task completion time. Any priority
assignment, preemptive scheduling.

Uniprocessor fixed priority scheduling

22

j
ihpj j

i
ii C

P

R
CRor

)(

)(

ihpj

ii jtoduetimewaitingCR

Uniprocessor fixed priority scheduling

23

Uniprocessor fixed priority scheduling

24

𝑤3 = 𝐶3 = 5

𝑤3 = C3 +
𝑤3

𝑃1
. 𝐶1 +

𝑤3

𝑃2
. 𝐶2 = 10

𝑤3 = C3 +
𝑤3

𝑃1
. 𝐶1 +

𝑤3

𝑃2
. 𝐶2 = 13

𝑤3 = C3 +
𝑤3

𝑃1
. 𝐶1 +

𝑤3

𝑃2
. 𝐶2 = 15

𝑤3 = C3 +
𝑤3

𝑃1
. 𝐶1 +

𝑤3

𝑃2
. 𝐶2 = 18

𝑤3 = C3 +
𝑤3

𝑃1
. 𝐶1 +

𝑤3

𝑃2
. 𝐶2 = 18 ⇒ 𝑅3 = 18

 Example: T1(P1=7, C1=3), T2 (P2=12, C2=2), T3 (P3=20, C3=5)

𝑤1 = 𝐶1 = 3 ⇒ 𝑅1 = 3
𝑤2 = 𝐶2 = 2

𝑤2 = C2 +
𝑤2

𝑃1
. 𝐶1 = 2 +

2

7
. 3 = 5

𝑤2 = C2 +
𝑤2

𝑃1
. 𝐶1 = 2 +

5

7
. 3 = 5 ⇒ 𝑅2 = 5

Uniprocessor fixed priority scheduling

25

 Example:

 “display_panel” thread which displays data. P=100, C=20.

 “receiver” thread which sends data. P=250, C=50.

 “analyser” thread which analyzes data. P=500, C=150.

 Processor utilization factor test:
 U=20/100+150/500+50/250=0.7

 Bound=3.()=0.779

 U Bound => deadlines will be met.

 Worst case task response time: 𝒂𝒏𝒂𝒍𝒚𝒔𝒆𝒓=330,

𝒅𝒊𝒔𝒑𝒍𝒂𝒚_𝒑𝒂𝒏𝒆𝒍=20, 𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒓 =70.

 Run simulations on feasibility interval: [0,LCM(Pi)] = [0,500].

Uniprocessor fixed priority scheduling

page 26

RTEMS operating system

 Compliant with the POSIX
real-time scheduling model

27

 Several threads inside one address space

 Preemptive fixed priority scheduling. At least 32 priority levels.

 Two-levels scheduling, choose:

1. The queue with the highest priority level ready thread.

2. The thread from the queue selected in (1) according to a policy (e.g.
SCHED_FIFO or SCHED_RR).

Conlusion/Summary

 Software is now of a major concern for safety
of critical systems

 Real-time critical software: software with
timing constraints to meet (deadline).
Concurrent software (i.e. tasks and
synchronization).

 Specific development technologies (design,
verification, programming):
1. Scheduling/schedulability analysis.

2. Real-time operating systems. 28

