CEC 450 Real-Time Systems

Lecture - RM Analysis Examples with Cheddar

EMBRYFRIDDLE

Using Cheddar [Basics]

- Download for Windows [here]
- Use "Edit" to Start
- Start with Update Processors
- Add it
- Update Address Spaces, Add it
- Update Tasks, Add $S_{1} \ldots S_{n}$
- Note Cheddar Runs over LCM

Simulation

- Hit Simulation button to Start
- Calculates LCM, Runs, Produces Timing Diagram and Summary

```
ब.. Cheddar: f free real time sheduling simulator
| File Edit Tools Help 
M,
Scheduling simulation, Processor CPU1 :
- Number of context switches : 14
    Number of preemptions : 2
    Task response time computed from simulation :
    S1 => 1/worst
    S1 => 1/worst
    S2 => 2/worst
    S3 => 6/worst
No deadline missed in the computed scheduling : the task set seems to be
schedulable.
```

Simulation Button

Timing Diagram

Summary - Note the conclusion "seems"

Feasibility Test

- Hit Feasibility button to Test
- For RM Policy, Cheddar Uses the RM LUB
- For All Policies, Cheddar Provides Worst-Case Analysis

Scheduling feasibility, Processor CPU1 :

1) Feasibility test based on the processor utilization factor :

- The base period is 30 (see [18], page 5)
- 8 units of time are unused in the base period.
- Processor utilization factor with deadline is 0.73333 (see [1], page 6)
- Processor utilization factor with period is 0.73333 (see [1], page 6)

2) Feasibility test based on worst case task response time

- Bound on task response time : (see [2], page 3, equation 4)
$\begin{array}{ll}\text { S3 } & \Rightarrow 6 \\ \text { S2 } & \Rightarrow 2\end{array}$
S1 $\Rightarrow 1$
■ Change Update Processors to EDF

Run Again with EDF to Compare

- Priorities are Dynamic, So Just Change Processor Scheduler Policy, Re-Run Simulation and Feasibility

```
1) Feasibility test based on the processor utilization factor:
1) Feasibility test based on the processor ut
- The base period is 30 (see [18], page 5).
- Processor utilization factor with deadline is 0.73333 (see [1], page 6)
- Processor utilization factor with period is 0.73333 (see [1], page 6)
- In the preemptive case, with EDF, the task set is schedulable because the processor utilization factor 0.73333 is equal or less than 1.00000 (see [1], page 8, theorem 2)
2) Feasibility test based on worst case task respomse time :
- Bound on task response time
    S1 
- All task deadlines will be met : the task set is schedulable.
1) Feasibility test based on the processor utilization factor :
- The base period is 30 (see [18], page 5).
- 8 units of time are unused in the base period

Processor utilization factor with deadline is 0.73333 (see [1], page 6)
Processor utilization factor with period is 0.73333 (see [1], page 6)
- In the preemptive case, with LLF, the task set is schedulable because the processor utilization factor 0.73333 is equal or less than 1.00000 (see [7]).
2) Feasibility test based on worst case tarkresponse time :
- Bound on task response time
S1 \(\Rightarrow 1\)
S2 \(\Rightarrow 8\)
S3 \(\Rightarrow 13\)
- All task deadines will be met : the task set is schedulable

Note LLF

\section*{Example-0 Timing Diagram}
- RM, EDF, LLF Succeed, 73.33\% CPU Utilization


Scheduling simulation, Processor CPU1 :
- Number of context switches : 14
- Number of preemptions : 2
- Task response time computed from simulation :

S1 => 1/worst
S2 => 2/worst
S3 => 6/worst
- No deadline missed in the computed scheduling : the task set seems to be schedulable.

\section*{Example-0 Cheddar RTSS}
- Download Cheddar RT Analyzer, Example-0 XML


Scheduling feasibility, Processor CPU1:
1) Feasibility test based on the processor utilization factor :
- The base period is 30 (see [18], page 5).
- 8 units of time are unused in the base period.
- Processor utilization factor with deadline is 0.73333 (see [1], page 6).
- Processor utilization factor with period is 0.73333 (see [1], page 6).
- In the preemptive case, with RM, the task set is schedulable because the processor utilization factor 0.73333 is equal or less than 0.77976 (see [1], page 16, theorem 8).
2) Feasibility test based on worst case task response time :
- Bound on task response time : (see [2], page 3, equation 4). S3 \(=>6\)
S2 \(=>2\)
S1 => 1
- All task deadlines will be met : the task set is schedulable.

\section*{Example-1 Timing Diagram}


Scheduling simulation, Processor CPU1 :
- Number of context switches : 68
- Number of preemptions : 10
- Task response time computed from simulation :

S1 => 1/worst
S2 => 2/worst
S3 \(=>8\) /worst , missed its deadline (deadline \(=7\); completion time \(=8\) )
- Some task deadlines will be missed : the task set is not schedulable.

\section*{Example-1 Cheddar RTSS}

\section*{■ RM Not Feasible by LUB or by Inspection over LCM}
```

Scheduling feasibility, Processor CPU1 :

1) Feasibility test based on the processor utilization factor :

- The base period is 70 (see [18], page 5).
- 1 units of time are unused in the base period.
- Processor utilization factor with deadline is 0.98571 (see [1], page 6).
- Processor utilization factor with period is 0.98571 (see [1], page 6).
- In the preemptive case, with RM, we can not prove that the task set is schedulable
is more than 0.77976 (see [1], page 16, theorem 8).

2) Feasibility test based on worst case task response time :

- Bound on task response time : (see [2], page 3, equation 4).
S3 => 8, missed its deadline (deadline = 7)
S2 => 2
S1 => 1
- Some task deadlines will be missed : the task set is not schedulable.

```

\section*{E EDF?}

Scheduling feasibility, Processor CPU1 :
1) Feasibility test based on the processor utilization factor :
- The base period is 70 (see [18], page 5).
- 1 units of time are unused in the base period.
- Processor utilization factor with deadline is 0.98571 (see [1], page 6).
- Processor utilization factor with period is 0.98571 (see [1], page 6).
- In the preemptive case, with EDF, the task set is schedulable because the processor utilization factor 0.98571 is equal or less 1.00000 (see [1], page 8, theorem 2).
2) Feasibility test based on worst case task response time :
- Bound on task response time :

S1 => 1
S2 \(2=4\)
S3 \(3=7\)
- All task deadlines will be met : the task set is schedulable.

\section*{Example-1 Cheddar RTSS}
- EDF Simulation over LCM of 70

- LLF Simulation over LCM of 70

- Worst Case Feasibility Test
- Fixed Priority (RM Policy) FAILS LUB and WC Feasibility Test (Scheduling Point or Completion Test)
- Dynamic Priority Succeeds by Two Methods

\section*{Review Remaining Examples}
- http://mercury.pr.erau.edu/~siewerts/cec450/documents/ Timing Diagrams/
- As Noted in Liu and Layland, Static Priority Policy May Not be Feasible in Cases where Dynamic Priority Policy is Feasible
- Are Feasibility and Safety Synonymous?

E Is it Wise to have Zero Margin?
- Have We Accounted for Context Switch Overhead and ISR Latency?

\section*{Cheddar References}
- Help, Scheduling References
- References Used to Build Cheddar - Here
- General References - Here
6.5. Scheduling references
[1] Preemptive and Non-Preemptive Real Time Uni-Processor Scheduling. L. George, N. Rivierre and M. Spuri INRIA Research Report number 2966. September 1996.
[2] Holistic Schedulability Analysis for Distributed Hard Real-Time Systems. K. Tindell and J. Clark Microprocessing and Microprogramming 40:117-134. 1994.
[3] Priority Inheritance Protocals : An Approach to Real Time Synchronization. L. Sha, R. Rajkumar and J.P. Lehoczky IEEE Transactions on computers, \(39(9): 1175-1185.1990\).
[4] About Bounds of Buffers Shared by Periadic Tasks : the IRMA project. J. Legrand, F. Singhoff, L Nana, L. Marce, F. Dupont and H. Hafidi

\subsection*{6.5. Scheduling references}
L. Marce, F. Dupont and H. Hafidi In the 15 th IEEE Euromicra, WIP Real Time Systems Conference, 2003.
[5] Scheduling dependant tasks with Different Arrival Times to Meet Deadlines. J. Blazewicz

In. Gelende H. Beilner (eds), Modeling and Performance Evaluation of Computer Systems,. Amsterdam 1976
[6] Dynamic Scheduling of Real Time Tasks Under Precedence Constraints. H. Chetta, M. Silly and T. Bouchentouf RTS International Journal of Time Critical Computing Systems. 2(3):181-194, September 1990.
[7] Scheduling Algorithms for multi-Programming in a hard-real-time envirronment.
C. L. Liu and J. W. Layland

Journal of the ACM, 20 (1):46--61, 1973.```

