
Presentation of the AADL:
Architecture Analysis and

Design Language

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components

2. Properties

3. Component connection

4. Behavior annex

3. AADL: tool support

2

Introduction

 ADL, Architecture Description Language:

 Goal : modeling software and hardware architectures
to master complexity … to perform analysis

 Concepts : components, connections, deployments.

 Many ADLs : formal/non formal, application domain,
…

 ADL for real-time critical embedded systems: AADL
(Architecture Analysis and Design Language).

3

 Mars Pathfinder and its rover
Sojourner (1997)

 Periodic tasks +
synchronization

 VxWorks operating system

 Priority inversion bug
4

Example: why ADL and MBSE?

void SCHED_BUS() {…}

void DATA() {…}

…

void VIDEO(…) {

while(1) {

…

semTake()

…

semGive()

…

taskDelay(next_periodic_release);

}

}5

Why ADL & MBSE: various concerns in the
same real-time program

Functional
(application) code

Concurrent code (task)

Synchronization/communic
ation (between task)Timing code

(periodic)

void init() {

nb=semCCreate(SEM_Q_FIFO,NB_CASES);

mutex=semMCreate(SEM_Q_FIFO);

taskSpawn(“FORECAST",102,0,5000,(FUNCPTR)FORECAST,

6,24,0,0,0,0,0,0,0,0);

taskSpawn(“VIDEO",103,0,5000,(FUNCPTR)FORECAST,

6,24,0,0,0,0,0,0,0,0);

…

}

6

Why ADL & MBSE: various concerns/aspects
in the same real-time program

Configuration
code

Scheduling
(task)

Resource
allocation

 Various concerns/aspects

 Functional aspects, but also:

 Timing aspects (periodic tasks)

 Concurrency and scheduling (several tasks)

 Synchronization and communication (between tasks)

 Resource or operating system configuration

 Having various concerns make verification,
implementation, design space exploration difficult =>
ADL & MBSE

7

Example: why ADL and MBSE?

AADL: Architecture Analysis & Design Language

 International standard promoted by SAE, AS-2C
committee, released as AS5506 family of standards

 Core language document:
 AADL 1.0 (AS 5506), 2005
 AADL 2.0 (AS 5506A), 2009
 Last release: AS 5506D in April 2022

 Annex documents to address specific concerns
 Annex A: ARINC 653 Interface (AS 5506/1A) 2015
 Annex B: Data Modelling (AS 5506/2) 2011
 Annex C: Code Generation Annex (AS 5506/1A) 2015
 Annex D: Behavior Annex v2 (AS 5506/3) 2017
 Annex E: Error Model Annex v2 (AS 5506/1A) 2015

8

AADL is for Analysis

 AADL objectives are “to model a system”

 With analysis in mind (different analysis)

 To ease transition from well-defined
requirements to the final system : code
production

 Require semantics => any AADL entity has
semantics (natural language or formal methods).

9

AADL: Architecture Analysis & Design Language

 Different representations :
 Textual (standardized representation),
 Graphical (declarative and instance views),
 XML/XMI (not part of the standard: tool specific)

 Graphical editors:
 OSATE (SEI):

 declarative model editor
 instance model viewer

 MASIW (ISPRAS)
 Scade Architect (Ansys): instance model editor
 Stood for AADL (Ellidiss) : instance model editor

10

AADL components
 AADL model : hierarchy/tree of components

 Composition hierarchy (subcomponents)

 Inheritance hierarchy (extends)

 Binding hierarchy (e.g. process->processor)

 AADL component:
 Model a software or a hardware entity

 May be organized in packages : reusable

 Has a type/interface, zero, one or several implementations

 May have subcomponents

 May combine/extend/refine others

 May have properties : valued typed attributes (source code file name, priority,
execution time, memory consumption, …)

 Component interactions :
 Modeled by component connections

 Binding properties express allocation of SW onto HW
11

AADL components

 How to declare a component:
 Component type: name, category, properties, features => interface

 Component implementation: internal structure (subcomponents),
properties

 Component categories: model real-time abstractions,
close to the implementation space (ex : processor, task,
…). Each category has well-defined semantics/behavior,
refined through the property and annexes mechanisms
 Hardware components: execution platform

 Software components

 Systems : bounding box of a system. Model deployments.

12

Component type

 Specification of a component: interface

 All component type declarations follow the same
pattern:

AADL Tutorial -- MODELS'14

13

<category> foo [extends <bar>]
features

-- list of features
-- interface

properties
-- list of properties
-- e.g. priority

end foo;

Inherit features and
properties from parent

Interface of the component:
Exchange messages, access to
data or call subprograms

Some properties describing
non-functional aspect of the
component

Component type

 Example:

-- model a sequential execution flow
subprogram Spg -- Spg represents a C function,
features -- in file "foo.c", that takes one
in_param : in parameter foo_data; -- parameter as input

properties
Source_Language => C;
Source_Text => ("foo.c");

end Spg;

-- model a schedulable flow of control
thread bar_thread -- bar_thread is a sporadic thread :
features -- dispatched whenever it
in_data : in event data port foo_data; -- receives an event on its “in_data"

properties -- port
Dispatch_Protocol => Sporadic;

end bar_thread;

Standard properties, one can
define its own properties

14

Component implementation

 Implementation of a component: body
 Think spec/body package (Ada), interface/class (Java)

<category> implementation foo.i [extends <bar>.i]
subcomponents
…

calls
-- subprogram subcomponents
-- called, only for threads or subprograms

connections
properties
-- list of properties, e.g. Deadline

end foo.i;

foo.i implements foo

15

Component implementation

 Example:

thread implementation bar_thread.impl -- in this implementation, at each
calls -- dispatch we execute the "C" call
C : { S : subprogram spg; }; -- sequence. We pass the dispatch

connections -- parameter to the call sequence
parameter in_data -> S.in_param;

end bar_thread.impl;

Connect
data/parameter

subprogram Spg
features

in_param : in parameter foo_data;
properties

Source_Language => C;
Source_Text => ("foo.c");

end Spg;

thread bar_thread
features

in_data : in event data port foo_data;
properties

Dispatch_Protocol => Sporadic;
end bar_thread;

AADL concepts
 AADL introduces many other concepts:

 Related to embedded real-time critical systems :

 AADL flows: capture high-level data+control flows

 AADL modes: model operational modes in the form of an alternative set of
active components/connections/…

 To ease models design/management:

 AADL packages (similar to Ada/Java, renames, private/public)

 AADL abstract component, component extension

 …

 AADL is a rich language :

 Around 200 entities in the meta-model
 Around 200 syntax rules in the BNF (core)
 Around 250 legality rules and more than 500 semantics rules
 355 pages core document + various annex documents

17

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components

2. Properties

3. Component connection

4. Behavior annex

3. AADL: tool support

18

AADL workflow

19

1. Declarative model (Packages)
 HW libraries

 SW libraries

 Applicative composite systems

2. Instance model
 Selection of the Root System

 Expanded HW hierarchy

 Expanded SW hierarchy

3. Deployed model
 SW instances binding onto HW instances

similar to
UML classes

or SysML blocks

exhaustive
representation of

the system
hierarchy

required for many
advanced analysis:
-schedulability
-simulation
-safety
-security
-…

bottom-up

top-down

A full AADL system : a tree of component
instances

 Component types and
implementations only define a
library of entities (classifiers)

 An AADL model is a set of
component instances (of the
classifiers)

 System must be instantiated
through a hierarchy of
subcomponents, from root
(system) to the leafs
(subprograms, ..)

 We must choose a system
implementation component as
the root system model !

System

Sub System Process Processor

Thread Data

Subprogram

20

Software components categories

 thread : schedulable execution flow, Ada or VxWorks task,
Java or POSIX thread. Execute programs

 data : data placeholder, e.g. C struct, C++ class, Ada record

 process : address space. It must hold at least one thread

 subprogram : a sequential execution flow. Associated to a
source code (C, Ada) or a model (SCADE, Simulink)

 thread group : hierarchy of threads

 subprogram group : library or hierarchy of subprograms

Thread data Threadgroup processsubprogram

21

Software components

 Example of a process component : composed
of two threads

thread receiver
end receiver;

thread implementation receiver.impl
end receiver.impl;

thread analyser
end analyser;

thread implementation analyser.impl
end analyser.impl;

process processing
end processing;

process implementation processing.others
subcomponents

receive : thread receiver.impl;
analyse : thread analyser.impl;
. . .

end processing.others;

22

Software components

 Example of a thread component : a thread
may call different subprograms

thread receiver
end receiver;

thread implementation receiver.impl
CS : calls {

call1 : subprogram Receiver_Spg;
call2 : subprogram ComputeCRC_Spg;

};
end receiver.impl;

subprogram Receiver_Spg
end Receiver_Spg;

subprogram ComputeCRC_Spg
end ComputeCRC_Spg;

. . .

23

Hardware components categories

 processor/virtual processor : scheduling component
(combined CPU and OS scheduler).

 memory : model data storage (memory, hard drive)

 device : component that interacts with the environment.
Internals (e.g. firmware) is not modeled.

 bus/virtual bus : data exchange mechanism between
components

Device Memory bus Processor

24

« system » category

 system :

1. Help structuring an architecture, with its own
hierarchy of subcomponents. A system can include
one or several subsystems.

2. Root system component.

3. Bindings : model the deployment of components
inside the component hierarchy.

System

25

thread receiver …

thread implementation receiver.impl
Properties

period => 10 ms;
dispatch_protocol => periodic;
deadline => 10 ms;
priority => 100;
compute_execution_time =>

10 ms .. 20 ms;
end receiver.impl;

process processing
end processing;

process implementation processing.others
subcomponents

receive : thread receiver.impl;
analyse : thread analyser.impl;
. . .

end processing.others;

« system » category

system radar
end radar;

system implementation radar.simple
subcomponents

main : process processing.others;
cpu : processor leon2;

properties
Actual_Processor_Binding =>

reference cpu applies to main;
end radar.simple;

processor leon2
properties

scheduling_protocol => rm;
end leon2;

26

About subcomponents

 Semantics: restrictions apply on subcomponents
 e.g. hardware cannot contain software, etc

27

category allowed subcomponent categories

system all but thread group and thread

processor virtual processor, memory, bus

memory memory, bus

process thread group, thread, subprogram, data

thread group thread group, thread, subprogram, data

thread subprogram, data

subprogram data

data data, subprogram

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components

2. Properties

3. Component connection

4. Behavior annex

3. AADL: tool support

28

AADL properties

 Property:
 Typed attribute, associated to one or more entities

 Property definition = name + type + possible owners

 Property association to a component = property name
+ value

 Can be propagated to subcomponents: inherit
 Can override parent’s one, case of extends

 Allowed types in properties:
 aadlboolean, aadlinteger, aadlreal, aadlstring, range, list,

enumeration, record, user defined (Property type)

29

AADL properties

 Property sets :
 Group property definitions.

 Property sets part of the standard, e.g. Thread_Properties.

 Or user-defined, e.g. for new analysis as power analysis

 Example :
property set Thread_Properties is

. . .
Priority : aadlinteger applies to (thread, device, …);
Source_Text : inherit list of aadlstring applies to (data, port, thread, …);
. . .

end Thread_Properties;

30

AADL properties

 Properties are typed with units to model physical
systems, related to embedded real-time critical
systems.

property set AADL_Projects is
Time_Units: type units (

ps,
ns => ps * 1000,
us => ns * 1000,
ms => us * 1000,
sec => ms * 1000,
min => sec * 60,
hr => min * 60);

--
end AADL_Projects;

property set Timing_Properties is

Time: type aadlinteger
0 ps .. Max_Time units Time_Units;

Time_Range: type range of Time;

Compute_Execution_Time: Time_Range
applies to (thread, device, subprogram,
event port, event data port);

end Timing_Properties;

AADL properties

 Properties can apply to (with increasing priority)
 a component type (1)

 a component implementation (2)

 a subcomponent (3)

 a contained element path (4)

process implementation processing.others
subcomponents
receive0 : thread receiver.impl;
receive1 : thread receiver.impl;
receive2 : thread receiver.impl

{Deadline => 200 ms;}; -- (3)
properties -- (4)

Deadline => 300 ms applies to receive1;
end processing.others;

thread receiver
properties -- (1)
Compute_Execution_Time => 3 ms .. 4 ms;
Deadline => 150 ms ;

end receiver;

thread implementation receiver.impl
properties -- (2)

Deadline => 160 ms;
end receiver.impl;

32

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components

2. Properties

3. Component connection

4. Behavior annex

3. AADL: tool support

33

Component connection

 Connection: model component interactions, control flow and/or
data flow. E.g. exchange of messages, access to shared data,
remote subprogram call (RPC), …

 features : connection point part of the interface. Each feature has a
name, a direction, and a category

 Features category: specification of the type of interaction
• event port: event exchange (e.g. alarm, interrupt)
• data port: data exchange triggered by the scheduler
• event data port: data exchange of data triggered with sender (message)
• subprogram parameter
• data access : access to external data component, possibly shared
• subprogram access : RPC or rendez-vous

 Features direction for port and parameter:
• input (in), output (out), both (in out). 34

Component connection

 Features of subcomponents are connected in
the “connections” subclause of the enclosing
component

 Ex: threads & thread connection on data port
thread analyser
features

analyser_out : out data port
Target_Position.Impl;

end analyser;

thread display_panel
features

display_in : in data port Target_Position.Impl;
end display_panel;

process implementation processing.others
subcomponents

display : thread display_panel.impl;
analyse : thread analyser.impl;

connections
port analyse.analyser_out -> display.display_in;

end processing.others;

35

Data connection policies
 Allow predictable communications

 Emit at completion time of emitter

 Receive at starting time of receiver

 Multiple policies exist to control production and consumption of data by threads:

1. Sampling connection: takes the latest value

 Problem: data consistency (lost or read twice) !

36

Data connection policies

2. Immediate: receiver thread is immediately
awaken, and will read data when emitter finished

3. Delayed: actual transmission is delayed to the
next time frame

37

data implementation shared_var.impl
end shared_var.impl;

thread analyser
features
share : requires data access shared_var.impl;
end analyser;

thread display_panel
features
share : requires data access shared_var.impl;

end display_panel;

process implementation processing.others
subcomponents

analyse : thread analyser.impl;
display : thread display_panel.impl;
a_data : data shared_var.impl;

connections
cx1 : data access a_data -> display.share;
cx2 : data access a_data -> analyse.share;

end processing.others;

data shared_var
properties

Concurrency_Control_Protocols
=> PCP;

end shared_var;

Component connection
Connection for shared data :

38

Component connection

Connection between thread and subprogram :

39

thread implementation receiver.impl
calls {

RS: subprogram Receiver_Spg;
};
connections
parameter RS.receiver_out -> receiver_out;
parameter receiver_in -> RS.receiver_in;

end receiver.impl;

subprogram Receiver_Spg
features

receiver_out : out parameter
radar_types::Target_Distance;

receiver_in : in parameter
radar_types::Target_Distance;

end Receiver_Spg;

thread receiver
features
receiver_out : out data port

radar_types::Target_Distance;
receiver_in : in data port

radar_types::Target_Distance;
end receiver;

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components

2. Properties

3. Component connection

4. Behavior annex

3. AADL: tool support

40

AADL Behavior Annex

41

 Provides more details on the internal behavior of threads
and subprograms.

 Complements, extends or replaces Modes, Calls and
some Properties defined in the core model.

 Required for accurate timing analysis and virtual
execution of the AADL model.

 State Transition Automata with an action language:
 dispatch conditions

 actions: event sending, subprogram call, critical sections, …

 control structures: loops, tests, …

AADL Behavior Annex example

42

thread transmitter

features

transmitter_out : out data port radar_types::Radar_Pulse;

end transmitter;

thread implementation transmitter.impl

…

annex Behavior_Specification {**

states

s : initial complete final state;

transisitons

t : s -[on dispatch]-> s { transmitter_out := "ping" };

**};

end transmitter.impl;

annex identifier

transition condition

transition actions

state declaration

Outline

1. AADL a quick overview

2. AADL key modeling constructs
1. AADL components

2. Properties

3. Component connection

4. Behavior annex

3. AADL: tool support

43

AADL & Tools
 OSATE (SEI/CMU, http://osate.org)

 Eclipse-based tools. Reference implementation.

 Textual and graphical editors + various analysis plug-ins

 STOOD (Ellidiss, http://www.ellidiss.com)

 Graphical editor, code/documentation generation

 Guided modeling approach, requirements traceability

 AADLInspector (Ellidiss, http://www.ellidiss.com)

 Standalone framework to process AADL models and Behavior Annex

 Industrial version of Cheddar + Simulation Engine

 Ocarina (ISAE, http://www.openaadl.org)

 Command line tool, library to manipulate models.

 AADL parser + code generation + analysis (Petri Net, WCET, …)

 Cheddar (UBO/Lab-STICC, http://beru.univ-brest.fr/cheddar/)

 Performance analysis

 Others: RAMSES, PolyChrony, ASSIST, MASIW, MDCF, TASTE, Scade Architect,
Camet, Bless, …

44

45

 AADLInspector, OSATE/Cheddar

Tools used for the tutorial

Tools used for the tutorial

46

P
ro

ces
sin

g
 g

o
als

Scheduling Analysis

Safety Analysis

Security Analysis

End to End Flow
Analysis

Power Consumption

Cost Analysis

Requirements
Coverage

Simulation

Code Generation

pivot
model

textual
AADL

AADL Inspector

Cheddar

Marzhin

Ocarina

M
o

d
e

ls

SysML+Variants

MARTE+Variants

UML+Variants

OSATE

Capella

TASTE

EEA

Stood

