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Abstract—Data centers are more and more relying on hybrid
storage systems consisting of flash memory based storage devices
and traditional hard disk drives. Optimal data placement in such
hybrid storage systems is a very important issue in the domain
of cloud computing and virtualization. This is specially the case
when users need that storage systems enforce Quality of Service
requirements on I/Os performed, for example for multimedia
applications. To characterize Virtual Machine (VM) I/O workload
properties such as timing predictability or throughput, monitor-
ing services are necessary on such new architectures. This article
presents a multilevel I/O tracer for virtual machines that relies on
and complement different state-of-the-art tools. It produces I/O
traces at different levels of the Linux I/O software stack. The I/O
tracer gives an exhaustive information that allows administrators
to precisely characterize virtual machine I/O behavior in terms of
percentage of read/write I/Os, percentage of random/sequential,
I/O request inter-arrival time, etc. This tool is the first piece
towards a middleware whose purpose is to meet user QoS
requirements thanks to optimal data placement and migration
policies in a hybrid storage system in the context of an IaaS
Cloud.

I. INTRODUCTION

Infrastructure as a Service Cloud (IaaS) can be defined as
the way of delivering hardware infrastructures (CPU, storage
and network) and their associated software (virtualization tech-
nology and file system) to the cloud user [1]. In this context,
the performance and the energy consumption characteristics of
storage systems should be taken into account, in order to offer
the best quality of service [2] [3].

One of the key technologies to cope with the storage system
performance and energy consumption issues is flash based
storage systems [4]. The main characteristics of this kind of
storage system are their high throughput, low access latency
and low energy consumption. However, they are more expen-
sive then hard disk drives (HDD) and might have a limited
lifetime. So, for cost consideration reasons, they cannot replace
HDDs in the meantime [5]. Starting from this observation,
designers have tried to integrate efficiently flash memory in
the memory hierarchy mainly in three ways to propose Hybrid
Storage Systems [6]: (1) as a main memory extension, (2) as
a cache for HDDs, or (3) at the same level with HDDs in the
storage system level.

The major issue in hybrid storage architectures is to define
an optimal data placement policy. Data placement depends

mainly on two parameters: (1) the characteristics of the storage
devices, for instance: throughput, latency, power consumption,
and lifetime, and (2) the characteristics of the accesses to the
devices, for example: type of operations (read/write rate), and
I/O pattern (sequential/random percentage). Combining both
sets of parameters is important in order to achieve optimal
data placement upon a hybrid storage system according to
administrator constraints and user required Quality of Service.
In the cloud context, the Quality of Service is expressed in the
Service Level Agreement terms. Indeed, from a storage system
point of view, mainly two metrics define the SLA (or QoS
contract) for storage systems: throughput and access latency.
Assessing those metrics is mandatory as a Cloud system may
host applications with various QoS requirements. For example,
a cloud can host at the same time non real-time applications
but also real-time applications that require SLA enforcement.
This is the case, for instance, when multimedia applications
and/or database transactions are ran.

Characteristics of storage devices can be obtained from
the corresponding manufacturer data sheets or through some
benchmarking tools. However, it is difficult to get information
about the processed I/O workload if we do not have a prior idea
about the nature of the executed applications. This problem
is even more complex in the context of IaaS cloud as we
have an additional virtual machine (VM) layer. Indeed, the
administrator is not always aware of the nature of applications
executed by each VM. In case of multimedia applications,
timing performances that are required might be unknown to
the administrator. As a consequence, the only way to get the
characteristics of the I/O workload of a given VM is through
tracing its I/O access to the storage system device.

Many state-of-the-art Linux I/O tracers already exist. They
are plugged at different levels of the I/O software stack.
Blktrace [7] traces I/O activity at the block level (under the file
system). Strace [8] is able to observe the system calls issued
by a process. SystemTap [9] explores some specific system call
execution and timing. However, each tool individually fails in
delivering details about the whole I/O flow of VM executions.
In fact, one needs to gather the following information : (1)
identifying the VM files to know which users are handling
which files, this is of help as the SLA is user defined, (2)
identifying the access patterns from the user point of view
(in high operating system level) in order to have a clear
understanding of how the user accesses his files, and finally (3)
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assessing the impact of the I/O access pattern on the underlying
storage system to understand how the storage system and
different operating systems levels behave according to the I/O
workload extracted in (2).

This paper presents an I/O tracer for an IaaS Cloud context.
This I/O tracer monitors VMs I/O behavior on a given storage
system. It combines and complements different state-of-the-
art tracers that operate at different levels of the host operating
system in a virtualized environment. This allows to gather
detailed information on I/O access of each VM. Information
gathered by this I/O tracer is mandatory to analyze resource
requirements of the real-time applications ran on the VM.

Three I/O tracing levels are merged with our tool. (1) The
first level is the Virtual Machine Monitor (VMM) using the
libvirt API [10]. The libvirt API permits to manage VMs and
to get information about resource usage. In our case, we use
libvirt to get statistics about I/Os on virtual storage devices
used by each VM (VM image, second virtual storage devices,
etc). (2) The second trace level is the Linux Virtual File System
(VFS). The used monitoring tool for this level is Strace [8].
At this level, we can retrieve information about the file system
calls executed by each VM monitor running in the system.
In the virtualization using Linux as host operating system, a
VM appears as a classical Linux process [11]. (3) The last
trace level is the block I/O layer. The used tool to trace I/O
operations at this level is blktrace [7]. It allows users to get
detailed information about the I/O requests received by the
block devices. The developed I/O tracer returns VM I/O traces
by aggregating heterogeneous results produced in each trace
level, in order to give detailed and homogeneous information
on the I/O workload patterns related to each VM and user.

The rest of the paper is organized as follows. In the
next section, we present the general context of our work,
background, and related works. Then, the architecture of the
I/O tracer and the different components are described in section
3. In section 4, we present a use case to evaluate our I/O tracer.
Finally, we conclude and give perspectives on future work.

II. BACKGROUND AND RELATED WORKS

In this section, we present the general context of our
contribution. Then we introduce the background of our work,
and finally some related works are given.

A. General Context
This work is part of a project that aims to propose a

middleware to optimize performance and energy consumption
of a hybrid storage system in the context of a distributed
Cloud. This middleware will be integrated in an Open Source
IaaS cloud manager, such as OpenStack [12] to manage
transparently the storage system. The storage management
middleware is autonomic and obeys the MAPE-K (Monitor,
Analyze, Plan, Execute - Knowledge) reference model [13]. It
consists of four MAPE-K components that are: 1) I/O tracer, 2)
the I/O workload analyzer, 3) data placement decision maker,
and 4) data dispatcher, see Figure 1. The first component
provides the I/O traces of a workload executed by a virtual
machine on physical storage devices. This first component is

the subject of this article. The second component analyzes the
produced traces and gives the main characteristics and profile
of the studied I/O workload/user in terms of percentage of
read/write, random/sequential requests, request average size,
etc. The third component decides the optimal placement of
data on the different available storage devices according to
different objectives, device, and workload characteristics. The
objectives and constraints may consist in reducing the energy
bill, respecting the SLA and reducing penalties, while device
and workload characteristics can be declined in terms of
size of the flash device pool, performance characteristics, and
I/O workload patterns. The last component dispatches data
according to the decided plan.

Fig. 1. Hybrid Storage Optimization Middleware

B. Background
As it has been previously underlined, the IaaS cloud offers

virtualized hardware infrastructure to the users. In this section,
we briefly introduce general concepts of virtualization and
Linux I/O software stack.

1) Linux I/O Software Stack: Linux is the most used operat-
ing system as a host for virtualized environments [11]. Figure 2
(a) shows the I/O paths in a Linux software stack. Application
processes execute I/O operations on files, which passes through
three main software levels before reaching the storage device:
1) VFS, 2) file-system, 3) block I/O layer.

2) Virtualization: The concept of virtual machine was devel-
oped in the sixties to provide a sharing system of mainframe
computer [14]. Real-time cloud applications depend mainly
on the timing constraints of virtual machines [15]. A virtual
machine is seen as an instance of the physical machine on
which it runs by using an abstraction layer called Virtual
Machine Monitor (VMM) positioned directly on the hardware
or on the host operating system [16]. In the case of Linux
hosted virtual machines, the common method to interact with
the virtual machine monitor, is to use the libvirt API [10]. This
API can be used to develop some virtual machine management
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applications. Figure 2(b) shows the architecture of a virtualized
environment with a virtual machine management application
that uses the libvirt API where the components are: (1) Node:
it is the physical host system that supports the hypervisor. (2)
Hypervisor: it is the utility that gives an isolated environment
to run virtual machines. (3) Domains: domain 0 refers to the
host operating system, and the other domains are instances of
virtual machines attached to a specified hypervisor.

Fig. 2. Linux I/O stack and libvirt-based Management Application

C. Related Works
In the context of IaaS Cloud, monitoring is highly important

for both providers and customers. It is mainly used for billing
and cloud orchestration [17]. The Cloud monitoring tools such
as Ceilometer [18] for OpenStack and Nagios [19] give general
quantitative information about the state of IaaS cloud (network
activities, system load, etc). To optimize the storage system
usage, one needs more details about the I/O operations per-
formed. There are also different monitoring tools at different
levels of the I/O software stack system. blktrace [7] is a block
layer I/O tracing tool which acts in the driver I/O request queue
level. It provides detailed information about the state of the I/O
request during its execution on the physical storage device.
iostat [20] is a Linux command that gives statistics about I/O
device load and information by observing the activity time of
the monitored devices according to their average transfer rate.
iotop [21] is an I/O monitoring program written in Python. It
gives a user interface similar to the top Linux command output,
by showing per-process I/O rates. Many other generic tracing
frameworks exist, such as Strace [8] and SystemTap [9] ; they
provide trace facilities of user and kernel level functions.

The tools presented above are not dedicated to monitor
virtualized environments. Each tool works independently on a
predefined system layer. The I/O tracer presented in this work
combines and increments different tools at different system
levels. The goal is to have a global view of each I/O request
path and benefits from the advantages of each tracing level.

III. I/O TRACER ARCHITECTURE

An I/O request executed by a virtual machine goes through
several software layers before reaching the physical storage
device. In order to have a precise idea about the I/O access

pattern of a given VM, we have to extract information from
every layer that requests cross:

At the hypervisor level: we look for the type and the size
of I/O requests issued to the virtual storage devices. We also
need to identify the files accessed by the different VMs in
order to capture access patterns according to user’s behavior.
This is extracted in our tracer thanks to the libvirt API (see
Figure 3).

At the host level: we need to know which I/O operations
are generated on the host Virtual File System level once the
I/O workload of the VM is applied. For such a purpose, we
have used Strace to monitor all system calls executed by the
hypervisor. The results are then parsed and filtered to only
select I/O related system calls.

At the file-system level: I/O system calls are performed on
files that are stored on physical storage devices, and organized
using a specific file system. We do not trace at this level,
but we need to perform a mapping between files captured in
the preceding levels, and block numbers on the storage device.
This is done in order to to bridge the gap between the high level
file view and low level block device view. We use libext2fs
library [22] to extract the structure of each file in the physical
storage device

At the I/O block layer: before reaching the storage device,
I/Os can be merged and/or scheduled in the block I/O layer,
then forwarded to the storage device. At this level, we use
blktrace to monitor the block I/O requests. Its output is parsed
and filtered to only select the I/O operations performed on the
virtual machine storage devices.

The final output is obtained by combining different tracer
outputs for a given time interval. This is detailed in the next
sections.

Figure 3 presents the detailed architecture of I/O tracer with
associated input/output. This figure shows the different levels
in the tracing environment. The right hand side shows a layered
vision of the virtualized system while the left hand side part
shows the different tracing levels.

Fig. 3. Architecture of the I/O tracer



4

The developed I/O tracer is composed of two main parts:
(1) a part that synchronizes the different tracers, merges the
results using the libvirt API etc, and (2) a part that bridges the
information gap between files and blocks relying on the file
system library libext2fs.

A. Hypervisor Level
The I/O tracer tracks the path of the I/O request from the

virtual machine down to the host physical storage device. The
first layer through which I/O requests pass is the hypervisor. By
using the libvirt API utilities, one can get statistics about the
number of read/write requests executed on the virtual storage
devices, and the amount of bytes read or written for each
request. Another important information is to track the virtual
device image files of virtual machines. I/O requests are issued
on files that represent virtual disks. We give these files as an
input for the lower levels: file system and block I/O layers.
At this layer, we can get the hypervisor process identifier that
runs each virtual machine.

Figure 4 shows an example of output file at the hypervisor
level, obtained using the first component we developed. Note
that the output file does not log events (stamped I/O calls) but
gives a summary of performed operations (type of operation,
count and size). For the example shown in the figure, the traced
virtual machine executes a simple loop of ’dd’ Linux command
that reads from ’/dev/urandom’ and writes blocks of 4096 bytes
in a file. Each line represents the current state of the virtual
devices. In this case, the virtual machine has one virtual storage
device (vda) which is the virtual machine image file on the host
operating system. The first column represents the virtual device
name. The second one is the number of read requests. The third
is the total number of read bytes.The forth is the number of
write requests followed by the total number of written bytes.
Finally the last column is the snapshot time stamp.

Fig. 4. libvit stat output file

Another important output at this level is the process identi-
fier (see Table I) and the host target file (see Table II). These
are inputs for lower I/O tracer components.

VM Name Process Name PID
vm1 kvm 123
vm2 qemu-system-x86 64 456

TABLE I. VM-PROCESS LOOK-UP TABLE

B. VFS Level
System calls executed by each process passes first through

the Virtual File System (VFS). As each running VM is a

VM Name Virtual device Host target file
vm1 vda /var/lib/libvirt/images/vm1.img
vm1 vdb /var/lib/libvirt/images/dev1.img
vm2 sda /var/lib/libvirt/images/vm2.img

TABLE II. VIRTUAL DEVICE-TARGET LOOK-UP TABLE

system process (see Table I), one can trace system calls issued
by each VM. In our work, VM system calls are captured by
Strace. Each process to trace is obtained using the libvirt API
at the hypervisor level. The Strace output is parsed in order to
obtain the desired I/O information. An intermediate trace file
is generated, it contains the I/O system calls traced for a given
virtual machine. A trace example is shown in Figure 5.

Fig. 5. VFS level component output file

The trace file shows the system calls related to the same
virtual machine previously investigated (see Figure 4). The
first column shows system calls executed on the file given in
the second column. The third column gives the request size in
bytes, followed by the time stamp.

C. File System Level
In a virtual environment, I/O operations are executed on

files that represent virtual disks. In the host operating system,
these files are managed by a specific file system. By default,
Linux uses ext2/3/4 file systems for the local block storage
devices [23]. As shown in Figure 3, the virtual disk files are
obtained using libvirt API. So, in order to trace those files
at a block level, one needs to perform a mapping between
the file references and the block device numbers. To do so,
we developed a mapping tool based on libext2fs [22] which
allows us to explore the virtual disk file structure on the
physical storage device for ext file systems. This tool provides
the following information: block numbers, block size and
allocated/free blocks for a given file on a given partition.

D. I/O block layer
The last software layer that issues I/O operations before the

physical device driver, is the block I/O layer. At this level,
an I/O queue is implemented to buffer incoming I/O requests.
blktrace permits to have the trace of all I/O requests executed
on the physical block device. The obtained trace is filtered
to just keep events of the virtual machines and their files. To
get a human-readable output, the result output is parsed using
blkparse [7].

At the block layer, an I/O request can be remapped (for
stacked devices), split (on RAID or device mapper setups),
added to the request queue, or merged with a previous entry
on the queue [7]. As shown in Figure 6, the block I/O level
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Fig. 6. Block I/O level component output file

permits to trace all events that happened on the block device.
In this case, blktrace output is parsed then filtered to get only
one type of I/O request that is queued I/O requests (Q in the
second column). This is achieved in order to avoid duplication
of the I/O request and to get the trace of the I/O request
sequence before potential scheduling by the I/O scheduler. This
allows us to have an idea about the I/O workload rather than its
management by the driver. The I/O column gives the request
I/O type: ’R’ for read, ’W’ for write optionally followed by
’S’ for synchronous or ’B’ for barrier operations.

The developed I/O tracer returns a statistics file that shows
the type and the number of I/O traces recorded at each level.
Statistics are grouped by time stamp. To get a detailed I/O
information about each level, we need to give a time stamp (in
seconds) to a post processing function. This is required because
the time granularity is different at each level (microsecond in
Strace, nanosecond in blktrace, second in libvirt). All tools at
different trace level get the time stamps from the same system
clock: getnstimeofday in blktrace, gettimeofday in Strace, and
time() python function that is based on gettimeofday in hyper-
visor level. To save traces for each level, we use a dictionary
of all traces, where the keys are times in seconds.

Fig. 7. General output stats

Figure 7 shows an example of an output file obtained after
tracing a VM. To unify statistics for all levels, I/O operations
stamped in nano second and micro second at block I/O and
VFS level respectively, were grouped by seconds. Each line
presents the state of the I/O system at the given second. One
has to note that, for each line, the underlying operations are
not necessarily the consequences of the operations of higher
levels. We have to take into account the presence of caches at
different levels (e.g. VFS cache of guest and host system).

Another important result obtained by the I/O tracer is the
access pattern of virtual machines to the physical device
(see next section). The block I/O level permits to get a
precise idea about the I/O request type (read/write), and blocks
targeted by each request. This information is highly important
to characterize a virtual machine I/O workload. The access
pattern can be obtained for a specified time stamp in second
(given as a key), or for a time interval. First we convert all time
stamps to the biggest time granularity (seconds on hypervisor

level), then we give a second as a key to get the global view
of an I/O path form the hypervisor level to the block I/O level.
This method does not take into account the caches of different
levels, thus we miss several I/O operations in low levels. The
second method gives a time interval that includes cache flush
time of different levels [24]. More detailed results about the
access pattern are given in the next section.

IV. EXPERIMENTS

Our objective is to characterize a virtual machine I/O
workload, by tracing its I/O requests on the physical storage
device. This is mandatory for the support of applications that
require QoS enforcement. Some factors were identified to
measure performances of real-time applications in a virtualized
environments [25], and to compare virtualization technologies
[26]. In this section, we present some case studies where I/O
benchmarking tools are executed in order to test the I/O tracer
and to show its usefulness.

A. I/O Benchmarking tools and setup
To evaluate the I/O tracer, we have used popular storage

related benchmarking tools. Some of these tools offer ready-to-
use I/O workload scenarios (e.g. web server, mail server). We
used both FileBench [27] and Postmark [28]. For FileBench,
we ran four I/O workload models: web server, mail server, file
server, and OLTP. The I/O request size was fixed to 1MB
and file sizes between 16KB and 2MB. For the Postmark
configuration workload, we ran experiments with files whose
size ranges between 1KB and 10KB and the I/O request size
was 512 bytes. The total number of files was fixed to 50000,
with 30000 transactions performed. The Table III shows the
used configuration for each benchmark.

Benchmark Mean File size I/O Request size
Postmark 1KB-10KB 512B
FileBench File Server 2MB 512KB
FileBench Mail server 16KB 16KB
FileBench Web Server 16KB 1MB

TABLE III. WORKLOADS CONFIGURATIONS

We ran three virtual machines that executed the benchmarks
simultaneously, with the same workload configuration. The
resource configuration was the same for each virtual machine:
1 VCPU, 1GB of memory, and the size of the virtual storage
device was 8GB. All guests and the host ran Linux operating
system with kernel version 3.0.2. The hypervisor used for
virtual machines was KVM [11]. The test benches were
performed with a Dell Precision T3610 Workstation with 4
Cores 3.7 GHz Intel Xeon processor, 16GB of RAM memory
and 1TB Hard Disk Drive.

B. Results and discussion
Table IV presents I/O statistics at each I/O trace level as

retrieved by our tracer. We have taken a snapshot on the first
20 seconds to include the time at which VFS caches are flushed
for both guest and host operating systems.
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Benchmark Trace level #I/O VM1 VM2 VM3

Postmark

Hypervisor Read 56014 51562 66864
Write 1143842 1134154 1167091

VFS Read 306 367 345
Write 304 856 732

Block I/O Read 3400 3028 4204
Write 46 46 49

FileBench-web

Hypervisor Read 52010 51674 52360
Write 640 594 610

VFS Read 1598 1511 1865
Write 487 454 571

Block I/O Read 3588 3191 3321
Write 23 18 23

FileBench-mail

Hypervisor Read 52388 51898 51912
Write 718 713 724

VFS Read 346 354 294
Write 173 174 173

Block I/O Read 840 837 842
Write 49 51 50

FileBench-OLTP

Hypervisor Read 52783 51492 52248
Write 634 632 602

VFS Read 799 809 783
Write 201 199 200

Block Read 3587 3093 3229
Write 51 48 46

TABLE IV. I/O STATISTICS

The obtained statistics file shows that we have a write/read
ratio close to 1% in all benchmarks at the block I/O level,
except the FileBench mail model (line 3) that has a 6%
write/read ratio. One can also notice cache effects as the
number of I/Os at the block level is reduced as compared
to the hypervisor level. The write/read ratio can be a very
good indicator when one needs to decide upon integrating a
flash memory. Indeed, flash memories Achilles’ heel is random
writes, and read intensive workloads can highly benefit from
the flash performance.

The following figures focus on the I/O patterns as extracted
from the block I/O traces for two virtual machines executing
two benchmarks. Figure 8(a) shows the read pattern of VM1
executing Postmark. It shows that read pattern of VM1 starts
sequentially in the first interval (from the beginning up to ∼800
µsec), then it becomes random (more precisely interleaved)
targeting two groups of sequential block addresses. This means
that the image representing the virtual storage device was
fragmented (probably two or three fragments). Figure 9 (a)
shows the write I/O pattern of the same virtual machine
executing Postmark. It reveals a less random access pattern
than the read pattern. We notice an important distance between
the block groups (about 107 blocks), which might generate a
high activity on the HDD. This is also a very interesting result
when thinking about flash integration.

Figure 8(b) shows the read pattern of VM3 when executing
FileBench OLTP model. We have multiple levels that represent
different groups of blocks accessed randomly. We can observe
that the image file of the virtual machine storage device is more
fragmented than VM1 as block addresses are more scattered.
We note the same observation about the randomness of the
write access pattern (see Figure 9(b)).

As seen in this section, by extracting information at different
levels, the developed tracer can be of a precious help for
characterizing VM I/O requests to gather information on the
I/O workload patterns and on the system behavior (to what
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Fig. 8. Accessed I/O Block addresses for read operations
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Fig. 9. Accessed I/O Block addresses for write operations

extent does the cache absorb write operations). It allows us
to have both a quantitative and a qualitative view of the
I/O workload: quantitative in terms of I/Os performed and
qualitative in terms of access patterns.

C. Evaluation

To evaluate the I/O tracer, we performed a set of tests using
the previous benchmarks and we extracted information about
the execution time for one and multiple virtual machines with
and without I/O tracer. We ran mail, web, and file server of
Filebench by one and three virtual machines using the I/O
tracer and without using it. The test with only one virtual
machine allowed us to see the overhead of the tracer on the
latency. We also tested with three virtual machines to see if
the impact of the tracer is increased, for instance as it might
modify the I/O request ordering. The following table V shows
the average and the standard deviation of the execution time
for the different test benches. Indeed, each test was executed
5 times.

Table V shows the evaluation statistics obtained when ex-
ecuting three benchmark models of FileBench on one and
three virtual machines by setting the I/O tracer ON and OFF.
The results for three virtual machines show the statistics per
VM. The obtained results show a small Throughput and CPU
overheads except in the Mail server case (14% throughput and
21% CPU time) where the main cause is the high activity in
this server (1000 files, 16 threads, and 16K for the I/O request
size) compared to the other servers (500 files, 10 threads, and
1MB I/O request size for the file server). This implied a higher
tracer activity. In addition, one can observe that for this test, the
standard deviation is very high showing an unstable behavior
of the storage system facing this workload (stdev of 0.32 for a
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Benchmark Tracer Status Stats One VM Three VMs

Mail Server

Tracer ON

Throughput AVG(MB/s) 4,43 1,4
Throughput STDV 0,15 0,3

CPU Time AVG(µs/op) 353 244,66
CPU Time STDV 18,02 4,72

Tracer OFF
Throughput AVG(MB/s) 4,56 1,63

Throughput STDV 0,15 0,32
CPU Time AVG(µs/op) 324,66 309,66

CPU Time STDV 9,01 15,30
Throughput Overhead(%) 2,91 14,28
CPU Time Overhead(%) -8,72 20,99

Web Server

Tracer ON

Throughput AVG(MB/s) 146,66 118,23
Throughput STDV 0,86 2,26

CPU Time AVG(µs/op) 90 116,66
CPU Time STDV 0 3,21

Tracer OFF
Throughput AVG(MB/s) 146,66 125,3

Throughput STDV 1,02 2,45
CPU Time AVG(µs/op) 90,33 112

CPU Time STDV 0,57 2,64
Throughput Overhead(%) 0 5,63
CPU Time Overhead(%) 0,36 -4,16

File Server

Tracer ON

Throughput AVG(MB/s) 210 79,03
Throughput STDV 4,95 1,9

CPU Time AVG(µs/op) 509,66 488,66
CPU Time STDV 10,11 5,85

Tracer OFF
Throughput AVG(MB/s) 211,23 79,96

Throughput STDV 3,51 1,49
CPU Time AVG(µs/op) 522,33 514

CPU Time STDV 4,5 6,24
Throughput Overhead(%) 0,58 1,16
CPU Time Overhead(%) 2,42 4,92

TABLE V. EVALUATION STATISTICS

throughput of 1.4MB/s). We also notice a negative overhead for
CPU time when running Web server benchmark with the tracer
activated. This value stays very small as compared to the mean
values meaning that the impact of the tracer is negligible. In
fact, except those values, the overhead of the tracer is always
smaller than 10% and most of the time smaller than 5%.

V. CONCLUSION

This paper presents a new I/O tracer to be used in IaaS
Cloud. The objective behind the design of this tracer is to
monitor the user and the VM I/O accesses on multiple levels
of the system I/O software stack. This is performed in order
to design efficient data placement methods on hybrid storage
systems. Data placement in an IaaS Cloud should take into
account many factors related to both the client side (perfor-
mance predictability, SLA, penalties, etc) and the administrator
side (cost of the storage system, energy efficiency, storage
device heterogeneity and characteristics, etc). The developed
I/O tracer links high level I/Os performed on the VMs and
I/O blocks sustained by the storage device. It allows users to
identify individually the I/O patterns of VMs and applications.
It is based on two state-of-the-art tracers (blktrace and Strace)
in addition to two developed tools: one that is built with the
libvirt API to extract the VM usage, and a second that links
high level file identifiers to low level block numbers. A subset
of tools was also developed to merge the results of all the
components of the tracers and to produce relevant information
for the Cloud administrators. We plan to integrate this tool
to the Openstack IaaS Cloud management system. Future
works should now investigate how performance information
gathered by the proposed I/O tracer can be used to build

resource management mechanisms to enforce deterministic
performances such as timing constraints or throughput.
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