
CEC450, Real-Time Systems:

Exercise #2 – Service Scheduling Feasibility

DUE: As Indicated on Canvas and Syllabus

Please thoroughly read Chapters 3, 4 & 5 in http://ecee.colorado.edu/~siewerts/RTECS2/

Please see example code provided - http://mercury.pr.erau.edu/~siewerts/cec450/code/

Exercise #2 Requirements:

1) [5 points] Go to the Control Systems Lab, King 122; make yourself an account on at least
two of the seven Jetson TK1 Systems (of your choice). To do this, use the reset button if the
system is locked, use our well-known “ubuntu” password to login, and then use “sudo
adduser”, enter the well-known password, and enter user information as you see fit. Add
your new user account as a “sudoer” using “visudo” right below root with the same
privileges (if you need help with “vi”, here’s a quick reference or reference card– use arrows
to position cursor, below root hit Esc, “i” for insert, type username and privileges as above,
and when done, Esc, “:”, “wq”). The old unix vi editor was one of the first full-screen visual
editors – it still has the advantage of being found on virtually any Unix system in existence,
but is otherwise cryptic – along with Emacs it is still widely used in IT, by developers and
systems engineers, so it’s good to know the basics. If you really don’t like vi or Emacs, your
next best bet is “nano” for Unix systems. Do a quick “sudo whoami” to demonstrate success.
Logout of ubuntu and test your login, then logout. Use Alt+Print-Screen to capture your
desktop and save as proof you set up your account. Note that you can always get a terminal
with Ctrl+Alt+t key combination. If you don’t like the desktop, you can try “GNOME
Flashback” and please play around with customizing your account as you wish. Make sure
you can access our class web page on Firefox (or default browser) and set your home page to
http://mercury.pr.erau.edu/~siewerts/cs415/ .

2) [15 points] Read the paper "Architecture of the Space Shuttle Primary Avionics Software
System" [available on Canvas], by Gene Carlow and provide an explanation and critique of
the frequency executive architecture. What advantages and disadvantages does the frequency
executive have compared to the real-time threading and tasking implementation methods for
real-time software systems? Please be specific about the advantages and disadvantages and
provide at least 3 advantages as well as 3 disadvantages.

3) [50 points] Download Feasibility example code and build it on a Jetson (or PRClab if you
have not mastered the Jetson yet) and execute the code. Compare the tests provided to

http://mercury.pr.erau.edu/%7Esiewerts/cs415/CS415-Syllabus-Fall-15.html
http://ecee.colorado.edu/%7Esiewerts/RTECS2/
http://mercury.pr.erau.edu/%7Esiewerts/cec450/code/
http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
https://earthsci.stanford.edu/computing/unix/editing/viquickref.pdf
http://web.mit.edu/merolish/Public/vi-ref.pdf
https://en.wikipedia.org/wiki/Vi
https://en.wikipedia.org/wiki/Emacs
http://mercury.pr.erau.edu/%7Esiewerts/cs415/
http://dl.acm.org/citation.cfm?id=358258
http://dl.acm.org/citation.cfm?id=358258
http://mercury.pr.erau.edu/%7Esiewerts/cec450/code/Feasibility/

analysis using Cheddar for the first 4 examples. Now, implement the remaining examples [5
more] that we reviewed in class (found here). Complete analysis for all three policies using
Cheddar (RM, EDF, LLF). In cases where RM fails, but EDF or LLF succeeds, explain why.
Cheddar uses both service simulations over the LCM of the periods as well as feasibility
analysis based on the RM LUB and scheduling-point/completion-test algorithms, referred to
as “Worst Case Analysis”. Does your modified Feasibility code agree with Cheddar analysis
in all 5 additional cases? Why or why not?

4) [30 points] Provide 3 constraints that are made on the RM LUB derivation and 3 assumptions

as documented in the Liu and Layland paper and in Chapter 3 of RTECS2. Finally, list 3 key
derivation steps in the RM LUB derivation that you either do not understand or that you
would consider “tricky” math. Attempt to describe the rationale for those steps as best you
can do based upon reading in Chapter 3 of RTECS2.

http://mercury.pr.erau.edu/%7Esiewerts/cec450/documents/Timing_Diagrams/
http://ecee.colorado.edu/%7Esiewerts/RTECS2/
http://ecee.colorado.edu/%7Esiewerts/RTECS2/

Grading Rubric

[5 points] Create account on Jetson: _______________________________________

[15 points] Shuttle PASS paper review:

[6 points] Three advantages __

[6 points] Three disadvantages______________________________________

[3 points] Overall understanding of paper and key point articulation_________

 [50 points] Shared CPU system overload:

[5 pts] Example #4 code ______________________________________

[5 pts] Example #5 code ______________________________________

[5 pts] Example #6 code ______________________________________

[5 pts] Example #7 code ______________________________________

[5 pts] Example #8 code ______________________________________

[5 pts] Example #4 Cheddar confirm____________________________

[5 pts] Example #5 Cheddar confirm ____________________________

[5 pts] Example #6 Cheddar confirm ____________________________

[5 pts] Example #7 Cheddar confirm ____________________________

[5 pts] Example #8 Cheddar confirm ____________________________

[30 points] Shared CPU system overload:

[5 pts] C#1, A#1 ______________________________________

[5 pts] C#2, A#2 ______________________________________

[5 pts] C#3, A#3 ______________________________________

[5 pts] key step #1 ______________________________________

[5 pts] key step #2 ______________________________________

[5 pts] key step #3____________________________

Overall, provide a well-documented professional report of your findings, output, and tests so that
it is easy for a colleague (or instructor) to understand what you’ve done. Include any C/C++
source code you write (or modify) and Makefiles needed to build your code. I will look at your
report first, so it must be well written and clearly address each problem providing clear and
concise responses to receive credit.

Note: Linux manual pages can be found for all system calls (e.g. fork()) on the web at
http://linux.die.net/man/ - e.g. http://linux.die.net/man/2/fork

In this class, you’ll be expected to consult the Linux manual pages and to do some reading and
research on your own, so practice this in this first lab and try to answer as many of your own
questions as possible, but do come to office hours and ask for help if you get stuck.

Upload all code and your report completed using MS Word or as a PDF to Canvas and include
all source code (ideally example output should be integrated into the report directly, but if not,
clearly label in the report and by filename if test and example output is not pasted directly into
the report). Your code must include a Makefile so I can build your solution on Ubuntu VB-
Linux or a Jetson. Please zip or tar.gz your solution with your first and last name embedded
in the directory name.

http://linux.die.net/man/
http://linux.die.net/man/2/fork

