
Introducing critical real-time software
design and programming

Frank Singhoff

University of Brest, Lab-STICC/CNRS UMR 6285, France

Projekt je financirala Europska unija iz Europskog Socijalnog fonda

Today agenda

1. Introduction to safety critical real-time software

2. Scheduling analysis

3. RTEMS Real-time operating systems

4. Labs on Cheddar and RTEMS, real-time
scheduling analysis and programming in C

• To get lecture/lab material: http://beru.univ-
brest.fr/split2022

2

Summary

1. Safety critical systems and software.

2. Critical real-time software.

3. Real-time operating systems and real-time
scheduling analysis

3

Safety critical systems

 "A safety-critical system is a system whose
failure or malfunction may result in death or
serious injury to people, loss or severe
damage to equipment/property, ... “

 Examples: railway, aircraft, automotive, underground.

 Software contributes to the safety of the system.

 How to be sure that a software is safe? Bug free?

 Required by regulation (e.g. avionic systems).

 Today software embedded in critical systems is complex,
large. 4

Avionic systems (1)

 From SAVI
program (US
research
program) who
investigated about
software in
avionic (Peter
Feiler)

 SLOC, for Source
Line of Code.

5

Avionic systems (2)

6

 F35 has approximately 175 times the number of SLOC
as the F16.

 But, it is estimated to have required 300 times the
development effort.

 Software development effort, which increases
exponentially with SLOC, is increasing at an alarming
rate

 Doubled every 4 years

Summary

1. Safety critical systems and software.

2. Critical real-time software.

3. Real-time operating systems and real-time
scheduling analysis

7

Real-Time critical software (1)

 « The correctness of the system depends not only on the
logical result of computation, but also on the time at
which the results are produced » Stankovic, 1988.

 Properties we look for:
 Functions must be predictable: the same data input will produce

the same data output.

 Timing behavior must be predictable: must meet temporal
constraints (e.g. deadline).

 Predictable means ... we can compute the program
temporal behavior before execution time.

8

Real-Time critical software (2)

 Critical real-time systems: temporal constraints MUST
be met, otherwise defects could have a dramatic impact
on human life, on the environment, on the system,

 Examples of temporal constraints:

 Few milliseconds for radar systems.

 One second for machine-man interfaces (in an
aircraft for example).

 Up to several months or years for spacecrafts (Mars
Express, Voyager, ...).

9

Real-Time critical software (3)

 Real-time control and command software: computing
system/programs which reacts in a given time 1) from
sensor inputs 2) to send commands to actuators.

 How to prove that the software will react in a given
time/duration? deadline?

10

Control/command system

Space software

 Apollo Guidance Computer (AGC).

 One of the first critical real-time system. 65000
SLOC in assembly language.

 Quality project manager: Margaret Hamilton.

 Probably the first fixed priority operating system =>
alarm handling during Apollo 11 landing on moon.

11

Avionic real-time software (1)

 ROSACE Aircraft flight control-command software (Pagetti 2014).

 Objectives: control aircraft take off.

 Inputs/sensors: airspeed, elevation, ...

 Outputs/actuators: engine, ... 12

Avionic real-time software (2)

 Period = fixed delay between each work ; WCET = worst case execution time

 Implemented as a set of 14 tasks. 2300 SLOC in C language.

 Fully open-source, i.e. POSIX C source code available.
13

Summary

1. Safety critical systems and software.

2. Critical real-time software.

3. Real-time operating systems and real-time
scheduling analysis

14

 Real-time software has temporal constraints to
meet (e.g. deadline).

 Many systems are built with operating systems
providing multitasking facilities … Tasks may
have deadline.

 Take the task scheduling into account in order to
check task temporal constraints.

 How the OS must schedule? How to predict?

Scheduling analysis, what is it ?

15

1. Simplified tasks models (to model functions of the
system)

2. Analytical methods (called feasibility tests)
 Example:

3. Scheduling algorithms: build the full scheduling/GANTT
diagram

Real-Time scheduling

16

DeadlineRi  j
ihpj j

i
ii C

P

R
CR 












 

)(

Real-time scheduling: models of task

 Usual parameters of a periodic task i:
 Period: Pi (duration between two release times). A task starts a job

for each release time.

 Deadline to meet: Di, timing constraint to meet.

 First task release time (first job): Si.

 Worst case execution time of each job: Ci (or capacity or WCET).

 Priority: allows the scheduler to choose the task to run
17

Uniprocessor fixed priority scheduling

 Fixed priority scheduling :
 Scheduling based on fixed priority => priorities do not

change during execution time.

 Priorities are assigned at design time (off-line).

 Scheduler easy to implement into real-time operating
systems.

 Rate Monotonic priority assignment :
 Optimal assignment in the case of fixed priority

scheduling and uniprocessor.

 Periodic tasks only.

18

Uniprocessor fixed priority scheduling

Two steps:
1. Rate monotonic priority assignment: the

highest priority tasks have the smallest periods.
Priorities are assigned off-line (e.g. at design time,
before execution).

2. Fixed priority scheduling: at any time, run the
ready task which has the highest priority level.

19

Uniprocessor fixed priority scheduling

 Rate Monotonic assignment and preemptive
fixed priority scheduling:

 Assuming VxWorks priority levels (high=0 ; low=255)

 T1 : C1=6, P1=10, Prio1=0

 T2 : C2=9, P2=30, Prio2=1 20

Uniprocessor fixed priority scheduling

21

 Schedulability tests to predict on design-time if
deadline will be met:

1. Run simulations on feasibility interval = [0,LCM(Pi)].
Sufficient and necessary condition.

2. Processor utilization factor test:
௡
௜ୀଵ

భ

೙-1) (about 69%)
Rate Monotonic assignment and preemptive scheduling.
Sufficient but not necessary condition.

3. Task worst case response time, noted Ri : delay between
task release time and task completion time. Any priority
assignment, preemptive scheduling.

Uniprocessor fixed priority scheduling

22



j
ihpj j

i
ii C

P

R
CRor 












 

)(

 



)(

ihpj

ii jtoduetimewaitingCR

Uniprocessor fixed priority scheduling



23

Uniprocessor fixed priority scheduling

24

𝑤3଴ = 𝐶3 = 5

𝑤3ଵ = C3 +
𝑤3଴

𝑃1
. 𝐶1 +

𝑤3଴

𝑃2
. 𝐶2 = 10

𝑤3ଶ = C3 +
𝑤3ଵ

𝑃1
. 𝐶1 +

𝑤3ଵ

𝑃2
. 𝐶2 = 13

𝑤3ଷ = C3 +
𝑤3ଶ

𝑃1
. 𝐶1 +

𝑤3ଶ

𝑃2
. 𝐶2 = 15

𝑤3ସ = C3 +
𝑤3ଷ

𝑃1
. 𝐶1 +

𝑤3ଷ

𝑃2
. 𝐶2 = 18

𝑤3ହ = C3 +
𝑤3ସ

𝑃1
. 𝐶1 +

𝑤3ସ

𝑃2
. 𝐶2 = 18 ⇒ 𝑅3 = 18

 Example: T1(P1=7, C1=3), T2 (P2=12, C2=2), T3 (P3=20, C3=5)

𝑤1଴ = 𝐶1 = 3 ⇒ 𝑅1 = 3
𝑤2଴ = 𝐶2 = 2

𝑤2ଵ = C2 +
𝑤2଴

𝑃1
. 𝐶1 = 2 +

2

7
. 3 = 5

𝑤2ଶ = C2 +
𝑤2ଵ

𝑃1
. 𝐶1 = 2 +

5

7
. 3 = 5 ⇒ 𝑅2 = 5

Uniprocessor fixed priority scheduling

25

 Example:

 “display_panel” thread which displays data. P=100, C=20.

 “receiver” thread which sends data. P=250, C=50.

 “analyser” thread which analyzes data. P=500, C=150.

 Processor utilization factor test:
 U=20/100+150/500+50/250=0.7

 Bound=3.(
భ

య)=0.779

 U Bound => deadlines will be met.

 Worst case task response time: 𝒂𝒏𝒂𝒍𝒚𝒔𝒆𝒓=330,

𝒅𝒊𝒔𝒑𝒍𝒂𝒚_𝒑𝒂𝒏𝒆𝒍=20, 𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒓 =70.

 Run simulations on feasibility interval: [0,LCM(Pi)] = [0,500].

Uniprocessor fixed priority scheduling

page 26

RTEMS operating system

 Compliant with the POSIX
real-time scheduling model

27

 Several threads inside one address space

 Preemptive fixed priority scheduling. At least 32 priority levels.

 Two-levels scheduling, choose:

1. The queue with the highest priority level ready thread.

2. The thread from the queue selected in (1) according to a policy (e.g.
SCHED_FIFO or SCHED_RR).

Conlusion/Summary

 Software is now of a major concern for safety
of critical systems

 Real-time critical software: software with
timing constraints to meet (deadline).
Concurrent software (i.e. tasks and
synchronization).

 Specific development technologies (design,
verification, programming):
1. Scheduling/schedulability analysis.

2. Real-time operating systems. 28

