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Abstract—Cache prediction for real-time systems in a pre-
emptive scheduling context is still an open issue despite its
practical importance. In this paper, we propose a modeling
approach for taking into account the cache memory in real-
time scheduling analysis. The goal is to have a simple but
practical implementation to handle the cache memory with a
real-time scheduling analyzer. The proposed contribution consists
of three main parts: (1) modeling the targeted system with
the Architecture Analysis and Design Language (AADL), (2)
applying the cache analysis methods in a real time scheduling
analysis tool and (3) performing scheduling simulation to access
schedulability. For such a purpose, we present an extension of
both the scheduling analysis tool Cheddar and of the AADL
modeling language in order to integrate the cache modeling and
analysis methodology we proposed.

Experiments are presented to illustrate our propositions. They
provide results on analysis that show examples of the timing
impact of task preemption as well as the increase in overall
responses time of the task set. This impact is important and the
developed tool provides means to precisely assess it.

I. INTRODUCTION

As the gap between processor speed and memory is contin-
uously growing, making benefit of processor caches becomes
crucial to absorb this performance gap. Despite the impressive
performance in reducing the average memory access time,
those caches hit a wall when it comes to optimize real-
time systems. Indeed, cache behavior highly depends on the
execution flows and data access pattern. The democratization
of contemporary processors with large size and multi levels
of cache in real-time systems motivates the proposition of
verification methods that are able to handle this hardware
component.

One of the important verifications performed for real-time
systems is schedulability analysis. Schedulability analysis pro-
vides some means to prove that timing constraints of the tasks
composing the software side of the system are satisfied. To
study the schedulability, many assumptions are usually made
in order to simplify the analysis. One of them is the preemption
cost, which is most of the time assumed to be negligible.
Indeed, classical task models used in real-time scheduling
analysis only take into account the worst-case execution time
(WCET) of the task - to define the capacity of the task.
In practice, preemptions cause additional cost which can be
substantial to task’s execution time [1].

Integrating a processor cache memory component in a real-
time system adds some costs to the task preemption. When a
task is preempted, some memory blocks belonging to the task
may be removed from the cache. Once the task resumes, it
needs to reload previously removed memory blocks.

The substantial performance gain induced by cache comes
at the expense of an increase in the system’s unpredictability.
Cache can help to reduce the capacity of a task; however, the
inter-task preemption introduces the cache related pre-emption
delay (CRPD) - the additional time to refill the cache with the
cache blocks evicted by the preemption, thus increasing the
variability of response time of task.

Even though there are many research projects about cache
memory in real-time systems, such as the works in [2], [3],
[4], [5] and [6], there is still a lack of practical implementation
of those analysis methods in real-time scheduling analysis
tools. In addition, a model based approach, which allows an
abstraction of cache components, is necessary to combine the
analysis tool with a system design and verification tool chain.

The contribution of our work is a real-time scheduling anal-
ysis tool, which supports verifying systems with cache mem-
ory. In this article, we investigate how an existing scheduling
analysis tool such as Cheddar could be updated in order to
take processor caches into account. For such a purpose and
because Cheddar allows modeling the studied system thanks
to the architecture description language AADL [7], we propose
an extension of the AADL language to model cache memory.
The CRPD is delivered based on the analysis methods in [2]
and [3]. At the first steps, we only consider instruction cache.
The purpose is to compare the CRPD to the WCET of task
and to evaluate its impacts in real-time scheduling analysis.

The rest of the paper is organized as follows: Section II
introduces the context of our work. Section III presents theo-
retical foundation and Section IV explains the implementation.
Experiments are discussed in Section V. Section VI reviews
related works. Section VII concludes the paper and presents
possible future works.

II. BACKGROUND

A. Cache analysis methods

The real-time scheduling for uniprocessor was well studied
since the seminal paper of Liu and Layland [8]. However, the
problem related to preemption is less addressed.
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Fig. 1: Applying intrinsic and extrinsic interference analysis.

Cache analysis methods can be classified into two domains:
intrinsic (intra-task) interference and extrinsic (inter-task) in-
terference [9]

Intrinsic interference is the removal of a task’s instructions
or data in the cache by itself. Because the size of the cache
is limited, memory blocks of a program may compete and
collide with each other. The impact of intrinsic interference
can be evaluated solely based on the task.

Extrinsic interference is the removal of a task’s instruction
or data in the cache by the effect of preemption by a higher
priority task in preemptive scheduling context. The preempting
task replaces data or instructions of the preempted task in the
cache. The side effect of it is the CRPD.

Figure 1 is an illustration of intrinsic and extrinsic interfer-
ence analysis. While intrinsic interference analysis methods
focuses on lowering the bound of WCET, the extrinsic inter-
ference analysis methods focus on how to measure the impact
of CRPD when several tasks are preemptively scheduled
altogether.

A classical method to avoid extrinsic interference is cache
partitioning [10] - dividing the cache into disjoint subsets
where each program or processor core uses one. This method
requires special hardware, software configuration and static
allocation of cache blocks.

Another approach consists in bounding the CRPD. Two
analysis methods exists for such a purpose: the useful cache
block (or UCB) [2], and the evicting cache block (or ECB)
[3]. Further works in [4], [5] and [6] improve those methods
and give a more precise CRPD upper-bound.

The focus of our work is on extrinsic interference analysis.
A part of it is the implementation of analysis methods in [2]
and [3].

B. The Cheddar scheduling analyser

The work is performed in the context of Cheddar project
[11]. Cheddar is an open source real-time scheduling analysis
tool. It implements classical feasibility tests and scheduling
algorithms for real-time systems. Users can model the system
architecture by using a GUI tool provided by Cheddar. Then,
feasibility tests and scheduling simulations could be run.
Cheddar provides graphical representation of the result and
a support to export the results in XML format.

Fig. 2: Cheddar and analysis tool chain: AADL models are
designed and are verified by AADL Inspector. They are
translated to Cheddar-ADL to perform scheduling analysis
with Cheddar.

System architectures are defined with Cheddar Architec-
ture Description Language (Cheddar-ADL). The Cheddar-
ADL meta-model is specified with the modeling language
EXPRESS [12]. The Cheddar meta-model defines hardware
components such as: processor, core and shared resource; and
software components such as: task and task group.

Cheddar-ADL can be updated to modify existing compo-
nents or to add a new one. Cheddar class files are automatically
generated from the Cheddar-ADL meta-model by the tool
Platypus through a model-driving process. Platypus is a tool,
which supports modeling in EXPRESS modeling language,
model verification and code generation [12].

Although Cheddar has its own editor, it is not expected
that users specify a complete architecture model with Cheddar.
Indeed, Cheddar-ADL only focus on scheduling analysis point
of a system. It is expected that users design their system
with standard ADLs such as MARTE [13] or AADL. AADL
or MARTE models are then translated to Cheddar-ADL for
schedulability verifications. For example, Cheddar is used
as a module in the industrial tool AADLInspector [14]. In
this context, AADLInspector is responsible for both syntax
and semantics checks of the AADL models provided by
users before translating them into Cheddar-ADL prior calling
verifications features of Cheddar, as shown in Figure 2.

C. AADL

The Architecture Analysis & Design Language (AADL)
is a SAE standard, first published in 2004 [7]. The purpose
of the AADL is to provide a standard for the modeling of
the architecture of embedded real-time systems, in various
domains such as avionic or automotive systems. It allows
designers to perform various analysis, code generation, and
other development activities.

AADL is a modeling language for description and analysis
in terms of components and their interactions. It allows the
modeling of software and execution platform components.

An AADL component is defined by a declaration section
and implementations. Each component relies on a category.
Categories of components are related to software entities, like
process, thread or data, and hardware entities like processor,
memory, bus or device. Each component may have several at-
tributes called properties. The AADL standard includes a large
set of pre-declared properties to model system characteristics.
Moreover, new properties can be defined to precisely describe
the expected system.
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Fig. 3: Analysis Flow.

Below, we have an example of AADL components. Those
are hardware components. In this example, a memory com-
ponent and a processor component are defined. The memory
component is a subcomponent of the processor. The size of the
memory is 1 KB. The processor is a Leon V3, the hardware
description is stored in a separate VHDL file.

memory Mem ROM
p r o p e r t i e s

Memory Size => 1 KBytes ;
Read Time => ( F ixed => 0 ns . . 0 ns ;

Pe rBy te => 40 ns . . 4 0 ns ; ) ;
end Mem ROM;

p r o c e s s o r Leon
end Leon ;
p r o c e s s o r implementat ion Leon . V3

subcomponents
Membank : memory Mem ROM;

p r o p e r t i e s
Source Tex t => ” leonV3 . vhd l ” ;
Source Language => VHDL;

end Leon . V3 ;

Caches can be modeled with AADL memory components.
However, the AADL memory component does not have at-
tributes to model precisely a cache memory. In this article,
we propose new attributes for such a purpose. In addition, to
perform cache analysis, we need to capture the memory be-
havior of the program. We extend the subprogram component
to model the control flow graph.

D. Overview of our approach

Our approach focuses on scheduling analysis of mono-
processor systems with shared cache memory. First, we in-
vestigate how to model the cache and program’s memory
accesses. Those components are modeled with AADL. Second,
we apply the modeling approach and implement the CRPD
analysis methods in the Cheddar tool. Finally, we perform
scheduling simulation with the Cheddar scheduling simulator

Cache

- Memory_Size: int
- Line_Size: int
- Associativity : int
- Hit_Time: Time_Range
- Miss_Time: Time_Range
- Replacement_Policy: Enum
- Cache_Category: Enum
- Write_Policy: Enum

Fig. 4: Cache model.

to investigate the impact of CRPD. We aim to perform our
analysis after code-generation context of a system design
and verification tool chain. Program’s memory accesses are
deduced from the control flow graph generated by a timing
analysis tool. Figure 3 shows an overview of the flow.

III. MODEL CACHES AND ANALYSIS METHODS

Determining the cache access profile - program’s memory
accesses - is the main challenge when integrating cache
analysis in real-time scheduling analysis tool. The WCET of
a task is often modeled using only one attribute, the capacity.
This is not enough to perform scheduling analysis with cache.
Even though there are many researches on bounding WCET
of tasks with cache, they are integrated in very few real-time
scheduling analysis tool. In this section, we present entities and
attributes we need to model the cache memory and program’s
memory accesses. Then, two classical basic analysis methods
for CRPD are presented.

A. Modeling the cache

Starting from a simple cache architecture, we aim to analyze
the CRPD on direct-mapped instruction cache. Compared
to data caches, the access pattern for instruction cache is
sequential and can be analyzed based on the control flow graph
of a program.

In this section, basic attributes of cache are presented (see
figure 4).

The Memory Size attribute is the number of bytes which a
cache can contain.

The smallest piece of data, which a cache can exchange
with the higher levels of memory hierarchy, is a cache line.
When a cache miss occurs, a cache does not only load the
required bytes, but it loads also a block of data to utilize the
spatial locality. The Line Size attribute specify the size of a
cache line.

When accessing a data block, if this block is already in the
cache, we have a cache hit. If not, we have a cache miss. A
data block from main memory is loaded into the cache when a
cache miss occurs. Miss Time and Hit Time are two attributes
used to model the access time in those two cases.

The memory-to-cache mapping policy is specified by the
Associativity attribute. Associativity gives the number of cache



Generic_Task

- Capacity: int
- Control_Flow_Graph: List<Basic_Block>
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BasicBlock

- Name : string
- Previous_Blocks : List<BasicBlock>
- Next_Blocks : List<BasicBlock>
- Instruction_Offset : int
- Instruction_Capacity : int
- LoopBound: int
- Type : Enum

Fig. 5: Control flow graph model.

locations where a memory block can reside. If associativity
equals one, we say that we have a direct-mapped cache. If
associativity equals the number of cache blocks, we have a
fully-associative cache. In other cases, we have a n-way set
associativity cache, n being the number of possible locations
for a single block.

When associativity is greater than one, a replacement policy
is needed. Popular replacement policies for cache are first in,
first out (FIFO), least recently used (LRU) and pseudo LRU.

A cache memory can be classified into three categories:
data cache, instruction cache or combined one, specified by
the Cache Category attribute.

Finally,Write Policy decides how the data in the cache are
written back to higher level memory.

B. Modeling the control flow graph

Information about program control flow graph (CFG) is a
requirement to obtain its memory accesses.

Definition 1 (Control flow graph): a representation, using
graph notation, of all paths that might be traversed through
a program during its execution. Each node of this graph is
called a basic block - a sequence of consecutive instructions
in which flow of control enter at the beginning and leaves at
the end without halt or branching.

In our work, we use an abstract level of the CFG, modeled
as a set of basic blocks, as shown in figure 5. We can extract
such program’s CFG from executable file by using tools such
as aiT [15]. We only model information to locate the position
of each basic block in the memory

A set of basic blocks representing a CFG is added as an
attribute of each task besides the classical capacity attribute.

The two attributes Previous Blocks and Next Blocks specify
the positions of the basic block in the CFG of the task.

The attribute Instruction Offset indicates the position of the
basic block in the main memory. Instruction Capacity is the
number of assembly instructions of the basic block.

(c1, m1)

(c2, m2)

(c3, m3)

(c0, m4)

Basic Block 1

Basic Block 2

Basic Block 3

(c0, m0)

(c1, m5)

Fig. 6: UCB Example.

Finally, the Loop Bound attribute specifies how many times
a basic block can be executed.

C. Analysis methods

In this section, we present the two basic approaches for
cache extrinsic interference analysis that we take into account
in this work.

1) Useful Cache Block: UCB analysis method has been
introduced in the work of [2]. The idea consists in performing
static analysis on a task’s CFG. An abstract state of the cache
utilization on each basic block is kept. As we handle only
instruction cache, it is possible to evaluate which memory
blocks could be in the cache after the execution of each basic
block and which memory blocks could be needed in the future.
UCB can be defined as follows:

Definition 2 (Useful Cache Block): A memory block m is
called a useful cache block at program point P, if m may be
cached at P and m may be reused at program point P’ after
P that may be reached from P without eviction of m on this
path.

Figure 6 illustrate UCB analysis. We have three basic blocks
representing a small loop. The cache is a direct-mapped cache
with four cache lines. After the first loop iteration (end of
execution of the basic block 3), the mapping in the cache is
described in Table I. As we can see, the memory block m2
and m3 are still in the cache and will be reused in the second
loop. The cache lines c2 and c3 are called UCBs. The idea of
the analysis method is to analyse all the basic blocks in the
CFG and find how many cache blocks can be UCB in each
basic blocks.

TABLE I: Cache mapping

Cache Block c0 c1 c2 c3

Memory Block m4 m5 m2 m3

By performing analysis on program’s CFG, we can compute
the number of UCBs for each basic block. The algorithm of
the analysis method includes two data flow equations which
can be solved by using an iterative approach. More details on
this algorithm could be found in [2]. The complexity of the
algorithm is O(|V ||E||C|), where V is the set of nodes (basic



blocks) of the flow graph, E is the set of (directed) edges of
the flow graph and C is the set of cache blocks used in the
program.

By multiplying the number of UCBs of one basic block with
the cache miss time, we obtain the CRPD when a program is
preempted at this basic block. Then, the CRPDs of all basic
blocks are sorted in a descending order. If a basic block is in
a loop - it can be executed several times, the CRPD of this
basic block is duplicated. Those values constitute a cost table
as follows:

TABLE II: Cost table

# of Preemption 1 2 ... n

CRPD γ1 γ2 ... γn

The table describes the CRPD of the n-th times the task is
preempted. The first row is the n-th times the task is preempted
and the second row is the CRPD when the preemption occurs.

2) Evicting Cache Block: A second method to evaluate the
CRPD is based on ECB. This method has been proposed by
[3]. An ECB is defined as follows:

Definition 3 (Evicting cache block): A memory block of
the preempting task is called an evicting cache block, if it
may be accessed during the execution of the preempting task.

The bound of the CRPD is given by the number of cache
blocks (of the preempted task) evicted by the preempting task.
In this method, we focus on the pre-empting task. For a set
of task, we need to know the location in the main memory of
each task. By doing so, we identify which part in the cache
of a task is evicted by another task.

The main difference between the two analysis methods is
the information about the task. The UCB analysis requires
information about the task itself. On the other hand, the ECB
analysis does not require detailed information about the task
but we need to know the task location in the main memory.

Our models capture the required information for those
methods in order to perform the scheduling analysis and
simulation.

IV. IMPLEMENTATION

In this section, we show how AADL has been extended
to integrate theoretical models introduced in the previous
section. Then, we present the implementation of those models
in Cheddar-ADL. Finally, we explain how we have adapted
the scheduling simulator of Cheddar.

A. Extending AADL to model cache memory and CFG

AADL was extended to model the cache memory and the
CFG.

1) Modeling the cache with AADL: To model the cache,
we extended the AADL memory component. According to
AADL standard, memory component is an execution platform
component that stores code and data binaries. Memory compo-
nent has various properties including memory size, word size
and read/write speed. However, it lacks properties to model
cache memory’s attributes such as associativity, replacement

policy and write policy. AADL allows adding user-defined
properties to any component. Those user-defined properties
can be grouped in property-sets. We then added a property set
to model attributes of the cache memory as follows:

property s e t Cache i s
L i n e S i z e : type a a d l i n t e g e r ;
Hit Time : type Time Range ;
Miss Time : type Time Range ;
A s s o c i a t i v i t y : type a a d l i n t e g e r

a p p l i e s to ( memory ) ;
R e p l a c e m e n t P o l i c y : type enumeration

( FIFO , LRU, PLRU, Random )
a p p l i e s to ( memory ) ;

Cache Category : type enumeration
( Data Cache , I n s t r u c t i o n C a c h e ,
D a t a I n s t r u c t i o n C a c h e )

a p p l i e s to ( memory ) ;
Wr i t e P o l i c y : type enumeration

( Write Back , Wri te Through
W r i t e T h r o u g h A l l o c a t e )
a p p l i e s to ( memory ) ;

end Cache ;

For others attributes of the cache, existing standard prop-
erties of the memory component could be reused. For exam-
ple, the Memory Size attributes could be used to model the
Cache Size.

The Hit Time and Miss Time of the cache could be derived
from it and higher level memory components’ Read Time,
Write Time attributes if we have enough information about
the processor’s memory read, write operation.

The example below illustrates a direct-mapped (Associativ-
ity = 1) instruction cache. The Line Size is 16 bytes and the
Cache Size is 1024 bytes. Cache Replacement Policy is Least
Recently Used (LRU).

memory Cache
p r o p e r t i e s

Memory Size => 1024 b y t e s ;
Cache : L i n e S i z e => 16 b y t e s ;
Cache : A s s o c i a t i v i t y => 1 ;
Cache : R e p l a c e m e n t P o l i c y => LRU;
Cache : Cache Category => I n s t r u c t i o n ;
Cache : Hit Time => 2 ns . . 4 ns ;
Cache : Miss Time => 5 ns . . 10 ns ;

end Cache ;

2) Modeling the CFG with AADL: Two solutions exist
to model the control flow graph with AADL. The AADL
behaviour annex [16] can be used to model the CFG. A simpler
solution is to store the control flow graph in a separate file
and to annotate the AADL model with the name of this file.
Then, we have defined a new property to store the CFG file
name for each program. Each program is then modeled by
a subprogram AADL component and its CFG can be stored
with the following property:



c f g s o u r c e f i l e : type s t r i n g
a p p l i e s to ( subprogram ) ;

B. Implementation in the Cheddar tool

In this section, we present the implementation of our work
in the Cheddar tool.

1) Modeling the Cache with Cheddar-ADL: The Cheddar-
ADL meta model is used to generate the source code of
Cheddar to handle Cheddar-ADL entities. To generate the
source code, we use the Platypus tools [12].

The Cheddar-ADL meta-model is specified with EXPRESS.
In this meta-model, a hardware or a software component of
Cheddar-ADL is modeled by an EXPRESS entity. EXPRESS
entities have attributes, which allow us to model any property
of the Cheddar-ADL components.

We have presented most of the classical attributes of a cache
memory in section III-A.

From the Generic Cache entity, Cheddar class files are
generated. The example below is a part of the generated Ada
1995 code for the cache component. The code to handle
the behaviors of the component needs to be written by the
programmer.

type Gener ic Cache i s
new Named Object with

record
memory size : N a t u r a l ;
l i n e s i z e : N a t u r a l ;
a s s o c i a t i v i t y : N a t u r a l ;
. . .

end record ;

2) Modeling the CFG with Cheddar-ADL: To model the
control flow graph in the Cheddar-ADL meta-model, we
updated the task model of Cheddar-ADL in order to add an
attribute to reference the CFG. A part of the generated Ada
code is written below.

type Gener i c Task
i s new Named Object with

record
c a p a c i t y : N a t u r a l ;
c o n t r o l f l o w g r a p h :

B a s i c B l o c k s T a b l e ;
. . .

end record ;

The CFG is modeled as a set of basic blocks. Attributes of
each basic block are presented in section III-B. The capacity
attribute includes intrinsic effects while the CRPD is derived
from the CFG.

3) Update the scheduling simulator: We update the
scheduling simulator of Cheddar to be able to compute
scheduling simulation with CRPD.

The scheduling simulation in Cheddar works as follows.
First, a system architecture model including hardware/software

components, schedulers and tasks is loaded. Then, the schedul-
ing is computed by three successive steps: computing priority,
inserting ready task into queues and electing task. The elected
task will receive the processor for the next unit of time.

The scheduling simulator of Cheddar records different
events raised during the simulation, such as task releases,
shared resources lockings or unlockings, ... The result of the
scheduling analysis is the set of events produced at simulation
time. To achieve scheduling simulation with caches, we have
extended the set of events Cheddar can produce. For each
preemption, Cheddar produces an event that stores the CRPD.

V. EXPERIMENT AND DISCUSSION

In this section, we present experiments to illustrate the use
of our tool. The first experiment is a CRPD analysis per task.
We obtain the upper-bound CRPD for each task by using
the UCB analysis method and compare it with the WCET of
the task. The second experiment is a scheduling simulation,
which reuses the result of the first one. It indicates the impact
of CRPD in scheduling simulation with different scheduling
algorithms.

A. CRPD analysis per task with UCB

In this experiment, we want to compare the value of CRPD
to the WCET of the task. The programs used in the experiment
are taken from Malardalen benchmark suite [17]. They are
popular WCET benchmark programs, used to evaluate and
compare different types of WCET analysis tools and methods.

We perform experiments with the LEON V3 processor,
clock speed 400 MHz, with 1 KB instruction cache and 16
bytes line size. The cache miss time is 10 clock cycles. Data
cache is disabled. Each instruction of LEON processor is
encoded on 32 bits.

TABLE III

Program # Basic
Block

WCET
1 w/o
cache
(µs)

WCET
2 w/

cache
(µs)

CRPD
max (µs)

UCB

bs.c 12 6.1 4.5 0.35 14

fac.c 10 5.9 4.9 0.25 10

fdct.c 9 80.9 80.2 1.23 49

fibcall.c 11 8.1 4 0.18 7

insertsort.c 7 41.07 22.2 0.28 11

ns.c 17 545.3 273.3 0.50 20

prime.c 22 6.6 6.8 0.6 24

The result of the analysis is shown in the table III. The
second column contains the number of basic blocks in the CFG
of the program. The third and fourth columns are WCET of
the programs without and with cache, respectively. The data is
obtained by using the WCET analysis feature of the aiT tool.
After the CFG is generated, we apply the analysis method to
get the highest number of UCB for each program and deduce
the upper-bound CRPD, which are displayed in column five
and six.



We notice that tasks bs.c and fibcall.c in the Table III have
WCETs with a difference of 0.5 µs but the CRPD of bs.c
is 0.35 µs compare to 0.18 µs of fibcall.c. In some cases, it
should be consider to reduce the overall response time of the
system. It would be interesting to take the CRPD into account
when assigning priority to tasks. For example, if the two tasks
have similar WCET, assigning the higher priority to task which
has bigger CRPD can avoid the task to be preempted. We can
also take the CRPD into account when applying preemption
threshold solution following the work of [18].

From this result, first, we can see the substantial reduce
in WCET of tasks when the cache is enabled (except for
prime.c). Second, we see that the impact of CRPD on task
WCET should not be excluded. Our aim is to help the system
designers utilizing the performance boost of cache while still
keeping track of the impact of extrinsic interferences in a less
pessimistic hypothesis such as complete cache reloading when
preemptions occurs.

B. Experiment 2: CRPD and scheduling simulation

TABLE IV

Task Capacity (µs) Period (µs)

fibcall.c 4 30

bs.c 4.5 40

prime.c 6.8 50

insertsort.c 22.2 60

We bring this example to demonstrate the use of our tool
in scheduling simulation. The task set above is configured
to have a processor utilization - the fraction of processor
time spent in the execution of the task set [8] - of 75%.
We run the scheduling simulation in one hyperperiod - least
common multiple of the tasks periods. The tasks’ capacity and
CRPD are inherited from the previous experiment. The result
is displayed in the table below.

TABLE V

Algorithm CRPD (µs)
(UCB only)

CRPD (µs)
(Combined)

# Preemption

RM 6.8 4.6 22

EDF 5.3 3.9 18

Table V shows the cumulated CRPD and the number of
preemptions. The first column is the total CRPD when we
only use the upper-bound CRPD delivered from UCB analysis.
In the second column, the CRPD is calculated with the
combination of UCB and ECB. We assume a memory-to-cache
mapping scheme, which the instructions of tasks are located
next to each other in the main memory.

In this experiment, we revise one of the advantages of
Earliest Deadline First [8] (EDF) to Rate Monotonic [8] (RM)
scheduling. It gives less preemptions [19]. In the simulation,
our tool can indicate the number of overall increases in the

worst case response time (WCRT). As a result, we can com-
pare the impact of CRPD with different scheduling algorithms.

When performing scheduling simulation with RM, the over-
all increase in WCRT is 6.8 µs, and the number of preemption
is 22 times. When we apply the EDF scheduling algorithm,
the overall increase in WCRT is 5.3 µs and the number of
preemptions is 18.

The evaluation for UCB could be combined with ECB to
reduce the bound of CRPD. We assume that when a task is
preempted by another task having intersection in the cache,
it only needs to reload the cache blocks which are useful. It
raises another idea to optimize memory-to-cache mapping to
reduce the impact of CRPD. For direct-mapped cache, if tasks
are located edge to edge in the main memory, their cache
mappings tend to not overlap each others. Consequently, tasks,
which only use a small proportion of cache, should be located
near each other in the main memory.

The actual execution time of a task depends on which
scheduling policy we use. It decides the number of pre-
emptions, thus, changing the cumulative CRPDs. However,
the CRPD creates a reverse impact on the scheduling policy
because it contributes in many factors such as priority assign-
ments and feasibility tests.

VI. RELATED WORKS

In this section, we present several real-time scheduling
analysis and WCET analysis tools. In the domain of real-
time scheduling analysis, the support for cache and CRPD
when performing scheduling analysis are not clearly specified
in those tools.

MAST [20] is a modeling and analysis suite for real-
time applications. The hardware component abstraction of
MAST model is generic and it includes processing resources
and shared resources. The shared resource component is not
supposed to model a cache memory unit. However, MAST
considers the overhead parameters of the components.

STORM [21] and YARTISS [22] are scheduling simulation
tools for real-time multiprocessor architectures. However, the
support for cache memory component is not defined. SymTA/S
[23] and RTaW [24] (RealTime-at-Work) are model-based
scheduling analysis tools, which target automotive electronics
industry. The hardware components supported in those tools
are specific in their domains (ECU, CAN and AFDX Net-
works).

SimSo [25] is a scheduling simulation tool. It supports
cache sharing on multi-processor systems. It takes into account
impact of the caches through statistical models and also the
direct overheads such as context switches and scheduling
decisions. The memory behavior of a program is modeled
based on Stack Distance Profile - the distribution of the stack
distances for all the memory accesses of a task, where a stack
distance is by definition the number of unique cache lines
accessed between two consecutive accesses to a same line [26].

Several WCET analysis tools allows cache analysis. Sym-
TA/P [27], HEPTANE [28], Chronos [29] and aiT [15] are
examples of them. The analysis of those tools are based



on program path analysis. The analysis requires information
about program’s CFG. Those WCET tools focus on the cache
intrinsic interference analysis. The analysis result could be
used as an input for a scheduling analysis tool, which focuses
on extrinsic interference analysis domain.

Our approach tends to re-use information obtained from
a timing analysis tool (CFG, WCET) to perform scheduling
analysis with cache memory taken into account.

VII. CONCLUSION

In the article, we presented an approach to handle cache
memory in real-time scheduling analysis. Even though cache
memory is an essential component to overcome the speed
gap between the processor and memory, it causes additional
preemption delay and unpredictability, which limits the use of
cache in real-time systems.

The work is proceeded in the context of Cheddar real-time
scheduling analyzer and AADL. Our solution consists of three
parts: modeling cache memory and program memory accesses,
implementing the analysis methods and performing scheduling
simulation. We extended Cheddar to be able to deals with
cache and to help designers to use them into critical systems.

There are open problems we are aiming to address in the
future. The first one concerns the refinement of other CRPD
analysis methods. Several improvements have been proposed
in [6] to reduce the upper-bound of the CRPD. Second, we
plan to investigate the approaches to take the CRPD into
account when performing feasibility tests following the work
of [30]. Finally, we also plan to study priority assignment
algorithms in order to minimize the impact of CRPD.
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real time scheduling framework,” in ACM SIGAda Ada Letters, vol. 24,
no. 4. ACM, 2004, pp. 1–8.

[12] A. Plantec and F. Singhoff, “Refactoring of an ada 95 library with a
meta case tool,” in ACM SIGAda Ada Letters, vol. 26, no. 3. ACM,
2006, pp. 61–70.

[13] M. Faugere, T. Bourbeau, R. De Simone, and S. Gerard, “Marte:
Also an uml profile for modeling aadl applications,” in Engineering
Complex Computer Systems, 2007. 12th IEEE International Conference
on. IEEE, 2007, pp. 359–364.

[14] P. Dissaux, O. Marc, S. Rubini, C. Fotsing, V. Gaudel, F. Singhoff,
A. Plantec, V. Nguyen-Hong, and H. N. Tran, “The smart project: Multi-
agent scheduling simulation of real-time architectures,” Proceedings of
the ERTS 2014 conference.

[15] “Absint inc.” [Online]. Available: http://www.absint.com/ait
[16] P. Dissaux, J. Bodeveix, M. Filali, P. Gaufillet, and F. Vernadat, “Aadl

behavioral annex,” in Proceedings of DASIA conference, Berlin, 2006.
[17] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The mälardalen

wcet benchmarks: Past, present and future.” in WCET, 2010, pp. 136–
146.

[18] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with pre-
emption threshold,” in Real-Time Computing Systems and Applications,
1999. RTCSA’99. Sixth International Conference on. IEEE, 1999, pp.
328–335.

[19] G. C. Buttazzo, “Rate monotonic vs. edf: judgment day,” Real-Time
Systems, vol. 29, no. 1, pp. 5–26, 2005.
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