Predictable Component-Based Software Design of Real-Time
MPEG-4 Video Applications

Egor Bondarev?, Milan Pastrnak®? Peter H.N. de With®® and Michel R. V. Chaudron®

?Findhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
'LogicaCMG Nederland, P.O. Box 7089, 5605 JB, Eindhoven, The Netherlands

ABSTRACT

Component-based software development is very attractive, because it allows a clear decomposition of logical
processing blocks into software blocks and it offers wide reuse. The strong real-time requirements of media
processing systems should be validated as soon as possible to avoid costly system redesign. This can be achieved
by prediction of timing and performance properties. In this paper, we propose a scenario simulation design
approach featuring early performance prediction of a component-based software system. We validated this
approach through a case study, for which we developed an advanced MPEG-4 coding application. The benefits
of the approach are threefold: (a) high accuracy of the predicted performance data; (b) it delivers an efficient
real-time software-hardware implementation, because the generic computational costs become known in advance,
and (c) improved ease of use because of a high abstraction level of modelling. Experiments showed that the
prediction accuracy of the system performance is about 90% or higher, while the prediction accuracy of the
time-detailed processor usage (performance) does not get lower than 70%. However, the real-time performance
requirements are sometimes not met, e.g. when other applications require intensive memory usage, thereby
imposing delays on the retrieval from memory of the decoder data.

Keywords: Real-time system, performance prediction, MPEG-4 coding, component-based software, predictable
design

1. INTRODUCTION

Current multimedia systems industry has to face extremely high time-to-market pressure. A major problem
is that system development times often exceed the technology innovation cycle due to elaborate and complex
software architectures and implementations. Once the product becomes available for market introduction, it
may be completely outdated because of the emergence of next generation products. Therefore, the focus of
industrial development is shifting towards improved system design techniques, because they allow evaluation of
the system functionality and performance already at very early development phases, which reduces technical
risks and time-to-market.

Advanced design techniques are imperative especially for time-critical software-intensive media systems. The
real-time requirements imposed on these systems, such as frame skipping and latency limitations, can only
be validated after system implementation. To avoid system redesign for ensuring performance properties, we
concentrate on the accurate prediction of the extra-functional properties at the early design phase. Since MPEG
video processing is increasingly software-based and involves intensive processing, an efficient real-time software-
based implementation of this technology is of primary importance.

Besides performance prediction, the reuse of already existing software blocks potentially saves costs. Con-
temporary media processing systems consist of a set of logically identical blocks (Pixel Sampler, DCT module,
Quantizer, VLC module, etc). Not seldom, during the development of a new system, the blocks are implemented
from scratch. Instead, reusing these blocks could save a significant development time. A component-based soft-
ware paradigm! addresses these issues, enabling decomposition of functionality into components and wide reuse
of these components for various systems. However, note that component-based technology complicates the pre-
diction of resource usage and timing properties. In component-based systems, the actual behaviour and resource

Further author information:
Egor Bondarev: E-mail: e.bondarev@tue.nl, Telephone: +31 40 247 2480

usage are determined by an ensemble of internally and also externally developed components. The external
components are black-boxes of which structure and behaviour are usually not known in detail. Consequently, we
focus on the accurate prediction of extra-functional properties of component-based systems at the early design
phase.

Performance prediction has been extensively addressed in system architecture research. The survey in? gives
an overview on the current prediction-enabling techniques for design. The modular performance analysis de-
scribed in® allows exploring software and hardware alternatives for performance optimization, though it does not
give high prediction accuracy. The “Spade” technique* provides an example of a simulation-based performance
analysis methodology for signal processing systems. It addresses the co-design of software and hardware, but
still does not enable prediction of real-time properties. In® and,® we find efficient performance prediction tech-
niques in the component-based software domain, which are based on component modelling and static scheduling
analysis. However, for complex applications, the models become too large for understanding and efficient use
in analysis. Last but not least, the PRIMA-UML methodology’ applies queuing networks and extends UML
with a model for system performance validation. For our problem statement we want to satisfy four aspects
simultaneously: (1) real-time properties prediction, (2) high accuracy, (3) ease of use of the design methodology
and (4) applicability to component-based architectures. None of the above-mentioned proposals satisfies these
four aspects at the same time.

In this paper, we propose an easy-to-use scenario simulation approach for accurately predicting the timing
and resource usage properties of the designed component-based system. We validated the technique by a case
study developing an advanced MPEG-4 video application. The proposed approach is based on three concepts:
(a) models for the system component’s behaviour and resource usage, (b) execution scenarios of the complete
system, in which the resources are potentially overloaded, (c) simulation of these scenarios, resulting in timing
behaviour of the design system. The modelling enables a high-level description, thus making this prediction
technique easy to use. Additionally, the application of the execution scenarios reduces the system state space for
exploration, and helps to focus only on the relevant time-critical execution configurations, in which the risks of
system overload are high. As a design paradigm, we have adopted component-based software architecture, be-
cause of its structural flexibility for large complex applications and the enabling possibilities for software reuse.
The MPEG-4 decoder case study presented later in this paper, revealed that it is indeed possible to predict
real-time properties with sufficiently high accuracy. The case study also uncovered system management issues,
such as influence of the operating system and memory management aspects.

The remainder of this paper is as follows. In Section 2, we address a so-called Robocop software component-
based architecture that was deployed for the MPEG-4 coder case study. Section 3 presents the proposed scenario
simulation approach enabling performance predictions at the design phase. In Section 4, we describe the MPEG-
4 case study in more detail, which was used for validation of the approach. The validation results are provided in
Section 5. Finally, Section 6 presents conclusions from the case study, and suggests future directions for research.

2. COMPONENT-BASED SOFTWARE ARCHITECTURE

Within the international Space4dU project®, we have developed a Robocop Component-Based Architecture
(CBA),® which was adopted for conducting our research on predictable software design. This architecture
is developed for middle-ware in consumer devices, with the emphasis on robustness and reliability. The Robocop
CBA is similar to CORBA!! and Koala,'? but enables more efficient realization of real-time and performance
constraints via modelling techniques. For example, a component designer can supply a component behaviour
model along with the component executable code. A designer composes an application from the number of
components and can predict the application behaviour, using the set of such component behaviour models.

The Robocop CBA is highly efficient, particularly for multimedia processing systems and Systems-on-Chip.
First, it allows decomposing the processing software into functional blocks and then mapping these blocks on the

*SpacedU is part of the ITEA research program funded by the European Union.

architecture in the optimal way. Second, the supporting Robocop Run-Time Environment has built-in Quality-
of-Service implementation. Finally, the freedom of defining the necessary types of models allows addressing not
only the processor usage, but also other attributes important for multimedia systems (e.g. memory, bus load
and robustness).

Let us now define the Robocop component model in more detail. A Robocop component is a set M of possibly
related models, as depicted in Fig. 1. Each individual model m provides a particular type of information about
the component. Models can be represented in readable form (e.g. documentation) or in binary code. One of the
models is the executable model that contains the executable component. Other examples are: resource model,
functional model, and behaviour model.

Robocop Component

Model relations
Resource Model _ r/?

y y

/|
Behaviour Model *

A

| Functional Model |
A
| Executable Model |

Figure 1. Example of Robocop component model.

A component offers functionality through a set of ‘services’ P (see Fig. 2 and Fig. 3(a)). Services are
static entities, which are the Robocop equivalents of public classes in object-oriented (OO) programming. More
formally, we can specify an arbitrary executable model m by:

m =P,
where m is an Executable Model and
P is a set of individual p’s (services).

Figure 2. Specification of an executable model.

Services are instantiated at run-time, using a service manager. The resulting entity is called ‘service instance’,
which is a Robocop equivalent of an object in OO programming. A Robocop service may define several interfaces
(ports). We distinguish a set of ‘provides’ ports PR and a set of ‘requires’ ports RE(Q. The former defines
interfaces that are offered by the service, while the latter defines interfaces that the service needs from other
services in order to operate properly. An interface is defined as a set of implemented operations impl_opr. The
binding between service instances in the application is made via a pair of provides-requires interfaces. A service
p being part of the above-mentioned executable model is specified in Fig. 3(b).

Robocop Component
Service_idl E :: u Service id2 E p = (PR, REQ),)
3 where PR is a set of pr (provided ports) and
ServiceA > ServiceB REQ is a set of reg (required ports),
pr = (name, interface),
req = (name, interface),
> interface = O,
Provides interface Requires interface where O is a set of impl_opr (implemented operations).
Operation

(@) (b)

Figure 3. (a) Example of executable component, (b) Specification of Robocop service.

Note that a Robocop service is equivalent to a component in COM or CORBA, i.e. a service is a subject of
composition, and it has input and output ports. A Robocop component is a deployable container that packages
these services. Therefore, in the Robocop context, the term composition stands for a composition of services.

The Robocop implies no implementation-level constraints. The architecture has no limitations on program-
ming languages and platforms. A service can implement any number of threads. Besides this, both synchronous
and asynchronous communication are possible.

3. PREDICTION-ENABLING APPROACH

In the component-based software, a real-time application developer should satisfy given real-time, performance
and functional requirements, when he builds his application on the basis of available components. The scenario
simulation approach enables early predictions of the performance properties of a designed application, which help
to reason about its quality attributes at early stages of development. The approach is based on three concepts:

e Models of the system component’s behaviour and resource usage,
e Ezxecution scenarios of the complete system in which the resources are potentially overloaded,

e Simulation of these scenarios, resulting in timing behaviour of the designed system.

In order to support the smooth interaction and deployment of the above concepts, we have developed a tool,
called Real-Time Integration Environment (RTIE). The workflow of our approach (see Fig. 4) is described in?
in detail. In this section, we briefly describe the workflow, which is based on four phases.

Models

Resource model

Input
Real-time aware || has

components | C Pool Task
| iour model ‘ of tasks ‘ execution -

P simulate task
reconstruct tasks ion analyze

Application
requirements

1design (compose) in application timeline
—
- construct
Rea_"t"f'e Application
application Scenario model

validate

Figure 4. Workflow phases of the scenario simulation approach.

3.1. Component Specification Phase

A component developer specifies the behaviour and resource models of a real-time aware component at the
stage of the component development. These models should be supplied (sold) along with the executables of the
component. The resource model contains processing, bandwidth and memory requirements of each operation
implemented by the component. The behaviour model specifies for each implemented operation a sequence of
external calls to operations of other interfaces. The external call is a usual method invocation made inside the
implemented operation. Besides this, the behaviour model may specify thread triggers, if they are implemented
by the services of the component. For a detailed specification refer to” . In Section 4 of this paper, we give an
example of both models.

3.2. System Composition and Scenario Identification

An application (system) developer graphically composes a real-time application from the set of available com-
ponents using the RTTE tool. The composition flow passes through the selection, instantiation and binding the
services that will satisfy the functional requirements and may satisfy the extra-functional requirements. For a
composition, the developer defines a set of resource-critical scenarios’ and for each of them specifies an applica-
tion scenario model. In the scenario, the designer may specify stimuli (events or thread triggers) that influence
the system behaviour. For a stimulus, the designer may define the burst rate, minimal interarrival time, period,
deadline, offset, jitter, task priority, and so on. Finally, for each critical scenario, a developer initializes (gives a
value to) all input parameters of the constituent components and stores the value into the corresponding scenario
model. Consequently, the result of this phase is a set of critical execution scenarios, which sometimes may differ
in the parameter values, or in a burst rate of a certain event.

3.3. Generation of Scenario Tasks

The application scenario, component resource and component behaviour models are jointly compiled by the RTTE
tool. The objective of the compilation is to reconstruct (generate) the tasks running in the application. Prior
to compilation, the task-related data is spread over different models. For instance, the task periodicity may be
specified in an application scenario model, whereas the information about the operation call sequence comprising
the task is spread over relevant component behaviour models. The compiler reconstructs all necessary properties
of the tasks, like deadline, period, priority and operation call sequence. Some details on the task generation are
given in Section 4.

3.4. Scenario Simulation and Analysis

An application developer schedules (by the RTIE tool) the generated task pool, simulating the execution of the
defined scenario. The simulation scheduling policy of the application execution should be compliant with the
scheduling policy of the operating system. The resulting data from the scheduler is a task execution timeline.
This timeline allows extracting the real-time, memory- and bus-related performance properties of an application
(system). A comparison between the predicted data and application requirements allows us to quantitatively
assess the design of the application. If any of the requirements are not satisfied, a developer may optimize the
composition, find other design alternatives (components), negotiate the requirements and repeat the workflow.

In the next section, the above-mentioned aspects are used to decompose and validate an MPEG-4 coding
application. The scenario defines the execution mode of the MPEG-4 decoder, we generate decoder tasks (e.g.
decoding, rendering) and simulate their execution. We show how the decoder, renderer and buffer resource and
behaviour models are specified.

4. MPEG-4 CODING APPLICATION

For validation of our performance prediction design technique, we conducted a case study for which we developed
a state-of-the-art MPEG-4 coding application. We used the full specification of the standard, featuring arbitrary-
shaped video objects. Applying the scenario simulation approach, we predicted the performance and real-time
property of the designed decoder. After the integration phase, we compared the predicted results with the real
execution data.

Let us now provide some details of advanced video object-oriented processing. Fig. 5 depicts the computation
graph for arbitrary-shaped video object decoding as used in MPEG-4. Similar to MPEG-2, objects are divided
into macroblocks (MB). The diagram shows special processing stages for decoding the shape and motion of the
video objects, in addition to the usual texture decoding. Each decoding job iteration starts with macroblock
type decoding (MBtype Dec). The ShapeMC stage computes the motion compensation for the Shape part and
provides referenced MB for the Context Arithmetic Decoding (CAD) stage. The CAD provides an MPEG-4
compliant shape representation of the macroblock. The shape for the macroblock is represented by 16x16 binary
sub-image, which is sent to the outputs of the Shape job. The Coded Block Pattern (CBP) extracts information
about parts of the texture that need to be updated.

tCritical scenarios are the application execution configurations that may introduce processor, memory or bus overload.

—— data edge
—> sequence edge
@ initial token

Figure 5. Computation graph of arbitrary-shaped MPEG-4 video object decoder.

Texture decoding involves five steps: Motion vectors Decoding (MvD), IDCT Coeflicients Decoding (Coeff
Dec), Texture Motion Compensation (TextureMC), Inverse Quantization (IQ) and Inverse DCT (IDCT). Stages
MBtype Dec, CAD, CBP, MvD, and Coeff Dec are executed sequentially, because each stage depends on another
stage, to specify the next position in the input bit stream. Therefore, we introduce a loop surrounding these
stages, indicating the order between them. In'® we discuss the decoder structure in detail.

Having defined the MPEG-4 logical processing blocks and their communication, we follow the proposed sce-
nario simulation design methodology (see Section 3) to build the coding application with predictable performance.

4.1. Component specification

In this subsection we distinguish the individual components and specify them independently, including their
interfaces. To satisfy the application functional requirements, we developed four Robocop CBA components:
Reader, Buffer, Decoder and Renderer (see Fig. 6). For simplicity of explanation, each component contains one
service with the same name. The Reader service has IRead provides interface (implementing readFrame() and
startReadingThread() operations) and IBufferAccess requires interface. The Buffer service has only IBuffer Access
provides interface, implementing buffering operations popElement() and pushElement(). The Decoder service
provides IDecode interface with operations decodeFrame() and startDecodingThread(). In addition, the Decoder
service requires two buffers for operation via IBuffer Access interface. Finally, the Renderer service provides IWrite
interface with writeFrame(), start WritingThread() operations and requires IBufferAccess interface.

IRead IBufferA IDecode

IBuffefAccess

. IWri
BuffefAccess . k=

BuffetAccess

[

Reader

Buffer - Decoder Renderer

IBufferAccess

Figure 6. Components developed for MPEG-4 application.

Each component was accompanied with their corresponding resource and behaviour models (see simplified
version in Fig. 7). The resource model specifies resource requirements per individual component operation,
while the behaviour model also describes the underlying calls to other operations per component operation
as well as thread triggers (if existing) implemented by this operation. The resource usage data per operation
has been extracted by testing and profiling of each individual component. The operation behaviour data has
been generated from the component source code. Reading the Decoder model, we can see that the operation
IDecode.decodeFrame() calls IBuffer Access.popElement() operation first (takes encoded frame from the buffer),
than decodes the frame in the core of the decodeFrame() and finally calls IBuffer Access.pushElement() to store the

decoded frame to a buffer. All calls are synchronous. The maximum CPU claim of the operation decodeFrame()
itself equals to 5.69 ms. Note that the CPU claims of called pushElement() and popElement() operations are
specified in the Buffer model - 9.25 ms and 11.51 ms, respectively*. Another example is a startDecodingFrame()
operation. It implements a periodic timer which periodically (40 ms) triggers the operation core execution. That
means once the operation is called, the firing timer is created and the operation core will be executed periodically.

Decoder

Reader Buffer Renderer
Behaviour Model: Behaviour Model: Behaviour Model:
readFrame() popElement() writeFrame()

mutexed = false
calling behaviour
|BufferAccess.pushElement()
nmb_iterations =1
calling = synch
Triggers none
startReadingThread()
mutexed = false
calling behaviour
IRead.readFrame()
nmb_iterations =1
calling = synch
Triggers
name PeriodicTrigger1
period = 40 ms
offset =0 ms
Jjitter=0 ms
precedence none

mutexed = false

calling behaviour none

Triggers none
pushElement()

mutexed = false

calling behaviour none

Triggers none

Resource Model:
popElement()
resource = CPU
max claim=11.51 ms
pushElement()
resource = CPU
max claim = 9.25 ms

Resource Model:
readFrame()
resource = CPU
max claim = 0.22 ms
startReadingThread()
resource = CPU
max claim = 0.01 ms

mutexed = false
calling behaviour
IBufferAccess.popElement()
nmb_iterations =1
calling = synch
Triggers none
startWritingThread()
mutexed = false
calling behaviour
IWrite.writeFrame()
nmb_iterations =1
calling = synch
Triggers
name PeriodicTrigger2
period = 40 ms
offset =0 ms
Jitter=0 ms
precedence none

Resource Model:
writeFrame()
resource = CPU
max claim = 1.98 ms
startWritingThread()
resource = CPU
max claim = 0.01 ms

Behaviour Model:
decodeFrame()
mutexed = false
calling behaviour
|BufferAccess.popElement()
nmb_iterations =1
calling = synch
|BufferAccess.pushElement()
nmb_iterations =1
calling = synch
Triggers none
startDecodingThread()
mutexed = false
calling behaviour
IDecode.decodeFrame()
nmb_iterations =1
calling = synch
Triggers
name PeriodicTrigger3
period = 40 ms
offset = 0 ms
Jjitter =0 ms
precedence none

Resource Model:
decodeFrame()
resource = CPU
max claim = 5.69 ms
startDecodingThread()
resource = CPU
max claim =0.01 ms

Figure 7. Behaviour and resource models of the developed components.

4.2. Composition and Scenario Identification

For the scenario identification, the services were (graphically, with the RTIE tool) composed into a new CBA
structured MPEG-4 application. The composition process consists of two activities: (a) instantiation of services
and (b) binding the instances via their interfaces (see Fig. 8). As indicated by the figure, the Reader instance
is bound to Bufferl to store the encoded video frames. The Decoder instance is bound to Bufferl to get these
frames, and to Buffer2 to store the decoded pixels. The Renderer instance is bound to Buffer2 to get the
decoded pixels and render them on the display. After composition, a critical scenario has been selected. We
predefined a normal execution mode with the resolution 340x280 and frame rate 10 frames/sec as a critical
scenario. Note that it is possible to select multiple scenarios. Furthermore, a scenario model was specified
for the chosen mode (see Fig. 9). It consists of an application composition structure and a number of control
inputs (stimuli). Those inputs (event, periodic timer, interrupt, etc.) lead to the frame-periodic execution of
one of the component operations. In our case, we designed three application-level periodic timers that call
Reader.readFrame(), Decoder.decodeFrame() and Renderer.writeFrame() operations with periodicity 100 ms,
thereby establishing the well-known pipes-and-filters execution architecture. Note that we specified a deadline
for each task instance triggered by a stimulus (also 100 ms). This is the real-time property of the system we are
going to validate in the later simulation and analysis phases.

¥The relatively high processing claim of the buffering operations is explained by the prototyping implementation - the
storage and retrieval were built in a pixel-by-pixel fashion.

Stimulus1 Stimulus2 Stimulus3

\ \

triggers readFrame() triggers decodeFrame() triggers writeFrame()

o . X .
> > >

) Reader * Buffer1 ¢ ° e

Decoder Buffer2 Renderer

Figure 8. Structure of a critical execution scenario.

Scenario Model “decoding mode™: Triggers
Stimulus1
Composition_Structure triggered_opr = IRead.readFrame()
Service_Instances periodicity = periodic
Reader period = 100 ms
Reader deadline = 100 ms
Buffer1 precedence none
Buffer2 Stimulus2
Decoder triggered_opr = IDecode.decodeFrame()
Renderer periodicity = periodic
Binding period = 100 ms
Reader; |BufferAccess; Buffer1; IBufferAccess deadline = 100 ms
Decoder; IBufferAccess; Buffer1; IBufferAccess precedence none
Decoder; IBufferAccess; Buffer2; IBufferAccess Stimulus3
Renderer; IBufferAccess; Buffer2; IBufferAccess triggered_opr = |Write.writeFrame()
Events none periodicity = periodic
period = 100 ms
deadline = 100 ms
precedence none

Figure 9. Specification of the scenario model. The scenario plays MPEG-4 video with a rate of 10 frames/sec.

4.3. Model Compilation and Task Generation

We jointly compiled all relevant component resource and behaviour models together with the scenario model in
order to generate a set of tasks running in the scenario. A task is defined by the period (or minimal interarrival
time if aperiodic), deadline, offset, precedence constraints with other tasks and a sequence of operation calls
through components made by each task instance. The former parameters are inherited from the stimulus para-
meters in the scenario model. The task call sequences are reconstructed from the individual call sequences of
constituent operations specified in the behaviour models. A processor load of a constituent operation is known
from the corresponding resource model, so that the RTIE tool can calculate the total execution time of a task
instance. The RTIE visualizer draws the generated tasks (see Fig. 10) to help in understanding and analysis of
the task behaviour in the scenario.

For instance, the decoding task (see Fig. 10(c)), triggered by Stimulus2, contains three operation calls of the
Decoder, Bufferl and Buffer2 service instances. The CPU utilization times of each operation called are known
from the corresponding resource model (see Fig. 7). Thereby, the calculated total execution time of this task is
26.25 ms. The period and deadline of the task (100 ms) are derived from the parameters of Stimulus2 specified
in the scenario model (see Fig. 9).

4.4. Scenario Simulation

The execution of the generated tasks was simulated with a rate-monotonic virtual scheduler provided by the
RTIE tool. The resulting execution timeline is depicted in Fig. 11. The timeline indicates all running tasks

Stimulus1
{period 100 ms}

9.47 ms

Reader

Task triggerd by: Stimulus1

|

|

O IRead.readFrame() }
—

|

I

|

|

\

IBufferAccess.pushElement()

Buffer1

core of readFrame() {0.22 ms}

1
OIWﬁte.writemee():
|

Stimulus3
{period 100 ms}

&

13.49 ms

claim = 9.25 mg

Task triggerd by: Stimulus3

Renderer
1

|IBufferAccess.popElement().
1
————»

—

1
|
1
1
1
|
1
|
(

claim=11.51 ms

core of writeFrame() {1.98 ms}

I
| I,
e -~ |
| | I
(a) Task triggerd by: Stimulus2 (b)
‘ Decoder ‘ ‘ Buffer1 ‘ ‘ Buffer2 ‘
T
! | |
lecode.decodeFrame() ! i
i | 1
\ | |
Stimulus2 ‘lIBuffeeroess.popElement() \
{period 100 ms} :—h‘ claim=11.51 ms |
|]
o [mmm=mmmmaa==== -~ i
£ | | H
0 1 I 1
; | core of decodeFrame() {5.69 ms} |
S : IBuﬁeeroess.;;ushElement() i
i “ » _claim = 9.25 ms
0 |
1
oo Ao i

(c)

Figure 10. Tasks generated for the scenario. (a) reading task triggered by Stimulusl, (b) decoding task triggered by
Stimulus2, (c¢) rendering task triggered by Stimulus3

of the decoder, their predicted start and completion times, as well as deadlines. The gray boxes on the figure
represent the occupation of the CPU caused by their corresponding tasks. The black vertical line in a gray box
means a transition from one operation executed to another within the task. The simulation time was set to 1500
seconds. The figure depicts only the first 400 ms of the simulation execution. From the simulation results we
concluded that the deadlines for all three tasks are met along the whole simulation time (also for non-plotted
intervals). The general performance property (processor utilization) was derived from the timeline data. The
total CPU utilization was predicted to be 49.4%. In the next section, we discuss and compare the predicted
results vs. real execution data in more detail.

‘Task instance triggering ‘ ‘Task instance completion‘ ‘ Task instance deadline ‘ ‘

CPU is idle ‘

\

fi/

Stirubus] _resdframs

| | g

StimulusZ_decodeFrame

| 1]

Stimulus3_writeFrams

/
I |

I oot
I (-

|
I ot
I &

T |

Pl |

Figure 11. Task execution timeline for the selected scenario

5. EXPERIMENTS AND RESULTS

After prediction at the design phase, we integrated the real-time aware components into a real MPEG-4 decoder
application and executed this on a Linux/32 platform. We aimed at obtaining two types of data: (a) timeline
data (which task is executed at what moment) and (b) processor utilization data.

First, we compared the acquired (by the Linux Trace Toolkit) timeline data with the predicted execution
timeline. The analysis showed a slight difference in the predicted-wvs.-real execution moments of the tasks. This
difference is explained by numerous OS kernel activities (pagefaults, timestamps, i/o calls) interrupting the
decoder execution. Thus, the approach does not allow accurate prediction of the starting/completion times of
individual tasks. However, the predicted patterns of the task execution coincided well with the real execution
patterns. Besides this, the task real-time requirements (no missing deadlines) has been met as predicted. This
was partly due to the large CPU slack (50%) available. In case of higher decoder CPU utilization, the real-time
requirements would be jeopardized by the kernel activity. It is clear that for those high-load condition scenarios,
the OS kernel activities should be integrated in our design approach.

Second, we analyzed the accuracy of the predicted performance properties (see Table 1). The prediction
accuracy error on the average processor utilization appeared to be about 10%, and proved to be reasonably
stable. The accuracy error on the time-detailed processor utilization (granularity = 1 sec) varied within 30%.
We have found that a reason for the strongly varying processor-usage is the variable number of macroblocks
for decoding of arbitrary- sized video objects (as we mentioned above, the CPU claims of each operation are
specified for a worst-case scenario). This observation resulted into the concept of an input-parameter-dependent
resource modelling. This new concept is being explored at the moment.

Table 1. The predicted vs. real execution data comparison of the MPEG-4 coding application.

Type of measurements Predicted exec. data | Real data | Prediction tolerance
Average CPU utilization 49.4% 45.1% 8.7%
Reading Task av. utilization 9.5% 8.7% 8.4%
Decoding Task av. utilization 26.4% 23.6% 10.6%
Rendering Task av. utilization 13.5% 12.8% 5.2%
Time-detailed CPU util. (lower bound) 49.4% 34.3% 30.0%
Time-detailed CPU util. (upper bound) 49.4% 49.1% 0.6%

Finally, we discovered an interesting phenomenon in the decoder timing behaviour under memory overload
conditions. In the Linux OS, a concept of virtual memory is used for dealing with memory overload. This virtual
memory is implemented by page swapping - releasing memory slots by storing memory data on a disk. Returning
this data to memory upon request takes relatively long time. In the MPEG-4 decoder this causes serious latency
(1-2 frames) in the processing, because the data cannot be read instantaneously. The resulting phenomenon
is that latency requirements are not met, while the CPU usage is very low. The conclusion is that processor,
memory and bus usage need to be analyzed jointly to identify the aspects that hamper accurate predictable
system operation.

6. CONCLUSION

We have exploited a scenario simulation approach that enables prediction of real-time properties of an advanced
software-intensive MPEG-4 coding system. The average real-time behaviour of the MPEG-4 decoder can be pre-
dicted with high accuracy (within 90%). The prediction accuracy error on the time-detailed processor utilization
varied within 30%. As an extra benefit, the timing results give detailed performance information at the design
phase. For obtaining the time-detailed accuracy, we have found that integration of a timing model for system
activities into our modelling technique is indispensable, because our experiments revealed a large variation of
starting and completion times.

The knowledge about the generic computational costs resulting from our approach, provides important guide-
lines for efficient software/hardware co-design of multimedia coding systems. The case study revealed that the
processor, memory and bus usage need to be analyzed jointly, instead of processor analysis only. A second
important result is that input parameter dependencies should be taken into account. Third, the system-level
activities cannot be neglected during the modelling phase.

For future research, we study the execution of our CBA-based implementation on a programmable multi-
processor (multimedia) system with prediction of its real-time features and bus/memory usage. In order to do
this, we will decompose the Decoder component into a number of smaller individual components. Each compo-
nent can be mapped on a certain processing node in order to achieve an efficient SW/HW partitioning in terms
of performance. This fine-grained component decomposition will allow as to address advanced analysis topics,
e.g. (a) performance estimation of a multitude of complicated multimedia processing tasks, (b) trade-offs in
processor vs. communication bus loads, and (c¢) efficient architectural mapping of software components.

REFERENCES

1. C. Szyperski, Component software : beyond object-oriented programming, ISBN 0-201-74572-0, New York,
Addison-Wesley, 2002.

2. S. Balsamo, A. Di Marco, P. Invenardi, ”Model-Based Performance Prediction in Software Development: A
Survey”, IEEE Trans. Software Eng., vol. 30, pp. 295-310 (2004).

3. E. Wandeler, L. Thiele, M. Verhoef, ”System Architecture Evaluation Using Modular Performance Analysis
- A Case Study”, Proc. 1th ISOLA Symposium, 2004.

4. P. Lieverse, P. van der Volf, K. Vissers, ” A Methodology for Architecture Exploration of Heterogeneous Signal
Processing Systems”, Journ. VLSI Signal Proc. Signal, Image and Video Proc., vol. 29, pp. 197-207, 2001.

5. K.C. Wallnau, ”Volume III: A Technology for Predictable Assembly from Certifiable Components”,
CMU/ESI-2003-TR-009 report, April 2003.

6. S.A. Hissam, et al., "Packaging Predictable Assembly with Prediction-Enabled Component Technology”,
CMU/ESI-2001-TR-02/ report, November 2001.

7. V. Cortellessa, R. Mirandola, "PRIMA-UML: a performance validation incremental methodology on early
UML diagrams”, Elsevier Science B.V., February 2002.

8. Public homepage of the Robocop project. [http://www. extra.research.philips.com/euprojects/robocop].

9. E. Bondarev, J. Muskens, P.H.N. de With and M.R.V. Chaudron, ”Predicting Real-Time Properties of
Component Assemblies: a Scenario-Simulation Approach”, Proc. 30th Euromicro Conf., CBSE Track, ISBN
0-7695-2199-1, pp. 40-47, September 2004.

10. M. Pastrnak and P. Poplavko and P.H.N. de With and D. Farin, "Data-flow timing Models of Dynamic
Multimedia Applications for Multiprocessor Systems”, 4th IEEE International Workshop on System-on-Chip
for Real-Time Applications (SoCRT), ISBN 0-7695-2182-7, pp. 206-209, July 2004.

11. T. Mowbray and R. Zahavi, Essential Corba, John Wiley and Sons, New York, 1995.

12. R. van Ommering et al., ”The Koala component model for consumer electronics software”, IEEE Trans.
Computer, 33 (3), 78-85, Mar. 2002.
13. D. Box, Essential COM, Object Technology Series. Addison-Wesley, 1997.

