

 Ecole Doctorale
 Sciences et Technologies

Thèse de DOCTORAT

Ingénierie des Systèmes
Informatiques

N° d’ordre: 6817

République Tunisienne
Ministère de l’Enseignement Supérieur,

de la Recherche Scientifique

Université de Sfax

École Nationale d’Ingénieurs de Sfax

THESE

Présentée à

L’École Nationale d’Ingénieurs de Sfax

En vue de l’obtention du

DOCTORAT
Dans la discipline Informatique

Ingénierie des Systèmes Informatiques

Par

Rahma BOUAZIZ FRIKHA

(Mastère en Nouvelles Technologies des Systèmes Informatiques Dédiés)

Multi-Objective Optimization and Design Space

Exploration of Critical Real-Time Systems

Soutenu le 30 juillet 2018, devant le jury composé de:

M. Mohamed ABID (Professeur) Président

M. Samir BEN AHMED (Professeur) Rapporteur

Mme. Hanêne BEN-ABDALLAH (Professeur) Rapporteur

M. Adel MAHFOUDHI (Professeur) Examinateur

M. Mohamed JMAIEL (Professeur) Directeur de Thèse

M. Laurent LEMARCHAND (Maître de conférences) Invité

M. Frank SINGHOFF (Professeur) Invité

M. Bechir ZALILA (Maître assistant) Invité

Acknowledgments

It is with great pleasure that I reserve this page as a sign of deep gratitude to all
those who have kindly provided the necessary support for the smooth running of
this thesis.

I present my thanks to Prof. Mohamed Abid for the honor he had accorded me
for agreeing to be the committee chair of my thesis. I also thank Prof. Adel
Mahfoudhi for the valuable service to examine my thesis and to be a member of
the committee. My distinguished thanks go also to Prof. Samir Ben Ahmed and
Prof. Hanene Ben Abdallah for taking their time to review my dissertation and
for their relevant comments.

I would like to express my deep gratitude to my supervisor Prof. Mohamed
Jmaiel for his outstanding commitment to this thesis. I am also grateful for
the support he gave me. His professionalism, friendliness and pedagogical and
scientific qualities have been invaluable.

I am also indebted to my co-supervisors Prof. Laurent Lemarchand, Prof. Frank
Singhoff and Dr. Bechir Zalila for supervising my thesis work, for their human
qualities, for their patience, and especially for the time they have spent for me.
They have always been the source of inspiration and motivation to me. Their
knowledge, insight, scientific rigor and advices improved immensely the quality of
the scientific and technical contributions of this work, but also its presentation.
They have helped me gain invaluable skills as a researcher. May they find in this
work the fruit of their effort and the expression of my deep gratitude.

I am thankful to all of my colleagues at both Lab-STICC Laboratory (Brest-
France) and ReDCAD Laboratory (Sfax-Tunisia). Not only were our technical
discussions very interesting, but it was wonderful working with them.

Last but not least I would like to express a very special gratitude to my husband,
my parents and my whole family, for their support, patience, love and for making
this journey as pleasant as it can be.

–i–

Contents

Introduction 1

I Research Foundations and State of the Art 9

1 Real-Time Embedded Systems: Terminology, Principles and Schedul-
ing Theory 11

1.1 Introduction . 12

1.2 RTE systems: definitions and classification 12

1.2.1 Definitions . 12

1.2.2 Classification . 13

1.3 Internal structure of RTE systems 14

1.3.1 Hardware platform . 14

1.3.2 Software structure . 15

1.4 Real-time scheduling . 17

1.4.1 Real-time tasks: definitions and temporal properties 17

1.4.2 Task set characteristics and classifications 21

1.4.3 Scheduler and scheduling policies 22

1.5 Real-time scheduling analysis . 26

1.5.1 Scheduling analysis principles 27

1.5.2 Schedulability tests for Ravenscar RTE systems 31

1.6 Conclusion . 34

2 RTE Systems Design and Optimization: Background and Basic
Concepts 37

2.1 Introduction . 37

2.2 Development and design of RTE systems 38

2.2.1 Software development process 39

–iii–

Contents

2.2.2 Hardware/software interface co-design 41

2.2.3 Design phase: Y-chart design paradigm 43

2.3 Multi-objective optimization (MOO) 46

2.3.1 Fundamental concepts and terminology in MOO 47

2.3.2 Techniques for solving MOOPs 49

2.3.3 Multi-objective evolutionary algorithms (MOEAs) 50

2.3.4 MOEAs performance metrics 53

2.4 Conclusion . 56

3 Work Orientation and Related Work 59

3.1 Introduction . 59

3.2 Problem statement . 60

3.2.1 RTE systems development challenges 60

3.2.2 Difficulty and importance of the design phase 61

3.3 Context of work . 65

3.3.1 Assumptions of the work 65

3.3.2 System models and notations 66

3.4 Contributions outline . 68

3.4.1 Automatic multi-criteria DSE process 68

3.4.2 Mastering scalability and effectiveness of the DSE process 69

3.4.3 Prototype implementation 70

3.4.4 Empirical studies . 70

3.5 Related work . 72

3.5.1 Functions to tasks mapping approaches 72

3.5.2 Multi-criteria design space exploration approaches 78

3.6 Conclusion . 84

II Contributions 85

4 Multi-Criteria Design Space Exploration Process 87

4.1 Introduction . 88

4.2 Problem formulation using a MOEA approach 88

–iv–

Contents

4.2.1 Pareto archived evolution strategy (PAES) 88

4.2.2 PAES adaptation for multi-criteria DSE process 90

4.3 Exploration operators . 91

4.3.1 Encoding of solutions . 92

4.3.2 Initial design solution . 93

4.3.3 Mutation operator . 96

4.3.4 Objective functions . 97

4.4 Formalization of design alternatives 100

4.4.1 One function assigned to one task 100

4.4.2 Several functions assigned to the same task 101

4.5 Design alternatives feasibility verification 108

4.5.1 Impact of the assignment method on the schedulability . . 108

4.5.2 Schedulability analysis of design alternatives 109

4.5.3 Functions-to-tasks assignment constraint 110

4.5.4 Feasibility checks algorithm 111

4.6 Conclusion . 112

5 Towards Scalable and Efficient Design Exploration Process 113

5.1 Introduction . 114

5.2 Basic background to parallel MOEAs (pMOEAs) 114

5.2.1 Motivations for parallelizing MOEAs 114

5.2.2 Main parallel models used in pMOEAs 116

5.2.3 Discussion . 120

5.3 Related work on PAES parallelization 121

5.4 Parallel formulation of our DSE process 122

5.4.1 Master-slave parallel asynchronous adaptation for PAES . 122

5.4.2 Global selection: a new selection strategy for PAES 124

5.5 Experiments and evaluation . 125

5.5.1 Performance assessment metrics 126

5.5.2 Solution sets quality evaluation: global selection Vs. local
selection . 127

5.5.3 Scalability and effectiveness evaluation of the parallel DSE
process . 129

5.6 Conclusion . 131

–v–

Contents

6 Prototype Implementation of the Design Exploration Process 133

6.1 Introduction . 133

6.2 Prototype overview . 134

6.3 Cheddar framework . 135

6.3.1 Cheddar-ADL for modeling RTE systems 135

6.3.2 Cheddar scheduling analysis features 139

6.3.3 Utilization scenarios of Cheddar framework 140

6.4 Prototype implementation . 142

6.4.1 Optimizers library . 143

6.4.2 Functions-to-tasks assignment library 143

6.4.3 Problem instance generator 143

6.4.4 Tools . 144

6.5 Conclusion . 144

7 Evaluation and Empirical Studies 145

7.1 Introduction . 145

7.2 Experiments for independent tasks systems 146

7.2.1 Experiment 1.1: Accuracy/convergence evaluation for small-
sizes test instances . 147

7.2.2 Experiment 1.2: Solution sets quality evaluation for differ-
ent test instance sizes . 149

7.3 Experiments for systems with shared resources 152

7.3.1 Test instance generator . 152

7.3.2 Experiment 2.1: Empirical study of the correlation between
objectives . 154

7.3.3 Experiment 2.2: Accuracy/convergence evaluation for small-
sizes test instances . 157

7.3.4 Experiment 2.3: Solution sets quality evaluation for differ-
ent resources contention levels 161

7.3.5 Experiment 2.4: Impact of the initial design solution choice
on the DSE process performance 165

7.4 Conclusion . 170

–vi–

Contents

Conclusion 173

III Appendices 181

A Experimental Setups and Threats to Validity 183

B Publications 187

Bibliography 189

–vii–

List of Figures

1.1 Real-time control system interacting with its environment 14

1.2 Hardware parts of a real-time control system 15

1.3 Software structure of a real-time control system 16

1.4 Task life-cycle (adapted from [LLS07]) 17

1.5 Main properties of a real-time task illustrated by a Gantt diagram 18

1.6 Task characteristics related to the system execution 20

1.7 Example of blocking time on a shared resource 26

2.1 “V” model development cycle (taken from [Ouh13]) 40

2.2 Classic hardware/software concurrent development process 42

2.3 Conceptual view of the Y-chart design paradigm 44

2.4 Illustration of the multi-objective optimization problem domain:
mapping from decision space to objective space (assuming two de-
cision variables and two objective minimization functions). 48

2.5 MOEAs basic terms and components (adapted from [CLVV07]) . 51

2.6 Examples of variation operators 52

2.7 Hypervolume performance indicator for two sets, for a two mini-
mization objectives problem . 54

2.8 PF approx and PF true example to show the CRmetric (taken from [CLVV07]) 56

3.1 Runnables to tasks mapping in AUTOSAR methodology (adapted
from [SCCM15]) . 64

3.2 Real-time design model . 67

4.1 Proposed DSE process overview 91

4.2 Chromosome representation of a particular functions to tasks as-
signment solution S . 92

4.3 The normalized chromosome representation of the assignment so-
lution S . 93

–ix–

List of Figures

4.4 Behavior of functions F1 and F2 before and after assignment to the
task τk . 103

4.5 1-1 assignment solution model example: each function is assigned
to one task . 104

4.6 A possible assignment solution: the resulting resource set and crit-
ical sections of the mutated solution 106

4.7 Another possible assignment solution: the resulting resource set
and critical sections of the mutated solution 107

4.8 Example of non-feasible candidate solution according to the functions-
to-tasks assignment constraint . 110

5.1 Master-slave parallel scheme . 117

5.2 Diffusion parallel scheme (taken from [JC09]) 118

5.3 Island parallel scheme (taken from [JC09]) 119

5.4 Hybrid parallel schemes (taken from [JC09]) 120

5.5 Master-slave parallel asynchronous scheme adapted to our DSE
process . 123

5.6 Hypervolume comparison between the global selection and the lo-
cal selection with sequential-PAES and PA-PAES4 configurations
for different test instances scales 128

5.7 Speed-up values against the number of slaves involved in the par-
allel execution . 130

5.8 Average hypervolume against the number of slaves involved in the
parallel execution . 131

6.1 Main hardware components in Cheddar-ADL (adapted from [TRA17])136

6.2 Main software components in Cheddar-ADL (adapted from [TRA17])137

6.3 Utilization scenario of Cheddar 141

6.4 Prototype design overview . 142

7.1 Projection in the objective space of all feasible solutions and the
exact Pareto front for the 11-functions test case 149

7.2 Hypervolume values of solution sets for different system sizes . . . 150

7.3 Negative, positive and insignificant correlation rates between the
objectives pairs over all the generated test instances 156

7.4 Comparison of the PAES coverage ability between two test instances161

–x–

List of Figures

7.5 IGD values associated to fronts produced by applying the DSE
process on test instances while setting the initial solution to (i)
the 1-1 assignment solution and then (ii) the preprocessed solution 167

–xi–

List of Tables

1.1 Characteristics of most common schedulability tests compatible
with Ravenscar compliant task set running uniprocessor platform 33

1.2 Characteristics of most common schedulability tests for Ravenscar
compliant task set composed of independent tasks running unipro-
cessor platform . 34

3.1 Functions to tasks mapping approaches 77

3.2 Multi-criteria design space exploration and optimization approaches 83

4.1 Initial assignment solution . 108

4.2 A possible assignment solution . 108

5.1 Average hypervolume improvement rates of the global selection
against the local selection in sequential and parallel execution con-
figurations . 129

7.1 Generated timing parameters of test case with 11 functions 148

7.2 Average number of solutions in produced fronts and average stan-
dard deviation of the hypervolume between runs 151

7.3 Experiment 2.1: test instance generator parameters settings . . . 156

7.4 Experiment 2.2: test instance generator parameters settings . . . 158

7.5 Results relative to 9-functions test instances 159

7.6 Results relative to 10-functions test instances 159

7.7 Experiment 2.3: test instance generator parameters settings . . . 162

7.8 Results relative to test instances with low resources contention
level (level1) . 163

7.9 Results relative to test instances with medium resources contention
level (level2) . 163

7.10 Results relative to test instances with high resources contention
level (level3) . 163

–xiii–

List of Tables

7.11 Execution time computed over all test instances generated for each
resource contention level . 165

7.12 Comparison between IGD values computed by considering the 1-
1 assignment initial solution and those associated to the prepro-
cessed initial solution . 168

7.13 Preprocessed initial solution method applied on test instances of
Experiment 2.1 . 169

7.14 Preprocessed initial solution method applied on test instances of
Experiment 2.3 . 169

A.1 Experimental setups from related work evaluating optimization
frameworks/approaches . 184

–xiv–

List of Listings

4.1 Classical implementation of a periodic task with Ada 101
4.2 Ada implementation of the task τk containing two functions . . . 102
6.1 Example of a Cheddar-ADL model 138

–xv–

List of Algorithms

1 MOEA generic structure . 52

2 General form of PAES Algorithm 89

3 Preprocessing for the generation of the initial solution 95

4 Mutation operator for the functions-to-tasks assignment problem . 96

5 Computation of resource set and critical sections of a mutated solution105

6 Feasibility checks algorithm . 111

7 Master process algorithm . 124

8 Slave process algorithm . 124

9 Exhaustive method algorithm . 147

–xvii–

Introduction

Real-time systems are increasingly spread across many application fields rang-
ing from small devices frequently used in our daily life (e.g. telecommunication
systems, multimedia applications, GPS) to more sophisticated and safety-critical
industrial systems (e.g. control systems for nuclear reactors, avionic systems,
medical instruments, robot controllers, automotive systems).

A real-time system generally works in a continuously variable environment. To
achieve a specific mission, such a system must follow the evolution of the environ-
ment and interact with it [Sta88]. Retrieving information from the environment is
performed through the system sensors. Once it receives information, the system
must process the input data as to produce a response by means of actuators. The
system devices (i.e. sensors, actuators, etc.) are activated at particular frequen-
cies and must accomplish their works within predetermined time limits. This
distinguishes a real-time system from a classical system. Real-time systems are
subject to meet different non-functional requirements (e.g. timing constraints,
safety, reliability, etc.) imposed by their environment. Hence, their development
needs to be carefully performed such that all non-functional constraints will be
met.

They are qualified as safety-critical when failures including timing vulnerabilities
(e.g. missing a deadline) lead to dramatic damages or even human life losses. A
delayed response or output is considered as wrong even if it is logically correct. In
other words, the correctness of results depends on both their functional accuracy
(called also logical correctness) and their temporal correctness (i.e. functions
meet the specified deadlines). A real-time system is referred to as embedded
when it is run on the top of an execution platform with limited computation,
storage and energy resources. In this thesis, we target systems that are both
safety-critical real-time and embedded, what we refer to as real-time embedded
(RTE) systems.

The design stage is of major importance in the life-cycle development of RTE
systems. It allows to better master the complexity of the software development
of these systems [GTT02, FMB+09]. Yet, design flaws including timing vulnera-
bilities and wrong decisions/choices during the design stage are often detected at
late development stages (i.e. during or after the implementation) [NIS02]. This
would adversely affect the development costs, time-to-market1 and the system

1Time-to-market is a concept related to the duration required to develop and commercialize
a product. It becomes an important criterion for the success of a product.

–1–

Introduction

performance criteria.

The design stage consists mainly in building the operational architecture that will
be refined until obtaining the code of the application according to a model-driven
development (MDE) approach [Sch06]. The operational architecture is the result
of mapping the functional specification of the target application onto a specific
execution platform [SLS05]. The functional specification describes the system
functions and their interactions. The execution platform represents the software
and hardware entities (e.g. processors, tasks, shared resources, etc.) required to
implement the functional specification.

The timing constraints are among the important non-functional requirements to
consider during the design phase. To do so, a schedulability analysis is performed
at the design stage which warrants the temporal determinism. RTE systems are
frequently designed according to concurrent multi-tasking architectures. Such
tasks are usually interacting with each other (e.g. sharing data). In the context
of RTE systems requiring functional predictability, the communication and the
synchronization of tasks must be carefully handled. In that respect, concurrency
tasking models are subject to a set of standardized restrictions called Ravenscar
profile [BDV04] especially tailored to enable reliable and efficient schedulability
analysis. In our work, we assume Ravenscar compliant RTE systems.

The main challenge for designers is to define the most appropriate operational de-
sign that ensures correct behavior, the satisfaction of non-functional requirements
and optimal performance criteria of the system.

The success key of a design stage resides in the availability of analysis and opti-
mization methods that helps designers to establish the most suitable operational
design. The work performed in the present thesis fits into this context.

Problems and motivation

In the context of uniprocessor architecture that we assume in our work, designing
the operational architecture consists in assigning the system functions to a set of
tasks.

The increased number of functions of today’s real-time systems results in many
various ways of assigning functions to tasks. The different design alternatives (i.e.
all the combinations of functions to tasks assignment) form the design space. The
latter grows exponentially with the number of functions involved in the functional
specification which leads to a combinatorial problem.

Each design alternative has an impact on the system behavior and performance.
Before assessing performance criteria of a candidate design alternative, the latter
must be a feasible design solution. By feasible design, we mean a design that

–2–

Introduction

guarantee all constraints regarding the schedulability, the consistency between
the functional level and the design level (e.g. the periodic activation of func-
tions), shared data consistency, etc. Furthermore, the performance criteria com-
pete with each other: improving one aspect can have an adverse impact on other
performance criteria. For instance, reducing timing overhead (e.g. narrowing
the number of preemptions) may be done by limiting the number of tasks. Yet,
this may leads to less flexible design that is expensive to change, since a reduced
number of tasks will induce lower task laxities. The laxity of a task is a property
characterising the flexibility available for scheduling the task. Considering the
competing aspect between performance criteria, several design alternatives repre-
sent different trade-offs are searched for. Accordingly, the problem we deal with
fits with constrained multi-objective optimization problems (MOOPs) [CLVV07].

Explorating manually the design space in order to select the most appropriate
operational design is a limited approach for several reasons. On the one hand,
such approach can be tedious and error prone as it relies on designers knowledge.
On the other hand, given the combinatorial nature of the problem, performing
an exhaustive search “by hand” (i.e. designers try all the possible combinations,
evaluate the fitness of the feasible solutions with regards to a set of criteria and
thereafter select the best trade-offs) is impossible. With such manual strategy,
designers are able to explore only a narrow portion among all possible design
alternatives. This can lead to miss some interesting design alternatives. Thus,
an automatic process for the design space exploration (DSE) will reduce the time
and cost of the design stage.

Solutions overview and contributions

In this thesis, we aim at automatically providing a set of feasible operational
designs that exhibit meaningful trade-offs between multiple performance criteria
at a reasonable computational cost. The performance criteria considered in our
work are related to the scheduling field, such as preemptions/context switches,
laxities of tasks, blocking times, etc. To tackle the problems mentioned above
and achieve our objective, we propose our solution that includes the following
contributions.

A) Automatic multi-criteria design space exploration (DSE) process

MOEA formulation of the DSE process

We propose an automatic design space exploration process. To cope with the
multi-objective optimization nature of the addressed problem and its combinato-
rial complexity, we propose to formulate the DSE process using Multi-Objective

–3–

Introduction

Evolutionary Algorithms (MOEAs) [Deb01]. MOEAs are metaheuristics that al-
low designers to find sub-optimal (or near-optimal) solutions (called Pareto set)
in a reasonable time when exact methods fail to handle large scale problems due
to computing resource requirements.

The proposed DSE process allows to (1) explore the search space composed of
design alternatives in terms of functions-to-tasks assignment combinations, (2)
evaluate fitness (i.e. performance values that exhibit the quality of a given so-
lution) of each feasible design alternative (3) and finally, identify the Pareto set
of design alternatives (i.e. that satisfy at best the considered performance cri-
teria). This DSE process is based on the Pareto Archived Evolution Strategy
(PAES) [KC00a] MOEA.

Formalization of candidate architectures

Each candidate design explored during the DSE process must be analysed to
check its feasibility (e.g. schedualbility analysis), then evaluated to determine
its fitness towards performance criteria. These operations require the knowledge
of timing parameters of each design alternative elements (i.e. tasks and shared
resources). To identify these parameters, we propose a set of rules that formalizes
design alternatives according to the way in which functions are assigned to tasks
and the timing parameters derived from the functional specification.

Scope of application of the DSE process: assumptions and real-time
scheduling context

The DSE process is applied on RTE systems with both independent tasks and
tasks sharing resources. We rely on a conventional task model based on Liu
and Layland model [LL73]. We assume periodic synchronous tasks with im-
plicit deadlines running a uniprocessor platform under a preemptive and fixed-
priority scheduling policy. We target Ravenscar [Bur99] compliant systems,
i.e. the shared resource accesses are governed by the priority ceiling protocol
(PCP) [SRL90] in order to ensure the synchronization of tasks and their mutual
exclusion.

B) Improving the computational efficiency of the DSE process and the quality
of produced Pareto sets

The problem we deal with involves high computation costs mainly due to the
feasibility verification (including the schedulability analysis) and the fitness eval-
uation (i.e. objective functions computation). To enhance scalability, we intro-
duce some improvements to the DSE process. First, we suggest to benefit from
multi-processor computing platforms by parallelizing the feasibility verification
and the fitness evaluation of multiple design alternatives. To do so, we adapt

–4–

Introduction

the well-known Master-Slave parallel scheme [CLVV07]. Second, we define a new
selection strategy that guides the search procedure in the DSE process. The im-
pact of these changes is evaluated and shows significant improvement in regards
to the DSE process scalability (i.e. the ability to handle large size systems) and
effectiveness (in terms of produced Pareto sets quality).

C) Implementation of our prototype and evaluation of our proposals

In order to enable the use and the evaluation of the proposed DSE process, we
provide a prototype embedding our contributions. This prototype is integrated in
the Cheddar2 scheduling framework [SLNM04]. A particular attention has been
paid on the design of the prototype, which allows the reuse and the extension of
its software artefacts.

In addition, various experiment sets are achieved in order to assess our proposals
and investigate by means of empirical studies some concerns related to the ad-
dressed problem. These experiments are achieved on problem instances (called
also test instances or test cases) synthetically generated thanks to a customiz-
able generator that we propose. The performed experiments show the functional
evaluation of our approach as well as its performance evaluation in terms of: (1)
accuracy evaluation of Pareto sets produced by the DSE process for small size
problem instances, (2) quality evaluation of Pareto sets for larger size and more
complex (i.e. with different resources contention levels) problem instances and
(3) scalability evaluation of the DSE process.

D) Empirical studies

As part of the experiments, two different empirical studies are carried out. The
first empirical study is dedicated to investigate the correlation between different
performance criteria. The second one aims at analyzing how the choice of the
initial solution (required by PAES to start the search) influences the performance
(in terms of convergence to the optimal Pareto set) of our DSE process.

Investigating the correlation between objectives

Several performance criteria, referred to as objectives, could be involved to drive
the design exploration. The correlation (i.e. conflict relationships or support
relationships) between these objectives is not obvious and could be counter intu-
itive. Two objectives are identified as redundant when they support each others,
i.e. optimizing one of them leads to the optimization of the other. Considering

2Cheddar is an open-source scheduling analyzer, available for the academic and industrial
researchers

–5–

Introduction

two redundant objectives in the design exploration is irrelevant since this will
increase the problem complexity uselessly. That’s why we propose to empirically
study the correlation between three pairs of objectives among those considered
in our work.

Studying the impact of the initial design choice on the performance of
the DSE process

The choice of the initial solution (or initial population for population based meth-
ods), from which an MOEA like PAES starts the search, is one among factors
that may impact the performance of the MOEA [HGT05]. Indeed, the manner
in which the initial solution is formed may bias the search in favour of a particu-
lar objective. As part of our research work on the functions-to-tasks assignment
problem, we propose two different initial solutions and we study their impact on
the performance of the proposed DSE process in terms of convergence towards
the optimal Pareto sets.

Thesis structure

The remainder of the manuscript is structured as follows.

The first part is devoted to the research foundations and the state of the art, and
it includes three chapters (Chapters 1, 2 and 3). Chapter 1 presents key concepts
related to RTE systems. It also highlights the common timing properties and
constraints specifying the temporal behavior of RTE systems. Furthermore, this
chapter presents an overview on the scheduling analysis principles and discusses
different kinds of scheduling analysis tests that could be applied to Ravenscar
compliant RTE systems on which we are interested in this thesis.

Chapter 2 introduces the domain of interest for this thesis, which is essentially
concerned with the design and optimization of RTE systems. It starts by ex-
posing the whole development process, then emphasizes the specificities of the
design phase and its importance throughout the development process. It also
depicts fundamental aspects about MOOPs and discusses techniques used for
solving them. Then, it focuses on MOEA techniques by highlighting their key
components and reviews some quality indicators for assessing them.

Chapter 3 highlights the work positioning by exposing the problem statements,
the work assumptions and our contributions. It also provides a literature review
about existing approaches dealing with (1) mapping the functional specification

–6–

Introduction

of a given RTE system towards an operational design and (2) multi-criteria de-
sign space exploration.

The contribution part starts by Chapter 4. This chapter presents elements under-
lying the automated multi-criteria DSE process for the mapping problem. Firstly,
we detail our solution based on a MOEA technique (namely PAES) to explore
a design space of functions-to-tasks assignment solutions and identify optimal or
near optimal architecture alternatives. Secondly, we demonstrate how we formal-
ize architecture alternatives, and compute parameters of their entities (in terms
of tasks and shared resources). Finally, we describe how we check the feasibility
of design alternatives.

In Chapter 5, we address the scalability issue of the proposed DSE process by
introducing some improvements. These improvements are mainly the adaptation
of a parallel processing for the DSE process combined with a new selection strat-
egy for PAES. The experiments achieved to assess the impact of the introduced
changes on the performance of the DSE process are also presented.

Chapter 6 gives an overview on the prototype implementing our solutions. This
chapter describes features covered by the prototype and its software artefacts. It
also introduces the Cheddar scheduling framework that embeds our prototype.

Chapter 7 is devoted to present experiments achieved to assess the proposed DSE
process and drive empirical studies regarding certain concerns, namely the cor-
relation between performance criteria and the impact of the initial design on the
DSE process behavior/performance.

The last chapter concludes the thesis and outlines some directions for future work.

–7–

Part I

Research Foundations and State
of the Art

–9–

1
Real-Time Embedded Systems:

Terminology, Principles and Scheduling
Theory

Contents
1.1 Introduction . 12

1.2 RTE systems: definitions and classification 12

1.2.1 Definitions . 12

1.2.2 Classification . 13

1.3 Internal structure of RTE systems 14

1.3.1 Hardware platform . 14

1.3.2 Software structure . 15

1.4 Real-time scheduling 17

1.4.1 Real-time tasks: definitions and temporal properties . 17

1.4.2 Task set characteristics and classifications 21

1.4.3 Scheduler and scheduling policies 22

1.5 Real-time scheduling analysis 26

1.5.1 Scheduling analysis principles 27

1.5.2 Schedulability tests for Ravenscar RTE systems 31

1.6 Conclusion . 34

–11–

Chapter 1. Real-Time Embedded Systems: Terminology, Principles and Scheduling
Theory

1.1 Introduction

In this chapter, we discuss about real-time embedded (RTE) systems and knowl-
edge that form a part of the background needed in our work.

Section 1.2 defines key properties of RTE systems. The general structure of these
systems is highlighted in Section 1.3. Section 1.4 points out fundamental notions
about real-time tasks systems and scheduling policies, required for specifying the
temporal behavior of RTE systems. Afterwards, Section 1.5 presents an overview
on the scheduling analysis principles and then details most popular scheduling
methods that can be applied to Ravenscar compliant RTE systems. Finally,
Section 1.6 concludes the chapter.

1.2 RTE systems: definitions and classification

This section defines RTE systems by exposing their underlying features and the
constraints they must meet.

1.2.1 Definitions

Real-time embedded systems are present everywhere around us. Fields of ap-
plication are multiple such as medical, telecommunication, avionic, automobile,
robotic, telecommunication, etc. Such a system is both an embedded system and
a real-time system. Next, we define these two kinds of systems by focusing on
their main characteristics.

Definition 1. Embedded System [LLS07, Hea02]
An embedded system consists of a set of hardware and software components that
cooperate in order to control a specific range of functions. These systems are
subjected to different environmental and resource constraints such as power con-
sumption, size, cost, memories, processing resources, etc. One of the key charac-
teristics of embedded systems is that the energy is also embedded (batteries, fuel,
etc.). Such a system is often embedded within a larger device. The term embedded
means that the system is not visible to the end-users since it is part of a larger
equipment. Embedded systems communicate with their environments by taking
decisions, processing data and reacting thereafter.

When embedded systems are subject to timing constraints, they are considered
as real-time systems. In fact, embedded systems are often real-time systems since
they always have limited resources, hence execution durations of their operations
cannot be neglected.

–12–

1.2. RTE systems: definitions and classification

Definition 2. Real-time System [Sta88, Kop97, Che03, LLS07]
A real-time system is a computing system that have to process inputs (data or
events) within specified time limits. The behavior of such a system is deemed
to be correct if and only if the result computed by the system is logically correct
(functional correctness) and produced on time (timing correctness).

A real-time system is subject to timing constraints imposed by the environment
with which it interacts. Real-time does not refer here to immediacy (i.e. the
system reacts as fast as possible) but means that the processing of inputs must
finish within a finite duration, so that results are produced before or at a specific
instant called deadline. A logically correct result that does not meet the timing
requirements is considered to be globally incorrect in the same way as a logically
wrong result. The violation of timing constraints (e.g. a delay that causes the
missing of one or more deadlines) is considered as a failure that could lead to
severe damages.

1.2.2 Classification

Real-time systems are usually categorized based on their criticality level. A crit-
icality level [Sta88] is specified by the system capacity to tolerate certain missed
deadlines or not. Two main categories of real-time systems are distinguished and
defined as follows.

• Hard real-time [ABD+95, BLAC05, LL73]
Hard real-time (or critical) systems are used to control critical environments.
They have to meet the required deadlines. Otherwise, an intolerable system
failure may occur which could lead to serious damages and casualties. These
systems are often designed under pessimistic assumptions to handle the worst-
case scenarios [BLAC05]. Examples of hard real-time systems are flight control
systems [DH92], automotive engine control systems [FMB+09], health care
systems such as cardiac pacemaker system [MLF08], etc.

• Soft real-time [ABD+95, BLAC05, LL73]
Soft real-time systems are systems that can tolerate whenever possible timing
failures (i.e. some delays with respect to the expected deadlines), possibly be-
cause those failures do not cause damages on the environment under control.
However, such timing delays may compromise the quality of service [MKT09].
Examples of soft real-time systems are telecommunication and multimedia sys-
tems [AMK98].

A RTE system is also characterized by the entities of its internal structure de-
scribed in the next section.

–13–

Chapter 1. Real-Time Embedded Systems: Terminology, Principles and Scheduling
Theory

1.3 Internal structure of RTE systems

Figure 1.1 illustrates a simplified structure of a real-time control system inter-
acting with its environment. The control system gets information about the
environment through sensors and acts accordingly on the process via actuators.

Process
and

Environment

…
…
…

Real-time control system

…
…
…

E
v
e
n
ts

 &
 M

e
a
su

re
s

M
e
ssa

g
e
s &

 C
o
m

m
a
n
d
s

ActuatorsSensors

Software

Hardware

Figure 1.1: Real-time control system interacting with its environment

A RTE system is composed of a software layer executing on a hardware platform.
In the remainder of this section, we discuss in detail about both software and
hardware parts.

1.3.1 Hardware platform

The hardware layer has a crucial impact on the RTE system behavior and its
analysis (e.g. schedulability). As illustrated in Figure 1.2, a hardware plat-
form is a combination of different components such as processors/cores, networks,
memories, etc. We are interested here in the computing/execution resources (i.e.
processors). Various kinds of architectures can be identified according to the com-
position of the hardware platform in terms of the number of processors and the
interaction between them. Three prominent categories of hardware architectures
are widely used in the real-time scheduling analysis.

–14–

1.3. Internal structure of RTE systems

Real-time control system

Software

Hardware

Figure 1.2: Hardware parts of a real-time control system

• Uniprocessor architecture: a unique processor or central processing unit
(CPU) handles software entities that compose the software application. In
other words, software entities implementing the system functions (called
tasks) compete for acquiring the CPU in order to be executed.

• Multiprocessor architecture: in this kind of architecture, the hardware
platform includes more than one processor sharing a common memory.

• Distributed architecture: the hardware structure is composed of several
nodes interconnected through a network (see Figure 1.2). Unlike the mul-
tiprocessor architecture, in a distributed architecture nodes do not share a
common memory. Instead, each node has its own memory. A node may be
a uniprocessor or a multiprocessor architecture.

1.3.2 Software structure

The software layer performs the mission of the RTE system, using available re-
sources from the hardware platform.

As illustrated in Figure 1.3, the software structure is composed of the software
application and the real-time operating system (RTOS).

The software application corresponds to the program that implements different
functions enabling the system to control its environment. The application is often

–15–

Chapter 1. Real-Time Embedded Systems: Terminology, Principles and Scheduling
Theory

Real-time control system

Hardware

Software

τ1
τ2

τk

Tasks Shared resources

…

Scheduler
Resource

synchronization
primitives

Figure 1.3: Software structure of a real-time control system

structured in a set of tasks that may interact to accomplish their jobs. Some
programming languages such as the Ada language [MSH11] encapsulate the OS
layer and provide straightforward means to manipulate tasks and concurrency
features. By contrast, other languages (like C or C++) require the use of the OS
utilities for tasks management.

A classical operating system (OS) plays the role of an interface that bridges
the software application to the hardware resources. The RTOS is an OS with
additional services designed in order to manage the multi-tasking with high timing
accuracy and predictability. A RTOS provides a scheduler that decides which
tasks of the program has to be executed on which processor at a given instant.
It also affords various services enabling different kinds of interactions between
tasks (e.g. task communications, shared resources access synchronization via
primitives, etc). In addition to the general goals of a conventional OS (e.g.
maintaining responsiveness, enforcing fairness, avoiding resource starvation, etc),
a RTOS is intended to meet the timing requirements.

In the sequel, the focus is set on aspects related to the real-time scheduling theory.
Mainstream notions for specifying the temporal behavior of RTE systems are
introduced in Section 1.4. Section 1.5 explains underlying features of the real-
time scheduling analysis and presents different kinds of scheduling methods that
could be applied to Ravenscar compliant RTE systems.

–16–

1.4. Real-time scheduling

1.4 Real-time scheduling

The design model of a RTE system must supply the information necessary for
enabling analysis of the system temporal behavior. Task is the key component in
software design of RTE systems using multi-tasking approach. In the following,
we define the concept of task, describe its life-cycle and point out its properties.

1.4.1 Real-time tasks: definitions and temporal properties

Definition 3. Task [ABD+95, SAA+04] is an active entity of the real-time ap-
plication program. It enables the sequential execution of a set of instructions
corresponding to one or many functions.

A) Task life-cycle

A task is released to run when a specific event occurs. At each release of a task, we
say that a job or an instance of that task will be executed. A task has a life-cycle
typically composed of four states. The transition from a task state to another
is achieved by the RTOS according to a state transition diagram illustrated in
Figure 1.4.

Ready Elected

Preempted
Released

Running
Blocked

Unblocked
Waiting

Completed
Inactive

Figure 1.4: Task life-cycle (adapted from [LLS07])

• Ready: a task is in the ready state when the task is released and waits for
being elected among other tasks for execution.

• Running: once elected, the task is active and executing on a processor. All
shared resources and the processor are available to the task in the running
state.

• Waiting: a task is waiting for one or more events or resources (e.g. inter-
rupt, message, shared resource, etc.), except the processor, to be available.
We say that the task is blocked.

• Inactive: the task is sleeping and waiting for a wake event to be released.

–17–

Chapter 1. Real-Time Embedded Systems: Terminology, Principles and Scheduling
Theory

B) Task properties

A task is defined by a set of properties to identify its order of importance, its
computational requirement or its timing constraints. These properties are crucial
information for the scheduling analysis. The execution of a task is commonly rep-
resented by a Gantt diagram. Figure 1.5 depicts an example of a task execution
that shows a part of its properties.

Time

Release

(1st activation)

¿i

Deadline

Period

Execution time
Re-activation

Figure 1.5: Main properties of a real-time task illustrated by a Gantt diagram

• Offset Oi: corresponds to the release instant of the first job of task τi.

• Execution time (or capacity) Ci: is the time duration needed for run-
ning a given job of the task τi on a particular processor. Indeed, the ex-
ecution time of a task may vary from one job to another. When the task
has different execution paths depending on the input data, is a typical ex-
ample leading to a non-constant execution time. This parameter is usually
called capacity of the task and represented by the worst-case execution time
(WCET) defined as the upper bound of all possible execution times of any
job. Some research work consider also the best-case (i.e. the shortest value)
and the average execution time values (BCET and AET). The estimation of
the WCET of a task is a challenging problem that has been tackled in many
works [CP00b, RS04] and remains an open research line. The estimation of
this parameter is often pessimistic, which unfortunately may affect results
of the scheduling analysis that depends on that parameter.

• Activation pattern: a task is activated by events occurring according to a
specific pattern. The activation pattern represents the execution frequency
of the task jobs. Three patterns are widely used in the literature:

– Periodic task [LL73]: a periodic task τi is released regularly referring
to a fixed time interval Ti called period. Let τi,j be the jth job of the
periodic task τi, and ri,j its release time, hence ri,j = Oi + (j − 1) · Ti.

–18–

1.4. Real-time scheduling

An example of a periodic task is a program that retrieves data sent by
a sensor every 500 Millisecond.

– Sporadic task [LL73]: with a sporadic task, there is a minimum inter-
arrival time (MIT) between two consecutive releases. The MIT ensures
a safe resource utilization by a sporadic task since it represents an
upper-bound for the task execution frequency. The delivery of IP
packets in a network is an example of a sporadic task. Indeed, the
arrival rate may vary from one IP packet to another but it is bounded
by the throughput of the network infrastructure.

– Aperiodic task [SSL89, SLS95]: An aperiodic task may arise at any in-
stant, and there is no minimum separation duration between two con-
secutive jobs. Aperiodic tasks are usually released by external events.
In many practical situations, some emergency events or user interac-
tions may recur aperiodically and need to be handled during the life
time of the system.

• Deadline Di: is the time limit devoted to task τi to complete its execu-
tion [ABD+95] after each of its releases. In the literature, this parameter
is referred to as relative deadline because it is the relative to the release
time of a job [BW07]. For the jth job (or occurrence) of task τi denoted
as τi,j, an absolute deadline di,j represents a specific instant in time at or
before which the job τi,j must finish its execution. The absolute deadline
is computed using the relative deadline Di and the release time ri,j of job
τi,j: di,j = ri,j +Di.

• Processor utilization factor Ui: is the fraction of a processor time re-
quired to run a task τi. For a periodic task, this term is defined by: Ui = Ci

Ti
.

• Priority Πi: tasks are in concurrence for access to the processor. Thus,
there must be some mechanism to identify, at any given time, which task
that deserves the access to the processor. The priority Πi [ABD+95, SAA+04]
indicates the order of importance for scheduling and execution of task τi
with regard to the other tasks. This parameter can be fixed or dynamically
assigned. The higher the value of Πi, the higher the priority level of the
task τi. At a given time, the task owing the highest priority level in the
ready queue is selected in order to get the access to the processor.

C) Temporal properties related to the system execution

Here, we define real-time characteristics that are related to the tasks system
(or task set) execution and/or derived from the properties already presented.
Figure 1.6 illustrates some of these characteristics.

–19–

Chapter 1. Real-Time Embedded Systems: Terminology, Principles and Scheduling
Theory

¿i

Deadline

Period

jth release of ¿i (j+k)th release of ¿i

Preemption
Response-time Laxity

Execution time

Start time Completion time

Figure 1.6: Task characteristics related to the system execution

Jobs related properties

• Start time: instant at which the job starts its execution.

• Completion time: instant at which the job completes its execution.

• Preemption: occurs when the job of the current running task is interrupted
and the processor is assigned to execute a job of another task. A job can
be preempted several times during its execution.

• Response-time of a job RTi,j: is the time interval from the task job release
to its completion [PH98]. A job may not be executed immediately when
it is released or preempted during its execution. This is may due to the
unavailability of a resource required by the job to continue its execution
or the interference from other tasks in the system (i.e. the processor may
be used by higher priority tasks), etc. Accordingly, the response time of
a given job could be larger than the execution time of the corresponding
task. The job meets its deadline when RTi,j ≤ Di.

Tasks related properties

• Worst case response-time of a task WCRTi: the worst-case response time
of a task is the greatest value among its jobs response times [ABR+93].
Hence, WCRTi = max∀j(RTi,j). A task is schedulable (the task schedu-
lability notion will be discussed in detail in Section 1.4.3) if and only if
WCRTi ≤ Di.

• Laxity of a task Li: is the maximum time a task τi can be delayed on its
release to complete within its deadline [But11]. Mathematically, the task
laxity attribute is computed as the difference between the task deadline and
its response-time: Li = Di −WCRTi.

–20–

1.4. Real-time scheduling

1.4.2 Task set characteristics and classifications

In preparation for the review of scheduling policies, we introduce in this sec-
tion key characteristics related to the task set execution and a set of common
assumptions and classifications.

A task set may be classified based on several properties such as: dependency
relationships between tasks, deadlines, offsets, etc.

Dependency relationships between tasks

In the real-time scheduling theory, tasks composing a task set can be either
independent or dependent.

• Independent tasks [ABD+95]: Tasks are independent from each other,
that is the execution of each of them cannot be blocked by another task. It
is important to note that the contention for the processor access between
tasks is not considered as a dependency.

• Dependant tasks [ABD+95, SAA+04]: In a RTE system, tasks can inter-
act with each other to achieve a specific mission, so there exists dependen-
cies between them and they are called dependent tasks. Two main ways
for modelling interactions/communication between tasks are distinguished,
namely: precedence relationships and shared resources.

– Precedence relationships [CSB90, ABD+95]: When some tasks have to
expect messages or synchronization signals coming from other tasks,
we say that tasks are subject to precedence dependencies. The receiver
task needs to wait for a message from the sender task.

– Shared resources [SRL90, ABD+95, But11]: are another mean of in-
teraction between tasks. In practice, tasks frequently need to share
some software resources (e.g. data structures, variables, memories)
or hardware resources (e.g. sensors). We talk about mutually ex-
clusive resources [But11] that do not allow simultaneous accesses by
competing tasks, but require their mutual exclusion. In order to en-
force mutual exclusion, shared resources are protected using critical
sections during a task execution. A critical section [SRL90, ABD+95]
of a given resource used by a task, is the piece of code belonging to
that task implementation and that is executed under mutual exclu-
sion constraints. Mutual exclusion constraints are enforced by means
of synchronization primitives (e.g. mutexes, semaphores or monitors)
provided by most of modern RTOSs.

–21–

Chapter 1. Real-Time Embedded Systems: Terminology, Principles and Scheduling
Theory

Deadlines

Task set deadlines may comply with one of the following patterns:

• Implicit-deadlines [DB11]: deadlines of the tasks are exactly equal to pe-
riods: Di = Ti ∀ τi.
• Constrained-deadlines [DB11]: deadlines of the tasks are less than or equal

to periods Di ≤ Ti ∀ τi.
• Arbitrary-deadlines [DB11]: deadlines of the tasks and periods are unre-

lated.

The implicit-deadlines case is a particular case of the constrained-deadlines case
which in its turn is a particular case of the arbitrary-deadlines case.

Offsets

A task set may be either synchronous or asynchronous depending on offsets of
tasks:

• Synchronous task set [DB11]: all tasks are released and ready to exe-
cute at the same point in time (i.e. the first jobs of all tasks are released
simultaneously). For a synchronous task set, we have Oi = Constant,∀τi.
• Asynchronous task set [DB11]: first releases of tasks are separated by fixed

offsets and there is no simultaneous arrival time. For an asynchronous
task set, we have at least two task τi and τj that have different offsets,
i.e. Oi 6= Oj.

1.4.3 Scheduler and scheduling policies

A scheduler is a component of the kernel of an RTOS.

Definition 4. Scheduler [ABD+95] is a module implementing an algorithm (or
a policy) that manages the execution order of tasks on the processor(s) according
to some criteria.

The scheduling of tasks on the processor(s) is achieved by the scheduler according
to a scheduling policy.

Definition 5. Scheduling [ABD+95] is a method by which tasks are assigned
to available computing resources (i.e. processors) ensuring the execution of these
tasks.

–22–

1.4. Real-time scheduling

Definition 6. Scheduling Policy (or scheduling algorithm) [ABD+95] is
the algorithm that describes how tasks are elected for access to the processor(s)
and other shared resources.

A scheduling policy is based on a set of criteria or rules. These criteria can be
considered as characteristics of a scheduling policy, by which scheduling policies
can be classified into several categories. Most common scheduling policy charac-
teristics are outlined below.

A) Off-line and on-line scheduling

Scheduling policies can be characterized as off-line or on-line.

Definition 7. Off-line scheduling policy [ABD+95, GGCG16] a scheduler is
said off-line when all scheduling decisions are taken prior to the running of the
system.

A scheduling algorithm is used off-line when it is executed on the entire task
set to generate the corresponding schedule before the system runtime. This pre-
runtime computed schedule is stored in a table that lists all tasks and their
activation times. Thereafter, at runtime, this scheduling table is accessed by a
simplified scheduler called dispatcher whose role is simply to remove the next
task from the table and puts it in the running state.

The key advantage of the off-line approach is that the produced schedule is correct
by construction, which makes its usage extremely encouraged for safety-critical
RTE systems requiring high determinism. In addition, scheduling runtime over-
head is relatively low (since the role of the dispatcher is to repeat infinitely the
pre-runtime computed schedule) and it does not depend on the complexity of
the scheduling algorithm. This allows very sophisticated algorithms to be used
to solve complex problems or find optimal scheduling sequences [But11]. On the
other hand, the major drawback of this kind of scheduling policy is its inability
to be adapted to the environment variations.

Definition 8. On-line scheduling policy [ABD+95, GGCG16] a scheduler is
said on-line when all scheduling decisions are taken during the run-time of the
system. An on-line scheduling algorithm is a strategy executed by the scheduler,
in order to allocate active jobs on available processor(s).

With an on-line approach, scheduling decisions are based on both task character-
istics and the current state of the system. On-line scheduling algorithms are useful
because of their flexibility. For example, a new task can be easily added during
the system design. However, when additional application constraints (like prece-
dence constraints and/or mutual exclusion constraints) have to be considered, an

–23–

Chapter 1. Real-Time Embedded Systems: Terminology, Principles and Scheduling
Theory

on-line scheduling method may introduce a significant amount of runtime over-
head. And worse, it can result in subtle errors and renders the runtime behavior
of the system very difficult to analyze and predict [XP00].

B) Priority-based scheduling policies

Many on-line scheduling algorithms are designed based on priority of tasks. The
task with the highest priority among ready tasks is elected by the scheduler to be
executed. Such scheduling algorithms provide a priority assignment strategy. In
the literature, there are two well-known class of priority-based scheduling policies,
given below.

• Fixed priority scheduling (FPS): the priority of each task is fixed and com-
puted on the basis of that task static properties like its deadline or its
period [ABD+95]. Task priorities are assigned off-line (i.e. before starting
the system). Most popular examples of FP assignment methods are: the
Rate Monotonic (RM) [LL73] and the Deadline Monotonic (DM) [LW82].

– Rate-Monotonic (RM): is dedicated for periodic task sets with implicit
deadlines. According to RM, the task with the shortest period has the
highest priority.

– Deadline-monotonic (DM): task priorities are inversely proportional
to their relative deadline. In other words, the task with the shortest
relative deadline has the highest priority.

• Dynamic priority scheduling (DPS): the priority of a task may change
during execution [ABD+95]. Most prominent examples of DP assignment
strategies are: the Earliest Deadline First (EDF) [Der74] and the Least
Laxity First (LLF) [Mok83].

– Earliest Deadline First (EDF): the jobs of a task may have different
priorities, but each job has a single static priority. At a given time,
the EDF scheduling policy assigns the highest priority to the ready
task with the nearest absolute deadline.

– Least Laxity First (LLF): priorities of jobs may change between their
release times and their completion times. At each instant, the LLF
scheduling policy assigns the highest priority to the ready job with the
minimum laxity.

Priority-based scheduling algorithms are usually designated in accordance with
their priority assignment strategies e.g. a scheduling algorithm that uses RM as
priority assignment method is also called RM.

–24–

1.4. Real-time scheduling

C) Preemptive and non-preemptive scheduling policy

Scheduling policies can also be classified according to the preemption control
mode.

Definition 9. Preemptive scheduling policy [ABD+95, But11] can arbitrar-
ily interrupt and suspend a task execution, in order to proceed to its execution
later, without affecting the logical behavior of that task. This typically occurs
when a change impacts the list of ready and blocked tasks, or the priorities of the
ready tasks for priority-based scheduler.

Definition 10. Non-preemptive scheduling policy [ABD+95] once a task is
elected for execution, it occupies the processor until it is completed.

A non-preemptive scheduling is useful in the case of systems with shared re-
sources. In fact, with a non-preemptive policy, a task execution cannot be inter-
rupted, hence it cannot be preempted inside a critical section. Consequently, such
a policy naturally guarantees the exclusive access to shared resources [But11].
In contrast, under a preemptive scheduling policy, shared resources need to
be protected by using some synchronization mechanisms. On the other hand,
in [ABD+95] the authors have proved that preemptive scheduling policies en-
hance schedulability.

D) Shared resources access protocols

As stated above, the mutual exclusion problem is trivial in non-preemptive schedul-
ing, that implicitly ensures the exclusive access to shared resources. However, in
a preemptive scheduling context, the presence of shared resources will increase
the complexity of the scheduling problem [Mok83, XP00]. Indeed, a task may
experience an additional delay called blocking time as a direct consequence of the
mutual exclusion. The worst case blocking time Bi that a task τi can incur is
defined by the maximum amount of time spent by this task to access a resource.
Figure 1.7 shows an example of execution of two periodic tasks (τi and τj) sharing
a resource. In this example, the task τi with highest priority is blocked until the
release of the resource by task τj.

The typical synchronization mechanisms (e.g. semaphores, monitors, etc.) pro-
vided by conventional operating systems are not suited for implementing real-time
applications because they may cause some uncontrolled issues like:

• Priority inversion [But11]: is a situation where a high-priority task is
blocked by a low-priority task for an unbounded interval of time.

• Deadlock [But11]: a situation where two tasks or more are waiting indefi-
nitely for each other.

–25–

Chapter 1. Real-Time Embedded Systems: Terminology, Principles and Scheduling
Theory

τi
5 10

τj
5 10

τi blocked

0

0

Outside critical section Inside critical section

Figure 1.7: Example of blocking time on a shared resource

In order to prevent such phenomena and manage concurrent accesses of tasks
to shared resources, several synchronization protocols have been proposed in the
context of preemptive scheduling. For instance, the following protocols are widely
used in uniprocessor scheduling contexts.

Priority Inheritance Protocol (PIP)

The priority inheritance protocol was proposed in [SRL90] to solve the problem
of priority inversions, but not the deadlocks. In PIP, when a task τi gets access
to a resource and blocks one or more high priority tasks, it executes its critical
section at the highest priority level of all the tasks that it blocks. After its critical
section, the task τi regains its original priority level.

Priority Ceiling Protocol (PCP)

The priority ceiling protocol [SRL90] was proposed to overcome limitations of
PIP by preventing deadlocks and reducing blocking time of tasks. This protocol
assigns at each resource Rk a priority called priority ceiling Π(Rk) equals to the
highest priority of any task that may access the resource. Then, a task can lock
an available resource only if its priority is strictly higher than all priority ceilings
of the resources currently locked by other tasks.

With these protocols, the worst case blocking time of tasks are bounded and thus
they can be taken into account in the scheduling analysis.

1.5 Real-time scheduling analysis

The scheduling analysis provides evidence that the system behaves as expected
and meets its timing constraints. Our purpose is not to provide an exhaustive
study about scheduling analysis methods, but, we aim to emphasize fundamental

–26–

1.5. Real-time scheduling analysis

principles related to the scheduling analysis in Section 1.5.1. Afterwards, in
Section 1.5.2, we consider a practical case of RTE systems namely Ravenscar
compliant systems in order to show some examples of most popular schedulability
tests compatible with this specific case of RTE systems.

1.5.1 Scheduling analysis principles

Schedulability analysis provides a mean to decide for a given task set under
certain scheduling policy, whether all tasks deadlines will be satisfied during the
life-time of the system.

In the following, first we explain some terms related to the scheduling analysis
(e.g. feasibility, schedulability and sustainability). Then, main schedulability
analysis characteristics and approaches are introduced.

A) Feasibility and schedulability

The ability to meet timing constraints of a task set is accessed by its feasibility
and schedulability.

Definition 11. Feasibility [ABD+95] is the assessment of the ability to satisfy
all timing constraints of a task set.

Definition 12. Feasible [ABD+95] A task set is feasible if there exists a schedul-
ing policy guaranteeing that all timing constraints are met.

During the life-time of a system, a task set produces sequences of jobs called
schedule. A schedule is called a feasible schedule, only if every job in the schedule
can be scheduled without any deadline miss and if all job constraints are satisfied
(e.g. shared resource constraints, precedence constraints, etc.).

Definition 13. Schedulability [Bar03, ABD+95] is the assessment of the fea-
sibility of a task set under a given scheduling policy.

Definition 14. Schedulable [Bar03, ABD+95] A task set is schedulable under
a particular scheduling policy if none of its tasks, during execution, will ever miss
their deadlines.

The feasibility is a broader concept that includes the schedulability. For instance,
given a space of task sets, the set of schedulable task sets under a particular
scheduling policy will be a subset of feasible task sets.

Algorithms used to assess a system feasibility (resp. schedulability) are called
feasibility (resp. schedulability) tests.

–27–

Chapter 1. Real-Time Embedded Systems: Terminology, Principles and Scheduling
Theory

Definition 15. Feasibility test [Bar03] verifies whether a task set is feasible
or not.

Definition 16. Schedulability test [Bar03] verifies whether a task set is schedu-
lable with a given scheduling policy or not.

B) Scheduling analysis tests characteristics

Feasibility and schedulability tests are defined on the basis of different conditions.
These conditions specifying feasibility/schedulability tests may either be sufficient
or necessary or both:

• Sufficient: a schedulability (resp. feasibility) test is defined to be a suf-
ficient condition if all of the task sets that are deemed schedulable (resp.
feasible) according to that test are indeed schedulable (resp. feasible). If
a sufficient schedulability (resp. feasibility) test is not satisfied for a given
task set, the task set may still be schedulable (resp. feasible).

• Necessary: a test is referred to as a necessary condition, then we have: (1)
a task set that does satisfy the test is not guaranteed to be feasible/schedu-
lable; (2) a task set that does not satisfy the test is deemed infeasible/non-
schedulable.

• Necessary and sufficient (or exact): schedulability test that is both suf-
ficient and necessary is designated as exact condition. Then it is in some
sense optimal. A task set is feasible (resp. schedulable) if and only if it
does satisfy the test.

A sufficient but not necessary test is pessimistic, but for many real-time schedul-
ing contexts an exact test is computationally intractable.

Schedulability and sustainability

Feasibility and schedulability tests use some parameters of the analyzed system,
that are computed based on the worst-case behavior of the system. Nonetheless,
a part of these parameters can never be estimated exactly and there are always
deviations in practice, which may compromise the sustainability of these tests.
The sustainability concept has been introduced in [BB06]. It covers the devia-
tions towards better scenarios, which means that it guarantees that the practical
system indeed would be schedulable, even if at runtime the system behaves better
than the worst-case behavioral task parameters considered for analysis.

Definition 17. Sustainability [BB06, BB08] a schedulability test is referred to
as sustainable, if any task set that is deemed schedulable by the schedulability test
remains schedulable when the parameters of one or more task jobs are changed in

–28–

1.5. Real-time scheduling analysis

any, some, or all of the following situations: (i) decreasing execution times, (ii)
increasing periods or inter-arrival times and (iii) increasing relative deadlines.

To sum up, the sustainability requires that the schedulability is preserved in
situations in which it should be easier to ensure schedulability (e.g. the opposite
of the worst-case execution).

Due to the gap between theoretical analysis and practical execution, for instance,
a task may execute shorter than its WCET. This change is not predictable. Thus,
performing scheduling analysis test while considering WCETs is rational only
when the test is sustainable with respect to the execution time parameter. Sus-
tainability may be categorized according to the parameter whose change during
run-time does not jeopardise schedulability.

• C-sustainability : when change is only related to a decrease in task execution
times.

• T-sustainability : when change is only related to an increase in task periods.

• D-sustainability : when change is only related to an increase in task dead-
lines.

C) Examples of scheduling analysis methods

In the literature, there are several scheduling analysis methods that can be classi-
fied into three main approaches: model-checking approach, simulation approach
and analytical approach.

• Simulation based test: is part of empirical analysis methods. The simula-
tion aims at studying the system behavior in order to detect any temporal
fault within a finite duration. This latter is referred to as feasibility interval.

Definition 18. Feasibility interval [LM80, GGCG16] is a finite interval
such that if all the deadlines of jobs released in the interval are met, then
the system is schedulable.

The feasibility interval depends on the system characteristics and it is based
on the simulation interval.

Definition 19. Simulation interval [LM80, GGCG16] is an exact or
upper bound of the time interval for the schedule to repeat in a cycle.

Knowing the length of the simulation interval is required for capturing the
whole behavior of a system when building an offline schedule [XP00]. In the

–29–

Chapter 1. Real-Time Embedded Systems: Terminology, Principles and Scheduling
Theory

case of periodic tasks system, the simulation interval is related to the sys-
tem periodicity [CGG04, GGCG16]. Identifying feasibility and simulation
intervals have been addressed in many research work [GGCG16].

A simulation test needs a complete knowledge about the system configura-
tion (e.g. task set properties, hardware architecture, scheduling algorithm,
etc.) in order to produce the corresponding schedule. It is important to
note that performing exhaustive simulations for every possible system state
is impossible (computationally speaking). Accordingly, simulation is car-
ried out under some system assumptions (e.g. the worst system behavior,
i.e. using the WCETs of tasks). Thus, simulation based scheduling analyses
are not safe except for some conditions [Ouh13].

• Analytical methods: are based on algebraic methods. They define math-
ematical formulas under certain conditions, in order to compute various sys-
tem performance attributes such as the processor utilization, tasks response-
time, etc. Given the results computed by these formulas, the system behav-
ior will thereafter specified. Analytical schedulability tests may be sufficient
or exact schedulability conditions depending on the properties of the system
to be analyzed. In the literature, there exists plenty of analytical schedu-
lability tests. The most popular tests and widely used by the real-time
community are given below.

– Processor utilization based tests [LL73, KM91, BBB01]: evaluate the
processor utilization factor to check the schedulability of a task set.
The processor utilization factor represents the rate of the processor
workload for a given task set and it is expressed as the sum of the

processor utilization factor of each task: U =
n∑
i=1

Ui. In order to avoid

the unschedulability of a task set, such tests verify that the utilization
factor of that task set does not exceed a theoretical bound admissible
by a particular scheduling policy.

– Response time analysis (RTA) [JP86, ABR+93]: this method consists
in calculating the worst-case response time WCRTi of each task in
order to be compared against their relative deadlines Di. Thus, a task
set is schedulable if the worst-case response time of each task less than
or equal to its deadlines: ∀i, WCRTi ≤ Di.

– Processor demand criteria tests [BMR90, LSD89]: are based on the
processor demand bound function DBF (t). The latter corresponds to
the maximum execution time requirement of all jobs that have both
their release times and their deadlines in a contiguous interval of length
t.

–30–

1.5. Real-time scheduling analysis

1.5.2 Schedulability tests for Ravenscar RTE systems

Real-time critical systems must meet certain requirements that guarantee their
safety and predictability. In order to enable the respect of the requirements,
patterns such as the Ravenscar Profile [Bur99, BDV04] are dedicated to pilot
the design and implementation of these systems. The Ravenscar Profile consists
in a set of restrictions specified to enable the construction of efficient, reliable
and verifiable real-time applications. Initially, it was tailored to limit the use of
the Ada language [TDB+14] to only constructs ensuring a deterministic behavior
of the application. Thereafter, the use of the Ravenscar Profile was general-
ized to be adopted in early development phases, particularly during the design
phase [GSP+11, BW94]. Its use is notably preferred during the design phase be-
cause it facilitates the system schedulability analysis. Indeed, certain Ravenscar
restrictions are related to the task set model and the scheduling policy, which
helps designers to know suitable schedulability tests that can apply. Some of
these restrictions are expressed as follows.

– Tasks must be periodic or sporadic and synchronous.

– The scheduling of tasks is performed according to a preemptive and FPS policy.

– PCP is used for synchronizing tasks to access shared resources.

– etc.

By exploring the literature, several schedulability tests could be applied in the
context of Ravenscar compliant task set model running a uniprocessor platform.
Most prominent schedulability tests compatible with the Ravenscar scheduling
context are reviewed in the remainder of this section.

RTA test:

As a reminder, the RTA test consists in verifying if the WCRT of each task is less
than or equal to its deadline. The WCRTi of a task τi is computed by iterating
the following recurrent relation until reaching a fixed point [JP86, SRL90].

WCRT
(0)
i = Ci +Bi

WCRT
(k)
i = Ci +Bi +

∑
τj∈hpi

⌈
WCRT

(k−1)
i

Tj

⌉
· Cj

(1.1)

Where hpi represents the set of tasks with higher or equal priority to task τi
and WCRT

(k)
i is the k-th estimate of WCRTi. As shown in these formulas 1.1,

the computation of the WCRT of tasks requires the knowledge of the blocking
time term Bi. The usual way of computing the blocking time term is an upper

–31–

Chapter 1. Real-Time Embedded Systems: Terminology, Principles and Scheduling
Theory

bound (not the actual blocking that occurs at runtime), since the exact computa-
tion of each blocking time term requires a combinatorial search [But11]. Hence,
in the presence of shared resources, the RTA test is only a sufficient schedula-
bility condition. However, when tasks are independent (absence of shared re-
source), the blocking term is omitted from the above formulas and the RTA test
will be an exact schedulability condition. In [BB08], authors proved that the
RTA test is sustainable with respect to execution times, periods and deadlines
(i.e. C-sustainable, T-sustainable and D-sustainable). This test has a pseudo-
polynomial computational complexity.

Processor utilization based test:

In [LL73], Liu and Layland have formulated two seminal schedulability tests for
independent periodic task systems under RM and DM scheduling algorithms.

Theorem 1 ([LL73]). Given a system S of n independent periodic tasks with

implicit deadlines (i.e. ∀i, Di = Ti), if U =
n∑
i=1

Ci

Ti
≤ n

(
21/n − 1

)
, which converges

to ln 2(≈ 0.69) when n→∞, then the system S is RM-schedulable.

Theorem 2 ([LL73]). Given a system S of n independent periodic tasks with

constrained deadlines (i.e. ∀i, Di ≤ Ti), if
n∑
i=1

Ci

Di
≤ n

(
21/n − 1

)
, then S is

schedulable under DM algorithm.

These two tests have a linear complexity O(n). In the context of synchronous
tasks, they represent exact schedulability conditions [LL73]. According to authors
of [BB08], these schedulability tests are also sustainable with respect to execution
times, deadlines and periods.

Later, authors of [SRL90] have extended the processor utilization test for RM
to support the presence of shared resources under PCP control by including the
blocking time term Bi (by convention, tasks are ordered by increasing periods):

∀i ∈ [1..n],
Bi

Ti
+

i∑
j=1

Cj
Tj
≤ i
(
21/i − 1

)
(1.2)

With the presence of shared resources, the processor utilization test became only
a sufficient schedulability condition [SRL90] (because blocking time terms are
upper bound values). In addition, its computational complexity became O(n2).
But, it persists sustainable with respect to execution times, deadlines and peri-
ods [BB08].

–32–

1.5. Real-time scheduling analysis

Simulation based test:

According to authors of [CGG04], when tasks are synchronous, the periodicity
of the entire task set is defined by the hyperperiod H [LW82] that is equal to
the LCM of all the task periods, i.e. H = LCM∀i(Ti). Thus, [0..H] represents
the simulation interval required to verify the schedulability. The computational
complexity of the simulation based test is exponential since the simulation interval
is equal to H that may grow exponentially with the number of tasks.

In the presence of shared resources, the simulation test is not sustainable with
respect to execution time when considering an implementation on an on-line
scheduler [BB08, GGCG16]. In fact, the simulation explores one execution trace
assuming that task execution times are exactly equal to their WCETs and crit-
ical sections durations are set to the maximum durations. Unfortunately, worst
behavior of individual jobs does not often simulate the worst behavior of the
entire system. For instance, a small decrease in one execution time value or a
critical section duration can cause a change in execution order which may induce
an increase in some blocking time [BB08]. Nevertheless, according to authors of
[GGCG16, XP00], an off-line dispatcher that executes infinitely a feasible sched-
ule computed in advance, can be effective (i.e. preventing scheduling anomalies)
in the context of tasks sharing resources. On the other hand, according to authors
of [GGCG16], when tasks are independent (no shared resources), the simulation
test is sustainable with respect to execution times (i.e. C-sustainable). Moreover,
they claimed that for C-sustainable contexts, while considering the worst system
behavior in the scheduling simulation (i.e. using the WCETs of tasks as their
execution times), the simulation based test is exact.

Synthesis

Table 1.1 summarizes schedulability tests described above by highlighting their
main features in terms of the schedulability condition kind (i.e. sufficient, neces-
sary or exact), the sustainability and the computational complexity.

Table 1.1: Characteristics of most common schedulability tests compatible with Ravenscar
compliant task set running uniprocessor platform

XXXXXXXXXXXXXX

Schedulability
test

Features
schedulability
condition kind

sustainability complexity

RTA [SRL90] sufficient sustainable w.r.t all
parameters

pseudo-
polynomial

Processor utilization
[SRL90]

sufficient sustainable w.r.t all
parameters

O(n2)

Simulation on [0..H]
[LM80]

- not sustainable exponential

–33–

Chapter 1. Real-Time Embedded Systems: Terminology, Principles and Scheduling
Theory

Schedulability tests characteristics provided in Table 1.1 are determined while
assuming the presence of shared resources for the task set to be processed by
these schedulability tests. Yet, as shown in Table 1.2, some characteristics may
change when these schedulability tests are applied in the context of independent
tasks.

Table 1.2: Characteristics of most common schedulability tests for Ravenscar compliant
task set composed of independent tasks running uniprocessor platform

XXXXXXXXXXXXXX

Schedulability
test

Features
schedulability
condition kind

sustainability complexity

RTA [JP86] exact sustainable w.r.t all
parameters

pseudo-
polynomial

Processor utilization
[LL73]

exact sustainable w.r.t all
parameters

linear

Simulation on [0..H]
[LM80]

exact sustainable w.r.t all
parameters

exponential

To sum up, all the outlined schedulability tests are only sufficient in the presence
of shared resources (i.e. including the blocking terms in schedulability tests).
This is due to the fact that blocking conditions are established in worst-case
scenarios that differ for each task and could never occur simultaneously [But11].
Furthermore, when tasks are independent, the schedulability problem is rela-
tively “easier”. That’s why all the presented schedulability tests are exact and
sustainable in the context of independent tasks.

1.6 Conclusion

In this chapter, key concepts related to RTE systems were introduced. A major
focus was laid on the real-time scheduling domain since the analysis and the
validation of the temporal behavior of RTE systems are crucial steps in the design
process of these systems.

In order to master the development complexity of RTE systems and to en-
hance/optimize their performance, a great interest has been given, in the last
decades, towards the design process and particularly the design space explo-
ration (DSE) and optimization. The major challenge is how to guide the DSE
towards correct (logical and temporal correctness) and optimal (regarding sev-
eral performance criteria) design alternatives. In the literature, the DSE of RTE
systems have been tackled as a multi-objective optimization problem (MOOP).
Thus, solution methods proposed for solving MOOPs are typically exploited to
cope with the DSE issue.

–34–

1.6. Conclusion

The next chapter introduces the domain of interest for this thesis, which is mainly
concerned with RTE systems design and more precisely the DSE process. It starts
by presenting the development and design of RTE systems. Then, it exposes key
elements of MOOPs and solution methods for solving them.

–35–

2
RTE Systems Design and Optimization:

Background and Basic Concepts

Contents
2.1 Introduction . 37

2.2 Development and design of RTE systems 38

2.2.1 Software development process 39

2.2.2 Hardware/software interface co-design 41

2.2.3 Design phase: Y-chart design paradigm 43

2.3 Multi-objective optimization (MOO) 46

2.3.1 Fundamental concepts and terminology in MOO . . . 47

2.3.2 Techniques for solving MOOPs 49

2.3.3 Multi-objective evolutionary algorithms (MOEAs) . . 50

2.3.4 MOEAs performance metrics 53

2.4 Conclusion . 56

2.1 Introduction

In the previous chapter underlying concepts related to RTE systems were detailed,
especially concerning tasks and scheduling analysis allowing the verification of
timing constraints imposed on such systems. In order to obtain a RTE system
structured into a set of tasks satisfying the system specifications (mainly the
timing constraints), a special attention has to be drawn to the development of

–37–

Chapter 2. RTE Systems Design and Optimization: Background and Basic
Concepts

these systems. Indeed, any incoherent development may induce a non-compliance
and a violation of timing constraints, and may sharply increase the development
time and costs.

The main intent of this chapter is to introduce the domain of interest for this
thesis, which is essentially concerned with the design and optimization of RTE
systems. The design of RTE systems plays a central role in the development
flow of these systems, since the foundation for both the fulfillment of the system
requirements and the optimization of its performance criteria (often conflicting)
has to be set during the design phase. Indeed, RTE systems designers are always
faced with several design decisions/choices and they struggled to make the most
suitable decisions by exploring a large space of design alternatives. Accordingly,
the design of RTE systems falls into multi-criteria decision-making category of
problems that are frequently solved using the so-called multi-objective optimiza-
tion (MOO) techniques.

To understand the importance of the design during the development of a RTE
system, Section 2.2 starts by introducing the whole development process, then
emphasizes the specificities of the design phase. Section 2.3 provides an overview
about MOO area by highlighting its underlying concepts and techniques. Finally,
Section 2.4 concludes the chapter.

2.2 Development and design of RTE systems

The development of RTE systems needs a careful attention, since they have to
control physical and critical environments where the slightest failure is not toler-
able. In order to meet the increasingly complex requirements of these systems,
many characteristics should be taken into consideration during their develop-
ment, such as [TKK+98]: (a) anticipation of the risks and the problems at early
development stages, (b) reducing the development time and costs, (c) mastering
the complexity, (d) easing the cooperation between multiple actors (or teams)
working at different phases of the development process, just to name a few.

RTE systems are considered as heterogeneous systems since they are composed of
hardware (HW) and software (SW) components that always execute concurrently.
This heterogeneous nature, with the ever-increasing evolution in HW and SW
technologies and the requirements mentioned above, become dominant factors
behind the development complexity of these systems. To deal with this inherent
complexity, dedicated and sophisticated development methodologies have been
proposed. Thus, as a particular kind of computer systems, the development of
RTE systems may follow different approaches.

In the sequel, first, Section 2.2.1 highlights the software development (called
also software engineering) process as part of the whole RTE system development

–38–

2.2. Development and design of RTE systems

elements. Afterwards, Section 2.2.2 focuses on the boundary between HW and
SW parts by introducing the HW/SW co-design methodology that has proven its
effectiveness to cope with development challenges of those heterogeneous systems.
Subsequently, Section 2.2.3 highlights key concepts underlying the design phase
being the backbone of the development of systems under consideration.

2.2.1 Software development process

Because of the critical and complex nature of a RTE system, and the different
expertise required for the establishment of its different entities, the software de-
velopment (or engineering) of such a system is achieved by following a set of
phases described by a development cycle (called also software life-cycle).

Definition 20. Development cycle [Bla04] is an assisted treatment process
that decomposes the development of a product into a set of steps structured ac-
cording to a certain philosophical approach.

The decomposition of concerns allows to master development time and costs.
There exists various conventional models of development cycles [Bla04], such as
the “V” model, the “spiral” model, the “waterfall” model, the “Y” model, etc.
Despite differences between the different development cycle models, all of them
comprise the same principal phases that are staggered over time:

• requirements specifications,

• design,

• implementation,

• integration,

• validation,

• exploitation and utilization.

Each phase produces a set of outputs that must be validated by the responsible
actors (i.e. designers for design phase, developers for implementation phase, end-
users for exploitation phase, etc.). The outputs of a given phase are used as the
inputs of the next phase according to the structure defined by the development
process. Hereafter, the different phases are explained and illustrated within a
“V” model development cycle.

Illustration with “V" model development cycle

As shown in Figure 2.1, the “V” model consists of two distinct slopes: a down-
ward slope and an upward slope (hence the “V” shape). The downward slope

–39–

Chapter 2. RTE Systems Design and Optimization: Background and Basic
Concepts

Figure 2.1: “V” model development cycle (taken from [Ouh13])

describes the progressive phases from specification to implementation. Subse-
quently, the upward slope focuses on the verification (e.g. testing) and validation
of the outputs of each phase from the downward slope. That’s why, each phase
from the downward slope is linked with another phase from the upward slope.
Each phase in the “V” model is detailed below.

• Specification: The specification phase is the first phase in the system life-
cycle and it is devoted to properly delineate the system requirements. It lies
in the identification of the services to be provided by the system according to
the end-users’ needs as well as the constraints imposed on the system. Thus,
two kinds of requirements are distinguished: functional and non-functional.
Functional requirements describe the system behavior, i.e. what the system is
intended to do. While non-functional requirements define constraints and prop-
erties related to the system performance (or quality-of-service). For instance,
referring to the context of RTE systems, the timing constraints represent a
sub-set of non-functional requirements. The specification of requirements can
be expressed in a formal or semi-formal language or even informally by means
of a natural language.

• Design: The design phase defines the internal structure of the system and
the interactions between its different components referring to the requirements
previously identified (i.e. in the specification phase). Within the “V” model
approach, the design phase is divided into two stages, namely, the preliminary
design and the detailed design. The preliminary design stage delivers a high-
level system architecture describing the required components, their interfaces
and the functions they must implement. The detailed design stage refines
the system preliminary design by detailing the description of each component

–40–

2.2. Development and design of RTE systems

and specifying data structures, communication protocols, etc. Many design
formalisms could be used in order to express the system design. For example,
several standard design languages have been proposed to drive the design of
RTE systems, such as MARTE [OMG08] or AADL [FG12]. These design
languages provides support for specification, design, and validation stages.

• Implementation: This stage is used to implement the application by encoding
all components proposed through design phase in a programming language. For
example, the implementation of real-time applications can be performed using
a concurrent language that provides specific constructs for writing concurrent
programs (e.g. Ada) or a sequential language that calls some primitives of the
host OS to manage concurrency.

• Module testing: The integration and exploitation slope starts with module
testing phase. The latter consists in testing each component separately in order
to verify its correct behavior and the consistency with its specification.

• Integration testing: Once each component of the software is validated, they
are assembled and subsequently integration tests are applied in order to check
and validate components relationships and interactions, communication and
synchronization mechanisms, etc.

• Validation: In this phase, the entire system is tested in order to check that
the developed software meets all the requirements identified in the specification
phase. Moreover, end-users can verify if the software product fulfils their needs
and expectations.

Each software development approach has its benefits and its limitations. In the
context of real-time software development, a common shortcoming of traditional
approaches is that the verification and validation are performed late in the soft-
ware life-cycle (i.e. during or after the implementation phase). Thus, if an error
occurs in one of the early phases, it would spread to the other subsequent phases,
and necessary corrections may not be achieved until the end of the last phase.

2.2.2 Hardware/software interface co-design

A RTE system involves a software layer as well as a hardware part on which
the software will run. As a matter of fact, some of the system requirements are
stemmed from the hardware platform. Although we have focused on the software
development of RTE systems, considering the hardware part during the life-cycle
development is crucial in order to ensure the respect of all the requirements by
the final product.

Indeed, key problems in RTE systems development are due to the close con-
junction between the software and the hardware parts that makes the boundary

–41–

Chapter 2. RTE Systems Design and Optimization: Background and Basic
Concepts

between the two parts increasingly complex. To cope with the inherent com-
plexity of such heterogeneous systems, more sophisticated and relevant develop-
ment methodologies, have been established called hardware/software (HW/SW)
co-design [DMG97, LHG13, Tei12]. The HW/SW co-design approach emphasizes
the concurrent development of HW and SW parts, that is, enabling mutual influ-
ence of both parts at an early stage in the development process. Such an approach
is intended to alleviate the strict time-to-market pressure, satisfy requirements
and optimize the quality of the final product by exploiting the synergy of HW
and SW.

Specifications

Preliminary Design

Integration Testing

Validation

Detailed Design

Implementation

Module Testing

Detailed Design

Implementation

Module Testing

Figure 2.2: Classic hardware/software concurrent development process

Figure 2.2 shows a typical concurrent development process for a combined HW/SW
system. Front-end phases such as specification and preliminary design simulta-
neously consider HW and SW aspects. Likewise, back-end integration testing
and validation are applied on the entire system. Whereas at the middle of the
process, the development of each part (i.e. HW and SW) is proceeded relatively
independently of the other.

Conventionally, HW/SW design and verification take place after some essential
decisions have been already taken. This is what makes the HW/SW integration
problem increasingly hard. In fact, experiences on real-world applications show
that wrong design decisions (made in the early stages of development but often

–42–

2.2. Development and design of RTE systems

detected after implementation) strongly affects development costs and perfor-
mance of the final implementation. The study provided in [NIS02] has reported
that a major part of development costs (about 80%) are due to the cost of the
backtracking in the development process.

In order to better master the decision making process, RTE systems industry
has stressed the need of dealing with major HW/SW integration challenges and
decisions at higher levels of abstraction and early in the development process
i.e. at design phase. That is, almost all development efforts are concentrated
in the design phase rather than implementation phase. Subsequently, the system
implementation is automatically (as much as possible) generated from the final
system design so that to ensure “correct by construction” implementations.

2.2.3 Design phase: Y-chart design paradigm

Designing RTE systems from scratch was no longer practical strategy as the
complexity of such systems and the time-to-market pressure grow relentlessly.
Instead, design reuse [FSV99, KNRSV00] between multiple products was the key
to being effective (i.e. raising productivity and reducing overall costs), ensure
the required quality and hit the market on time [Bal97]. Indeed, the quest for
design reuse has driven the RTE systems industry towards designs that could be
“quickly” built from pre-designed and pre-characterized components rather than
full custom design strategies [SV02]. More precisely, HW/SW resources (e.g.
CPUs, cores, memories, buses, RTOSs, etc.) are usually pre-designed and stan-
dard parts that will be selected by designers to establish the execution platform
on which the software application will run [KNRSV00, Wol03]. At this stage,
designers face several challenging questions, such as:

– Which execution platform is most appropriate for realizing the required sys-
tem functions (i.e. the application)? i.e. how to select HW/SW resources
(type, number, etc.) such that all the system functional and non-functional
requirements will met?

– How to assign the application entities onto the execution platform components?

– Is the final system will respect its requirements and answer at best to perfor-
mance properties?

– etc.

In that respect, the Y-chart [Bal97, KDVVDW97, KDWV02] has emerged as
a mainstream paradigm/scheme for the design of heterogeneous systems which
assists designers to cope with the above questions.

As Figure 2.3 shows, in the Y-chart an obvious distinction is made between the
application (what the system is supposed to do) and the execution platform,
which are subsequently joined/coupled through an explicit mapping step. The

–43–

Chapter 2. RTE Systems Design and Optimization: Background and Basic
Concepts

philosophy of separating application part from execution platform part, known
as the separation of concerns [SVDN07], fosters design reuse and extendibility of
each part.

Mapping

Execution platform

(Functional specification

description)

Application

(Operational Design)

System Design

Analysis, evaluation

and validation

(System resources

description)

Figure 2.3: Conceptual view of the Y-chart design paradigm

Formally speaking, key tenets underlying the Y-chart paradigm are highlighted
in the following five-step approach:

(1) Creation of the functional specification: The functional specification
(called also functional architecture) is a description of the application (i.e.
a formal specification of the system structure and behavior) in terms of
functions and their interactions. Moreover, it includes the different services
required by the application (like computation services, storage services, etc.)
as well as all the requirements gathered during the specification phase. This
functional specification must be created at a high level of abstraction, which
means regardless of any specific platform or implementation technology.

(2) Creation of the execution platform specification: The execution plat-
form (sometimes called just platform or architecture [SVDN07]) specifica-
tion captures, on the one hand, the structure and prominent characteristics
of the HW resource set (e.g. computing, storage and communication re-
sources) that can support the application. On the other hand, it specifies

–44–

2.2. Development and design of RTE systems

SW resources properties (such as the scheduling algorithm used by the
scheduler, etc.) involved in the management of HW resources.

The specification of the execution platform must be captured at the highest
level of abstraction by getting rid of lower-level details. But, at the same
time, it has to provide enough information on parameters needed to allow
analysis (e.g. scheduling analysis) and evaluation of performance with a
fairly accurate prediction of the final implementation properties.

(3) Mapping: For a given application, the explicit mapping defines how the
functional specification (i.e. functions and their interactions) will be as-
signed to resources of a candidate execution platform (i.e. processors, tasks,
shared resources, buses, messages, etc.). Moreover, parameters required for
establishing services related to the execution of the application (for exam-
ple, task priority assignment needed for the scheduling of the application)
are set during the mapping step. The latter results in an operational de-
sign representing an abstraction of the system implementation. In other
words, the operational design determines all entities necessary for the im-
plementation of the system in terms of concurrent tasks communicating by
sharing a set of common resources.

(4) Analysis, evaluation and validation: By defining a mapping, it is pos-
sible to ask questions about the feasibility and performance of the overall
design solution. There are several criteria (e.g. reliability, energy consump-
tion, cost, resources utilization, timing, etc.) which can be predicted/com-
puted and then analyzed to assess the resulting performance.

(5) Design space exploration: The evaluation of performance may show un-
satisfactory results. These results may inspire designers to improve certain
design choices at the different levels:

– At functional specification level: e.g. restructure the application;
– At execution platform level: e.g. modify resources dimensioning and

structure, memory size, scheduling policy, etc;
– At mapping level: e.g. alter the assignment of functions to tasks.

Y-chart paradigm envisions to iteratively apply such improvements until
finding an operational design solution that satisfies all requirements and
responds at best to the end performance. The set of possible design al-
ternatives forms the design space. The process of exploring several design
alternatives is referred to as design space exploration (DSE).

By exploring the literature, we have noticed that the implementation of the
Y-chart paradigm by RTE systems design methodologies [LVDWVD01, Pin04,
BHM+05, SVDN07, EAP17] has been and still remains a very active research
area. In fact, the adoption of the Y-chart scheme raises several challenges for the

–45–

Chapter 2. RTE Systems Design and Optimization: Background and Basic
Concepts

implementation of its different steps. Y-chart design methodologies have aimed
to support designers by providing: (a) a set of formalisms allowing to easily de-
fine models/abstractions for the functional specification, the execution platform
and the design solutions i.e. these formalisms assist designers in the modeling
task, (b) techniques for analyzing design solutions, and (c) tool based methods
for searching the design space.

Traditionally, decisions-making and the DSE process are based on designers
knowledge and experience. This manual DSE process is an iterative trial-and-error
procedure [ZG11]. Unfortunately, due to aspects characterizing an RTE applica-
tion (e.g. timing constraints, concurrency, restrained resources, resources shar-
ing, etc.) coupled with the conflicting nature between performance criteria, a
trial-and-error design strategy increases the time and cost of the overall design
process. Furthermore, given the huge size of the design space, such a design strat-
egy is not able to efficiently explore that design space since it allows to explore
only a small portion of the overall design space. Thus, at the end of the DSE
process, the correctness of the design is ensured, but its optimality is unknown.

Accordingly, the automation of the DSE process has been crucial for satisfying
all design requirements. The underlying idea is to provide a method that allows
to systematically browse a large space of design solutions, evaluate and com-
pare solutions, to finally end up with the most suitable design solution(s). By
most suitable design solutions, we mean those that can best handle the tar-
get application while ensuring the respect of all non-functional requirements
and answering at best to a set of performance criteria. This DSE problem is
typically identified as a multi-objective combinatorial optimization prob-
lem [LLP+09, MWTP+13].

To sum up, given a functional specification and an execution platform, the crux of
the design is concerned with an automated DSE method that identifies the most
suitable final design solution(s) representing “optimal” mapping of the functional
specification into the target platform.

2.3 Multi-objective optimization (MOO)

Multi-objective optimization problems (MOOPs) arise in various areas [LA15]
such as: industrial applications (e.g. manufacturing, design, management, etc),
scientific applications (e.g. bioinformatic and chemistry fields, protein design,
drug design, water resource systems design, etc). Such problems are characterized
by the presence of multiple mutually conflicting objectives (or criteria) that need
to be optimized simultaneously, and they are associated to several constraints. By
mutually conflicting objectives we mean that an attempt to improve one objective
leads to the degradation of others. Thus, no single solution can be considered

–46–

2.3. Multi-objective optimization (MOO)

optimum with respect to all objectives, and then decisions need to be taken in
order to define compromises (or trade-offs) between objectives.

Multi-objective optimization techniques provide disciplined search strategies and
guidelines to resolve different MOOPs. In fact, MOO techniques are used to
browse a large search space, compare solutions in the search space with respect
to multiple objectives, and finally produce optimal solutions.

Multi-objective evolutionary algorithms (MOEAs) have been increasingly popu-
lar, mainly because of their suitability for MOOPs with difficult search landscapes
(e.g. large solution spaces, constraints, non-linear and non-differentiable objec-
tive functions, etc.) [AM10]. Measuring and assessing MOEAs performance is a
challenging task that has been extensively investigated by the MOO community.
In this regard, several performance indicators (or metrics) have been developed.

In the following, Section 2.3.1 introduces fundamental aspects related to MOOPs
and MOO. Section 2.3.2 discusses about techniques used for solving MOOPs.
Section 2.3.3 presents an overview on MOEAs by highlighting their basic con-
cepts. Section 2.3.4 points out some of the most prominent MOEAs performance
indicators.

2.3.1 Fundamental concepts and terminology in MOO

Authors of [Osy78] defines MOO as a problem that has to solve “a vector of deci-
sion variables” meeting constraints and optimizing a vector function where each
element is an objective function. Mathematically, a MOOP can be formulated as
follows: {

Optimize F (X) = [f1(X), f2(X), ..., fk(X)]
Subject to X ∈ D (2.1)

where X = (x1, x2, ..., xn) is the vector of decision variables, k is the number
of objectives (k > 2), D is the set of feasible solutions, i.e. those satisfying all
the constraints imposed on decision variables, and finally, each objective function
fi(X) is to be optimized (i.e. minimized or maximized).

Given the conflicting nature between objectives, the Pareto dominance relation
is usually adopted in MOO to compare candidate solutions.

Definition 21 (Pareto dominance relation [HCFDC09, CDJ10]). A can-
didate solution X1 is said to dominate another solution X2 in the objective
space, if and only if: (i) X1 is strictly better than X2 for at least one of the
objective and (ii) X1 is not worse than X2 for any of the objectives.

Solving a MOOP is concerned with finding all non-dominated, called also Pareto
optimal, solutions.

–47–

Chapter 2. RTE Systems Design and Optimization: Background and Basic
Concepts

Definition 22 (Pareto optimal/non-dominated solution [CLVV07]). A
solution is said to be Pareto optimal or non-dominated with respect to a set
of objectives if there does not exist another feasible solution in the objective space
that improves on all of the objectives at once.

These non-dominated solutions form the Pareto set.

Definition 23 (Pareto set [JCAT14]). The Pareto set P, is composed by all
the non-dominated solutions of D.

Definition 24 (Pareto front [JCAT14]). The image of the Pareto set P in
the objective space constitutes the Pareto front PF = {F (X)|X ∈ P}.

An example multi-objective optimization problem domain is depicted in Fig-
ure 2.4. The left-side illustration shows a decision-space where decision vectors

x2

x1

Decision space/Solution space

f2

f1

Objective space

D

F(X)=[f1(X), f2(X)]

decision vector

Pareto solutions

Pareto front

objective vector

Minimization problem: f1 and f2 are to be minimized

Region dominated by
F(Xz)

X

F(X)

F(Xi)

F(Xz)
(Pareto set)

Figure 2.4: Illustration of the multi-objective optimization problem domain: mapping from
decision space to objective space (assuming two decision variables and two objective

minimization functions).

(or solutions) are composed of two variables. The problem constraints imposed
on solutions lead to a feasible region D (highlighted in grey). Each decision vector
in the decision space corresponds to a unique objective vector in objective space
as shown in the right-side illustration. It is worth noting that the inverse map-
ping may be non-unique, i.e. for an objective vector may corresponds different
solutions. Figure 2.4 also shows the Pareto set and the associated Pareto front
that represents the best trade-off set for the considered objectives. Note that this
example shows two decision variables and two objectives, however, the decision
variables number and the objectives number are independent and each of them
may be any positive integer.

–48–

2.3. Multi-objective optimization (MOO)

2.3.2 Techniques for solving MOOPs

With significantly increased attention on MOOPs, an overwhelming number of
techniques for solving these problems have been developed. In fact, MOO tech-
niques are a well established and wide research area [CDJ10]. In the literature,
many comprehensive surveys on MOOPs and solution methods [UT94, EG00,
EG04, EGP16, CWC+17] have been proposed since the nineties until now.

Traditionally, MOOPs are solved by transforming the problem into a single ob-
jective optimization problem through the so-called scalar approaches [CWC+17].
For instance, one well-known technique is the weighted-sum method [EG00]. This
method combines multiple objectives using designer-specified weights, where each
weight represents the importance of the associated objective function [CWC+17].
The selection of appropriate weight coefficients is of paramount importance and
often raises a challenge, as it will sharply impact results. Scalar methods are quite
simple and easy to use in the sense that they rely on established single-objective
optimization techniques. However, their major drawback is that they produce a
single solution for a given MOOP, rather than the Pareto solution set (i.e. any
information about the trade-offs among different objectives) [CDJ10].

Since 2000, there have been considerable efforts in establishing methods to si-
multaneously identify many Pareto optimal solutions. These methods are either
exact or approximation (heuristic) methods. Exact methods have the advan-
tage of accuracy, as they are intended to enumerate all the Pareto solutions of
a MOOP [EGP16]. But, these methods suffer from their inability to cope with
large-scale problems, which require too much time and resources. Since almost
all MOOPs are typically known to be NP-hard [CDJ10, CWC+17], achieving an
exact resolution of an arbitrary MOOP is quite difficult, and accordingly imprac-
tical. Hence, approximation methods have become the most common alternative
to deal with large instance MOOPs [CDJ10]. The underlying idea of such approx-
imation methods is to provide reasonably “good” approximations of the Pareto
front and Pareto optimal solutions (called near-optimal or sub-optimal solutions),
within limited computational time and cost. A key challenge for heuristic ap-
proaches is to balance between the quality of the approximate Pareto solution
set, and the time and computation resources requirements.

When the approximation method refers to a metaheuristic one talks about multi-
objective metaheuristic.

Definition 25 (Metaheuristic [BR03]). A metaheuristic is a high-level algo-
rithmic strategy for exploring the search space of a problem and identifying optimal
and near-optimal solutions. It is used to guide other heuristics or algorithms.

In the literature, there exists many multi-objective metaheuristic techniques
such as simulated annealing [LT99], tabu search [GF00], ant colony optimiza-
tion [GMCH07], particle swarm optimization [RSC06], evolutionary algorithms

–49–

Chapter 2. RTE Systems Design and Optimization: Background and Basic
Concepts

[CLVV07], etc. Two fundamental challenges for those metaheuristic methods
are the accuracy (how close to the Pareto set are the approximation solutions
they provide) and the diversity (are the solutions numerous and with objective
values well spread in the objective space). Typically, to cope with these chal-
lenges, metaheuristics rely on mechanisms that foster both the exploration (i.e.
to explore undiscovered regions of the search space) and the exploitation (i.e.
to exploit promising solutions previously found). The equilibrium between the
exploration and the exploitation aspects is one of the key issues in any meta-
heuristic, since it significantly influences performance. As part of multi-objective
metaheuristics, a central question concerns the assessment of their performance.

In the following, we focus on multi-objective evolutionary algorithms (MOEAs)
by highlighting their underlying components. Afterwards, we expose mainstream
performance indicators that have been proposed for assessing multi-objective
metaheuristic methods.

2.3.3 Multi-objective evolutionary algorithms (MOEAs)

A large amount of MOO techniques is derived from MOEAs. These techniques
have been applied to solve a wide variety of complex MOOPs, e.g., those that
present intractably large search spaces, non-linear objective functions, etc. MOEAs
are powerful random-based search strategies that mimic the biological evolution-
ary process.

They are founded on the basis of the three evolution principles: reproduction,
random variations, and natural selection according to the Darwinian concept of
“Survival of the Fittest” [CLVV07, AM10]. Just as in nature, the reproduction
creates new individuals from previous ones. Random variations occur during the
reproduction. When individuals compete for survival, then the fittest individuals
will be selected as survivors while the weakest ones demise.

Basic terms and components of MOEAs are pictured in Figure 2.5. An individual
represents an encoded solution to some problem. Typically, a solution structure is
defined by means of a vector (or string) referred to as chromosome (or genotype).
Each position in the chromosome contains information corresponding to what is
called a gene. Each solution (or individual) is assigned with a fitness allowing
to identify which individuals survive into the next generation. The fitness of
a solution is measured by fitness functions. The objective functions (that are
features of the problem domain), plays the role of the fitness functions (that are
part of the algorithm domain) [CLVV07]. A set of individual solutions forms the
so-called population.

Evolutionary (or genetic) operators manipulate a population aiming at improving
the population by generating new candidate solutions (called offspring or chil-

–50–

2.3. Multi-objective optimization (MOO)

❏ Population: set of individuals (solutions)

❏ Parent: the fittest individuals selected for reproduction

❏ Children (offspring): new candidate individuals generated
by crossover and mutation operators

❏ Generation: successively created populations
(MOEA iteration)

❏ Chromosome: solution coded form; vector (String)
composed of genes

❏ Fitness: value assigned to a solution using its objective
values

A
lg

o
ri

th
m

D
at

a
S

tr
u

ct
u

re

Figure 2.5: MOEAs basic terms and components (adapted from [CLVV07])

dren) that compete (based on their fitness) with the old ones for a place in the
next generation.

There are three prominent genetic operators, namely: mutation, crossover (or
recombination), and selection. The mutation and crossover operators (referred to
as variation operators) are used during the reproduction phase. The underlying
idea of these variation operators is to produce offspring by varying or combining
the chromosomes of the individuals selected for reproduction (called parents).
Illustrating this, Figure 2.6a shows an example of mutation that operates on one
candidate parent to produce one new child by changing a gene of the parent’s
chromosome. Figure 2.6b depicts a form of crossover called single-point crossover,
which operates on two parents to generate two children, where each parent’s
chromosome is cut and recombined with a piece of the other. The selection is
the step to select the best or fittest individuals in order to guide the population
towards optimal and near-optimal Pareto solutions.

A generic structure of a MOEA is outlined in Algorithm 1. A MOEA operates
as follows. It starts its search with an initial population that could be created at
random or user-defined (i.e. if some “good” solutions are known in advance, it is
wise to exploit them in creating the initial population). Solutions of the initial
population are evaluated according to the objective functions. Thereafter, the

–51–

Chapter 2. RTE Systems Design and Optimization: Background and Basic
Concepts

mutation point

Parent’s chromosome:

Child’s chromosome:

(a) Mutation example

crossover point

Chromosome of parent 1:

Chromosome of parent 2:

Chromosome of child 1:

Chromosome of child 2:

(b) Crossover example

Figure 2.6: Examples of variation operators

Algorithm 1: MOEA generic structure

1 begin
2 Initialize population with random candidate solutions;
3 Evaluate fitness of each solution in the population;
4 repeat
5 Select parents;
6 Apply recombination and/or mutation operators on parents;
7 Evaluate fitness of new candidate solutions;
8 Select individuals for the next generation;

9 until (termination criteria are met);

10 end

MOEA procedure enters into an iterative process (lines 4 − 9). In this process,
evolutionary operators are involved to create new candidate solutions, update
the current population and produce the next generation. The process stops when
one or more pre-specified termination criteria are satisfied, such as reaching a
computational limit (e.g. a fixed number of iterations), or converging towards a
stable Pareto set, etc.

Each MOOP intended to be solved with a MOEA requires the definition of an
encoding of solutions (i.e. the data structure of a chromosome), crossover and/or
mutation operators, and objective functions. The encoding mostly differs from
one MOOP to another. Some standard crossover or mutation operators can be
reused for different MOOPs. However, in many cases customized variation oper-
ators may help the algorithm in achieving faster and more effective exploration
of the search space [LEEC11].

It is worth noting that some MOEAs (e.g. PAES, details of this MOEA are
given in Section 4.2.1) don’t work with a population of solutions, instead they
manipulate a single solution per iteration. Indeed, the disadvantage of using a

–52–

2.3. Multi-objective optimization (MOO)

population of solutions is the computational cost and memory associated to the
execution of each iteration [Deb08].

2.3.4 MOEAs performance metrics

The outcome of MOEA techniques is an approximation of the optimal Pareto
front. We define the PF true and the PF approx as follows.

Definition 26 (PF true). is the theoretical optimal Pareto front which is not ex-
plicitly known a priori for problems of any difficulty.

Definition 27 (PF approx). is an approximation set of the optimal Pareto front.

Two crucial issues arise about: (1) how to evaluate the quality of an approxima-
tion set produced by a particular MOEA, and also (2) how to compare approxi-
mation sets obtained by different MOEAs. To tackle these issues, several quality
indicators have been proposed [CLVV07, RVLB15, ZTL+03]. These indicators
measure the quality of an approximation set regarding to one or more of the
following aspects:

• Accuracy/convergence [ZTL+03, RVLB15]: this aspect is associated to the
closeness of PF approx to PF true (i.e. how distant is PF approx from PF true).

• Diversity [ZTL+03, RVLB15]: this aspect is related to the distribution as
well as the spread. The distribution refers to the relative distance among ele-
ments in PF approx while the spread refers to the extent of PF approx across the
objective space (i.e. the range of values covered by elements in PF approx).

• Cardinality [OJS03, RVLB15]: this aspect concerns the number of solutions
associated to elements in PF approx.

The overwhelming majority of existing quality indicators are unary [RVLB15].
The indicator is said to be unary if it takes as parameter only one approximation
set PF approx (obtained by a particular MOEA) to be assessed. These indicators
transform a given PF approx into a single value that is meant to reflect one or more
of the quality aspects given above.

One category of unary indicators assume that theoretical optimal Pareto front
PF true is known and their computations rely on it, such as the inverted gener-
ational distance (IGD) [VVL98b], the optimal Pareto front coverage ratio (CR)
[UTFT99], etc. However, for most real-world complex MOOPs (i.e. combinato-
rial, large-scale, with hard constraints, etc.) the attainment of theoretical opti-
mal Pareto front is very difficult and even impractical. Thus, another category
of unary indicators are defined on the basis of PF approx, an attainment set by
definition. For this category, the study presented in [RVLB15] has shown that

–53–

Chapter 2. RTE Systems Design and Optimization: Background and Basic
Concepts

the hypervolume (HV) [ZT98] is the most popular indicator and commonly used
by the MOEA community.

In the remainder of this section, we present the mentioned indicators, i.e. HV,
IGD and CR.

Hypervolume indicator (HV)

The hypervolume indicator (HV) includes all three quality aspects (i.e. accu-
racy, diversity and cardinality), being the only unary indicator with this capa-
bility [RVLB15]. As shown in Figure 2.7, this metric computes the area of the
objective space covered by the considered PF approx, bounded by some reference
point. The reference point is selected so that it is dominated by all elements in
the approximation set to be evaluated. For instance, the reference point is fre-
quently formed using the worst value for each objective, known as the anti-ideal
or Nadir point. The greater the HV value, the better the approximation set.

f 1

f2

(PFapprox)1

max2

min1

min2

max1

reference
point

HV2

HV1

(PFapprox)2

Figure 2.7: Hypervolume performance indicator for two sets, for a two minimization
objectives problem

In order to allow the objectives to contribute approximately equally to the HV
indicator values, objective values of elements in the approximation set must be
normalized. A standard, linear normalization technique [FKTZ05] consists in
applying the following transformation to each objective dimension values:

fnormalizedi =
fi − f (min)

i

f
(max)
i − f (min)

i

where f
(min)
i and f

(max)
i are the minimum and maximum values respectively, that

the ith objective is taking within the considered approximation set. The reference

–54–

2.3. Multi-objective optimization (MOO)

point is also normalized. With this normalization technique, HV values are in
the range [0..1].

Inverted Generational Distance (IGD) metric

The IGD metric [VVL98b, ZZZ+08] can be adopted when PF true is known. It is
defined by the following expression.

IDG =

∑
ν∈PF true

d(ν − PF approx)

|PF true|

where d(ν−PF approx) is the euclidean distance between each element ν in PF true

and the nearest member of PF approx, and |PF true| is the number of elements in
PF true.

The IGD indicator could measure both the accuracy (or convergence) and the
diversity [RVLB15]. The diversity is inferred by the coverage capacity that means
how well PF true is covered by PF approx. Indeed, a PF approx whose elements are
located on a limited area of the extent of the PF true, will be penalized in its IGD
value even if its elements belong (or are too near) to PF true. For the IGD metric,
the lower are values, better are corresponding approximation sets.

As the hypervolume metric, the IGD indicator also needs to be normalized in
order to generate comparative values (i.e. in an absolute sense). Objective values
of elements in both PF true and PF approx are normalized using the same technique
described above. Normalized IGD values are in the range [0..

√
2].

Optimal Pareto front coverage ratio (CR)

The optimal Pareto front coverage ratio (CR) metric is among cardinality-based
indicators [OJS03]. It measures the proportion of optimal Pareto elements reached
by the approximation set PF approx:

CR =
|PF approx ∩ PF true|

|PF true|

Mathematically, this metric is computed using the following expression:

CR =

∑|PFapprox|
i=1 ci
|PF true|

–55–

Chapter 2. RTE Systems Design and Optimization: Background and Basic
Concepts

where ci =


1 if ith element of PF approx is a member of PF true,

0 otherwise.

Ideally, CR is equal to 1, which indicates that PF approx is identical to PF true.
In other words, the algorithm converges to the optimal Pareto front. The worst
situation is when CR = 0, it points out that none of elements in PF true are
attained in PF approx. In other situations, higher values of CR are better. The
example shown in Figure 2.8 has CR = 1

4
= 0.25.

0 1 2 3 4 5 6
0

2

4

6

8

10

12

(1.5,10)

(2,8)

(3,6)

(4,4)

(2.5,9)

(5,4)

f1

PF
true

PF
approx

f2

Figure 2.8: PF approx and PF true example to show the CR metric (taken from [CLVV07])

2.4 Conclusion

The first part of this chapter has focused on the development and design of RTE
systems by exposing their key phases. This study led us to highlight major chal-
lenges faced by designers during the mapping stage. The mapping stage consists
in merging the functional specification of the system within the targeted exe-
cution platform while ensuring the respect of non-functional constraints (mainly

–56–

2.4. Conclusion

timing constraints) as well as the optimization of the system performance criteria.
The outcome of this mapping step is called the operational design, which repre-
sents an abstraction of the system implementation. The mapping step requires
the exploration of different design alternatives (i.e. different combinations of the
functional specification with the execution platform) in order to select those that
meet the timing constraints and respond at best to the performance criteria.
This is referred to as design space exploration and it is typically identified as
a multi-objective optimization problem. Thus, the second part of this chapter
was devoted to present underlying concepts on MOOPs and MOO techniques for
solving them. Especially, key principles and general approach underlying MOEA
techniques were introduced. Afterwards, an overview about performance metrics
used for assessing MOEAs was provided.

The next chapter highlights the work orientation by exposing problem statements
and contributions of this thesis. It also presents and discusses the related work.

–57–

3
Work Orientation and Related Work

Contents
3.1 Introduction . 59

3.2 Problem statement . 60

3.2.1 RTE systems development challenges 60

3.2.2 Difficulty and importance of the design phase 61

3.3 Context of work . 65

3.3.1 Assumptions of the work 65

3.3.2 System models and notations 66

3.4 Contributions outline 68

3.4.1 Automatic multi-criteria DSE process 68

3.4.2 Mastering scalability and effectiveness of the DSE process 69

3.4.3 Prototype implementation 70

3.4.4 Empirical studies . 70

3.5 Related work . 72

3.5.1 Functions to tasks mapping approaches 72

3.5.2 Multi-criteria design space exploration approaches . . 78

3.6 Conclusion . 84

3.1 Introduction

Having introduced research foundations and background in the previous chapters,
we now point out the main axis of our work and discuss related work. Thus, in

–59–

Chapter 3. Work Orientation and Related Work

Section 3.2, we enumerate the problem statements addressed in this thesis. Then,
Section 3.3 provides the assumptions of this work delineating the application
scope of our contributions. This section introduces also the basic concepts about
the system model and the notations adopted throughout this thesis. Afterwards,
Section 3.4 exposes our goals and contributions. Finally, Section 3.5 discusses
the related work and Section 3.6 concludes the chapter.

3.2 Problem statement

By exploring the literature in the field of development, design and optimization
of RTE systems, we have identified the following issues.

Despite significant advances in the development of RTE systems, their design re-
mains a challenging task. A key design step is to assign the application software
components (e.g. computation and communication resources) onto an execution
platform. The complexity of making design decisions is still rising since design-
ers always have numerous options at hand, involving different ways of assigning
the functions of the application to the entities (e.g. tasks) of the software archi-
tecture. Furthermore, RTE systems are subject to stringent requirements (e.g.
timing constraints, predictability, etc.) which makes the design of such systems
more difficult. These requirements must be considered at an earlier stage in the
development, i.e. the design phase, in order to ensure the predictability of the
system behavior.

We devote this section to sum up the key challenges raised during the development
and design of RTE systems, being the focus of this thesis.

3.2.1 RTE systems development challenges

Nowadays, reducing development time and cost, mastering complexity, and pro-
viding the required quality raise as major challenges for RTE systems manufac-
turers. Various factors and characteristics of the systems under consideration
combine to create challenges in their design and development:

• Real-time constraints: functions of such systems are usually subject to time
constraints. These constraints must be met because their violation not only
deteriorates the behavior of the system but, even more critically, it could en-
danger human lives.

• Size: the number of features implemented by nowadays RTE systems is sub-
stantial. For example, in the aerospace domain, a flight control system includes
up to several hundreds functions to specify the system behavior [BHP+08,
BFO14].

–60–

3.2. Problem statement

• Concurrency: RTE systems are frequently designed according to concurrent
multi-tasking architectures. This means that several tasks implementing the
system functions share the same computation resources, i.e. the processor.
Managing the concurrency between tasks to access the processor is required
and must ensure the timing requirements of the application.

• Interaction through sharing critical resources: in real-time multi-tasking
systems, the application consists of a set of tasks that cooperate to achieve in-
teraction with the environment. This cooperation could be realized by means
of shared resources that may be hardware (e.g. memory or peripherals) or
software (e.g. variables or files). In order to guarantee consistency of shared
resources, tasks must be synchronized to access these resources. Yet, in the case
of preemptive scheduling, classical synchronization mechanisms (e.g. semaphores,
monitors, etc.) may arise issues affecting the schedulability, which gives rise to
the necessity to carefully handle resources access synchronization during the
scheduling process.

• Sensitivity to changes: slight changes of certain non-functional properties
on some functions may require a radical modification of the system design. This
implies that RTE systems need to be fairly flexible to accommodate changes,
when the system functions evolve, at a lower cost.

This complexity that was and is still growing imposes a big challenge when de-
signing RTE systems.

3.2.2 Difficulty and importance of the design phase

The design phase is central to the development of RTE systems. The functional
specification of the application (e.g. structure and behavior of the application
functions, several requirements, etc.) and the description of the target plat-
form technical features (e.g. computation, storage and communication resources
characteristics; the scheduling policy provided by the RTOS; etc.) are initially
separated. The mapping step consists in assigning the application components
defined at the functional specification (in terms of functions and their interac-
tions) to the execution and communication entities (i.e. processors, tasks, buses,
messages, etc.). The outcome of the mapping step is the operational design (in
this dissertation, it is also simply called design). Furthermore, during the map-
ping step, different configurations and analysis are performed, such as the setup
of the timing parameters associated to the operational design entities, the schedu-
lability analysis, etc. The produced operational design represents an abstraction
of the system implementation. Indeed, it defines all the entities required for the

–61–

Chapter 3. Work Orientation and Related Work

implementation, in terms of tasks sharing common resources and assuming exe-
cution on top of a specific execution platform. Thus, the quality and maintenance
of the final system implementation depend heavily on the resulting design.

The transformation of the functional specification components into a set of tasks
running on the top of the target RTOS is a difficult challenge. In fact, designers
must decide how to assign functions to tasks while ensuring the fulfilment of non-
functional constraints and balancing between multiple conflicting performance
criteria.

Several factors hinder designers to make efficiently design decisions and elaborate
the most suitable operational design. These factors are detailed below.

Multiple design alternatives: combinatorial problem

The important number of functions involved in the functional specification results
in a large number of possible assignment of these functions to the RTOS tasks,
ranging from single-task design to concurrent multi-tasked design alternatives.
All possible design alternatives, with respect to functions-to-tasks assignment,
constitute the design space. Given a set of n functions, the number of all possible
combinations of functions-to-tasks assignment is defined by the nth Bell num-
ber [Rot64], denoted as Bn. The latter counts the number of different ways to
partition a set that has exactly n elements. The Bell number is exponential with
respect to the size of the set. To give a better idea about the design space size,
notice that for a set of 15 functions, the number of all possible functions-to-tasks
assignment alternatives is equal to B15 = 1 382 958 545. Accordingly, the design
space size grows exponentially with the system size (i.e. #functions). Considering
the extensive size of RTE systems, the space of design alternatives to be explored
and evaluated is extremely large. This makes an exhaustive search strategy im-
practical.

Conflicting performance criteria and influence of design decisions on these
performance criteria

Design decisions are very important because of their strong influence on the
system performance. When establishing operational designs for RTE systems,
designers often face problems associated with making good decisions regarding
to several performance criteria. In our work, we take into account performance
criteria related to timing properties, such as preemptions, laxities of tasks, block-
ing time of tasks due to shared resources, etc. Let us consider the two extreme
functions-to-tasks assignment strategies.

The first extreme solution is the single-task design solution in which the whole
functional specification is assigned to only one task. Although this solution is
quite simple and well suited to high memory-constrained applications, it leads to

–62–

3.2. Problem statement

an inflexible design that is expensive to change or maintain when the functions of
the system evolve. Indeed, in the context of a single task design, a small change
may break the system timing requirements.

The other extreme solution is the 1-1 assignment of functions to tasks, i.e. each
function is assigned to exactly one task. Unlike the first extreme solution, this
alternative results in a more flexible design since the latter provides more overall
system laxity. This allows easier modification of the current design or its ex-
tension by additional potential functions. Remind that the laxity of a task is
the margin available for scheduling a task (see Section 1.4.1). That’s why the
laxity is related to the flexibility of the design. Nevertheless, this second design
solution may be inefficient [BLDN05] because it leads to a significantly higher
number of tasks. This involves a consequential memory consumption (e.g. stack
size for each task) in addition to the excessive scheduler overhead due to context
switching or preemptions.

This way each design alternative may have a positive impact on some system
performance criteria to the detriment of others. This is due to the fact that
performance criteria are often conflicting, which means improving one criterion
can have a negative impact on other criteria. For example, let consider the impact
of the way of assigning functions to tasks on the trade-off between the number
of preemptions and the overall laxity of tasks. A design is considered as “good”
when it implies a reduced number of preemptions (low timing overhead) and
high laxities of tasks (flexible design). However, the number of preemptions is
reduced when more functions are assigned to one task, whereas, the tasks laxities
are increased with fine-grained assignment (maximum laxity values are obtained
with 1-1 assignment alternative).

Limits of a manual design strategy

As already mentioned, there are several alternatives for integrating a functional
specification into a target execution platform and each alternative has an impact
on both the non-functional requirements and the performance of the final system.
Exploring the design space “by hand” in order to find the suitable design, is a
laborious task for designers. Ideally, they have to try all design alternatives by
investigating their impact on the system requirements and the trade-offs between
performance criteria and then select the most suitable design. Unfortunately,
this exhaustive-search based approach is unmanageable for a human due to the
ever-increasing complexity and size of current systems on one side, and the large
number of design alternatives on the other side.

Traditionally, designers perform the mapping step according to a “trial-and-error”
strategy [ZG11] that relies on their intuition and experience. However, such a
design strategy allows to investigate only a small subset of solutions among all

–63–

Chapter 3. Work Orientation and Related Work

design alternatives. This may lead to produce applications that are not com-
pletely optimized according to the systems requirements. Therefore, exploring
the design space manually is a tedious task that could be time-consuming, costly
and error-prone.

The problem we deal with in this thesis can be summarized as follows: How to in-
tegrate the functional specification of a particular RTE application into a specific
execution platform while taking into account the non-functional requirements and
trade-offs between multiple conflicting performance criteria? Assigning functions
to RTOS tasks is non-trivial: (i) it usually raises combinatorial complexity issues,
(ii) its influence on the performance of the resulting application is difficult to an-
ticipate, (iii) it has an impact on the schedulability which implies the verification
of the feasibility of the design alternatives.

In the same regard, the addressed problem is typically one of the main steps in the
design of AUTOSAR1 compliant automotive systems [FMB+09]. In accordance
with the standard methodology of AUTOSAR, the design of such systems consists
in the allocation of the application software components (SW-Cs) onto hardware
resources called Electronic Control Units (ECUs). The AUTOSAR standard de-
fines each SW-C as a set of interacting runnable entities. As shown in Figure 3.1,

Mapping
runnables to

cores

Assigning
runnables to

tasks

Sequencing
runnables

Application
description (SW
architecture)

SW-C 1 SW-C x

Task 1

Task1

 Core 1 Core 2

Processor

Task y

ECU 1

Figure 3.1: Runnables to tasks mapping in AUTOSAR methodology (adapted
from [SCCM15])

a key design step in the AUTOSAR methodology is to map runnables entities
within each ECU (running a RTOS) into the RTOS tasks while guaranteeing the
system non-functional requirements (i.e. schedulability of task sets on all ECUs,
consistency of data shared between tasks, etc.) and optimizing its performance

1AUTOSAR (AUTomotive Open System ARchitecture): an open standard for automotive
software development. It provides a standard architecture, application interfaces and a method-
ology that are adopted by the automotive industry.

–64–

3.3. Context of work

criteria. Thus, without loss of generality and according to the AUTOSAR ter-
minology, the so-called runnables entities correspond to what we call the system
functions.

3.3 Context of work

In this section, first, we outline assumptions taken for this work in order to delin-
eate the scope of our solutions for the above described problems. Afterwards, we
define the system models considered in our work as well as the adopted notations.

3.3.1 Assumptions of the work

During the design phase, a set of specific characteristics of the target execution
platform and RTOS must be identified. They represent all assumptions related
to:

– the temporal characteristics of tasks (periodic/sporadic/aperiodic, implicit/-
constrained deadlines, etc.);

– the relationships between tasks (e.g. precedence relationships, existence of
shared resources);

– the hardware architecture of the execution platform (e.g. uniprocessor/multi-
processor/distributed architecture);

– the timing behavior (e.g. synchronous/asynchronous task set);

– the synchronization and communication protocols;

– etc.

The assumptions made in our work are the following:

B The architecture of the execution platform is uniprocessor single core;

B Produced systems must be Ravenscar compliant;

B Tasks are:

• periodic

• synchronous

• either independent or dependent through shared resources

• with implicit deadlines

• with fixed priorities

–65–

Chapter 3. Work Orientation and Related Work

B The capacity (or worst-case execution time) of each task is less or equal
than its period value;

B The scheduling policy is preemptive fixed priority scheduling with priority
assignment such as RM or DM.

B The priority ceiling protocol (PCP) is used as a resource access synchro-
nization protocol.

The definition of assumptions is essential to choose and conduct the most suit-
able schedulability analysis test that matches the characteristics of the designed
system. Accordingly, we refer to the current context in order to choose the
schedulability analysis test used for the verification of design alternatives (in
Section 4.5.2).

3.3.2 System models and notations

The formalization of the functional specification and that of the operational de-
sign, considered in this thesis, are described below.

Functional specification formalization

At functional level, the functional specification depicts the structure and the
behavior of the system functions. Formally speaking, the functional specification
model is defined by FS = {Γ,R}, where Γ is a set of functions and R represents
a set of software resources that can be shared between several functions (see
Figure 3.2 (a)).

Γ = {F1, F2, ..., Fn} designates n functions. These functions are elementary
non-decomposable sequential programs specifying the processing to be achieved
by the system.

In our work, we assume periodic and synchronous functions. Each function Fi
is characterized by three parameters Fi = (γi, ζi, δi) where γi is the maximum
computation time, the activation period denoted as ζi is a fixed delay between
two release times and δi is the deadline defined by the time limit in which the
function must complete its execution. Implicit deadlines model is adopted here,
so δi is assumed to be equal to ζi.

R = {R1, R2, ..., Rm} represents m software resources. A resource is any software
structure that can be used by a function to advance its execution or to realize
asynchronous interactions with other functions. Typically, it could be I/O ports,
a file, message buffers, a data such as a set of variables, a piece of program, or
other shared data structures. These resources may be used by several functions.
Yet, only one function is allowed to perform any action on a resource at a given

–66–

3.3. Context of work

time to ensure data consistency. The kth usage of a resource Rj is denoted ωk. It
is parametrized by the function using the resource, an earliest date (ωk)begin and
a latest date (ωk)end respectively for the acquisition and release of the resource
Rj by the function Fi:

ωk


(ωk)Function

(ωk)begin
(ωk)end

The parameters (ωk)begin and (ωk)end are relative to the capacity of the function
using the resource.

Operational design formalization

As we consider a uniprocessor execution platform, the operational design is then
composed of a set of k tasks (i.e. the RTOS tasks), denoted by S = {τ1, τ2, ..., τk},
to which the system functions are assigned (as shown in Figure 3.2 (b)).

F1 F2 F3

R1

F4 F5 F6

R2

(a) High-Level Functional Model

τ1

R1 R2

(b) Operational Design Model

F1 F2 F4 F3 F5 F6

τ2 τ3 τ4 τ5

Figure 3.2: Real-time design model

A task is defined by three parameters τi=(Ci, Ti, Di): its capacity or worst case
execution time Ci, its period Ti and its deadline Di. A task implementing a given
function accesses to the resources used by such a function. Since one resource
may be accessed by several tasks, mutual exclusion has to be enforced to warrant
data consistency. For such a purpose, a shared resource is accessed by a task in
a critical section during the task execution. A resource is characterized by a set
of critical sections. We denote CSk the kth critical section of a resource Rj. It
is defined for the task that uses the resource on this critical section (CSk)Task as
well as instant of begin and end of the critical section (CSk)begin and (CSk)end,
respectively:

CSk


(CSk)Task
(CSk)begin
(CSk)end

The parameters (CSk)begin and (CSk)end are relative to the capacity of the task
that access the corresponding critical section.

–67–

Chapter 3. Work Orientation and Related Work

At design level, shared resources that need protection (via synchronization primi-
tives) depend on the assignment of functions to tasks. Indeed, if all functions that
use a resource Rr are assigned to the same task, then the resource Rr does not
need to be accessed through synchronization primitives as the functions imple-
mented in the same task are to be executed sequentially. In this case, contention
to the resource Rr does not need to be taken into account during schedulability
analysis.

Task parameters as well as their corresponding critical sections are computed
using parameters stemmed from the functional specification (details related to
the computation of these parameters are presented in Section 4.4).

3.4 Contributions outline

The main purpose of this thesis is to assist RTE systems designers during the
mapping stage. Particularly, we focus on finding the most appropriate operational
design through the exploration of the design alternatives search space.

The problems raised in Section 3.2 motivate the automation of the design space
exploration (DSE) process. Thus, we propose an automatic multi-criteria DSE
process. This process browse the space of design alternatives, evaluate them
regarding a set of predefined conflicting criteria to end with design alternatives
answering at best to the trade-offs among these criteria. Furthermore, in order
to remedy the combinatorial complexity of the addressed DSE problem, we pay
particular attention to the scalability of the proposed method.

The solutions proposed in this thesis include the following contributions.

3.4.1 Automatic multi-criteria DSE process

The design exploration problem addressed in this thesis is identified as a combi-
natorial MOOP (see definition in Section 2.3.1). Considering the combinatorial
nature of this problem, enumerating all alternatives of the design space leads to
unacceptable processing time. Rather than using an exhaustive search method,
one way to tackle this problem is to exploit a heuristic-based problem solver. This
kind of methods, including a part of randomness, aim at finding “good” solutions
without exploring the whole search space, thereby producing results at a reason-
able amount of time. Although a heuristic-based method does not guarantee the
optimality, it is of great interest when exact methods fail to handle large search
spaces and can not find optimal solutions.

–68–

3.4. Contributions outline

MOEA formulation of the DSE process

We propose an automated DSE process using a metaheuristic in the class of
MOEA techniques, namely the Pareto Archived Evolution Strategy (PAES) [KC00a].
This DSE process allows to search the design space in terms of functions-to-tasks
assignment alternatives with respect to multiple conflicting performance criteria.
It identifies optimal and near-optimal design alternatives that meet the applica-
tion non-functional constraints (e.g. schedulability) and answer at best to the
trade-offs among the considered performance criteria.

Formalization of design alternatives

A candidate design represents a possible configuration of assignment of func-
tions to tasks. Each candidate design explored during the DSE process must be
analysed to check its feasibility (e.g. schedulability analysis), then evaluated to
determine its fitness towards performance criteria. These operations require the
knowledge of timing parameters of entities (i.e. tasks and shared resources) com-
posing a candidate design. Thus, design alternatives are formalized according
to a set of rules that we propose. These rules allow to determine parameters of
the different entities associated to a candidate design, based on the way in which
functions are assigned to tasks as well as the timing parameters derived from the
functional specification. Furthermore, the rules we propose ensure consistency
between the functional level and the design level.

3.4.2 Mastering scalability and effectiveness of the DSE process

A MOEA based DSE method has two main challenges: the effectiveness and
the scalability. The effectiveness is paramount for any heuristic-based approach
and it could be assessed through performance metrics (see Section 2.3.4). The
scalability is related to the computing resource requirements and the ability of
the method to handle complex problem instances with increased effectiveness.

Several factors combine to accentuate the complexity of our DSE problem and
thereby hindering a MOEA-based method to overcome the above challenges.
Hence, one of our contributions is about dealing with the scalability and the effec-
tiveness of our DSE process. First, to cope with the scalability issue, we propose
to adapt a parallel asynchronous schema namely the well-known “Master-Slave”
parallel paradigm to our DSE process. With this coarse-grained approach, mul-
tiple candidate design solutions are processed in parallel for checking constraints
and evaluating objective functions. Second, we define the global selection, a new
selection strategy that aims at improving the search procedure of our DSE pro-
cess, thereby achieving better overall effectiveness, as compared to the default
local selection embedded in PAES.

–69–

Chapter 3. Work Orientation and Related Work

Experiments conducted to assess our proposals show that the asynchronous par-
allel implementation of the DSE process allow to handle larger scale and more
complex problem instances. Moreover, experiments also exhibit that the parallel
approach combined with the global selection strategy make the DSE process more
effective than its sequential counterpart.

3.4.3 Prototype implementation

As part of our work, we designed and implemented our solution for the functions-
to-tasks assignment DSE problem. This tool covers the following aspects.

First, the prototype allows to execute our DSE process on a given functional
specification. This could be achieved by means of either the sequential or the
parallel versions of the DSE process. Furthermore, users could choose one of the
provided selection strategy for the search procedure.

Second, our tool provides users with the opportunity of running small size prob-
lem instances (i.e. presenting small enumerable search spaces) with an exhaustive
search based DSE method. The latter is defined mostly for evaluation purposes.

Moreover, in order to perform different experiments with a broad range of con-
figurations, we propose to generate synthetically functional specification input
models. Therefore, our tool provides a customizable problem instance generator
(in terms of function sets interacting or not via shared resources) according to
the experiment requirements.

Our prototype is integrated in the Cheddar scheduling framework [SLNM04]. The
software architecture of the Cheddar framework was well defined and structured
which facilitate the exploitation of its software artefacts and its extension with
new features. Thanks to its architecture description language Cheddar-ADL, we
can easily define and manipulate design alternatives explored during the DSE
process. Additionally, we take advantage of the schedulability analysis utilities
provided by Cheddar for the verification and evaluation of the design alternatives.

Finally, we have paid a particular attention on the software design of our tool by
following the design requirements of the Cheddar framework, so as to promote
the reuse and the extension of the produced software.

3.4.4 Empirical studies

As part of the experiments, two empirical studies are performed. The first em-
pirical study is devoted to explore the correlation between different performance
criteria. The second one investigates the impact of the initial design alternative
from which the DSE process starts the search.

–70–

3.4. Contributions outline

Investigation of the relationship between objectives

Several performance criteria stemmed from the context of the systems under
consideration, are influenced by the manner of assignment of functions to tasks.
While formulating the DSE problem, we aim to define each performance criteria as
an objective to be optimized during the exploration rather than a constraint. Yet,
involving many objectives simultaneously leads to a large-dimensional problem
(also known as many-objective problem). This hinders a MOEA based method
from approximating efficiently the Pareto front [LJCCC08]. Indeed, MOEA
methods are designed to solve MOOPs with low-dimension (typically with two
or three objectives). This is due to the fact that the number of non-dominated
solutions grows rapidly and exponentially with the number of objectives [DS06].
This complicates the search procedure and the decision making, thereby adversely
affecting the computational tractability of MOEA methods. Moreover, the visu-
alization and the analysis of a large-dimensional Pareto front is a tedious task.
In fact, it would be very hard for designers to analyze a large number of solutions
in order to choose the most suitable one.

Interactions arising between objectives (performance criteria) are either a conflict
or a support relation. Two objectives that support each other are called redun-
dant objectives. An objective is identified as redundant when the Pareto front
remains the same even if this objective is omitted from the original set of objec-
tives [GH99]. When solving a MOO problem, it would be pointless to consider
redundant objectives as this will raise the problem dimension (i.e. increasing the
complexity) without any impact on the search results.

In our problem, it is not intuitively obvious to predict the relationship between
the potential set of objectives. Thus, we propose to empirically study of the
relationship between three pairs of objectives among those considered in our
work.

Study of the impact of the initial design choice on the performance of the DSE
process

This empirical study aims at analyzing how the choice of the initial solution to
start the search procedure influences the DSE process performance. Indeed, the
manner in which the initial solution is formed may bias the search in favor of a
particular objective.

We propose two initial solution alternatives. The first alternative is called 1-1
assignment solution as it assigns each function to one task. This solution is quite
simple to make and it is biased towards the laxity objective.

The second initial solution alternative is built by a method that assigns functions
to tasks while taking into account dependencies between functions. This method

–71–

Chapter 3. Work Orientation and Related Work

allows to produce a more compacted (i.e. with less tasks) design solution with re-
gards to the 1-1 assignment solution. The second alternative (called preprocessed
initial solution) favors the blocking-time objective. Unlike the first alternative,
the construction of the second initial solution alternative requires an extra com-
putational effort. Experiments are performed in order to compare Pareto fronts
obtained by the DSE process with each of these two initial solutions.

Experiments results reveal that the performance of the DSE process (in terms
of accuracy/convergence) is improved with the preprocessed initial solution as
compared to the 1-1 assignment initial solution. However, they also show that
the efficiency of the method proposed to build the preprocessed initial solution
decreases when resources contention and system size increase.

3.5 Related work

In this section, we discuss related work around the mapping step and the archi-
tectural exploration during the design of RTE systems, which represent the key
concerns of this thesis.

In the following, Section 3.5.1 presents approaches addressing the mapping from
the functional level to the design level by assigning the system functions to the
RTOS tasks. Next, Section 3.5.2 reviews work that deal with multi-criteria design
space exploration.

3.5.1 Functions to tasks mapping approaches

In the literature, many approaches have been proposed to drive the mapping of a
functional specification into a specific platform, as part of RTE systems design.

The approach proposed in [SKW00] dealt with the automatic synthesis of a valid
multi-tasking design from the application model describing the system functional
aspects along with the end-to-end timing requirements. This approach has tar-
geted a uniprocessor architecture for the execution platform. The functional
model includes a set of actions interacting through synchronous and asynchronous
signals. Since functional models were expressed through an object-oriented mod-
eling formalism, actions are defined via objects where each object encapsulates a
set of actions. The proposed approach allows to automatically explore all valid
possible assignments of actions to tasks using a single-objective and exact op-
timization method, namely a branch and bound based search algorithm. Two
objectives are considered: minimization of task number and inter-task commu-
nication. This approach also checks the schedulability of design alternatives. In
order to simplify the implementation of the proposed method and enhance its
applicability, authors have suggested a number of restrictions on the assignment,

–72–

3.5. Related work

such as assigning all actions of the same object to the same task. In this work,
tasks are assumed to be executed in a non-preemptive manner. However, this
implies a potentially significant blocking-time.

In [BLDN05], authors developed heuristic algorithms that generate the architec-
tural model from a dataflow functional model with timing properties. In this
work, the functional model is composed of a set of functions interacting by the
exchange of asynchronous events as well as shared resources. The main objec-
tive of this work is to automate the mapping while finding a trade-off between
the two extreme mapping solutions, namely: the 1-1 assignment solution and
the single-task solution. A set of rules was proposed to guide the heuristic to
assign functions onto tasks, e.g. an entire data-flow is assigned to exactly one
task, etc. Authors of this work assumed a uniprocessor execution platform and a
dynamic priority assignment strategy according to EDF algorithm. Nevertheless,
the EDF algorithm is difficult to implement and it is not compatible with require-
ments of hard real-time systems like Ravenscar compliant systems. In addition,
the scheduling analysis is achieved independently of the mapping step, i.e. after
the generation of the task set. Yet, this limits the proposed approach from explor-
ing other assignment alternatives when the produced task set is not schedulable.
Besides, this approach investigates a unique design alternative, which means that
design space exploration is not taken into consideration.

Authors of [WS06] have presented a task-construction approach. This approach
automates the construction of a schedulable task set from a model implementing
the functions of the system with end-to-end timing constraints. The model con-
sidered in this work consists of a set of communicating components, where each
component executes a set of functions in a non-preemptive manner. Components
are iteratively merged into tasks according to their period. Once components
are merged, a branch and bound method is adopted in order to determine the
component sequence within each task. The proposed approach intends to satisfy
the precedence relationships between components and their timing constraints
while minimizing the number of tasks (which, in turn, minimizes runtime over-
heads). This approach manipulates coarse-grained components rather than func-
tions, which restricts functions within one component to be assigned onto the
same task. Furthermore, again, a unique assignment alternative is investigated.

In [LW08], authors have considered the same model adopted in [WS06]. Their
goal is also to automatically generate a task set from a component model so as
to meet the precedence relationships between components and the timing con-
straints. An algorithm was proposed to create the task set. It is based on a set
of rules, such as each component is assigned to a exactly one task and if two
components have a precedence relationship, then they are assigned to the same
task. This work is very close to [BLDN05] and also considers EDF as priority
assignment strategy. As in [BLDN05], the scheduling analysis is performed only
after the generation of the task set.

–73–

Chapter 3. Work Orientation and Related Work

Authors of [PFB+11] provided a framework for the integration and the develop-
ment of RTE systems. With this framework, designers write a functional specifi-
cation with dependency constraints using the Prelude language. From this model,
the proposed framework allows to generate a set of real-time tasks that can be
executed on a uniprocessor architecture. Authors proved that the generated im-
plementation enforces the system behavior as well as timing constraints described
in the functional specification. Nevertheless, in this work, functions are assigned
to tasks according to a 1-1 assignment strategy. This assignment strategy induces
a large number of tasks that in turn (a) can cause excessive scheduler overhead
due to context switching (b) and may exceed the maximum number of tasks sup-
ported by the target RTOS. Again, this work does not investigate design space
exploration.

Furthermore, a MARTE-based methodology was proposed in [MTPG11], en-
abling scheduling analysis at early stages of the software life cycle. It allows de-
signers to generate, from a functional specification expressed with UML MARTE,
a design model compliant with the functional specification timing requirements.
The exploration of the design space towards the optimization of performance
criteria is out of scope of this work also.

In the context of distributed AUTOSAR systems, authors of [MNBSL12] have
proposed two heuristics for assigning runnables to a multi-core ECU architecture.
The first heuristic deals with the mapping of runnables to cores taking into ac-
count inter-runnable dependencies and locality constraints while optimizing the
core load. For systems where most of the runnables are dependent, the strategy
used to assign runnables to cores may result in assigning most of them to one
core. The second heuristic allows to build the sequencing of the runnable entities
of each core using one task per core. Again, a unique feasible design is evalu-
ated. Accordingly, both the exploration of several feasible alternatives and the
optimization of multiple performance criteria are not taken into account.

Mapping AUTOSAR runnables on tasks was also addressed in [LLP+09]. This
work aims at finding the mapping solution that reduces both context switching
overhead induced by a high number of tasks and communication cost. To do so,
the authors have provided a set of rules for guiding the mapping of runnables to
tasks. When applied on a given application, these rules result in many mapping
alternatives. In order to select the most suitable mapping solution, the authors
have proposed an equation for evaluating the performance of a given mapping
solution. However, this equation does not consider timing properties. Moreover,
the context switching overhead is simply expressed by the number of tasks. In
addition, the verification of timing constraints of mapping solutions is not con-
sidered in this work. Finally, this approach does not provide any process for
exploring the space of possible mapping solutions.

–74–

3.5. Related work

Discussion

Table 3.1 highlights the different approaches described in this section according
to the following criteria:

• Assumptions: in order to identify the scope of application of the mapping
approach, we give here assumptions regarding the dependencies between
tasks, the scheduling policy and the execution platform architecture.

• Scheduling analysis: it is important for a mapping approach to generate
a schedulable solution. In this case, the mapping step is accompanied by
a scheduling analysis procedure (this case is marked by “3”). Otherwise,
the scheduling analysis is either performed independently of the mapping
(this case is marked by “∼”), or not considered in the approach (this case
is marked by “5”).

• Optimization: this criterion points out whether the mapping approach en-
tails optimization objective(s), and if so, what are these objectives and
which optimization technique was adopted. The cross (“5”) means that no
optimization was considered by the approach.

• Design space exploration: this criterion identifies whether the mapping ap-
proach involves a design space exploration process by which several mapping
solutions are evaluated. The cross (“5”) means that no DSE process was
provided by the approach and only one mapping alternative is investigated.

• Mapping rules: used to drive the mapping of functions to tasks.

Based on the previous study on existing mapping approaches, we note that al-
though these approaches present some positive points, however, some of them
have certain limitations. The major open limitations are as follows:

– For some approaches (e.g. [LW08, BLDN05]), the scheduling analysis is
performed independently of the mapping;

– The exploration of several feasible alternatives is not addressed in the ma-
jority of these approaches (except [SKW00]);

– The consideration of multiple performance criteria to be optimized during
the mapping is also not addressed;

– Some approaches impose restrictive functions-to-tasks assignment rules,
like: one function is assigned to one task (e.g [PFB+11]), or one dataflow
is assigned to one task (e.g [BLDN05, MTPG11]), or functions with same
period are assigned to the same task (e.g [WS06]), etc;

– The scheduling policy assumed in some work (e.g. [SKW00, LW08, BLDN05])
is not compliant with requirements of critical RTE systems, such as the dy-
namic priority assignment, or the non-preemptive execution mode.

–75–

Chapter 3. Work Orientation and Related Work

– Some approaches (e.g. [SKW00, WS06]) manipulate coarse-grained compo-
nents rather than functions, which restricts the number of possible map-
pings.

Unlike the studied approaches, in this thesis, we propose to automatically explore
various design alternatives in terms of functions to tasks assignment solutions. We
perform scheduling analysis on each design alternative and those that meet the
timing constraints are evaluated with regard to a set of conflicting performance
criteria (e.g. #preemptions, task laxities, blocking-time of tasks, etc.), to finally
select the best trade-offs. Furthermore, we explore design alternatives through a
clustering technique that allows the assignment of more than one function to the
same task according to a set of rules, which helps to limit the number of tasks.
Thanks to the multi-objective aspect provided by our approach, the number of
tasks in produced designs (i.e. the design Pareto set) is balanced through the
two conflicting objectives, namely (i) the minimization of preemptions that is
enhanced when more functions are assigned to one task and (ii) the maximization
of task laxities that could be improved with fine-grained assignment. Moreover, in
our approach, the assignment of functions to tasks is based on harmonic periods
(rather than similar periods).

–76–

3.5. Related work

T
a
b
l
e
3
.1
:

F
u

n
ct

io
n

s
to

ta
sk

s
m

a
p

p
in

g
a
p

p
ro

a
ch

es

A
ss

u
m

p
ti

on
s

S
ch

ed
u
li
n
g

an
al

y
si

s
O

p
ti

m
iz

at
io

n
D

es
ig

n
sp

ac
e

ex
p
lo

ra
ti

on
M

a
p
p
in

g

ru
le

s
ta

sk
d
ep

en
d
en

ci
es

sc
h
ed

u
li
n
g

p
ol

ic
y

p
la

tf
or

m
te

ch
n
iq

u
e

o
b

je
ct

iv
e(

s)

M
on

ot
et

al
.

[M
N

B
S
L

12
]

in
d
ep

en
d
en

t
ta

sk
s

-p
re

em
p
ti

ve

-fi
x
ed

p
ri

or
it

y
m

u
lt

ip
ro

ce
ss

or
3

h
eu

ri
st

ic

al
go

ri
th

m
s

M
in

(c
or

es
lo

ad
)

5

-l
o
ca

li
ty

co
n
st

ra
in

t

-c
or

es
lo

ad

P
ag

et
ti

et
al

.
[P

F
B

+
11

]

p
re

ce
d
en

ce

co
n
st

ra
in

ts

-p
re

em
p
ti

ve

-fi
x
ed

or

d
y
n
am

ic
p
ri

or
it

y

u
n
ip

ro
ce

ss
or

3
5

5
5

a
fu

n
ct

io
n

=
a

ta
sk

M
ra

id
h
a

et
al

.
[M

T
P

G
11

]

sh
ar

ed

re
so

u
rc

es

-p
re

em
p
ti

ve

-fi
x
ed

or

d
y
n
am

ic
p
ri

or
it

y

m
u
lt

ip
ro

ce
ss

or
3

5
5

5
a
n

en
ti

re
d
a
ta

fl
ow

=
a

ta
sk

L
on

g
et

al
.

[L
L

P
+

09
]

sh
ar

ed
d
at

a
n
ot

m
en

ti
on

ed
u
n
ip

ro
ce

ss
or

5
5

M
in

(#
ta

sk
s)

5
se

t
of

ru
le

s

L
i

et
al

.
[L

W
08

]

p
re

ce
d
en

ce

co
n
st

ra
in

ts

-p
re

em
p
ti

ve

-fi
x
ed

or

d
y
n
am

ic
p
ri

or
it

y

u
n
ip

ro
ce

ss
or

∼
5

5
5

se
t

of
ru

le
s

W
an

g
et

al
.

[W
S
06

]

p
re

ce
d
en

ce

co
n
st

ra
in

ts
n
o

as
su

m
p
ti

on
s

m
u
lt

ip
ro

ce
ss

or
3

b
ra

n
ch

an
d

b
ou

n
d

M
in

(#
ta

sk
s)

5
si

m
u
la

r
p

er
io

d

B
ar

to
li
n
i

et
al

.
[B

L
D

N
05

]

-p
re

ce
d
en

ce

co
n
st

ra
in

ts

-s
h
ar

ed

re
so

u
rc

es

-p
re

em
p
ti

ve

-d
y
n
am

ic
p
ri

or
it

y
u
n
ip

ro
ce

ss
or

∼
h
eu

ri
st

ic

al
go

ri
th

m
s

M
in

(#
ta

sk
s)

5
se

t
of

ru
le

s

S
ak

se
n
a

et
al

.
[S

K
W

00
]

sh
ar

ed

re
so

u
rc

es

-n
on

-p
re

em
p
ti

ve

-fi
x
ed

p
ri

or
it

y
u
n
ip

ro
ce

ss
or

3
b
ra

n
ch

an
d

b
ou

n
d

-M
in

(#
ta

sk
s)

-M
in

(c
om

m
u
n
i-

ca
ti

on
co

st
s)

3
se

t
of

ru
le

s

–77–

Chapter 3. Work Orientation and Related Work

3.5.2 Multi-criteria design space exploration approaches

In the literature, several research work were interested in exploring a design
space composed of architecture alternatives regarding multiple criteria by means
of optimization techniques. These work provide different DSE approaches that
allow to formalize different design alternatives, search the space of design alter-
natives, analyse these alternatives regarding non-functional constraints, evaluate
them with respect to multiple performance criteria, and extract optimal (or near
optimal) architecture alternatives.

One category of these DSE approaches focus on the mapping problem, obvi-
ously taking into account the scheduling analysis. In [AT15], authors proposed a
holistic framework for Distributed Integrated Modular Avionics (DIMA)2 archi-
tecture design and optimization. Different ways are used to explore the design
space ranging from function assignment, signal assignment and network defini-
tion to complete architecture generation. The problem is decomposed into eight
optimization routines that depend on each other. All optimization routines are
combinatorial MOOPs. They are formulated as binary linear programs and solved
using a mixed integer linear programming (MILP) tool. The authors identified a
set of constraints related to DIMA architectures requirements, to be verified dur-
ing the mapping. The considered optimization objectives are mass, ship-set-cost,
development cost, and operational interruption cost. The proposed framework
allows users to customize the verification and evaluation by adding constraints
and/or optimization objectives. The proposed approach has been extended in or-
der to enable the generation of Pareto optimal solutions rather than a single opti-
mum. To this end, authors have adopted a multi-objective integer programming
(MOIP) method, namely the Pareto front sampling technique [OBM14] (that is
an exact MOO method). However, such a method suffers from a time-consuming
process, and in the case of large Pareto front, it becomes impractical since it
could suffer from the combinatorial explosion.

In the context of AUTOSAR systems, several multi-criteria DSE approaches
[MWTP+13, WMM+13, SCCM15, MPAI16] have been proposed to deal with
the mapping problem (i.e. from the functional specification to the operational
design). Authors of [MWTP+13, WMM+13] presented a two steps approach
aiming at optimizing the runnables-to-tasks mapping with respect to a set of
optimization metrics such as end-to-end response time, memory consumption,
bus throughput, etc. In the first step, runnables/data signals are partitioned on
ECUs/buses. Afterwards runnables/data signals of each ECU/bus are assigned
to tasks/messages. The mapping problem is abstracted and resolved using two
different optimization strategies and techniques, namely (a) an exact strategy
using a MILP method and (b) a metaheuristic approach through a genetic algo-
rithm (GA) to cope with the scalability issue of the MILP-based exact method.

2Integrated Modular Avionics (IMA) are a standardization of avionics components.

–78–

3.5. Related work

In [SCCM15], the authors proposed a linear formulation of the mapping prob-
lem through a MILP optimization technique. Minimizing inter-core communi-
cation and balancing the core load are objectives considered for optimization.
Authors of [MPAI16] developed a simulated annealing approach for the mapping
of runnables with different criticality levels. This approach allows to determine a
mapping solution that minimizes the overall communication bandwidth and the
variance of the core utilization while the schedulability and the safety constraints
are met.

With the exception of [AT15], the previous described approaches [MWTP+13,
WMM+13, SCCM15, MPAI16] define multi-criteria design exploration methods.
To tackle the multi-objective optimization aspect of the mapping problem, these
approaches used single objective optimization techniques together with a unique
objective function defined as the sum of two or more weighted objectives. Accord-
ing to a specific objective weights configuration, such design exploration method
will result in a single design solution instead of a set of design alternatives that ex-
hibits different trade-offs between criteria. In order to perform an effective design
exploration, some of these work proposed to iterate the exploration while vary-
ing objectives weights. However, such exploration method could in some cases
miss interesting solutions that do not fit with any weights combination (solutions
known as unsupported solutions [CLVV07]). Contrary to these approaches, we
propose a multi-criteria design exploration method based on a dedicated MOO
metaheuristic technique (namely MOEA method) that produces a set of Pareto
solutions (representing the best trade-off among the considered objectives) in-
stead of a unique one. The optimization approach adopted in [AT15] theoretically
provides the optimal Pareto set, but suffers scalability limitations.

The second category of DSE approaches intend to provide generic degrees of
freedom in exploration and optimization. Generic degrees of freedom means that
the exploration of the design space could be achieved according to different ways
and not limited to the mapping of the functional specification into the execu-
tion platform. These approaches are based on MOO techniques, particularly
MOEAs. Authors of [KKR11] developed a framework called Peropteryx, using
the Palladio Component Model (PCM) [BKR09] to describe design alternatives.
This framework assists designers to approximate the Pareto set of design solu-
tions representing the best trade-offs regarding some conflicting criteria defined
on the basis of four main quality dimensions: cost, maintainability, reliability and
performance. The authors proposed to use a MOEA method (namely NSGA-II
technique [DPAM02]) combined with the so-called performance tactics. These
performance tactics are domain-specific rules that encode the expertise of design-
ers with well established design patterns. They are used to guide the exploration
procedure in order to enhance the optimization.

AQOSA [LEEC11] is another DSE framework that provides an automated DSE
process based on a set of MOEAs namely NSGA-II, SPEA2 [Zit01], and SMS-

–79–

Chapter 3. Work Orientation and Related Work

EMOA [BNE07]. Design alternatives are expressed in AADL [FG12]. AQOSA
supports multiple degrees of freedom, such as the assignment of software compo-
nents onto processors, architecture topology, hardware components replacement)
for automatically generating design alternatives. This framework also integrates
a set of performance analysis tools that allow to evaluate different objective func-
tions of a given design alternative. Objective functions to be optimized can
include communication overhead, resource (i.e. CPU and bus) utilization, re-
sponse time, etc. The optimization module is subject to certain constraints like
timing constraints and deployment constraints.

In [RBP15b, RBP15a], the authors proposed a method that explores architec-
ture alternatives for real-time embedded systems such that produced architec-
tures meet at best a set of conflicting non-functional properties (NFPs). In this
work, design alternatives are described in AADL and formalized using model
transformations. The latter are used to formalize in reusable artefacts the im-
plementation of design decisions (e.g. assignment of software components on
hardware components), design patterns (e.g. safety or security design patterns),
or model refinements (e.g. transformation steps towards the generation of the sys-
tem implementation). The DSE process is based on a MOEA method, namely
NSGA-II, which allows to explore the space of model transformation alterna-
tives and identify the best ones with respect to NFPs. The authors illustrated
their approach through a case study from the railway domain by addressing the
mapping problem. In this application example, they considered two optimization
objectives (the minimization of response time and the maximization of reliability)
while ensuring the respect of timing constraints.

All the above described generic DSE frameworks [KKR11, LEEC11, RBP15b],
operate on different models such as PCM, AQOSA-IR, AADL, etc. These frame-
works rely on standard variation operators (i.e. mutation and crossover oper-
ators). However, such standard operators may adversely affect the search pro-
cedure performance, and subsequently can hinder the DSE method to converge
towards the Pareto optimal front. In contrary, we define a customized mutation
operator in accordance with characteristics of the addressed functions-to-tasks
assignment DSE problem. In addition, all these frameworks adopted population-
based MOEAs that are time and memory consuming especially for MOOPs in-
volving computationally expensive objective functions evaluation or constraints
verification like the problem addressed in this thesis. For that, we have chosen
PAES as MOEA since it manages a single solution at each iteration.

Synthesis

In this section, we described and studied different multi-criteria DSE approaches.
We noticed that these approaches vary in scope and concerns.

–80–

3.5. Related work

The first category of approaches deal with the mapping of the functional specifica-
tion into the execution platform. Some of these approaches [SCCM15, MWTP+13]
rely on single-objective exact optimization methods such as MILP or ILP solvers.
However, these solvers are known to be non-scalable as they can solve at rea-
sonable computational costs only small DSE problems. Furthermore, linear
programming methods (e.g. MILP and ILP) are not usable to solve problems
with non-linear objective functions [CWC+17] like the objective functions con-
sidered in this thesis. Other approaches [MPAI16, WMM+13] have adopted
single-objective metaheuristic optimization techniques such GA or simulated an-
nealing.

With the exception of [AT15], almost all the mentioned DSE approaches address-
ing the mapping of the functional specification into the execution platform used
single-objective optimization techniques (either exact or metaheuristic) combined
with the weighted sum technique in order to enable the optimization of multiple
objectives. The application of the weighted sum method requires to set manually
weights on all the objectives and combine them into a single objective function.
It is worth mentioning that the outcome of such a method is a single solution that
strongly depends on the selected weights. Thus, the identification of an optimal
solution requires to put different weights for each objective and perform several
experiments.

In [AT15], the authors used a multi-objective integer programming technique
that provide the exact Pareto front. However, this technique presents limitations
regarding scalability and support of non-linear problems.

Contrary to these approaches, we propose a multi-criteria DSE process based on
a dedicated MOO metaheuristic technique, particularly MOEA method. MOEA
methods are powerful random-based search techniques and well suited for solving
MOOPs with combinatorial complexity, large search spaces, non-linear functions
and multiple objectives.

The second category of approaches [RBP15b, KKR11, LEEC11] propose generic
multi-criteria DSE frameworks. These frameworks can be used to solve different
optimization problems with few customization efforts. These frameworks adopted
population-based MOEAs. Nevertheless, using a population of solutions is not
suited for MOOPs with computationally expensive evaluation and verification
procedures. This is due to the computational cost and memory associated to the
execution of each iteration [Deb08].

Unlike these frameworks, our DSE process is established on the basis of PAES
(details in Section 4.2.1). PAES is a MOEA solver [CWC+17] which uses a
straightforward evolutionary strategy (handling only one solution at each itera-
tion), thus contributing to reduce the overall computational cost.

Table 3.2 summarizes the different multi-criteria DSE approaches described in
this section. The approaches are highlighted according to the following criteria:

–81–

Chapter 3. Work Orientation and Related Work

• The execution platform considered by the DSE approach;

• The scheduling test used to verify design alternatives;

• The modeling language required by the DSE approach to describe the ap-
plication. The “-” mark means that no modeling language is required.

• The degree of freedom guiding the exploration procedure;

• The optimization technique adopted by the DSE approach, the objectives
to be optimized and the Pareto characteristic. The latter is used to in-
dicate if the approach generates a Pareto front either optimal (PF true) or
approximate (PF approx); otherwise it only produces a single design solution
(“5”).

–82–

3.5. Related work

T
a
b
l
e
3
.2
:

M
u

lt
i-

cr
it

er
ia

d
es

ig
n

sp
a
ce

ex
p

lo
ra

ti
o
n

a
n

d
o
p

ti
m

iz
a
ti

o
n

a
p

p
ro

a
ch

es

E
x
ec

u
ti

o
n

p
la

tf
o
rm

S
ch

ed
u

li
n

g
te

st

S
p

ec
ifi

c
m

o
d

el
in

g
la

n
g
u

a
g
e

D
eg

re
e

o
f

fr
ee

d
o
m

O
p

ti
m

iz
a
ti

o
n

te
ch

n
iq

u
e

o
b

je
ct

iv
es

P
a
re

to
fr

o
n
t

M
a
ti

cu
et

a
l.

[M
P

A
I1

6
]

m
u

lt
i-

co
re

E
C

U
s

p
ro

ce
ss

o
r

u
ti

li
za

ti
o
n

-
-r

u
n

n
a
b

le
a
ss

ig
n

m
en

t
-t

a
sk

a
ss

ig
n

m
en

t
si

m
u

la
te

d
a
n

-
n

ea
li
n

g
+

w
ei

g
h
te

d
su

m

-c
o
m

m
u

n
ic

a
ti

o
n

b
a
n

d
w

id
th

-c
o
re

u
ti

li
za

ti
o
n

5

A
n

n
ig

h
o
fe

r
et

a
l.

[A
T

1
5
]

D
IM

A
a
rc

h
it

ec
-

tu
re

n
o
t

m
en

-
ti

o
n

ed
-

8
d

eg
re

e
o
f

fr
ee

d
o
m

M
O

IP
-m

a
ss

-s
h

ip
se

t
co

st
-d

ev
el

o
p

m
en

t
co

st
P
F

tr
u
e

S
a
id

i
et

a
l.

[S
C

C
M

1
5
]

o
n

e
m

u
lt

i-
co

re
E

C
U

p
ro

ce
ss

o
r

u
ti

li
za

ti
o
n

-
-r

u
n

n
a
b

le
a
ss

ig
n

m
en

t
IL

P
+

w
ei

g
h
te

d
su

m

-i
n
te

r-
co

re
co

m
m

u
n

ic
a
ti

o
n

-c
o
re

lo
a
d

5

R
a
h

m
o
u

n
et

a
l.

[R
B

P
1
5
b

]
a
n
y

a
rc

h
it

ec
tu

re
R

T
A

A
A

D
L

g
en

er
ic

d
eg

re
e

o
f

fr
ee

d
o
m

m
et

a
-h

eu
ri

st
ic

(M
O

E
A

)

-r
es

p
o
n

se
ti

m
e

-r
el

ia
b

il
it

y
P
F

a
p
p
r
o
x

M
eh

ia
o
u

i
et

a
l.

[M
W

T
P
+

1
3
]

d
is

tr
ib

u
te

d
E

C
U

s
R

T
A

-
-r

u
n

n
a
b

le
a
ss

ig
n

m
en

t
-t

a
sk

a
ss

ig
n

m
en

t
M

IL
P

+
w

ei
g
h
te

d
su

m

-r
es

p
o
n

se
ti

m
e

-m
em

o
ry

5

W
o
zn

ia
k

et
a
l.

[W
M

M
+

1
3
]

d
is

tr
ib

u
te

d
E

C
U

s
R

T
A

E
A

S
T

-
A

D
L

2

-r
u

n
n

a
b

le
a
ss

ig
n

m
en

t
-t

a
sk

a
ss

ig
n

m
en

t
G

A
+

w
ei

g
h
te

d
su

m

-r
es

p
o
n

se
ti

m
e

-m
em

o
ry

5

k
o
zi

o
le

k
et

a
l.

[K
K

R
1
1
]

a
n
y

a
rc

h
it

ec
tu

re
5

P
C

M
g
en

er
ic

d
eg

re
e

o
f

fr
ee

d
o
m

m
et

a
-h

eu
ri

st
ic

(M
O

E
A

s)

-p
er

fo
rm

a
n

ce
-c

o
st

-r
el

ia
b

il
it

y
P
F

a
p
p
r
o
x

L
i

et
a
l.

[L
E

E
C

1
1
]

a
n
y

a
rc

h
it

ec
tu

re
si

m
u

la
ti

o
n

A
A

D
L

g
en

er
ic

d
eg

re
e

o
f

fr
ee

d
o
m

m
et

a
-h

eu
ri

st
ic

(M
O

E
A

)

-c
o
m

m
u

n
ic

a
ti

o
n

o
v
er

h
ea

d
-r

es
o
u

rc
e

u
ti

li
za

ti
o
n

-r
es

p
o
n

se
ti

m
e

P
F

a
p
p
r
o
x

–83–

Chapter 3. Work Orientation and Related Work

3.6 Conclusion

In this chapter we first identified the challenges addressed in this thesis. Then, we
exposed the assumptions of this work followed by our contributions. Afterwards,
we described and discussed related work addressing function-to-task mapping and
multi-criteria design space exploration. The next chapters provide functional and
technical details related to our contributions.

–84–

Part II

Contributions

–85–

4
Multi-Criteria Design Space Exploration

Process

Contents
4.1 Introduction . 88

4.2 Problem formulation using a MOEA approach 88

4.2.1 Pareto archived evolution strategy (PAES) 88

4.2.2 PAES adaptation for multi-criteria DSE process . . . 90

4.3 Exploration operators 91

4.3.1 Encoding of solutions 92

4.3.2 Initial design solution 93

4.3.3 Mutation operator . 96

4.3.4 Objective functions . 97

4.4 Formalization of design alternatives 100

4.4.1 One function assigned to one task 100

4.4.2 Several functions assigned to the same task 101

4.5 Design alternatives feasibility verification 108

4.5.1 Impact of the assignment method on the schedulability 108

4.5.2 Schedulability analysis of design alternatives 109

4.5.3 Functions-to-tasks assignment constraint 110

4.5.4 Feasibility checks algorithm 111

4.6 Conclusion . 112

–87–

Chapter 4. Multi-Criteria Design Space Exploration Process

4.1 Introduction

This chapter is devoted to present our multi-objective DSE process for RTE
systems. Particularly, we are interested in mapping the system functional speci-
fication towards an operational design while optimizing multiple objectives. Ob-
viously, all non-functional requirements regarding schedulability, consistency of
shared data and also consistency between the functional and the design levels
must be met. Functional and technical details related to the proposed DSE pro-
cess are described in the remainder of this chapter.

Section 4.2 presents the adopted MOEA technique, namely PAES [KC00a], and
provides an overview of the proposed DSE process. Next, Section 4.3 highlights
the PAES underlying components designed and customized according to the ad-
dressed DSE mapping problem. Such a MOEA approach needs a specific for-
malization of candidate design solutions to enable their fitness evaluation and
feasibility analysis. For such a purpose, we define a set of rules enabling the for-
malization of design alternatives by identifying task set and resource set (in terms
of composition and timing parameters) from their chromosomal representation.
These rules are provided in Section 4.4. Afterwards, Section 4.5 discusses the
impact of our functions-to-tasks assignment method on design solutions feasibil-
ity (regarding schedulability and compliance with functions to tasks assignment
requirements) and describes how to check the feasibility of design alternatives.
Finally, Section 4.6 concludes the chapter.

4.2 Problem formulation using a MOEA approach

In this section, we first introduce the Pareto archived evolution strategy (PAES)
MOEA technique used to establish the DSE process. Then we present an overview
of the different steps composing the proposed DSE process.

4.2.1 Pareto archived evolution strategy (PAES)

The Pareto Archived Evolution Strategy (PAES) [KC00a] is a MOEA technique
using archiving. It serves to find a set of solutions properly distributed over the
whole spectrum of possible trade-offs between objectives, which allows us to make
the design exploration. The sequential PAES schema is outlined in the pseudo
code of Algorithm 2.

PAES is based on a simple (1+1) evolution strategy instead of a population-based
approach as the most part of existing MOEAs (e.g. NSGA-II, SPEA2, etc.).
It has been suggested that PAES may outperform population-based methods,

–88–

4.2. Problem formulation using a MOEA approach

Algorithm 2: General form of PAES Algorithm

1 begin
2 Generate initial random solution c
3 Evaluate c and add it to the archive
4 repeat
5 Mutate c to produce a new candidate solution m;
6 Evaluate m;
7 if (c dominates m) then
8 Discard m;
9 else if (m dominates c) then

10 Replace c with m;
11 Add m to the archive;
12 Remove from the archive solutions dominated by m;

13 else if (m is dominated by any member of the archive) then
14 Discard m;
15 else
16 Apply test (c,m,archive) to determine which becomes the new

current solution and whether to add m to the archive;
17 end if

18 until (termination condition is satisfied);

19 end

mainly for MOOPs with computationally expensive objective functions and/or
constraints [COA11]. The (1+1) evolution strategy means that PAES maintains
a single current solution (parent), and at each iteration, it generates a single new
candidate (offspring) through a random mutation operator (line 5, Algorithm 2).
The conceptual approach of PAES is confined to a local search, i.e. it performs
only a small change through the mutation operator that moves from a current
solution to a nearby neighbour. The candidate solutions are evaluated (line 6,
Algorithm 2) according to a set of objective functions and compared using the
Pareto dominance concept.

One of the key mechanisms in PAES is the maintenance of an archive of non-
dominated solutions. This archive is used as reference set with respect to which
each new candidate is being compared (lines 11-12, Algorithm 2). In order to
foster the diversity aspect and maintain a limited archive size, PAES uses a
crowding method based on the division of objective space into an adaptive grid.
The latter allow to keep track of the degree of crowding in different regions of
the solution space. When a new solution is generated, its grid location in the
objective space is determined by a recursive subdivision [KC99]. The number of
solutions currently residing in each grid location is also maintained in order to
make decisions in the selection and in the archiving procedure when a location is

–89–

Chapter 4. Multi-Criteria Design Space Exploration Process

too crowded [LNA06].

PAES starts with a randomly initialized solution, which is evaluated and added
to the archive and becomes the current solution (lines 1-2, Algorithm 2). At each
iteration, the current solution is replaced by its mutated offspring if and only if
the latter dominates or is in a less crowded region than its parent. Otherwise,
the next iteration is realized keeping the same current solution as a basis for
mutation.

A candidate solution m is put into the archive if (i) the archive is not full, (ii) m
dominates another solution in the archive, or (iii) the archive is full but m is in
a less crowded region than at least one other solution in the archive (in this case
this other solution will be replaced by m).

The algorithm iterates (lines 4-18, Algorithm 2) until a termination condition
will be satisfied. The termination condition can be defined regarding a certain
goal quality (e.g. some convergence criteria of the objective function values) or
based onto a finite number of iterations. The time complexity of PAES is in the
order of O(a · n), where a is the archive size and n is the number of iterations.

4.2.2 PAES adaptation for multi-criteria DSE process

As described in Figure 4.1, the entry point of our approach is the functional
specification of the RTE system to be designed. This specification defines the
functions of the system, their interactions and their real-time characteristics.

From this specification, an initial design alternative is proposed such as the 1-1
assignment solution, i.e. each function is assigned to a single task. A scheduling
analysis is achieved on the initial design solution. If the initial task set is schedu-
lable then it will be considered as the initial solution to the PAES algorithm.
Otherwise, the timing parameters of the functions must be adapted.

Once the initial solution is defined, we come to the multi-objective DSE process
using PAES as MOEA.

At each iteration, an alternative design solution is generated from the current
solution by changing the assignment of a random function to a pseudo-random
task through the mutation operator (¬ in Figure 4.1). Feasibility checks are
performed on each candidate solution in order to produce designs that fulfil the
timing constraints and the functions to tasks assignment constraint (details and
algorithm are given in Section 4.5 of this chapter). This candidate design is then
evaluated according to the considered objective functions ­. Subsequently, other
PAES steps are performed namely the comparison and ranking of solutions, then
the update of the archive of non-dominated design solutions ®. At the end of
each iteration, a design solution is selected as a current solution for the next
iteration ¯.

–90–

4.3. Exploration operators

Functional specification

Assigning each function to a task
F1 F2 Fn

Initial design
τ1

F1 F2

τ2
… … Fn

τn
Generate the initial design solution

R1 R2 Rm

…

R1 R2 Rm

…

Is it feasible ?

Is it
schedulable?

 Yes

 No

Is #iterations
reached?

A
u

to
m

a
ti

c
M

u
lt

i-
o

b
je

ct
iv

e
 D

S
E

 p
ro

ce
ss

Candidate design
alternative

Changing the assignment of
functions to tasks to generate a
new alternative design

Mutate the current design
1

 Scheduling constraints
 Functions-To-Tasks

assignment constraints

Check feasibility of the
candidate design

alternative
 No

 Yes

archive of
non-dominated
design solutions

Compare-rank design
solutions and update

the archive

3

Final archive of
non-dominated

design alternatives

 YesCurrent design
alternative

Select next current
design

4
 No

according to the set of objectives

Evaluate fitness of the
candidate design alternative

2

Figure 4.1: Proposed DSE process overview

The four steps are iterated until the termination condition of PAES is reached. In
our work, we adopt a simple stopping criterion based on the number of iterations
(i.e the algorithm stops when reaching a maximum number of iterations). The
output of our method is a set of feasible design alternatives that approximates
the optimal-Pareto set. From these solutions, software engineers would choose
the suitable design.

4.3 Exploration operators

In this section, we present the key PAES components in terms of solutions data
structure, initial solution, mutation operator and objective functions. These com-
ponents are configured according to the functions-to-tasks assignment problem.

–91–

Chapter 4. Multi-Criteria Design Space Exploration Process

4.3.1 Encoding of solutions

The first step in the formulation of the MOEA technique (i.e. PAES) is to decide
on an encoding scheme [HCFDC09]. This identifies the form of the chromosomal
representation in which the design solutions will be manipulated.

In the literature, various kind of encoding scheme were defined such as binary
encoding, real number encoding, integer encoding, etc. In the formulation of our
problem, we adopt an integer encoding scheme, since authors of [GC97] showed
that such an encoding is well suited for combinatorial problems. According to the
integer encoding, a chromosome is defined as an integer vector with n positions.
In our problem, n represents the number of functions in the functional specifica-
tion. A chromosome exhibits information about the assignment of functions to
tasks. Each position in the chromosome, called gene, is associated to a particular
function, i.e. the ith gene corresponds to the ith function. The value held by a gene
represents the index of the task to which the corresponding function is assigned.
Therefore, a chromosome represents a solution formed by k tasks (k ≤ n), where
each gene has a value in {1, 2, ..., k}. This means that each function is assigned
to one of the tasks {τ1, τ2, ..., τk}.

2 3 3 42412

τ1 τ3τ2 τ5τ4 τ6 τ8τ7

chromosome

2 3 3 42412
F1 F3F2 F6 F8F7

chromosome

τ2

F1

τ3τ1

F3

F7

F2 F6F4

τ4

F5 F8

The corresponding task set

F5F4

Figure 4.2: Chromosome representation of a particular functions to tasks assignment
solution S

Figure 4.2 shows an example of a chromosome that corresponds to a particular
functions to tasks assignment solution S. The chromosome length indicates the
number of functions. In this example, the functional specification consists of 8
functions. Gene F1 holds a value equal to 2, which means that the function F1 is
assigned to the task of index 2 (τ2). The solution formulated by this chromosome
assigns F4 to τ1; F1, F3 and F7 to τ2; F2 and F6 to τ3; F5 and F8 to τ4.

The used integer encoding is quite simple, however, it is redundant [HCFDC09],
which means that the same solution can be represented by different chromosomes.
For example the solution S encoded by the chromosome depicted in Figure 4.2 can
also be represented by other chromosomes, namely [1 2 1 3 4 2 1 4], [3 1 3 2 4 1 3 4],
[2 4 2 3 1 4 2 1], etc. In other words, a solution may be represented by many chro-

–92–

4.3. Exploration operators

mosomes that model the same assignment solution independently of the indexes
of tasks.

Normalization of the chromosomal representation

In order to reduce all of the equivalent assignment solutions to the same chromo-
some representation, we propose to normalize the chromosome representation.
This is performed as follows: the index of the task to which the function F1 is
assigned, is always 1 (this means that the value held by the 1st gene that is asso-
ciated to the function F1 in the chromosome, is always 1). Consequently, values
of genes associated to functions that belong to the same task as F1, are set to 1.
The value of the 2nd gene associated to F2 is set to 2, except if F2 is assigned to
the same task with F1, then all genes are set in the same way. Figure 4.3 depicts
the normalized chromosome representation of the same assignment solution S
given in Figure 4.2.

1 2 2 41431

F1 F3F2 F4 F6 F8F7

chromosome

τ1

F1

τ2 τ3

F3

F7

F2 F6 F4

τ4

F5 F8

The corresponding task set

F5

Figure 4.3: The normalized chromosome representation of the assignment solution S

The normalization procedure ensures a unique chromosomal representation of a
given functions to tasks assignment solution. Using the normalization increases
the speed of convergence and improves the quality of solutions [MJH13]. Thus,
it is applied on each chromosome associated to a candidate solution manipulated
by the algorithm.

4.3.2 Initial design solution

PAES needs an initial solution to start the search procedure. We investigate two
ways to generate this initial solution: the first way is quite simple and it promotes
the laxity objective whereas the second one is more sophisticated (i.e. requires a
preprocessing) and it fosters the blocking time objective.

–93–

Chapter 4. Multi-Criteria Design Space Exploration Process

One function per task assignment initial solution (called 1-1 assignment so-
lution)

It consists in assigning each function to a single task, i.e., the number of tasks is
equal to the number of functions.

chrom = [1 2 3 4 .. n] (n : number of functions).

Tasks laxities increase with the granularity of the functions to tasks assignment.
This means that the 1-1 assignment solution provides the best overall system
laxity thereby favoring the laxity objective.

Preprocessed initial solution oriented towards blocking-time objective

When considering the 1-1 assignment solution as initial solution, the latter is
biased only towards laxity objective. In the case of systems with shared resources,
this initial solution may be pessimistic regarding the blocking time criterion. A
preprocessing of the initial solution is performed at baseline (i.e. before running
the design exploration process using PAES) in order to promote the blocking
time objective function of the initial solution. To do so, we develop an heuristic
(Algorithm 3) that tries to gather dependent functions within the same tasks as
much as possible.

This heuristic takes into account some functions to tasks assignment constraints
defined in Section 4.4 and Section 4.5 (such as harmonic period assignment con-
straint, or task capacity/deadline constraint) to prevent as much as possible the
generation of an infeasible solution. After delivering a first possible initial so-
lution, feasibility checks are carried out on it by applying Algorithm 6. In the
light of the feasibility checks result, we decide whether to accept it or not. In the
case of an infeasible solution, we try to derive from it another feasible solution
by applying our mutation operator (Algorithm 4).

–94–

4.3. Exploration operators

Algorithm 3: Preprocessing for the generation of the initial solution
input : Functional specification (a set of functions that use a set of resources)
output: Preprocessed initial solution

1 begin
/* Resources are sorted in decreasing order of number of
functions that use resources. */

2 Determine Res the set of resources in the functional specification, sorted in
decreasing order of use (i.e. by the number of functions using each resource);
/* By looking at sorted resources one by one, functions
that use the same resource are assigned to the same task
wherever possible. */

3 foreach resource Ri in the resource set Res do
4 Determine Funct the set of functions that use Ri and are not yet assigned

to tasks;
/* Following functions-to-tasks assignment constraints
and particularly harmonic period assignment constraint,
only harmonic functions are assigned to the same task */

5 Sort Funct in increasing order of function periods;
6 foreach function Fk in the function set Funct do
7 if (Fk is not assigned to a task) then
8 Determine Harmonic set the set of functions in Funct (other

than Fk) that are not yet assigned to tasks and harmonic with Fk;
9 if (Harmonic set is not empty) then

/* The task capacity must be less than its
deadline */

10 Assign Fk with functions in Harmonic set to the same task
while ensuring that the task capacity does not exceed its
deadline;

11 end if

12 end if

13 end foreach

14 end foreach
/* Some functions may not be assigned to tasks. These
functions are either functions that do not use resources or
those that use resources but not assigned to tasks due to
constraints imposed on the assignment of functions to
tasks. We assign each of them to a task. */

15 Assign to a new task, each function not yet assigned;
/* once a candidate initial solution (S1) is produced, we
check its feasibility (Algorithm 6) to decide whether to
accept or rearrange it by applying the mutation operator
such that a feasible solution is generated. */

16 Apply feasibility checks (Algorithm 6) on the design alternative relative to the
candidate initial solution S1;

17 if (S1 is feasible) then
18 return S1;
19 else

/* S1 is rearranged by mutation in order to produce a
feasible solution */

20 Apply the mutation operator (Algorithm 4) on S1;

21 end if

22 end

–95–

Chapter 4. Multi-Criteria Design Space Exploration Process

4.3.3 Mutation operator

Algorithm 4: Mutation operator for the functions-to-tasks assignment
problem

input : current solution (n functions assigned to k tasks (n ≥ k))
output: mutated solution

1 begin
2 repeat
3 Choose randomly a function Fi (1 ≤ i ≤ n); /* where Fi is

assigned to the task τj in the current solution */

4 Determine the set of harmonic tasks with the chosen function Fi called
Harmonic task set;

5 if (Harmonic task set = {τj}) then
/* i.e. Fi is not harmonic with any task, only the

task to which it is assigned */

6 Restart the algorithm with another function randomly chosen;

7 else
8 Choose randomly a task τm over tasks in the set

Harmonic task set (including τj = chrom[Fi]);
9 if (τm 6= τj) then

10 chrom[Fi] ← τm; /* Fi is moved to the task τm */

11 else if (the function Fi is not alone in τj) then
12 Create a new task τk+1;
13 chrom[Fi] ← τk+1; /* Fi is isolated in the new task

τk+1 */

14 else
/* i.e. Fi is the only function assigned to τj */

15 Restart the algorithm with another function chosen randomly;

16 end if

17 end if
/* once the mutated solution is generated, we apply the

assignment rules to generate the composition of the

design alternative in terms of tasks and shared

resources and their parameters */

18 Apply the assignment rules on the new candidate solution to generate
the corresponding design alternative;
/* Check the feasibility of the produced design

alternative by applying Algorithm 6 */

19 Apply feasibility checks (Algorithm 6) on the design alternative relative
to the mutated solution;

20 until (A feasible solution is found) or (a maximum number of attempts is
reached);

21 end

Instead of applying standard mutation operators that may not be fully suitable

–96–

4.3. Exploration operators

to our problem, we propose a customized mutation operator (Algorithm 4). This
mutation operator is designed based on characteristics of the addressed functions-
to-tasks assignment problem. It chooses a random position in the chromosome
and changes the value of the associated gene to a new pseudo-random value.
The mutation produces a new alternative assignment solution from the current
solution by reassigning one random function Fi to a task randomly selected from
the set of harmonic tasks with Fi (lines 3-17 of Algorithm 4). Indeed, this re-
striction is made in order to follow functions-to-tasks assignment rules defined
in Section 4.4. Furthermore, the mutation operator is implemented in order to
generate only feasible solutions that satisfy constraints verified by Algorithm 6
(Section 4.5).

The mutation operator algorithm iterates until finding a feasible solution or reach-
ing a maximum number of failed attempts. The latter condition is defined in order
to guarantee the termination of the algorithm (i.e. avoid infinite loop). When
we performed experiments to assess our proposals, we noted that our mutation
operator always succeeds in generating a mutated solution. This is explained by
the fact that in our DSE process, the current solution selected for mutation is al-
ways feasible. Accordingly, our mutation operator will be able to easily find from
the current solution a nearby feasible solution. Nevertheless, this is not always
the case with the preprocessed initial solution method (Algorithm 3) that calls
the mutation operator when it fails to generate a feasible solution. In fact, the
capability of the mutation operator to find a feasible solution from an infeasible
solution decreases when resources contention and system size increase.

4.3.4 Objective functions

Considering the system model that we assume and the functions-to-tasks assign-
ment problem, several design performance criteria can be defined as objective
functions to drive the multi-objective DSE process. Here, we list some possible
objective functions.

• Minimization of scheduling timing overheads: A high number of con-
text switches is one among scheduling factors that may introduce a significant
timing overhead to the overall execution time of a task set. This is due to the
fact that a context switch between two tasks implies the execution of several
processor instructions in order to store the context1 of the current running
task and retrieve the context of the task selected to be executed. The number
of context switches is closely related to the number of preemptions (since a
preemption causes a context switch). Thus in order to reduce the scheduling

1The context of a task consists of its memory context and its processor context, e.g. the
temporary register values, the program counter value, etc.

–97–

Chapter 4. Multi-Criteria Design Space Exploration Process

timing overheads, we can consider the minimization of either the preemption
number (objective function f1) or the context switch number (objective func-
tion f2). We denote these objective functions as follows:

minimize (f1 = # preemptions) (4.1)

minimize (f2 = # context switches) (4.2)

It is worth noting that these two objectives are not to be considered simul-
taneously to guide the design exploration process, because they are obviously
non-conflicting.

• Minimization of the number of tasks: The minimization of the number
of tasks may lead to the minimization of both timing and memory overhead.
Indeed, a large number of tasks is one of the factors inducing high number of
context switches and requires extra memory allocations for the task execution
stack. The objective function is denoted as follows:

minimize (f3 = # tasks) (4.3)

• Maximization of tasks laxities: The maximization of the tasks laxities may
improve the design flexibility, i.e. the larger the laxities of tasks are, the more
the design model could support additional tasks or possible changes of task
parameters. Remind that laxity is the maximum time a task can be delayed
on its activation to complete within its deadline (see Section 1.4.1).

We consider two examples of possible alternatives among many, as an objective
function for the tasks laxity metric:

(A) Maximize the overall laxity of the addressed application, that is the sum
of laxities over all resulting tasks.

maximize (
k∑
i=1

Li) (where k = #tasks)

(B) Maximize the minimum task laxity

maximize (mini∈[1..k]{Li})

In our experiments, we chose the alternative (A).

The PAES algorithm was designed to deal with only two kinds of problems,
either maximization problems (i.e. all objectives are to be maximized) or
minimization problems (i.e. all objectives are to be minimized). However,

–98–

4.3. Exploration operators

most of the objectives we consider are to be minimized except the laxity of
tasks objective which is for maximization. Thus, in order to harmonize the
objectives, we transform this objective to a minimization objective function.

As shown in Equation 4.4, we have arbitrarily chosen H (the hyperperiod of
the 1-1 assignment solution) as a constant from which the original objective
function will be subtracted. With such method, the minimization of the new
expression (f4) would result in the maximization of the current objective:

minimize (f4 = H −
k∑
i=1

Li) (4.4)

• Minimization of worst-case response time of tasks: In the context of
real-time systems, we have always an interest in minimizing the worst-case
response time of tasks. As for the tasks laxity, there are two possible examples
of objective function alternatives, either to minimize the overall worst-case
response time (objective function f5) or to minimize the maximum worst-case
response time (objective function f5

′).

minimize (f5 =
k∑
i=1

WCRTi) (4.5.1)

minimize (f5
′ = maxi∈[1..k]{WCRTi}) (4.5.2)

• Minimization of worst-case blocking time of tasks: The synchronization
of tasks to access shared resources causes latencies on the tasks execution
defined by the blocking-time attribute (see Section 1.4.3). The intent when
designing real-time applications is of course to minimize the worst case blocking
time of tasks. Again, we can distinguish two possible examples of objective
functions for the worst case blocking time metric. In the experiments, we will
consider the objective function f6.

minimize (f6 =
k∑
i=1

Bi) (4.6.1)

minimize (f6
′ = maxi∈[1..k]{Bi}) (4.6.2)

• Minimization of the number of shared resources: The minimization of
the number of shared resources allows the minimization of semaphores and
subsequently reduces both memory cost and computation time. We denote the
associated objective function as follows:

minimize (f7 = # shared resources) (4.7)

–99–

Chapter 4. Multi-Criteria Design Space Exploration Process

We note that not all the objectives combinations among the list given above, are
relevant since some pairs of objectives are obviously non-conflicting such as the
pairs (f1 i.e. number of preemptions, f2 i.e. number of context switches) or (f4

i.e. laxity of tasks , f5 i.e. WCRT of tasks). The objectives of each of these pairs
shall not be considered together (with or without other objectives) to guide the
design exploration process. Nevertheless, it is not intuitively obvious for us to
predict the relationship between pairs of the above objective function list. For
that, we choose three objectives, (f1, f4 and f6) and we devote Section 7.3.2 to
investigate through experiments the relationships (conflict or support) between
each pair of these objectives.

Most of the objective functions (e.g. f1, f2, f4, f5 and f6) are computed using
the Cheddar scheduling framework (see Section 6.3).

4.4 Formalization of design alternatives

In this section, we define the rules used to assign functions to tasks. It consists
in determining the parameters of tasks and resources referring to the timing
parameters of the functions and how functions are assigned to tasks.

4.4.1 One function assigned to one task

First, we consider the 1-1 assignment solution, where each function Fi is assigned
to one task τi that will take the same parameters as the corresponding function.

∀i ∈ {1..n} Fi = (γi, ζi, δi)

τi = (Ci, Ti, Di)


Ci = γi
Ti = ζi
Di = δi

Since each function is assigned to exactly one task, then the shared resources to
be taken into consideration in the 1-1 assignment design alternative are the same
that in the functional specification.

Similarly, critical sections CSk of each resource are deduced from ωk that spec-
ify parameters of the use of resources by functions. The only change is to set
(CSk)Task to the task that holds the function that uses the resource.

Let us consider a task τk = (Ck, Tk, Dk) implementing a single function Fi = (γi, ζi, δi).
Let us see also a classic implementation of a periodic task with Ada [MSH11].
The Listing 4.1 presents such an implementation for τk. The task is periodically
released thanks to the delay until statement and then, calls the Fi sub-program
to run the function implemented by the task.

–100–

4.4. Formalization of design alternatives

Listing 4.1: Classical implementation of a periodic task with Ada

1 with Ada.Real_Time; use Ada.Real_Time;
2 ...
3 task body Tau_k is
4 -- Next_Time used for periodic suspension
5 Next_Time : Time := Clock;
6 A_period : constant Time_Span := Milliseconds(Tk);
7 begin
8 loop
9 -- calling the function run by the task τk

10 Fi;
11 Next_Time := Next_Time + A_period;
12 -- Time-based activation event
13 delay until Next_Time;
14 end loop;
15 end Tau_k;

4.4.2 Several functions assigned to the same task

In this section, we investigate assignment alternatives when more than one func-
tion can be assigned to the same task. Indeed, the mutation operator allows us to
explore different design alternatives through reassignment of functions to tasks.
As described in the mutation algorithm 4, we cluster/separate functions to get a
new design alternative. This would involve changes in tasks parameters as well
as the resource set and critical sections. In the following, we deal with the way
to compute (1) the parameters of tasks and (2) the parameters of resources and
critical sections of an alternative assignment solution generated by mutation.

The generation of a new assignment solution alternative by mutation must pre-
serve:

(i) The functional specification in terms of periodic activations of the functions.

(ii) The schedulability of the system.

A) Tasks parameters computation

Hereafter, we explain and motivate our assignment method and how we compute,
from the function parameters, the parameters of each task, while taking into
account the constraints outlined above.

We consider the task τk previously defined in Section 4.4.1. We show how the
parameters of τk are set when it executes two functions Fi and Fj.

–101–

Chapter 4. Multi-Criteria Design Space Exploration Process

Computation of task period

We want to set a period for τk that releases the task as Fi and Fj should be
released. First, we assume that the function Fj can be added to τk if and only if

ζj mod Tk = 0 or Tk mod ζj = 0

This condition means that Fj can be assigned to τk if and only if the greater
period among ζj and Tk is divisible by the other. In this case, the function Fj is
called harmonic with the task τk. Considering this assumption, we can set the
period of τk as follows:

Tk = GCD(ζi, ζj) (4.8)

Where GCD is the Greatest Common Divisor of the periods of the functions Fi
and Fj.

A task may implement several functions. It is the case of task τk and we then
need to provide a specific implementation of such a task. It is given through
Listing 4.2. This implementation preserves the periodic behavior of the functions
assigned to the task. Indeed, the added lines (displayed in blue boldface) to
the implementation of the task ensure an internal scheduling of the functions
assigned to it according to their frequencies.

Listing 4.2: Ada implementation of the task τk containing two functions

1 with Ada.Real_Time; use Ada.Real_Time;
2 ...
3 task body Tau_k is
4 Next_Time : Time := Clock;
5 Number Functions : Integer := 2;
6 Period Functions : Integer Array (1..Number Functions) := (ζi, ζj);
7 Index Functions : Integer Array (1..Number Functions) := (i,j);
8 A_period : constant Time_Span := Milliseconds(GCD(Period Functions));
9 Counter : Integer := 0;

10 Frequency : Integer;
11 begin
12 loop
13 for i in 1 .. Number Functions loop
14 Frequency := Period Functions(i)/Period;
15 if (counter mod Frequency = 0) then
16 Call Function by index(Index Functions(i));
17 end if;
18 end loop;
19 -- LCM : Least Common Multiple
20 counter :=
21 (counter + 1) mod (LCM(Period Functions)/Period);
22 Next_Time := Next_Time + A_period;
23 delay until Next_Time;
24 end loop;
25 end Tau_k;

In order to illustrate the behavior at runtime of several functions assigned to
the same task (Listing 4.2), we consider the following example. We assume

–102–

4.4. Formalization of design alternatives

F1 = (2, 5, 5) and F2 = (1, 10, 10) assigned to a task τk.

According to Equation 4.8, the period of τk is equal to GCD(10, 5) = 5.

τk
5 10 15 20 25

F1

5 10 15 20 25

F2

5 10 15 20 25

Job of F1 Job of F2

0

0

0

Counter
Value

0 1 0 1 0 1

Behavior of F1 and F2 at the functional specification level

Behavior of F1 and F2 after assignment to the task τk

Figure 4.4: Behavior of functions F1 and F2 before and after assignment to the task τk

Figure 4.4 shows, first, the execution sequence of F1 and F2 at the functional
specification level. Second, it shows also the sequence of their execution after
assigning both functions to the same task τk. This example shows how the im-
plementation of Listing 4.2 as well as Equation 4.8 ensure periodic executions of
functions assigned to the same task.

Computation of task capacity

As shown in Figure 4.4, the execution time of a task τk implementing two func-
tions Fi and Fj differs from one period to another. However, we only consider the
worst execution time of both functions run by the task. Therefore, the capacity
of τk is set to the sum of the capacities of all functions assigned to this task:

Ck = γi + γj (4.9)

Obviously, this method to compute capacities is pessimistic and may reduce the
schedulability of the resulting design solution.

Computation of task deadline

As a first approach, the deadline Dk of a task τk holding functions Fi and Fj is
set as follows:

Dk = min(δi, δj) (4.10)

This proposition may restrict the task τk with a smaller deadline than required
by functions Fi and Fj. Again, it may reduce the schedulability of the associated
design.

–103–

Chapter 4. Multi-Criteria Design Space Exploration Process

By considering the assignment method described above, the constraint (i) men-
tioned at the beginning of this section is preserved. As we aim also to ensure the
constraint (ii), in Section 4.5.1, we discuss how the assignment may jeopardize
schedulability of the design alternative solutions.

B) Resources parameters computation

The mutation operator changes the assignment of functions to tasks which may
impact the parameters of the resource set and critical sections. In this section,
we address how to determine a resource set and critical sections parameters for
a design alternative relative to a mutated solution.

Algorithm 5 shows the different steps and cases we deal with to set parameters
of the resource set after mutation. This algorithm takes as input the assignment
solution generated by mutation as well as the 1-1 assignment solution that will
be used as reference for computing parameters.

To understand the different cases addressed in Algorithm 5, we illustrate them
through an example. The 1-1 assignment solution of this example is depicted
in Figure 4.5. It consists of 6 tasks and each one holds one function. In this
example, there are two shared resources R1 and R2.

F1(4,10,10)

R1 R2

Critical sections of resource R1: Critical sections resource R2:

F2(4,20,20) F3(4,40,40) F4(4,80,80) F5(1,120,120) F6(2,160,160)

Critical
section

Task Instants
Capacity/critical sectionbegin end

CS1
τ1

2 2

CS2
τ4

2 3

CS3 τ5
1 1

τ1 (4,10,10) τ2(4,20,20) τ3(4,40,40) τ4(4,80,80) τ5(1,120,120) τ6(2,160,160)

Critical
section

Task Instants
Capacity/critical sectionbegin end

CS1
τ2

3 4

CS2
τ4

1 3

CS3 τ5
1 1

Task C T D

τ1 ={F1} 4 10 10

τ2 ={F2} 4 20 20

τ3 ={F3} 4 40 40

τ4 ={F4} 4 80 80

τ5 ={F5} 1 120 120

τ6 ={F6} 2 160 160

CPU
utilization

77 %

Figure 4.5: 1-1 assignment solution model example: each function is assigned to one task

Supposing that the 1-1 assignment solution is given for mutation. In the new
assignment alternative (i.e. mutated solution generated from the 1-1 assignment

–104–

4.4. Formalization of design alternatives

Algorithm 5: Computation of resource set and critical sections of a
mutated solution

input : mutated solution, 1-1 assignment solution
1 • mutated solution: the assignment solution generated by mutation
2 • 1-1 assignment solution: each function is assigned to one task

output: resource set and critical sections relative to the mutated solution
3 begin
4 foreach resource Ri in the resource set of the 1-1 assignment solution do
5 foreach critical section CSj of the resource Ri in the 1-1 assignment

solution do
/* Let consider Fh the function that uses the

resource Ri on the critical section CSj in the

1-1 assignment solution */

6 Set the task that holds Ri on CSj with the task to which Fh is
assigned according to the mutated solution;

7 if in the mutated solution, the function Fh is grouped with other
functions in the same task then

/* The begin and end instants of CSj must be

updated according to capacities of functions with

lower indexes than Fh which are grouped with it in

the same task */

/* Let consider (Fl)l≤h the set of functions with

lower indexes than Fh and which are grouped with

it in the same task */

8 (CSj)begin ← (CSj)begin +
∑
γl;

9 (CSj)end ← (CSj)end +
∑
γl;

10 end if
/* Check consistency of resource set and critical

sections. We have to deal with two cases: */

/* Case 1: Check if in the mutated solution the

resource Ri is accessed by a single task, i.e. all

functions that use Ri are assigned to the same task

*/

11 if in the mutated solution, Ri is used by a single task then
12 Isolate Ri from the resource set of the associated design

alternative;
13 end if

/* Case 2: Check if in the mutated solution there

are two or more consecutive critical sections for the

same task */

14 if in the mutated solution, there are two or more consecutive
critical sections for the same task then

15 Merge these critical sections;
16 end if

17 end foreach

18 end foreach

19 end

–105–

Chapter 4. Multi-Criteria Design Space Exploration Process

solution), the function F4 is assigned together with the function F2 into the
task τ2 since F4 is harmonic with τ2 (ζ4 mod T2 = 80 mod 20 = 0). We apply
Algorithm 5 on this mutated solution and we get the resource set and critical
sections as shown in Figure 4.6. We can notice that the change of parameters of

F1(4,10,10)

R1 R2

Critical sections of resource R1: Critical sections resource R2:

F2(4,20,20) F3(4,40,40)

F4(4,80,80)

F5(1,120,120) F6(2,160,160)

τ1 (4,10,10) τ2(8,20,20) τ3(4,40,40) τ4(1,120,120) τ5(2,160,160)

F2 capacity F4 capacity

F2 capacity F4 capacity

Critical
section

Task Instants
Capacity/critical sectionbegin end

CS1
τ1

2 2

CS2
τ2

6 7

CS3 τ4
1 1

Critical
section

Task Instants
Capacity/critical sectionbegin end

CS1
τ2

3 7

CS2 τ4
1 1

CS1 and CS2 are consecutive and in the same task
They will be merged in the same critical section

Task C T D

τ1 ={F1} 4 10 10

τ2 ={F2, F4} 8 20 20

τ3 ={F3} 4 40 40

τ4 ={F5} 1 120 120

τ5 ={F6} 2 160 160

CPU
utilization

92%

Figure 4.6: A possible assignment solution: the resulting resource set and critical sections of
the mutated solution

CS2 of R1 is stemmed from rules defined in Algorithm 5: the task index changes
from τ4 to τ2 as F4 is reassigned to τ2 (line 6) and the begin/end instants are
changed taking into account the capacity of F2 (lines 8,9). We can also notice
that the task accessing R1 on CS3 is set to τ4 (instead of τ5 in the 1-1 assignment
solution before mutation) because in the mutated solution, the function F5 that
uses R1 on CS3 is assigned to the task τ4 (line 6).

Let us consider the resource R2. In the functional specification, the resource R2

is used by functions F2, F4 and F5. Then, in the 1-1 assignment solution, as we
can observe in Figure 4.5, the critical sections CS1 and CS2 of R2 are held by
τ2 and τ4 respectively. In the mutated solution (Figure 4.6) generated from the
1-1 assignment solution, the function F4 is assigned together with F2 into the
task τ2. The application of lines 6-9 of Algorithm 5 on this candidate solution
gives the following parameters for critical sections CS1 and CS2 of resource R2:

CS1


(CS1)Task = τ2

(CS1)begin = 3
(CS1)end = 4

CS2


(CS2)Task = τ2

(CS2)begin = 5
(CS2)end = 7

–106–

4.4. Formalization of design alternatives

We can notice that CS1 and CS2 are held by the same task τ2 and are consecutive
i.e. CS1 finishes at the 4th unit of time of the capacity of τ2 and CS2 begins at
the 5th unit of time of the capacity of τ2. Then, the rule defined at lines 14-16
of Algorithm 5 requires the merge of CS1 and CS2 in one critical section as
illustrated in Figure 4.6.

Now, we suppose that the solution displayed in Figure 4.6 is given for mutation.
In the produced mutated solution shown in Figure 4.7, the function F5 is assigned
together with the functions F2 and F4 to the task τ2 as F5 is harmonic with τ2.
Again, we apply Algorithm 5 on this mutated solution and we obtain the resource
set and critical sections as shown in Figure 4.7. We can observe that the resource
R2 is used only by task τ2. This means that the resource R2 does not need
protection, and thus contention to this resource does not need to be taken into
account during schedulability analysis. It is hence abstracted from the design
model relative to this mutated solution (lines 11-13).

F1(4,10,10)

R1 R2

Critical sections of resource R1: Critical sections resource R2:

F2(4,20,20) F3(4,40,40)
F4(4,80,80)

F5(1,120,120)

F6(2,160,160)

τ1 (4,10,10) τ2(9,20,20) τ3(4,40,40) τ4(2,160,160)

F2 capacity F4 capacity

F2 capacity F4 capacity

Critical
section

Task Instants
Capacity/critical sectionbegin end

CS1
τ1

2 2

CS2
τ2

6 7

CS3 τ2
9 9

Critical
section

Task Instants
Capacity/critical sectionbegin end

CS1
τ2

3 7

CS2 τ2 9 9

F2 capacity F4 capacity F5 capacity F2 capacity F4 capacity F5 capacity

Task C T D

τ1 ={F1} 4 10 10

τ2 ={F2, F4, F5} 9 20 20

τ3 ={F3} 4 40 40

τ4 ={F6} 2 160 160

CPU utilization 96%

Figure 4.7: Another possible assignment solution: the resulting resource set and critical
sections of the mutated solution

In the following section, we address the verification of the feasibility of design
alternatives.

–107–

Chapter 4. Multi-Criteria Design Space Exploration Process

4.5 Design alternatives feasibility verification

Feasibility checks are used to avoid the generation of non-feasible candidate solu-
tions after mutation. We distinguish two kinds of feasibility checks: schedulability
checks and functions-to-tasks assignment related checks. In the remainder of this
section, first we discuss the impact of the mutation and the assignment method
on the schedulability of a design alternative. Second, we explain the choice of the
schedulability analysis method adopted in our work. Then, we show how the mu-
tation and the assignment method may lead to unnecessary activations of some
tasks. Finally, we give the algorithm that checks all the constraints, allowing
thereby to decide about the feasibility of a given candidate solution generated by
mutation.

4.5.1 Impact of the assignment method on the schedulability

In Section 4.4, we proposed rules to manage the assignment of functions to tasks.
We noted that the assumptions made in the assignment method may produce un-
schedulable design alternatives. In order to illustrate that, we consider a simple
example of a functional model Γ = {F1(1, 5, 5), F2(3, 10, 10), F3(3, 20, 20)} with-
out shared resources. The initial assignment solution is given in Table 4.1. This
task set is schedulable since we assume RM for the priority assignment and its
processor utilization is equal to 65% (< 69%).

An assignment alternative is to add F3 to the task τ1 as F3 is harmonic with τ1.
The resulting task set will be as depicted in Table 4.2 and it is not schedulable
(its processor utilization is equal to 110%).

Table 4.1: Initial assignment solution

Task C T D
τ1 = {F1} 1 5 5
τ2 = {F2} 3 10 10
τ3 = {F3} 3 20 20

CPU utilization 65%

Table 4.2: A possible assignment
solution

Task C T D
τ1 = {F1, F3} 4 5 5
τ2 = {F2} 3 10 10

CPU utilization 110%

Since the mutation may generate non-schedulable candidate solutions, a schedu-
lability analysis must be conducted on each design alternative explored during
the search procedure. In the next section, we present the scheduling analysis
method adopted in order to verify the schedulability of design alternatives.

–108–

4.5. Design alternatives feasibility verification

4.5.2 Schedulability analysis of design alternatives

As we mentioned, design alternatives explored by mutation have to be verified
in terms of schedulability. The scheduling theory provides several scheduling
analysis methods. The choice of the scheduling analysis method depends on
assumptions on the target execution platform such as the scheduling policy, the
hardware architecture, the temporal characteristics of tasks, etc.

Previously in Section 1.5.2, we reviewed and studied most popular schedulability
tests that could be applied on systems under consideration, i.e. a set of syn-
chronous and periodic tasks independent or interacting through a set of shared
resources running on a uniprocessor architecture under a fixed priority and pre-
emptive scheduling policy (assumptions of work are given in Section 3.3.1). Con-
sidering this study, we opt for the scheduling simulation as schedulability test
for both independent task systems and systems with tasks sharing resources.
This choice is justified by the fact that the scheduling simulation is used in the
computation of some objective functions.

However, as previously mentioned in Section 1.5.2, given an online scheduler, the
simulation schedulability test is not sustainable with respect to execution time
in the context of dependent task systems such as tasks sharing resources. To im-
plement a design alternative, the proposition of Goossens et al. [GGCG16] that
consists in the use of an off-line scheduler has to be followed. Accordingly, for im-
plementing design alternatives, the scheduling sequence produced by simulation
during the DSE process will be executed infinitely by an off-line scheduler.

Nevertheless, it is possible to use another schedulability test when the compu-
tation of the considered objective functions does not require simulation of the
schedule. For example, the RTA test can be used in both contexts since it is
sustainable and its complexity is pseudo-polynomial.

We note that two obvious and necessary conditions for the schedulability of a
design alternative have to be checked before performing the scheduling simulation.
In other words, if these two conditions are not met by a given design alternative
then it is not schedulable and must be directly discarded without performing the
simulation. These conditions are expressed as follows:

1. Capacity/deadline constraint: the capacity of each task in the design alter-
native must be less than its deadline.

2. Processor utilization constraint: the overall processor utilization of the de-
sign alternative must be less than or equal 100 %.

–109–

Chapter 4. Multi-Criteria Design Space Exploration Process

4.5.3 Functions-to-tasks assignment constraint

The mutation and the assignment method may lead to unnecessary activations
of some tasks of the candidate solution. We illustrate such situation through the
following example. We consider a system of 6 functions. As shown in Figure 4.8, a
current solution consists of 4 tasks. A possible mutation on this current solution
consists in assigning the function F1 to the task τ4 as F1 is harmonic with τ4

(T4 mod ζ1 = 60 mod 20 = 0).

F1(3,20,20) F2(3,50,50) F3(8,60,60)
F4(4,40,40)
F5(3,60,60)

F6(4,60,60)

τ1 (10,20,20) τ2(3,50,50) τ3(8,60,60) τ4(4,60,60)

1 2 4113
F1 F3F2 F6

Chromosome:

F5F4

Task set:

Current solution

Mutation: assigning the function F1 to the task τ4

F1(3,20,20) F2(3,50,50) F3(8,60,60) F4(4,40,40)
F5(3,60,60) F6(4,60,60)

τ1 (7,20,20) τ2(3,50,50) τ3(8,60,60) τ4(7,20,40)

4 2 4113
F1 F3F2 F6

Chromosome:

F5F4

Task set:

Candidate solution

1 2 1443
F1 F3F2 F6

Normalized
Chromosome: F5F4

Figure 4.8: Example of non-feasible candidate solution according to the functions-to-tasks
assignment constraint

The resulting candidate solution is given in the same Figure. Parameters of the
associated task set are computed through the application of the assignment rules
on the candidate solution (see Section 4.4). By examining the task set of the
candidate solution, we note that the period of the task τ4 is different from all
periods of the functions to which they are assigned (i.e. F4 and F5). According
to the task implementation given in Listing 4.2, there are some activations of
the task τ4 (e.g. at instants 20, 100, 140, etc) at which the functions F4 and F5

–110–

4.5. Design alternatives feasibility verification

should not be activated. In order to avoid such situation, any candidate solution
that has (at least) a task whose period is different to the minimum period of its
functions, is considered as non-feasible solution. This constraint is referred to as
functions-to-tasks assignment constraint.

4.5.4 Feasibility checks algorithm

In Sections 4.5.1 and 4.5.3, we showed situations for which a mutation action
may produce infeasible solutions. In order to ensure that mutation generates
only feasible solutions, a set of feasibility checks is performed on each explored
design alternative. These feasibility checks are grouped in Algorithm 6.

Algorithm 6: Feasibility checks algorithm
input : design alternative: task set associated to a candidate solution generated by

mutation
output: a boolean that designates the feasibility of the candidate solution

1 - false: infeasible solution
2 - true: feasible solution
3 begin

/* 1) Check for each task that Ci < Di */
4 if there is at least a task τi for which Ci ≥ Di then
5 return false;

/* 2) Check that the total processor utilization 6 1 */
6 else if U > 1 then
7 return false;

/* 3) Check that all tasks fulfill the functions to
tasks assignment constraint */

8 else if there is at least one task τi that violates the functions-to-tasks assignment
constraint then

9 return false;
10 else

/* 4) Check the schedulability by simulation */
11 Perform a scheduling simulation of the design alternative
12 if the design alternative is not schedulable then
13 return false;
14 else
15 return true;
16 end if

17 end if

18 end

–111–

Chapter 4. Multi-Criteria Design Space Exploration Process

4.6 Conclusion

In this chapter we have detailed the first part of our contributions addressing
the key objective of this thesis which is: given the functional specification of a
particular RTE system, explore architecture alternatives and produce those that
meet all the requirements and answer at “best” to a set of conflicting performance
criteria.

To tackle the combinatorial issue of the addressed problem, our method relies on a
multi-objective optimization evolutionary algorithm (MOEA), namely the Pareto
Archived Evolution Strategy (PAES). PAES specific components in terms of the
encoding of solutions, the initial solution, the mutation operator and the ob-
jective functions are formulated regarding our specific MOOP. We defined rules
that drive the assignment of functions into tasks. The exploration of possible
assignment solutions is automatically performed by the DSE process. Design
alternatives explored during the search process are checked towards a set of feasi-
bility requirements such that the final selected designs enforce the correct system
behavior and the timing constraints described in the functional specification.

In the next chapter, we focus on studying and improving the performance of the
DSE method proposed in Chapter 4.

–112–

5
Towards Scalable and Efficient Design

Exploration Process

Contents
5.1 Introduction . 114

5.2 Basic background to parallel MOEAs (pMOEAs) . . 114

5.2.1 Motivations for parallelizing MOEAs 114

5.2.2 Main parallel models used in pMOEAs 116

5.2.3 Discussion . 120

5.3 Related work on PAES parallelization 121

5.4 Parallel formulation of our DSE process 122

5.4.1 Master-slave parallel asynchronous adaptation for PAES122

5.4.2 Global selection: a new selection strategy for PAES . 124

5.5 Experiments and evaluation 125

5.5.1 Performance assessment metrics 126

5.5.2 Solution sets quality evaluation: global selection Vs.
local selection . 127

5.5.3 Scalability and effectiveness evaluation of the parallel
DSE process . 129

5.6 Conclusion . 131

–113–

Chapter 5. Towards Scalable and Efficient Design Exploration Process

5.1 Introduction

In the previous chapter, we proposed a multi-criteria DSE process to find optimal
or near-optimal design alternatives in terms of functions to tasks assignment
solutions towards a set of conflicting performance criteria.

In this chapter, we focus on enhancing and assessing the performance of the
DSE process. We present changes introduced to this DSE process in order to
improve its performance. The latter is determined in terms of scalability and
effectiveness of the method. By scalability we mean the ability of such a method
to handle computationally expensive problem instances with affordable execution
time. While the effectiveness is related to the capability of the method to provide
the most promising Pareto set. The developed changes are mainly the adaptation
of a parallel processing for the DSE process and a new selection strategy for PAES.

The remainder of this chapter is structured as follows. Section 5.2 gives the
main concepts related to the parallelization of MOEAs. Then, in Section 5.3
we discuss existing research activities addressing the parallelization of PAES.
Section 5.4 introduces the parallel processing formulation proposed for our DSE
process and the new selection strategy. Afterwards, we present in Section 5.5 the
experiments achieved to assess the impact of our proposals on the performance
of the DSE process. Finally, Section 5.6 concludes the chapter.

5.2 Basic background to parallel MOEAs (pMOEAs)

This section is devoted to present the basic philosophy of MOEAs parallelization
and related underlying background material. In the remainder of this section,
first we highlight the main motivations behind the use of parallel processing
techniques in the context of MOEAs. Then we present background for designing
pMOEAs in terms of mainstream parallel models. Finally, we discuss existing
work addressing the parallelization of PAES.

5.2.1 Motivations for parallelizing MOEAs

Various techniques have been developed in the MOO community. MOO problems
are often combinatorial, complex and CPU-time consuming. The use of evolu-
tionary algorithms (MOEAs) for solving such kind of problems has been quite
active over the past few decades. The rising popularity of MOEAs is justified by
the following key reasons. In fact, these algorithms are able to estimate multiple
members of the Pareto optimal set in one single run and with a practical and
feasible time. They have proved their suitability and flexibility for solving MOO

–114–

5.2. Basic background to parallel MOEAs (pMOEAs)

problems compared to classical mathematical programming techniques [CLVV07]
that generally assume small enumerable search spaces.

In spite of these advantages, some computational issues may hinder MOEAs
from solving efficiently complex real-world MOO problems and adversely affect
the scalability of these algorithms. Among these issues, the most relevant is the
fact that real-world MOO problems typically involve computationally expensive
methods (in terms of CPU-time) for computing objective functions and con-
straints (e.g. engineering design problems). This may induce a computational
bottleneck and then limit the applicability of MOEAs. Additionally, real-world
MOO problems tend to be large scale and to have high-dimensionality (i.e. large
number of optimization criteria). These characteristics normally expand further
the computational cost in order to efficiently approximating the Pareto optimal
front. Finally, the use of archiving, clustering or niching techniques that are
commonly adopted with MOEAs [KC00a, DPAM02] also emphasizes the compu-
tational overhead.

For these reasons, enhancing MOEAs performance has a rising interest reflected
by the large number of research efforts attending to real-world MOO problems
with very costly objective functions evaluations [CLVV07]. Two possible ways
have been investigated in the literature to face these challenges [LA15]. One so-
lution is to use an approximative surrogate evaluation of the objective functions
instead of exact fitness function evaluations [SGNJ08, CB11]. Another line takes
advantage of parallel computing techniques and platforms by decomposing the
computational load across multiple processors. MOEAs are very suitable for par-
allelization because their main operations in terms of genetic operators (recom-
bination and/or mutation) and objective functions evaluations can be performed
independently on different candidate solutions. Thus, for computationally inten-
sive objective functions, parallelizing their evaluations turns out to be a simple
and potentially useful idea.

As Coello et al. [CLVV07] have pointed out, pMOEAs are the preferred MOEAs
implementation for solving large scale MOO problems whose objective function
evaluations and constraints verification are the major computational bottleneck.
Parallelization of MOEAs have been widely studied in the literature. The reader
is referred to [TMO+08, JC09, LA15] for surveys on this topic.

Using parallel computing in the design and implementation of MOEAs has proven
to be an effective mechanism to improve not only the computational efficiency (i.e.
reducing execution time) but also the quality of the obtained Pareto fronts. This
second benefit stems from the fact that research activities on parallelizing MOEAs
also aimed at evolving MOEAs algorithmic structures towards more advanced
and effective search engines through proposed approaches on parallel models. A
pMOEA may be more effective than the sequential MOEA counterpart, even
when executed on a single processor [LA15].

–115–

Chapter 5. Towards Scalable and Efficient Design Exploration Process

Next, we present the most common parallel models used in pMOEAs.

5.2.2 Main parallel models used in pMOEAs

Parallel models represent the algorithmic design aspect for pMOEAs. Once the
algorithmic model is explicitly designed, subsequently it is implemented and re-
fined for deployment onto a given physical parallel architecture.

Four main parallel models are usually adopted in the parallelization of MOEAs:
the master-slave, the diffusion, the island and the hybrid models [CLVV07, JC09,
TMO+08, LA15]. Each of these models is briefly described in what follows.

• Master-slave model

The master-slave or global parallelization scheme is known as the simplest way
(from algorithmic and implementation management perspectives) to parallelize
MOEAs, and hence, the most popular among practitioners [LA15, JC09].

In this model, objective function evaluations are distributed among a number
of slave processors. While one central processor referred to as master proces-
sor achieves miscellaneous tasks such selection operations, dominance/Pareto
ranking of solutions, management of the Pareto front, assigning workload to
and collecting results from slave processors, etc. The creation of offsprings
using genetic operators can be performed either by slave processors (i.e. a
slave processor applies genetic operators on a given solution, then it evalu-
ates objective functions of the offspring solution) or by the master processor
(i.e. offsprings are distributed to slave processors to be assigned with objective
values).

This parallel model is illustrated in Figure 5.1 where the master processor
distributes solutions to slave processors, controls when/where the slaves com-
plete the evaluations to finally gather and save evaluated solutions returned by
slaves.

The search space exploration process of a master-slave pMOEA is conceptu-
ally the same as the sequential MOEA. This means that the number of pro-
cessors being involved in the parallel processing is independent of the number
of solutions being evaluated. Thus, for the same number of solutions being
evaluated, a master-slave pMOEA achieves identical results to those obtained
by the MOEA sequentially executed, but it does affect the execution time. It
is important to mention that objective functions need to be enough complex
and computationally expensive so that communication/synchronization over-
heads don’t affect/overwhelm the overall pMOEA execution time. Otherwise,
the efficiency of the pMOEA drops and sometimes even worse the sequential
MOEA may spend less execution time than pMOEA.

–116–

5.2. Basic background to parallel MOEAs (pMOEAs)

Master

Slave Slave Slave

…

Candidate solution Evaluated solution
(objective values)

Figure 5.1: Master-slave parallel scheme

• Diffusion model

In the diffusion pMOEA model [CLVV07], the population is spatially dis-
tributed over a set of processors structured onto a multi-dimensional grid (see
Figure 5.2). Each grid point holds a processor and manages one individual so-
lution of the population, that’s why the diffusion scheme is sometimes referred
to as fine-grained model. The main distinctive feature of this model is the
dictation of a local neighborhood structure between grid points. The neigh-
borhood of a given grid point is specified by a size and a shape that designate
respectively the number of neighbors and their arrangement within the grid
with respect to that grid point.

Figure 5.2 illustrates an example of two-dimensional rectangular grid with a
diamond-shaped neighborhood. As depicted by the dotted lines in Figure 5.2,
each grid point has a neighborhood that overlaps with the neighborhoods of its
nearby neighbors. The amount of overlap depends on the neighborhood size
and shape. Note that all neighborhoods are of identical size and shape except
on the edges.

A given grid point can interact exclusively with its nearby neighbors to select

–117–

Chapter 5. Towards Scalable and Efficient Design Exploration Process

Figure 5.2: Diffusion parallel scheme (taken from [JC09])

parents and then produce offspring that will replace the current individual
assigned to that grid point. The overlapping neighborhoods implicitly provides
a migration mechanism of genetic material throughout the grid. This allows
the expansion or diffusion of the “best” solutions (identified in different areas
of the grid) throughout the entire population. The communication costs tend
to be high, since the individuals who take part in the selection are distributed
among neighbors processors [JC09]. This parallel scheme was designed for
working in massively parallel computers [LA15].

• Island model

In an island pMOEA, the overall pMOEA population is partitioned into a
number of sub-populations called islands that evolve independently of each
other (see Figure 5.3). Each island is isolated in a processor that runs a se-
quential MOEA for a number of generations/iterations called an epoch [JC09].
Such pMOEAs models are called also coarse-grained pMOEAs since each island
maintains a large number of individual solutions. Additionally, they are called
distributed pMOEAs as they are sometimes deployed on distributed memory
computers.

Although each island evolves in isolation for the majority of pMOEA execution,
individual solutions migrate between neighboring islands at the end of each
epoch, as shown in Figure 5.3. This migration mechanism requires a set of
parameters and design decisions whose identification poses a number of key
design challenges. These parameters are defined as follows:

– the number of solutions to migrate

– the migration frequency i.e. how often migration occurs (the number of
generations between events)

– the topology which defines the neighbors of each island

–118–

5.2. Basic background to parallel MOEAs (pMOEAs)

Migration

Figure 5.3: Island parallel scheme (taken from [JC09])

– the decision regarding the solutions selected for migration and those se-
lected to be replaced by the immigrants

These parameters need to be set carefully as they strongly impact results of
the entire pMOEA.

• Hybrid model

Hybrid pMOEA models introduce another alternative to parallelize MOEAs
that relies on the combination of two-level parallelization approaches. A coarse-
grained parallel scheme is used at a high level of abstraction (e.g. island model)
and each associated island runs a fine-grained scheme at a low level (e.g. diffu-
sion model or master-slave model). Figure 5.4 illustrates three hybrid schemes
proposed by Cantù Paz [CP00a] that use an island model at the high level:

– Each island hosts a diffusion pMOEA (see Figure 5.4(a)),

– Each island hosts a master-slave pMOEA (see Figure 5.4(c)) and

– Each island hosts an island pMOEA (see Figure 5.4(b)).

A hybrid approach allows the advantages of two pMOAE models to be com-
bined.

Synchronous and asynchronous communication modes

All the aforementioned pMOEA models may be implemented in two different
communication modes: either a synchronous or an asynchronous manner. Syn-
chronous implementations lie in the use of some sort of synchronization mecha-
nism (e.g. semaphores, locks or barriers) such that all processes are synchronized
at the end of each generation/iteration or epoch. However, the need for syn-
chronisation once per generation would increase the pMOEA execution time for
fine-grained approaches. While asynchronous implementations maximize the ex-
ploitation of all available processors with no idle periods of time. That is all

–119–

Chapter 5. Towards Scalable and Efficient Design Exploration Process

(a) Island/diffusion (b) Island/island

(c) Island/master-slave

Figure 5.4: Hybrid parallel schemes (taken from [JC09])

available processors remain fully busy during the optimization. Asynchronous
implementations are useful when processing time associated to parallel proces-
sors are different due to variation in processors speeds, memory sizes and/or
workload decomposition between processors.

5.2.3 Discussion

After giving the basic concepts about the parallelization of MOEAs, we devote
this section to explain our choices in terms of parallel scheme and communication
mode.

The major computational bottleneck in the functions to tasks DSE problem we
deal with in this thesis lies in objective functions evaluations and schedulability
verification of design alternatives. According to our approach, the computation
of these tasks relies on the scheduling simulation whose computation is non-linear
and time-consuming. As mentioned before, the execution time of the schedul-
ing simulation grows exponentially with respect to the designed system size (i.e
number of functions or tasks) and complexity (i.e. timing constraints and/or
shared resources contention). Additionally, design alternatives explored during

–120–

5.3. Related work on PAES parallelization

the search can be processed independently of each other. Thus parallelizing the
mutation, evaluation and verification of many solutions will help to speed up the
search.

Given the simplicity of the master-slave scheme and its suitability for solving
MOO problems with computationally expensive objective functions and con-
straints [CLVV07, LA15], we opt for this scheme in the parallel formulation of
our DSE process. Furthermore, the other parallel schemes are usually used for
sub-population searching problems [LA15]. We deal with the parallelization of
PAES algorithm that maintains a single current solution. Besides, the adapta-
tion of one of these schemes is not straightforward for us because they require a
thorough background knowledge regarding their key concepts like neighberhood,
migration mechanism, etc.

As for the communication mode between processes, we adopt the asynchronous
mode because with the parallel formulation that we propose, (see Section 5.4)
execution times may vary from one slave to another. This is due to the time
required to manage a given solution (i.e. mutate, check feasibility and evaluate
fitness) which differs from one solution to another. Then, any synchronization
mechanism established between slaves would increase the overall execution time
without impact on results or the final Pareto front. These choices will be ex-
plained further in Sections 5.4 and 5.5.

5.3 Related work on PAES parallelization

Although significant research efforts and important advances have been achieved
in the field of pMOEAs, however to the best of our knowledge, few work addressed
the parallelization of PAES.

Authors of [LNA06, NLTA05] proposed a parallel PAES example based on the
island model. This parallel PAES approach works as follows. Each island runs the
sequential PAES and maintains its own local archive of non-dominated solutions.
Periodically, islands exchange solutions according to a synchronous migration
mechanism. The parameters used in the migration mechanism are set arbitrary
by the authors. Once results from all islands become available, the last step
consists in building the final Pareto-front by merging local fronts obtained in
each island. Results of experiments conducted in this work showed that the
proposed parallel PAES is not suitable for MOO problems with computationally
expensive objective functions. Considering distinct sub-populations seems not
computationally efficient for MOO design problems with costly objective function
evaluations.

In [COA11], authors proposed another parallelization approach for PAES using
a master-slave formulation. The proposed approach lies in running simultaneous

–121–

Chapter 5. Towards Scalable and Efficient Design Exploration Process

parallel evaluations at each iteration, and comparing results against the current
solution at the end of each iteration. In order to generate candidate solutions
to be evaluated at an iteration, authors consider a prediction tree taking into
account the probability of a mutated solution to be better than its parent. This
work tries to avoid useless evaluations, but still handles solutions synchronously.
Again and in contrary, we intend to ensure optimal exploitation of available
hardware resources by adopting an asynchronous parallel processing.

5.4 Parallel formulation of our DSE process

This section provides details about the parallel formulation of our DSE process
in terms of a master-slave parallel asynchronous adaptation for PAES and a new
selection strategy to guide the search procedure.

5.4.1 Master-slave parallel asynchronous adaptation for PAES

We consider here a master-slave asynchronous framework (see Figure 5.5). This
model aims at distributing the processing of candidate solutions (i.e. mutation,
objective functions evaluations and feasibility verification) on several slave pro-
cessors while a single master processor manages the Pareto ranking, archiving
and selection parts of PAES. In our approach we assume a central unique archive
of non-dominated solutions handled by the master. As stated by the master-
slave paradigm and also shown by Figure 5.5, slaves are started by the master,
and interact exclusively with it, receiving solutions to process and sending back
mutated solutions and associated objective values.

In the case of our DSE process, additional cost of the parallelization are expected
to be reasonable as compared to the computation costs. This is due to the fact
that the parallelization additional cost mainly lies in solution data transfers be-
tween the slaves and the master and a solution data consists only in a chromosome
representation (i.e. an integer array carrying a set of function indexes) and a few
of objective function values.

For simplicity, the proposed parallel asynchronous PAES is denoted PA-PAES in
the rest of this chapter.

From an algorithmic design perspective, our parallel framework requires the fol-
lowing components:

• Selection strategy: it can be achieved based on one or many criteria such as:
dominance or Pareto ranking scheme like the conventional PAES, crowded
regions in objective space [KC00b], performance measure as hypervolume-
based selection [BZ06], etc.

–122–

5.4. Parallel formulation of our DSE process

Slave input: a solution selected for mutation and evaluation

Slave output: a mutated and evaluated solution

Slave1

…

Slave2

Slave3

Slave4Slaven

Update the archive

Select a solution for
mutation

3

4

Mutate the received solution

Evaluate the mutated solution

1

2

Mutate the received solution

Evaluate the mutated solution

1

2

Mutate the received solution

Evaluate the mutated solution

1

2

Mutate the received solution

Evaluate the mutated solution

1

2

Mutate the received solution

Evaluate the mutated solution

1

2

Master

Figure 5.5: Master-slave parallel asynchronous scheme adapted to our DSE process

• Mutation and evaluation procedures.

• Local search procedure that outputs one or more neighbours (optional).

We also propose a new selection strategy that will be explained in Section 5.4.2.
We maintain the mutation and evaluation procedures developed with the for-
mulation of conventional PAES to our DSE process (see Chapter 4). Besides,
the local search procedure of conventional PAES is kept the same in the parallel
algorithm.

This parallel algorithm also takes as input a number S of slaves and a number
I of iterations. We only use I for lack of simplicity. The master and slave
computation processes for our parallel framework are described in Algorithms 7
and 8 respectively.

As stated before, parallel operations or workload achieved by slave processors are
realized asynchronously. This means that the master processor does not have to
wait for all of the evaluated solutions returned by all slaves. The results of the
slave computations are taken into account as soon as they become available: when
a slave sends an evaluated solution, the master archives it using the original PAES
approach, and goes on the optimization by selecting a new solution to send to
the slave for mutation and evaluation. This way, we save the overall computation
time and resource usage, especially as the processing time of different solutions
by slaves may be different. This is because time spend in the mutation may
differ from one solution to another: for a given mutation execution the number
of solutions generated and checked until having a feasible solution is not know

–123–

Chapter 5. Towards Scalable and Efficient Design Exploration Process

in advance. This fact in turn is due to the randomness involved in the mutation
procedure. Furthermore, execution time associated to one feasibility verification
run may vary from one candidate solution to another, since for some cases the
solution to be checked is rejected without processing a scheduling simulation (see
Section 4.5).

Algorithm 7: Master process algorithm

1 begin
2 start S slaves;
3 send to each of them a seed unevaluated solution;
4 iteration := 1;
5 while iteration ≤ I do
6 receive a set or a single evaluated solution(s) from any slave s;
7 compare it/them with the archive A;
8 update the archive A with non-dominated solutions;
9 if iteration < I − S then
10 select a candidate solution according to a selection strategy;
11 send it to a slave s;

12 end if
13 iteration := iteration + 1;

14 end while
15 terminate all slaves;
16 return the final archive A;

17 end

Algorithm 8: Slave process algorithm

1 begin
2 while not terminated do
3 receive a candidate solution from master;
4 mutate it;
5 evaluate it;
6 if local search then
7 generate and evaluate neighbours;
8 discard locally dominated neighbours;

9 end if
10 send back to the master the evaluated solution;

11 end while

12 end

5.4.2 Global selection: a new selection strategy for PAES

The parallel framework needs a selection strategy for the search procedure. The
conventional PAES uses a straightforward selection strategy that relies on a form
of Pareto ranking mechanism that in its turn is based on dominance and crowding

–124–

5.5. Experiments and evaluation

criteria comparisons (details are given in Section 4.2.1). This selection strategy
would either accept the mutated solution m to become the new current solution
or keep the current solution c as a basis for mutation. We should also mention
that the selection strategy of PAES is fast since it requires only few comparisons
to perform.

As opposed to the sequential version of PAES, in the parallel framework there is
no current solution maintained by the master process. Observe that the selection
operation (achieved by the master) is overlapped with the slave computations
that are expected to be time-consuming, we can spend more time in the selection
mechanism while intending to enhance the search engine. The main idea of our
proposed selection strategy is to use the archive of non-dominated solutions as a
basis for selecting a new candidate solution for mutation, instead of using solely
the received solution from the slave.

The solution selected to be sent to a slave for mutation and evaluation (line
10, Algorithm 7) is picked from the archive as follows. We randomly choose a
selection criterion among the followings:

• random criterion: a random solution from the archive is selected, to
ensure the exploration aspect.

• one of the objective function: one of the archive solutions that is within
the 10% best values of this objective function is picked. This criterion
fosters the exploitation of most promising solutions already identified.

• crowding criterion: a solution from the archive within the less crowded
area is chosen. This criterion helps in maintaining good diversity and spread
of the non-dominated solution set. Thus, it supports the exploration of
undiscovered regions of the search space.

These choices are equiprobable. This new selection strategy is designed to bal-
ance between exploration and exploitation of the solution space. The proposed
selection strategy and that of conventional PAES are referred to as global
selection and local selection respectively.

5.5 Experiments and evaluation

In this section, we present experiments that assess the efficiency of the above
proposals. We perform two evaluations. The first evaluation aims at comparing
the proposed global selection strategy against the local selection of
the original PAES through comparing Pareto fronts produced using each of these
selection strategies. The second evaluation intends to (1) assess the efficiency of

–125–

Chapter 5. Towards Scalable and Efficient Design Exploration Process

the parallel framework regarding to the temporal behavior, and (2) check that
the parallelization does not induce lost on fronts quality as compared to the
sequential counterpart.

Experiments are performed on synthetically generated test instances through our
problem instance generator described in Section 7.3.1. For both evaluations, we
assume systems with independent functions, i.e. no shared resources in generated
test cases. In that respect, the assessment of our proposals with respect to the
complexity of systems (given as input to our DSE process) is confined to the
variation of test cases sizes (i.e. the number of functions). Furthermore, as part
of the performed experiments, the DSE process is executed with two objective
functions namely Min (f1 = # preemptions) and Min (f4 = (H −

∑k
i=1 Li)).

While configuring experiments, certain experimental parameters like #test instances

per experiment, #PAES independent runs per test instance and #PAES iterations

are set to relatively small values. The reasons behind these experimental setup
are discussed in Appendix A.

Experiments are conducted on a SMP machine with 48 processors at 2.2 GHz
frequency and 125 GBytes of RAM, running Linux CentOS. The parallel frame-
work is developed in Ada programming language within our prototype (see Chap-
ter 6). Ada concurrency features (tasking, synchronization and communication
with Rendezvous or protected objects, ...) are used in order to implement parallel
formulation of our DSE process.

In the following, first we introduce the performance metrics used for measur-
ing the results and assessing our proposals (section 5.5.1). Then, sections 5.5.2
and 5.5.3 are devoted to present the two performed evaluations. For each evalu-
ation, we provide the experiments protocol and configuration, then the obtained
results and their analysis.

5.5.1 Performance assessment metrics

In the conducted experiments, we are interested in analyzing two main perfor-
mance concerns by means of two different metrics:

1. Execution-time efficiency of our parallel framework that is assessed using the
most common parallel performance measure i.e. the speed-up.

Speed-up metric

The speed-up metric is a classical way for measuring the efficiency of paral-
lel algorithms [AT02]. This metric captures the relative benefit of solving a
particular problem in parallel by comparing the sequential against the parallel
time required to solve that problem. The speed-up denoted Sp is defined as the

–126–

5.5. Experiments and evaluation

ratio of the execution time of the sequential MOEA on one-processor (denoted
T1) to the execution time of a given pMOEA using p processors (denoted Tp).

Sp =
T1

Tp

Because of the random nature of PAES, one single run is not statistically
significant. Thus, we compute speed-up values using average values of execu-
tion time computed over a given number of independent runs. Larger values
of Sp are considered better and ideally the speed-up is greater or equal to
the number of processors involved in the parallel computations (Sp ' p, or
Sp ≥ p).

2. Effectiveness of our parallel framework in terms of quality of produced Pareto
fronts, which is measured by applying the hypervolume indicator (see Sec-
tion 2.3.4).

5.5.2 Solution sets quality evaluation: global selection Vs. local se-
lection

This evaluation aims at qualitatively comparing global selection regarding
to local selection. For that purpose, a number of experiments were run
on a set of synthetically generated problem instances. We intend to investigate
and compare the effectiveness of both selection strategies within our DSE process
while varying the scales (in terms of the number of functions) of test instances
under consideration.

Experiments setup

Here we present how we have set parameters of the function sets generator in
order to generate test cases for the current experiments. In these experiments,
the total processor utilization factor of generated function sets is fixed at 80%.
Different function set sizes are used that range from 20 to 100 by step of 20
functions. For each size, we generate 5 different test instances and each test
instance is processed by our DSE process with the following configurations:

(1) Local selection with sequential PAES (i.e. the conventional PAES),

(2) Local selection with PA-PAES4 (i.e. using 4 slaves),

(3) Global selection with sequential PAES,

(4) Global selection with PA-PAES4 (i.e. using 4 slaves).

–127–

Chapter 5. Towards Scalable and Efficient Design Exploration Process

The number of iterations of the DSE process is fixed at 2000, for all the above
configurations. Each test instance is executed by each of these configurations for
5 independent runs. For each test instance, we consider the average hypervolume
value computed over the 5 runs of a particular configuration.

Results interpretation

For each considered test instances size, Figure 5.6 reports hypervolume values
associated to each of the 4 configurations. For a given configuration, the presented
hypervolume value is the average over all processed test instances with same size.

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

20 40 60 80 100

H
y

p
e

rv
o

lu
m

e

System scale

Global selection + PA-PAES (4slaves) Global selection + sequential PAES

Local selection + PA-PAES (4slaves) Local selection + sequential PAES

Figure 5.6: Hypervolume comparison between the global selection and the local selection
with sequential-PAES and PA-PAES4 configurations for different test instances scales

As we can observe in this figure, for almost all considered sizes, best hypervol-
ume values are associated to the following configuration: global selection with
PA-PAES4. In addition, we note that efficiency of the global selection when
compared with the local selection is more relevant for larger sizes test instances
(≥ 60functions). This conjecture is reinforced by the hypervolume improvement
achieved with the global selection with respect to the local selection under both
sequential and parallel executions.

Table 5.1 reports, for both the sequential and parallel executions, the hyper-
volume improvement rate related to each considered test instance size. For a
given size and a particular execution configuration (sequential or parallel), the

–128–

5.5. Experiments and evaluation

Table 5.1: Average hypervolume improvement rates of the global selection against the local
selection in sequential and parallel execution configurations

Size (#functions)
hypervolume improvement rate (%)

sequential execution
parallel execution

(4 slaves)
20 0.43 0.06
40 5.43 8.28
60 18.35 23.59
80 19.09 14.32
100 40.43 25.48

hypervolume improvement rate of the global selection against the local selec-
tion is computed as follows: (HVGS

HVLS
− 1) · 100 where HVGS is the hypervolume

value with the global selection and HVLS is the hypervolume value with the local
selection. According to values provided in Table 5.1, the hypervolume improve-
ment rates increase when test instances sizes raise. We can notice also that the
improvement rate is fairly negligible for test instances with 20 functions. This
can be explained by the fact that all the considered configurations perform al-
most equally for small-size test instances, since the latter involve reasonable and
manageable search spaces.

Moreover, for the parallel execution configuration i.e. PA-PAES4, we computed
the speed-ups for the performed experiments. The average speed-up for the
overall experiments is about 3.8 which represents a promising speed-up value for
4 parallel slaves. In the next section, we carefully analyze speed-up values while
varying the number of slave processes.

5.5.3 Scalability and effectiveness evaluation of the parallel DSE pro-
cess

The second evaluation is performed in order to assess the efficiency of the parallel
formulation of the DSE process (PA-PAES) compared to its sequential counter-
part.

Experiments setup

We run a set of experiments in a range of different number of slaves (4, 8 and
16) to investigate the speed-up of the parallel approach. These experiments are
carried out on three problem instances scales: 50, 80 and 100 functions. The se-
lection strategy is set to the proposed global selection. For each scale, we generate
5 different test instances using our function set generator. Each test instance is
processed 5 times by the sequential formulation as well as by the PA-PAES4,

–129–

Chapter 5. Towards Scalable and Efficient Design Exploration Process

PA-PAES8 and PA-PAES16. The termination condition is set to 2000 iterations
for all performed runs with the sequential and the parallel configurations.

Results interpretation

Figure 5.7 points out the average speed-up against the number of slaves involved
in the parallel computation. In this figure, we can notice that even if they are not
linear, speed-ups increase regularly with the number of involved slaves, reaching
up to 11.7 for 16 slaves with test cases having 100 functions. The decrease marked
in the speed-up values with more slave processors may indicates a decrease in the
efficiency of the parallel method with the number of parallel processors. A more
thorough investigation of this issue will be performed as part of our future work.
However, this cannot deny the improvement achieved (in term of execution time)
with the parallel formulation regarding the sequential counterpart.

0

4

8

12

16

4 8 16

S
p
e
e
d
-u
p

Slaves

50 function sets 80 function sets 100 function sets

Figure 5.7: Speed-up values against the number of slaves involved in the parallel execution

As shown in Figure 5.8 quality is maintained, with almost roughly constant hy-
pervolume values from 4 to 16 slaves.

To conclude, the results of this evaluation provide evidence that the parallel
formulation of the DSE process allows to master large-scale and more complex
problem instances with affordable execution time, while preserving quality.

–130–

5.6. Conclusion

0,5

0,55

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0 4 8 16

H
y
p
e
rv
o
lu
m
e

Slaves

50 function sets 80 function sets 100 function sets

Figure 5.8: Average hypervolume against the number of slaves involved in the parallel
execution

5.6 Conclusion

In this chapter, we proposed a parallel formulation to the DSE process. The
parallel framework intends to improve the applicability of our DSE process to
more complex and larger problem instances. This parallel framework relies on
a master-slave parallel asynchronous scheme. In order to enhance the search
mechanism of our method, we proposed and investigated a new selection strategy
for the PAES algorithm (called global selection strategy). Our parallel approach is
particularly suitable for multi-objective optimization problems having expensive
and with variable time objective functions computations.

The parallel framework was evaluated by a set of experiments on synthetically
generated problem instances. Results show an improvement not only in the ex-
ecution time (e.g. with 4 slave processors, the average speed-up is about 3.5 for
test cases with 100 functions) but also in the quality of obtained solution sets
when compared to the previous sequential formulation (e.g. with 4 slave proces-
sors, the average improvement rate in hypervolume is about 38.7% for test cases
with 100 functions). The quality improvement has been achieved thanks to the
new global selection strategy.

In the next chapter, we will describe the prototype provided as part of this thesis
and that implement all elements of our approach.

–131–

6
Prototype Implementation of the Design

Exploration Process

Contents
6.1 Introduction . 133

6.2 Prototype overview . 134

6.3 Cheddar framework . 135

6.3.1 Cheddar-ADL for modeling RTE systems 135

6.3.2 Cheddar scheduling analysis features 139

6.3.3 Utilization scenarios of Cheddar framework 140

6.4 Prototype implementation 142

6.4.1 Optimizers library . 143

6.4.2 Functions-to-tasks assignment library 143

6.4.3 Problem instance generator 143

6.4.4 Tools . 144

6.5 Conclusion . 144

6.1 Introduction

In previous chapters, we presented the theoretical contributions and research ac-
tivities performed in order to establish our method for the design exploration of
the functions-to-tasks assignment solutions space towards the optimization of a

–133–

Chapter 6. Prototype Implementation of the Design Exploration Process

set of conflicting performance criteria. These contributions consist in the defini-
tion of all the approach elements and details required to implement our solution
for the addressed problem. All these elements are structured and developed in a
prototype easing the exploitation of the proposed multi-criteria DSE process.

This chapter is dedicated to expose the design and features of the prototype. It
is organized as follows. Section 6.2 gives the features covered by the prototype.
The latter is supported by the Cheddar scheduling framework that provides an
extensible toolset. Section 6.3 is devoted to introduce the Cheddar framework.
Details related to the design of our prototype are presented in Section 6.4. Last
section concludes the chapter.

6.2 Prototype overview

The prototype developed to implement elements of our approach covers the fol-
lowing aspects:

• The implementation of the multi-criteria DSE process based on PAES tech-
nique (details are given in Chapter 4).

• The parallel implementation and the new selection strategy for the PAES search
procedure proposed to achieve better scalability and efficiency of the DSE
process (See Chapter 5).
The prototype provides various options which allow users to run the DSE
process while configuring the method parameters. The user can set the number
of processors to be involved in the execution (by default, the method is executed
in a sequential way). He can also select one of the selection strategies (either
the original selection strategy or the one that we propose).

• Problem instance generator: the prototype gives the user the opportunity to
test the method through a synthetically generated problem instance. A prob-
lem instance represents a customized functional specification that includes a set
independent or dependent functions through shared resources. The user speci-
fies parameters in order to configure the problem instance generator according
to the method detailed in Section 7.3.1. Thanks to the customizable problem
instance generator, we are able to perform a broad range of experiments while
varying the generator parameters following the experiment requirements.

• The implementation of an exhaustive search method defined in Section 7.2.1
(see Algorithm 9), mostly for evaluation purposes.

We continue by presenting the Cheddar framework and explaining how this frame-
work was extended to support our prototype.

–134–

6.3. Cheddar framework

6.3 Cheddar framework

The Cheddar framework is a GPL open-source scheduling analyzer and simu-
lation toolset freely available to researchers and practitioners for checking the
temporal behaviour of real-time applications. It is developed and maintained
by the MOCS/CACS team of Lab-STICC laboratory (Université de Bretagne
Occidentale, France).

The Cheddar framework is built around an ADL called Cheddar-ADL devoted
for real-time scheduling theory. This framework provides a panoply of scheduling
analysis features.

In the next sections, detailed information about the Cheddar-ADL and scheduling
analysis features are presented. Then, we explain the manner of using Cheddar
to perform a scheduling analysis of a given real-time application.

6.3.1 Cheddar-ADL for modeling RTE systems

Cheddar-ADL is an analysis-specific1 ADL. It has been designed in the spe-
cific perspective of scheduling analysis. The main concepts manipulated through
Cheddar-ADL stem from the real-time scheduling theory. This ADL defines vari-
ous entities (such as a processor, core, task, shared resource, critical-section, etc.)
which enable to model main concepts required to perform a scheduling analysis of
a given RTE application. Two kinds of entities are supported by Cheddar-ADL,
namely, hardware components and software components.

• Hardware components in Cheddar-ADL

Hardware entities model resources provided by the execution platform. Sim-
ilarly to the real-time scheduling theory that usually deals with relatively
straightforward hardware architectures, Cheddar-ADL provides limited capa-
bilities to model hardware components. As Figure 6.1 depicts, hardware enti-
ties are of two types:

r Core entity: it models a resource unit that read and execute program
instructions [KTJ06]. According to Cheddar-ADL, a core entity involves
attributes that permit the setting of the scheduling parameters (e.g the
scheduling policy, preemptive or not, etc.).

r Processor entity: it may involve one or multiple cores which enable the
modelling of both mono-core and multicore architectures.

1An analysis-specific ADL means that this ADL focuses on concepts related to a particular
analysis problem

–135–

Chapter 6. Prototype Implementation of the Design Exploration Process

Generic_Processor

Multi_core_Processor Mono_core_Processor

Core_Unit

1

1

1

1..*

Scheduling_Parameters

<<enumeration>>
Schedulers_Type

Figure 6.1: Main hardware components in Cheddar-ADL (adapted from [TRA17])

• Software components in Cheddar-ADL

As illustrated in Figure 6.2, Cheddar-ADL provides a set of software compo-
nents allowing to model the software part of a real-time system. By looking
at both Figures 6.1 and 6.2, we can notice that the software parts of a system
are modeled in a more detailed way. The Cheddar-ADL user guide [FSP+14]
defines these software components as follows:

r Address space: an address space entity refers to either physical address
or virtual address. It may include a range of addresses that can be accessed
by several components e.g. processors, tasks, etc. An address protection
mechanism may be assigned to an address space.

r Task: a task component models a control flow (i.e. run any type of
program). It is statically attached to an address space component.

r Resource: a resource specifies any data structure that can be shared
between tasks assigned to the same address space. It may be accessed
through one of classical resources access synchronization protocols (e.g.
PCP, PIP or IPCP). A resource is statically defined in an address space.

r Buffer: it models queued asynchronous data exchanges between tasks
belonging to the same address space.

r Message: unlike a buffer component, a message entity allows to model
queued asynchronous data exchanges between tasks located in different
address spaces.

–136–

6.3. Cheddar framework

PCP_Resource

PIP_Resource

IPCP_Resource
NP_Resource

Message

Periodic_Message Aperiodic_Message

Buffer

Address_SpaceGeneric_Task

Aperiodic_Task Periodic_Task

Poisson_Task

Sporadic_Task Parametric_Task Scheduling_Task Frame_Task

Resource

Figure 6.2: Main software components in Cheddar-ADL (adapted from [TRA17])

Resource, buffer and message components enable the design of the different
kinds of dependencies between tasks supported by the scheduling theory.

An exhaustive list of software and hardware entities and their attributes is pro-
vided in the Cheddar-ADL user guide [FSP+14].

Listing 6.1 illustrates an extract of a Cheddar-ADL model. The latter describes
a system running on a uniprocessor platform under a fixed priority (according
to the Rate-Monotonic) and a preemptive scheduler. The system tasks shown
in this listing are periodic. They interact through shared resources that are
synchronized using PCP protocol. As shown in this listing, the Cheddar-ADL
formalism is based on XML.

Cheddar users can use the Cheddar-ADL associated graphical-editor in order to
easily build their real-time application models.

–137–

Chapter 6. Prototype Implementation of the Design Exploration Process

Listing 6.1: Example of a Cheddar-ADL model

1 <?xml version="1.0" encoding="utf-8"?>
2 <cheddar>
3 <core_units>
4 <core_unit id="id_2">
5 <name>core1</name>
6 <scheduling>
7 <scheduling_parameters>
8 <scheduler_type>RATE_MONOTONIC_PROTOCOL</scheduler_type>
9 <preemptive_type>PREEMPTIVE</preemptive_type>...

10 </scheduling_parameters>
11 </scheduling>...
12 </core_unit>
13 </core_units>
14

15 <processors>
16 <mono_core_processor id="id_3">
17 <name>processor1</name>
18 <core ref="id_2">...
19 </mono_core_processor>
20 </processors>
21

22 <address_spaces>
23 <address_space id="id_1">
24 <name>addr1</name>
25 <cpu_name>processor1</cpu_name>...
26 </address_space>
27 </address_spaces>
28

29 <tasks>
30 <periodic_task id="id_4">
31 <name>Task1</name>
32 <task_type>PERIODIC_TYPE</task_type>
33 <cpu_name>processor1</cpu_name>
34 <address_space_name>addr1</address_space_name>
35 <capacity>6</capacity>
36 <deadline>140</deadline>
37 <period>140</period>...
38 </periodic_task>
39 <periodic_task id="id_5">
40 <name>Task2</name>
41 <task_type>PERIODIC_TYPE</task_type>...
42 <capacity>4</capacity>
43 <deadline>70</deadline>
44 <period>70</period>...
45 </periodic_task>...
46 </tasks>
47

48 <resources>
49 <pcp_resource id="id_6">
50 <name>R1</name>

–138–

6.3. Cheddar framework

51 <protocol>PRIORITY_CEILING_PROTOCOL</protocol>
52 <critical_sections>
53 <task_name>Task1</task_name>
54 <critical_section>
55 <task_begin>2</task_begin>
56 <task_end>4</task_end>
57 </critical_section>
58 <task_name>Task2</task_name>
59 <critical_section>
60 <task_begin>1</task_begin>
61 <task_end>1</task_end>
62 </critical_section>
63 </critical_sections>...
64 </pcp_resource>...
65 </resources>
66 ...
67 </cheddar>

6.3.2 Cheddar scheduling analysis features

Given a system model (expressed with Cheddar-ADL or any input format sup-
ported by Cheddar) to be analyzed, the Cheddar scheduling analyzer offers dif-
ferent schedulability tests that can be driven on this system model. Basically, the
schedulability tests provided by Cheddar are either feasibility tests or scheduling
simulations on the feasibility interval. Cheddar supports classical methods of
both scheduling analysis techniques. In the following, we first present some of
the feasibility tests implemented into the Cheddar scheduling analyzer and then,
we introduce its scheduling simulation main features.

• Scheduling analysis with feasibility tests

We recall that a feasibility test is an analytical method which usually allows
users to compute performance criteria in order to assess if task deadlines will
be met. A feasibility test is defined according to a particular set of assumptions
(see Section 3.3.1). Many feasibility tests provided by the scheduling theory
are available with the Cheddar scheduling analyzer. For example, Cheddar
implements the processor utilization based test that is one of the most popular
feasibility tests in the context of Liu and Layland models. Moreover, the
Cheddar scheduling analyzer involves WCRT based tests that can be applied
in the context of periodic tasks independent or subject to mutual exclusion
constraints due to shared resources. In addition, other feasibility tests for
hierarchical architectures have also been implemented.

Since feasibility tests don’t cover all real-time contexts on the one hand and
some of them are known as being too pessimistic on the other hand, additional

–139–

Chapter 6. Prototype Implementation of the Design Exploration Process

techniques such as simulation are then involved in the Cheddar scheduling
analyzer.

• Scheduling analysis with simulations

The Cheddar scheduling simulator supports most of conventional schedulers
such as RM, DM, EDF or LLF, under both preemptive and non preemptive
policies. Those scheduling algorithms have been implemented in the context
of both uniprocessor architectures and global scheduling with multiprocessor
architectures. Furthermore, the Cheddar simulator illustrates the hierarchi-
cal scheduling by implementing the ARINC653 scheduling policies and several
classical aperiodic servers (deferrable, sporadic, polling).

From a task model standpoint, the Cheddar simulator manages usual task types
such as periodic, aperiodic and sporadic, etc. Besides, it allows to simulate the
scheduling sequence of a task set while taking into account dependencies be-
tween tasks related to shared resources, precedence or communication task
relationships. Again, several classical resources access synchronization proto-
cols (namely PCP, PIP and IPCP [BW97]) are implemented into the Cheddar
simulator.

Various performance criteria associated with the system to be simulated are
computed from the scheduling sequence and delivered with the scheduling sim-
ulation analysis result. These performance criteria are: worst/best/average
response time, probability distribution of response time, worst/best/average
shared resource blocking time, number of context switches, number of preemp-
tions, deadlocks, priority inversion or specific properties defined with a domain
specific language [SPR+15].

Although Cheddar supports a great number of scheduling methods, there are
cases where existing methods don’t fit the characteristics of a particular system.
For those cases, Cheddar provides the possibility to extend the scheduling
analysis capabilities without a deep understanding of the internal design and
implementation of the Cheddar framework. This feature allows users to easily
tailor the scheduling analysis tool to their needs (i.e. implementing a scheduling
method that does not exist yet in Cheddar).

6.3.3 Utilization scenarios of Cheddar framework

The main utilization scenario of Cheddar scheduling analyzer consists of three
steps as displayed in Figure 6.3.

Step 1: Designing the system model
At a first stage, designers/users should specify the design model of the application
to be analyzed by creating the application components (software and hardware),

–140–

6.3. Cheddar framework

AADL model

Cheddar-ADL model

1
Designing the system model

2
Calling analysis features

Command-line interface

3
Exporting analysis results

Simulation results

Feasibility test results

Cheddar GUI

.,., ,~ ------

,c'.'x•l Yer,ion•·1. o· e1>Çod1n.i•·utf·9"1:>
,:c:hao:lda:r>

<:co:re WU.ta>
•coi• unit 1d-.."1d 2 · ~

<nÜ. ..coc,el<JnUle"
<•ch•4111ng>

-:::1 chedl.l.l1n.;_pi1.t1•1t e.r1 1>
"• cchado.Llez type:-RAn: HôffOTC,tjJC PJ.."<1'1\:C<lL"./1chedule1: typ1'-
<p rH-.pt.h; type>îR!:D!.fTIVE,c.lp i • ..,..u • • tn,•' -

,./1ct,eC9J,li rl9..J•1: .. • t•r1> -
,t/1~dlaU."9> •.

(/cor• ..,J,.t•
<./cor1_1M.lt1:>

<proCIHQU)

,.a-_cOJ:il_l'l"OCilllDlt id• "id_J">
' n.ula""preo:1:110 :r l </nAae""
- cort tt,f • "ul 2 "> .. .

,c/.-ono_co:re_proè"1t101::>
•fproc111ore>

, adU-1 1pi1Cilll-

• 1cklrN1_1pu:e 1-i•" U_l" >
·~•>addrl,:/ ,.....,.
• q,u,>proc~s:,orl"'/c;pu

•l•ddi;,, 1pace, -
,tall4s•••-•P•~•,

·-pe:riod.i.c t11d: 1d•· 1d ~· >
~n. .. e>Ti~tl</nuie> -
• tH li:_ type>PERI OOJ C _ T\°f'E</tHk_ t~.-
1,.cpl.l_ nuou -p«:ice,sorl</ep .. _r,•11•>
<•dd.re11_1p,u:1_ >..ddr1</addr111_1p•c•_,_ ·
<.<-111p1clt y >ô< /c «pad.ty.>
<deadl i n1> 110</ dead.lin.>
,.par iodl • UO,./p • riod > . .

<IPitdOdiC tuk"•
· p•r1o41c_i11t 1d•~ 1.s_~·>

· n•••,n~k2<lna••>
< t H k t ype> eERIC:ClJ I: TY PE-c/t ••k tn•~-.
<.c•p•ê:1ty><4</c •p•cii:y, -
--~•dline>10</d••dl.i.n• >
-rsi• r.t.od" l 0<./pt r iod · .

</f>edocllc_tuJr> . .
<Jt ... , . ..

...
" -

File

10 1

<I

...
D Cheddar: a free real time scheduling simulator

Edit Tools Help

o ~ m rt] ê. @J C> 1

IScheduling Simulation!

1

Fll" Edit Tools Ht-lp

11 liH.il 41

-
1 .__ -1
,.._ ,....13 l'wriod• J:; C~iti, Si lla•lli ,.. lZ: St..rt t,_ OJ .,,.,.,..,ti, 1; c,._, - -l'ro\ocol ~rœiU003.Jll!A'STJ'l!lllllî1JIRS1..f'l!OTOCU.: l"ltEDJ'îll("

htdulng Uffiiiltlon, ftt'OCHSOr (pu :
Numberorcontrxts'Mtchn: 12
Numbtrofprttmptlons : s

...

T1sk re,poMe time comput rd ftom slmui.tioo:
T1 ;.>7/wont. mlsstd lUdradUl'lt(•bsolutedead\lnt;. 12 ;comph~toon time ca Il)
Tl m>4/worst
nou/worst

somt tllsk dHdlinH wtU be missed : tM task nt 1s not sCMCIWblr.

Ftlt' Edit Toob Help

.,

S<NdUW'lgtNIUH!ity, Pl'O<HSOf (Jk,ll
, , FtlSlblUtytHt b ,Utd on the P,otHSOt 1.t1Uz1Uon t actOf:

Thehypttpetlodlsltl(stt[ll}.pageS)
1 unlu of rlmt art ll'IUStd ln tht hyPtfoetlod.
ProcnSOI' l.titiuUon fKtor 'MùidHdliM is 0.80556 (1ft (IL pa9f: 6).
PfoctsSOfutiliution tKtOfW1thprrlodisO.IIOSS6(stt (1Lp,tgt6J.
lt'IWIUd «htdu&er • un not computt bound on r,,ocHsor ut.lUutlon f 1ctor

2) Fenlb1llty ttst based onWOf5t c:ase tn\; rnpom.e tJmr •

Wor$t Cise tu\: rnponse t imt : (stt (2L paoe 3, tqNtion 41)
TJa>,
n~•
rla>2

A.b t1sk dHdlJnt:S ~ Il bt m~: tht task stt: ls s<titchAabl~

.,

Figure 6.3: Utilization scenario of Cheddar

defining their attributes and how software components are deployed on the hard-
ware components. Cheddar offers different ways to design the input system model
and introduce it to the framework:

• AADL model: Cheddar supports importing and also exporting a design
model that is expressed in AADL [FG12].

• Cheddar-ADL model: Cheddar supports importing and also exporting a
system model that is defined in Cheddar-ADL.

• Cheddar GUI: Cheddar offers a graphical-editor that provides elementary
actions required to build/edit a system model, namely “select”, “add”,
“delete” and “modify” actions. Once the system model is built, it can be
saved and exported in Cheddar-ADL model format.

• Ada program: Users can manually create a system model by writing an Ada
program. This method can be used when the system model is created inside
a program that calls Cheddar analysis features. In the implementation of
the DSE process, we typically use this method in order to create design al-
ternatives explored during the search process and that need to be analyzed.
However, such a way could be laborious and not user-friendly especially for
ordinary users because it requires to well understand the implementation
of Cheddar.

Step 2: Calling analysis features
Analysis features can be called by using a command line interface, Cheddar GUI

–141–

Chapter 6. Prototype Implementation of the Design Exploration Process

or inside an Ada program. The latter alternative is the manner used in the
implementation of the DSE process prototype in order to apply the scheduling
simulation on design alternatives.

Step 3: Exporting analysis results
When Cheddar GUI is used to perform scheduling analysis, then analysis results
are displayed in the Cheddar GUI. Cheddar allows to export analysis results in
XML file format.

6.4 Prototype implementation

Figure 6.4 illustrates an overview of the software architecture of our prototype
and a subset of Cheddar framework libraries.

Cheddar Framework

PAES
method

Exhaustive
method

…Cheddar
ADL

General PAES algorithm General Exhaustive
method algorithm

Optimizers Functions-To-Tasks Assignment Architecture generator

Architecture factoryChromosome data manipulation

Obj. functions and feasibility checks

 Evaluation: Objective functions
scheduling simulation based

 Feasibility checks

 Chromosome representation to Cheddar-ADL
model

 Enumerate all solutions (chromosome)
 Mutation operator

use

Architecture Exploration
tools

use

use

use

use

instantiate

using

using

instantiate

Parsers Graphical
Editor

Feasibility
tests

Scheduling
simulator

Cache
analysis

Figure 6.4: Prototype design overview

As shown by Figure 6.4, in order to implement our prototype, we extend the
Cheddar framework as follows. We add two libraries called Optimizers and
Functions-To-Tasks Assignment and we extend an existing library called
Architecture generator.

–142–

6.4. Prototype implementation

6.4.1 Optimizers library

The optimizers library consists of two Ada packages that define the basic and
common sub-programs that could be reused to formulate any MOO problem
with either the PAES MOEA technique or the exhaustive method technique re-
spectively. The former requires a mutation operator, the latter some way of
enumerating solutions. Both are also parametrized with some objective func-
tions.

6.4.2 Functions-to-tasks assignment library

The functions-to-tasks assignment library defines components that are
specific to our optimization problem domain. As shown in Figure 6.4, this
library contains two packages. The first package called chromosome data
manipulation provides functions for manipulating the chromosome represen-
tation adapted to the functions-to-tasks assignment. For example, it enables
to transform a chromosome representation associated to a given candidate solu-
tion to the corresponding Cheddar-ADL model using the Cheddar ADL library
(already exists in the framework). This package includes the functions-to-tasks
assignment rules that determine and compute parameters of tasks, resources and
critical sections of a given candidate solution (see Section 4.4). The mutation op-
erator proposed for our problem (details in Section 4.3.3) is also implemented in
this package. It also defines a method that, from an initial solution (with chromo-
some representation), enumerates all the functions-to-tasks possible assignments
(again with chromosome representations). This method is used to implement the
exhaustive method.

The second package called objective functions and feasibility checks
is dedicated to the evaluation of candidate solutions by way of objective functions
(Section 4.3.4) and the verification of design alternatives feasibility (Section 4.5).
This package uses the scheduling simulator library of Cheddar framework in or-
der to perform the scheduling analysis and compute the objective functions from
the scheduling simulation results (e.g. the number of preemptions, the number
of context switches, worst case response time of tasks, worst case blocking time
of tasks, etc).

6.4.3 Problem instance generator

The implementation of our problem instance generator (details are given in Sec-
tion 7.3.1) extends the Architecture generator library of Cheddar. This
library includes an Ada package that provides different methods to generate/build

–143–

Chapter 6. Prototype Implementation of the Design Exploration Process

Cheddar-ADL models for different kinds of real-time architectures, thereby al-
lowing to perform empirical studies related to scheduling analysis. The problem
instance generator implementation involves both the function sets generator and
the resource sets generator described in Section 7.3.1.

6.4.4 Tools

As we can see in Figure 6.4, our prototype provides two new tools ensuring the ex-
ecution of the DSE process and the exhaustive method for the DSE mapping prob-
lem that we address. Each one of these programs instantiates the general form of
the corresponding technique from the optimizers library with sub-programs
defined in the functions-to-tasks assignment library. These pro-
grams provide two ways of use. First, the user can define and give as argument
the Cheddar-ADL model of the initial solution to the method to run. Second,
the user can configure the problem instance generator through a set of parame-
ters that he provides to the program in order to execute the desired method on
synthetically generated problem instances.

6.5 Conclusion

In this chapter, we presented the prototype conceived and implemented as part of
research activities conducted in this thesis. This prototype was implemented and
integrated in Cheddar, an existing scheduling framework. The key benefits of this
implementation are the reusability and extensibility of its software artefacts. For
example, the optimizers library could be reused in different MOO problems or
extended with other optimization methods. Similarly, the engine dedicated to the
specification of the functions-to-tasks assignment is reusable in the instantiation
of our DSE-specific problem with other MOO solvers, etc.

Experiments achieved using our prototype in order to assess our proposals are
presented in the next chapter.

–144–

7
Evaluation and Empirical Studies

Contents
7.1 Introduction . 145

7.2 Experiments for independent tasks systems 146

7.2.1 Experiment 1.1: Accuracy/convergence evaluation for
small-sizes test instances 147

7.2.2 Experiment 1.2: Solution sets quality evaluation for
different test instance sizes 149

7.3 Experiments for systems with shared resources . . . 152

7.3.1 Test instance generator 152

7.3.2 Experiment 2.1: Empirical study of the correlation be-
tween objectives . 154

7.3.3 Experiment 2.2: Accuracy/convergence evaluation for
small-sizes test instances 157

7.3.4 Experiment 2.3: Solution sets quality evaluation for
different resources contention levels 161

7.3.5 Experiment 2.4: Impact of the initial design solution
choice on the DSE process performance 165

7.4 Conclusion . 170

7.1 Introduction

In the previous chapter, we presented the prototype that implements our ap-
proach to the addressed problem. Thanks to this prototype, we are able to

–145–

Chapter 7. Evaluation and Empirical Studies

perform experimental studies and evaluate our theoretical and technical propos-
als.

This chapter presents experiments achieved to assess the proposed DSE process
and drive empirical studies regarding certain concerns, namely the conflicting
relationships between performance criteria and the impact of the initial design
on the DSE process behavior/performance. Experiments are structured into two
major sets according to the system models assumed in this thesis.

As stated before, in some of the following experiments, certain experimental pa-
rameters like #test instances per experiment,#PAES independent runs per

test instance and #PAES-iterations are set to relatively small values. The
reasons behind these experimental setting are discussed in Appendix A.

The remainder structure of the chapter is the following. Section 7.2 provides ex-
periments performed to assess our proposals on systems with independent tasks.
Sections 7.3 presents experiment sets achieved on systems with shared resources.
Finally, Section 7.4 summarizes results of experiments and concludes the chapter.

7.2 Experiments for independent tasks systems

In this section, we present experiments to assess the effectiveness of our DSE pro-
cess approach while considering independent tasks systems. In these experiments,
the DSE process is executed with the conventional PAES (i.e. sequential execu-
tion and the default local selection strategy, see Sections 4.2 and 4.3) and two ob-
jective functions namelyMin(f1 = #preemptions) andMin(f4 = (H−

∑k
i=1 Li)).

Experiments are achieved by means of synthetically generated test cases i.e. func-
tion sets with the following configuration:

– Function periods ζi, are uniformly generated between 10 and 150 units of time.
The periods generator is implemented so that generated values are multiples
of 10.

– Processor utilization factor Ui for each function Fi is tuned with the UUnifast
method of Bini and Buttazzo [BB05], so that the function utilizations added
up to the desired total utilization factor for the function set.

– Function deadlines are implicit, i.e ∀ i: δi = ζi.

– Function capacities γi are set based on the generated periods and processor
utilization factors, ∀ i: γi = Max(1, Round(ζi · Ui)) where Round(x), is a
function which returns the nearest integer to x. By this expression we intent
to warrant that generated capacities are non-zero integer values. In fact, the
generated processor utilization factor per function is likely to be smaller when

–146–

7.2. Experiments for independent tasks systems

the number of functions increases. Small utilization factor of functions may lead
to zero values capacities (if they are computed by γi = Round(ζi·Ui)). However,
the resulting overall processor utilization value of the generated function set
may be slightly different of the one given as a parameter to the generator.

We perform two experiments. The first experiment aims at comparing the Pareto
front attained by our DSE process against the optimal Pareto front. This exper-
iment is applied on small-size test cases. Furthermore, in order to assess the
effectiveness of the proposed method for larger sizes test cases, we carry out a
second evaluation that lies in analyzing the quality of produced Pareto sets using
the hypervolume metric (description of this metric is provided in Section 2.3.4).

Experiments are conducted on a personal computer with a 2.4GHz Intel Core i7
processor, 8 GByte of memory and running Ubuntu 12.04 OS. In the following,
we present experiments protocols and results of both evaluations.

7.2.1 Experiment 1.1: Accuracy/convergence evaluation for small-
sizes test instances

In the first evaluation, we are interested in comparing Pareto fronts generated by
our DSE process against optimal Pareto fronts. To do so, we design and imple-
ment a method that for a given problem instance determines the optimal Pareto
front through an exhaustive search among all functions-to-tasks assignment so-
lutions. The exhaustive method procedure is outlined in Algorithm 9.

Algorithm 9: Exhaustive method algorithm
input : a functional specification of a particular application: function set (n

functions) sharing or not a set of resources (m resources)
output: optimal Pareto front

1 begin
2 Enumerate all possible assignment solutions; /* The number of all

enumerated solutions is equal to the Bell number of the
processed function set size (Bn). */

3 Determine feasible solutions among all the enumerated solutions by applying
Algorithm 6;

4 Evaluate feasible solutions according to the considered objective functions;
5 Compute the Pareto front from feasible solutions, by discarding dominated

solutions;

6 end

An exhaustive search as the above proposed method can be applied only for
small-size instances of our problem. This is due to the fact that the search space
size increases exponentially with the problem instance size (i.e. the number of
functions) and the evaluation of one candidate solution is not immediate. That’s
why the current experiment is carried out on a test case with 11 functions.

–147–

Chapter 7. Evaluation and Empirical Studies

Experiment protocol and parameters settings

The 11 functions test case was generated by the above described function sets
generator. The total processor utilization given as input to the generator is set
to 50%. Generated timing parameters of functions are given in Table 7.1.

Function Capacity Period Deadline

F1 2 60 60
F2 10 110 110
F3 8 120 120
F4 1 30 30
F5 15 120 120
F6 2 110 110
F7 2 60 60
F8 3 120 120
F9 4 60 60
F10 1 100 100
F11 2 90 90

Table 7.1: Generated timing parameters of test case with 11 functions

We first compute its exact Pareto front using the exhaustive method, and we then
also apply to it our DSE process, with 2000 PAES-iterations. We notice that the
number of feasible solutions examined by the DSE process is always lower than
the number of performed iterations. In fact, at each PAES-iteration the mutation
procedure (Section 4.3.3) generates a feasible solution that can have been already
investigated in previous PAES-iterations.

Results interpretation

For a problem instance of 11 functions, the number of all possible assignment
solutions to proceed with the exhaustive method is equal to the 11th Bell number,
B11 = 678570 solutions. For the considered 11-functions test case (Table 7.1), the
exhaustive method outputs 2530 feasible design alternatives among all possible
assignment solutions. 7 of those solutions are non-dominated, and constitute the
exact Pareto front.

Figure 7.1 shows the projection in the objective space of all feasible solutions
found by the exhaustive method as well as the exact Pareto front. For the test case
under consideration, our DSE process succeeds at identifying the exact Pareto
front. It is also important to mention that the DSE process has achieved 226
iterations in about 10 minutes to get the entire exact Pareto front. Whereas,
the exhaustive method took about 7 hours and 25 minutes. In the performed
experiments, we run the DSE process for a fixed number of iterations. However,

–148–

7.2. Experiments for independent tasks systems

0

50

100

150

200

250

300

350

400

450

500

18900 19000 19100 19700 19800

Feasible solutions PFtrue = PFapprox

19200 19300 19400 19500 19600

Figure 7.1: Projection in the objective space of all feasible solutions and the exact Pareto
front for the 11-functions test case

seeing that for the considered test case, the DSE process didn’t need all the 2000
iterations to reach the exact front, it should be interesting to investigate some
convergence-based termination criteria (which is out of the scope of this thesis).

This experiment shows the effectiveness of our method to determine the exact
Pareto front (“best” trade-offs of design alternatives), for a small-size test case, in
a short time as compared to the exhaustive method. Finally, although pessimistic
assumptions and choices we have made in Section 4.4 to compute parameters of
design alternatives, experiments show that there are many schedulable solutions
in the search space.

7.2.2 Experiment 1.2: Solution sets quality evaluation for different
test instance sizes

A number of experiments were run in order to investigate the quality of solution
sets for larger-size systems. The hypervolume quality indicator (see Section 5.5.1)
is used to analyze and compare Pareto fronts obtained by our DSE process.

Experiment protocol and parameters settings

We consider different systems sizes that range from 15 to 40 functions by step of
5 functions. For each size, we generate 10 different test instances by means the
above described generator. The total processor utilization factor of all generated
test instances is set to 80%. The number of PAES-iterations for each run is fixed

–149–

Chapter 7. Evaluation and Empirical Studies

at 3000. Each test instance is processed with our DSE process for 5 indepen-
dent runs. For each test instance, we consider the average hypervolume value
computed over the 5 runs.

Results interpretation

The hypervolume values of test instances for each size are depicted in Figure 7.2.

In this figure, for each size, the cross denotes the average hypervolume value
over all test instances and the ends of the vertical lines indicate the maximum
and minimum obtained hypervolume values. Remind the maximum value of the
hypervolume metric is 1.

0,1753

0,3604

0,4674
0,4395 0,4489

0,5575

0,3772

0,4777
0,5246

0,5613 0,5772
0,60330,5950 0,6029 0,6212

0,8097
0,8377

0,7185

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

15 20 25 30 35 40

H
y

p
e

rv
o

lu
m

e

Function set size (# functions)

Min Average Max

Figure 7.2: Hypervolume values of solution sets for different system sizes

As we can observe in this figure, the average hypervolume values increase with
the size of test instances. For example, the average hypervolume value for 40-
functions test instances is equal to 0.6 against 0.47 for 20-functions test instances1.
This observation can be explained as follows. All test instances for the different
studied sizes are generated with the same total processor utilization and the same
period interval. Thus, function capacities of test instances with larger sizes (i.e.
≥ 25 functions) are rather small compared to function capacities of smaller size
test instances. This means that timing constraints are increasingly acute with
test instances of smaller size. In other words, the overall system laxity is more
narrow with smaller size test instances, which would lead to less schedulable
design alternatives associated to these test instances.

1Remind that larger hypervolume values point out better quality of Pareto sets (in terms of
good spread, diversity and closeness to the exact Pareto front).

–150–

7.2. Experiments for independent tasks systems

Rather, for larger size test instances, timing constraints become moderate (larger
overall system laxity) which involves larger spaces of schedulable solutions. These
facts are reflected in the obtained front shapes and hypervolume values as well.
Indeed, front shapes associated to smaller size test instances are likely to be com-
pact (few non-dominated solutions) and with non-convex portions, as the front
shown in Figure 7.1 (in Experiment 1.1). For example the hypervolume of this
front is equal to 0.23, which is a low value despite that was the optimal Pareto
front. In [VVL98a], the authors do note that the hypervolume metric may be
misleading in the case of non-convex PF approx. Hence, reduced hypervolume val-
ues associated to smaller size test instances did not necessarily imply inefficiency
of the DSE process. As for larger size test instances, their Pareto fronts are
likely to be convex, extensive and well spread in the objective space (their fronts
shapes are similar to the one shown in Figure 2.7) which would explain their high
hypervolume values.

This conjecture is consolidated by the average number of solutions in produced
fronts (PF approx): we can observe in the second row of Table 7.2 that there are
more non-dominated solutions with larger size test cases.

Function set size 15 20 25 30 35 40

Avg. #solutions 5 9 12 15 13 14

HV avg. std-dev. 0.0033 0.0133 0.0365 0.035 0.0431 0.0725

Table 7.2: Average number of solutions in produced fronts and average standard deviation
of the hypervolume between runs

Furthermore, we have studied the stability of the DSE process between different
runs of the same problem instance. The stability means the capability of the
method to generate fronts with close qualities over different runs of the same
test instance. To do so, we compute the standard deviation of the hypervolume
between runs of each one of the considered test instances. The third row of
Table 7.2 provides the average standard deviation over all test instances of each
size. We can observe that the standard deviation raises when the size of test cases
increases. Again, this can be explained by the fact that larger size test instances
have larger spaces of feasible solutions, which may lead the DSE process to behave
differently from one run to another for the same test instance. Thus the stability
of the DSE process decreases with larger size test instances.

Finally, these experiments show that the DSE process makes effectively the ar-
chitecture exploration and provides a set of promising trade-offs for the designers.

After accomplishing the above experiments we have realized that the proposed
test instance generator is unable to generate large-size, schedulable and with

–151–

Chapter 7. Evaluation and Empirical Studies

bounded simulation period problem instances. In fact, this issue has been ad-
dressed in [GM01, BFO14]. Thus, in next section we improve the test cases
generator by following the method proposed in [GM01].

7.3 Experiments for systems with shared resources

In this section, the focus is set to RTE systems with Ravenscar compliant shared
resources. We present experiments and empirical studies carried out as part of
the assessment and the investigation of some concerns related to the proposed
DSE process while considering systems with shared resources.

In those experiments, we use the parallel formulation with the global selection
strategy proposed in Chapter 5. Experiments are conducted on a SMP machine
with 48 processors at 2.2 GHz frequency and 125 GBytes of RAM, running Linux
CentOS.

The content of this section is structured as follows.

• First, in Section 7.3.1, we describe the test instance generator proposed as
part of the current experiments. Details about performed experiments (in
terms of experiments protocol, parameters setup, results and their analysis)
are presented afterwards.

• Section 7.3.2 provides experiments achieved to explore the correlation between
three objective functions selected from the list given in Section 4.3.4.

• Section 7.3.3 presents experiments intended to evaluate the accuracy (in terms
of convergence and coverage ability) of the DSE process. This evaluation is
performed on small-size problem instances using IGD and CR metrics (that
are introduced in Section 2.3.4).

• Section 7.3.4 is devoted to the assessment of the DSE process effectiveness for
more complex systems by investigating the quality of produced Pareto fronts
for different resources contention levels using the hypervolume metric.

• Last, Section 7.3.5 shows the impact of the initial solution choice (see Sec-
tion 4.3.2) on the DSE process convergence towards the Pareto-optimal front.

7.3.1 Test instance generator

In order to perform the different experiments with a broad range of configura-
tions, we propose to generate synthetically functional input models, i.e. sets
of n functions interacting through m shared resources (in accordance with the
functional specification model given in Section 3.3.2).

–152–

7.3. Experiments for systems with shared resources

Functions parameters generation method

• Functions period (ζi): by following the method of Goossens and Macq [GM01],
the period of each function (among the n functions) is randomly selected from
a set of nk (nk < n) different periods per function set. Then, in the produced
function set, we have at most nk different periods. With this method the lcm
of all generated periods (i.e the associated hyperperiod) is bounded by a given
upper bound. This implies a bounded simulation duration required to study
the schedulability. In our implementation, the upper bound of the hyperperiod
is set to 27720 time units.

• Functions processor utilization factor (ui): given a processor utilization
U of a function set, the utilization factor ui of each function Fi is generated
using the UUnifast method of Bini and Buttazzo [BB05].

• Functions capacity (γi): computed in the same way as with the generator for
independent function sets (see Section 7.2), ∀ i: γi = Max(1, Round(ζi · Ui)).
As stated before, the resulting overall processor utilization Ucurrent may be
different of the one given as a parameter to the generator Utarget (from which
ui are generated): Ucurrent =

∑n
i=1

ζi
γi

> Utarget. The generator is implemented
so that the difference between Ucurrent and Utarget is bounded by a certain
tolerance value. For example, our generator accepts only values of Ucurrent
such as Ucurrent ∈ [Utarget − 0.09, Utarget + 0.09]. That is, the generator repeats
the generation of parameters (i.e. ui, ζi and γi, ∀ 1 6 i 6 n) until this
condition is met.

• Functions deadline (δi): implicit, i.e ∀ i: δi = ζi.

Resources and critical sections parameters generation method

Each function set handles a set of shared resources between the functions. Each
resource Rj is accessed by a random number of functions in the range [2, rsf · n]
randomly selected from the set of functions. The rsf parameter (resource sharing
factor) is used in order to ensure that there will be a sufficient number of resource
conflicts (i.e. resource contention between the tasks) and to vary the resources
contention following the experiment purpose.

We assume that each function Fi accessing a resource Rj issues only a single
request of Rj per job. The parameters of ωk associated to the usage of Rj by
Fi are adjusted as follows. The length of ωk (i.e. the duration of usage of
Rj by Fi) is defined as a percentage (called critical section ratio: csr) of the
capacity of Fi: Length(ωk) = csr · γi. In addition to the resource sharing factor,
the critical section ratio allows us to customize the resources contention in our
experiments. The dates of begin and end of ωk, i.e. (ωk)begin and (ωk)end are set as

–153–

Chapter 7. Evaluation and Empirical Studies

follows: (ωk)begin is randomly selected within the range [1, γi − Length(ωk) + 1]
and obviously (ωk)end = (ωk)begin + Length(ωk)− 1.

Note that all random variables are generated with a uniform distribution.

7.3.2 Experiment 2.1: Empirical study of the correlation between ob-
jectives

In all the previous experiments performed as part of the assessment of either
the parallel approach (Section 5.5) or the DSE process when applied on systems
with independent tasks (Section 7.2), we have considered only two objective func-
tions, namely Min(f1 = #preemptions) and Min(f4 = (H−

∑k
i=1 Li)) Although

in these experiments we did not investigate the conflict between this pair of ob-
jectives, results showed that they were effectively conflicting.

In the present experiment, functional input models to our methodology involve
interactions between functions by means of shared resources. We would like to
include at least one performance metric directly related to resource sharing as
an optimization objective. We have already mentioned in Section 4.3.4 that,
on the one hand, MOEA methods are often applied to problems with limited
number of objectives. On the other hand, it is not obvious or intuitive to identify
if two given objectives are conflicting or not. That is, we restrict the problem
to three objectives: Min(f1 = #preemptions), Min(f4 = (H −

∑k
i=1 Li)) and

Min(f6 =
∑k

i=1Bi). We perform a set of experiments to investigate the conflict
relationship between each pair of these objectives.

The purpose of this experiment is to verify, when passing from independent func-
tion models to models with shared resources, whether it is necessary to consider
three objectives or to remain with two objectives.

In order to be able to consider only two objectives, we need to show through
experiments that the third objective (f6) behaves in a non-conflicting way with
either one or both of the other objectives (f1 and f4). Otherwise, even if experi-
ments are realized onto a restricted set of test instances that will show that the
three objectives are necessary for efficient design space exploration, we have to
consider all of them.

In the remainder of this section, we describe first the applied method for measur-
ing the correlation between objectives. Then, we give the experiments protocol
and the parameters settings. Finally, we present results of the experiments.

Pearson correlation coefficient for identifying correlation between objectives

Interactions arising between objectives are either a conflict or a support relation.
In the case of a conflict relation, a change of a solution which yields to an im-
provement of one objective is seen to cause deterioration of a second objective.

–154–

7.3. Experiments for systems with shared resources

However, in the case of a support relation, a solution change causes at the same
time either improvement or deterioration to both objectives [PF07].

Formally speaking, as defined by [CF95], two conflicting objectives are referred to
as negatively correlated. But, if they support each other, then they are said to be
positively correlated. Measuring the conflict or the correlation among objectives is
a key research line in work proposing objectives reduction approaches to cope with
many-objective MOO problems [DS06, LJCCC08, LJCUB09, JCAT14, SDT+13,
WY16].

In order to estimate the correlation between the objectives, we suggest to use a
simple method similar to those applied in [DS06, LJCCC08, LJCUB09, JCAT14].
We rely on the Pearson correlation coefficient. This correlation coefficient rxy
measures the linear relationship between two objectives x and y through their
observed data sets. By definition the correlation coefficient values are in the
range [−1, 1]. When rxy > 0, it is said that x and y are positively correlated, and
when rxy < 0, they are said to be negatively correlated. If rxy = 0 they are not
correlated.

The correlation between two objectives is computed using the approximation
set of the Pareto front PF approx, produced by our DSE process, as the data
set. Each solution in PF approx is an observation. The computed correlation
coefficient is associated to a p − value [WY93], representing the statistical risk of
error on the correlation result significance (confidence value). In our experiments,
p− values are interpreted regarding a standard threshold of 0.05: two objectives
are considered as correlated when the corresponding p− value is less than 0.05,
and the nature of the correlation (positive or negative) is determined by the sign
of their correlation coefficient rxy.

Experiment protocol and parameters settings

A number of experiments were run in order to investigate the correlation between
the objectives following the method detailed above by the mean of synthetically
generated test instances. The parameters settings of the test instance generator
are given in Table 7.3. Experiments are performed on test instances with 20 and
30 functions. For each size, 50 different test instances are generated. In these
experiments, certain parameters are set for both test instances sizes, namely:
(i) the overall processor utilization factor is fixed at 80% (ii) each function period
of a given function set is uniformly distributed between a set of nk = 5 different
periods randomly generated (iii) and the critical section ratio (csr) is selected
randomly from {0.1, 0.3, 0.5}. In addition to the function set size, we vary the
number of resources and the resource sharing factor (rsf) as shown in Table 7.3.
Hence, there will arise a sufficient number of resource conflicts.

Each generated test instance is processed by the DSE process for 5 independent
runs. The number of PAES iterations for each run is fixed at 2000. For a given

–155–

Chapter 7. Evaluation and Empirical Studies

Table 7.3: Experiment 2.1: test instance generator parameters settings

Common parameters

Parameters Values

generated test instances per function set size 50

overall processor utilization 80%

different periods per function set, nk 5

critical section ratio, csr 0.1, 0.3, 0.5

Per function set size parameters

20 fcts 30 fcts

resources 6 10

resource sharing factor, rsf 0.2 0.25

test instance, the correlation coefficients of objectives pairs are computed over all
the PF approx generated by all the runs.

Results interpretation

Figure 7.3 reports for each pair of objectives: [Min(f1 = #preemptions), Min(f4 =
(H−

∑k
i=1 Li))], [Min(f1 = #preemptions), Min(f6 =

∑k
i=1Bi)] and [Min(f4 =

(H −
∑k

i=1 Li)), Min(f6 =
∑k

i=1Bi)], the rates of each correlation kind (i.e.
negative, positive or insignificant) captured over the 100 test instances.

71%

46%

77%

14%

31%

17%
15%

23%

6%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

(f1, f4) (f1, f6) (f4, f6)

Negative correlation

Insignificant correlation

Positive correlation

Figure 7.3: Negative, positive and insignificant correlation rates between the objectives
pairs over all the generated test instances

We can observe that the presence of the conflict relationship among pairs of ob-

–156–

7.3. Experiments for systems with shared resources

jectives is more important for some pairs than others. As shown in this figure,
both pairs of objectives [Min(f1 = #preemptions), Min(f4 = (H −

∑k
i=1 Li))]

and [Min(f4 = (H −
∑k

i=1 Li)), Min(f6 =
∑k

i=1Bi)] present a conflict relation-
ship for most of the studied test instances (more than 70% of the test instances),
whereas for the objectives pair [Min(f1 = #preemptions), Min(f6 =

∑k
i=1 Bi)]

only 46% of the test instances present a conflict relationship. This means that
running the design exploration method while considering as objectives one of the
couples [Min(f1 = #preemptions), Min(f4 = (H−

∑k
i=1 Li))] or [Min(f4 = (H−∑k

i=1 Li)), Min(f6 =
∑k

i=1Bi)] will be relevant. But, considering solely the pair

of objectives [Min(f1 = #preemptions), Min(f6 =
∑k

i=1 Bi)] may be impractical
since these two objectives reveal a positive or insignificant correlation for 54% of
the test instances. Min(f1 = #preemptions) and Min(f4 = (H−

∑k
i=1 Li)) show

a support relationships. This observation may be explained by the fact that for
these test instances the added objective Min(f6 =

∑k
i=1 Bi) is in conflict with

each one of the former objectives. In other words, for all the obtained trade-offs
(i.e. all elements in the Pareto front) in each one of these test instances, the
objectives Min(f1 = #preemptions) and Min(f4 = (H −

∑k
i=1 Li)) are either

improved simultaneously or deteriorated simultaneously.

Nevertheless, none of the objective pairs presents a support relationship for a
major part of the processed test instances, since the best supporting ratio is
23% for the couple [Min(f1 = #preemptions), Min(f6 =

∑k
i=1Bi)]. Thus, the

hypothesis of remaining with only two objectives is not relevant and we must
consider the three objectives. Therefore, in our problem the conflict among the
objectives depends on the addressed problem instance and cannot be decided in
an absolute way (i.e. for any instance of our problem).

Seeing these results, it would be interesting to apply a method that uses the
conflict information during the search/optimization process like in [LJCUB09,
JCAT14, SDT+13, WY16]. Such a method allows us to involve many objectives
and subsequently the set of non-redundant objectives will be determined during
the algorithm progress. This research line will be addressed as part of the current
work perspectives.

7.3.3 Experiment 2.2: Accuracy/convergence evaluation for small-
sizes test instances

This experiment aims at assessing the convergence and coverage of our DSE
process. The inverted generational distance (IGD) and the optimal Pareto front
coverage ratio (CR) quality indicators (see Section 2.3.4) are employed for this
experiment. The computation of these metrics requires the knowledge of the
theoretical optimal Pareto front. To this end, we use the exhaustive method
previously proposed in Section 7.2.1 to perform Experiment 1.1 (see Algorithm 9).

–157–

Chapter 7. Evaluation and Empirical Studies

Unlike Experiment 1.1 that deals with a unique test instance, in the current ex-
periment we evaluate numerous test instances. The size of studied test instances
is restricted to 10 functions at most. As a matter of fact, achieving the current
experiment with test instances having 11 functions or more is impractical as their
processing by the exhaustive method requires a great amount of time.

Experiment protocol and parameters settings

In these experiments, we take into account problem instances with 9 and 10
functions. For each size, 30 different test instances are generated using our gen-
erator. Parameters used in the configuration of the generator are pointed out in
Table 7.4.

The low test instances size and the constraints dictated on these test instances
(timing requirements and mutual exclusion constraints) will result in very few
feasible solutions which turns out a single optimal solution (i.e |PF true| = 1).
These cases are ignored and we consider only test instances with PF true containing
at least two non-dominated solutions.

Table 7.4: Experiment 2.2: test instance generator parameters settings

Parameters Values

size of test instances (i.e. # functions per function set) 9 - 10

generated test instances per function set size 30

overall processor utilization 0.5

different periods per function set, nk 2

resources 7

critical section ratio, csr 0.5

resource sharing factor, rsf 0.5

In the light of results from Experiment 2.1 (Section 7.3.2), the current evalua-
tion is achieved while considering the three objectives Min(f1 = #preemptions),
Min(f4 = (H −

∑k
i=1 Li)) and Min(f6 =

∑k
i=1Bi). At a first stage, each gener-

ated test instance is processed by the exhaustive method in order to produce its
PF true. Then, we apply our DSE process for 30 independent runs. Each IGD and
CR value shown in this experiment is the average over the 30 runs. The number
of PAES iterations for each run is fixed at 3000.

Results interpretation

Table 7.5 and Table 7.6 show the results for test instances of 9 and 10 functions
respectively. For each studied test instance, we compute a set of performance

–158–

7.3. Experiments for systems with shared resources

metrics, namely: the IGD value, the size of PF true (i.e. the number of non-
dominated solutions), the size of PF approx (average, minimum and maximum
number of solutions found over all the runs) and finally the CR value.

Table 7.5: Results relative to 9-functions test instances

Test

instances

Avg.

IGD
|PF true|

|PFapprox| Avg.

CRAvg. Min - Max

1 0.0 3 3.0 3 - 3 1.0

2 0.0 2 2.0 2 - 2 1.0

3 0.0 3 3.0 3 - 3 1.0

4 0.0 2 2.0 2 - 2 1.0

5 0.0 12 12.0 12 - 12 1.0

6 0.0 2 2.0 2 - 2 1.0

7 0.0 7 7.0 7 - 7 1.0

8 0.0 2 2.0 2 - 2 1.0

9 0.0 12 12.0 12 - 12 1.0

10 0.0 3 3.0 3 - 3 1.0

11 0.0 4 4.0 4 - 4 1.0

12 0.0 4 4.0 4 - 4 1.0

13 0.0 2 2.0 2 - 2 1.0

14 0.0 5 5.0 5 - 5 1.0

15 0.0 4 4.0 4 - 4 1.0

Test

instances

Avg.

IGD
|PF true|

|PFapprox| Avg.

CRAvg. Min - Max

16 0.0 5 5.0 5 - 5 1.0

17 0.0 2 2.0 2 - 2 1.0

18 0.0002 12 12.0 12 - 12 0.9861

19 0.0022 18 17.86 17 - 18 0.9814

20 0.0084 14 13.16 12 - 14 0.9404

21 0.0131 6 6.0 6 - 6 0.9222

22 0.0327 8 7.23 7 - 8 0.8958

23 0.1237 9 7.0 7 - 7 0.7777

24 0.2589 4 3.06 3 - 4 0.7666

25 0.2654 15 6.0 6 - 6 0.4000

26 0.3106 7 9.0 9 - 9 0.5714

27 0.3334 3 2.0 2 - 2 0.6666

18 0.3535 4 2.0 2 - 2 0.5000

29 0.7043 6 2.0 2 - 2 0.3333

30 0.7071 2 1.0 1 - 1 0.5000

Table 7.6: Results relative to 10-functions test instances

Test

instances

Avg.

IGD
|PF true|

|PFapprox| Avg.

CRAvg. Min - Max

1 0.0 2 2.0 2 - 2 1.0

2 0.0 3 3.0 3 - 3 1.0

3 0.0 3 3.0 3 - 3 1.0

4 0.0 5 5.0 5 - 5 1.0

5 0.0 12 12.0 12 - 12 1.0

6 0.0 3 3.0 3 - 3 1.0

7 0.0 2 2.0 2 - 2 1.0

8 0.0 3 3.0 3 - 3 1.0

9 0.0 2 2.0 2 - 2 1.0

10 0.0 4 4.0 4 - 4 1.0

11 0.0 2 2.0 2 - 2 1.0

12 0.0 9 9.0 9 - 9 1.0

13 0.0 9 9.0 9 - 9 1.0

14 0.0 6 6.0 6 - 6 1.0

15 0.0 5 5.0 5 - 5 1.0

Test

instances

Avg.

IGD
|PF true|

|PFapprox| Avg.

CRAvg. Min - Max

16 0.0 3 3.0 3 - 3 1.0

17 0.0005 26 25.93 25 - 26 0.8104

18 0.0454 10 9.03 9 - 10 0.7633

19 0.0431 18 16.3 15 - 18 0.7629

20 0.1209 6 5.03 5 - 6 0.8388

21 0.1659 7 4.16 4 - 5 0.5952

22 0.1670 14 8.33 8 - 14 0.5857

23 0.1742 12 9.40 6 - 12 0.7833

24 0.1786 11 7.33 7 - 9 0.6363

25 0.2214 4 3.16 3 - 4 0.6333

26 0.3479 9 4.1 4 - 7 0.4518

27 0.4886 7 3.0 3 - 3 0.2000

28 0.5909 5 3.03 3 - 4 0.2000

29 0.6224 4 2.0 2 - 2 0.5000

30 0.7071 2 1.0 1 - 1 0.5000

In order to ease the readability and the analysis of the results, in both tables, we
sort the test instances in ascending order of their IGD values and we divide the
results into 3 classes according to IGD ranges:

• First class: it encloses test instances holding a zero IGD value, which means
that the DSE process method succeeds in converging to the exact Pareto front
PF true of these test instances in all achieved runs. This class represents 55%
of all the presented test instances (17 test instances in Table 7.5 and 16 test
instances in Table 7.6). Moreover, as we can see in both tables, the number of
solutions in PF true for about 30% of test instances of this class is greater than
or equal to 5 solutions. This shows the ability of our DSE process to handle
instances with diversified Pareto front.

–159–

Chapter 7. Evaluation and Empirical Studies

• Second class: it contains test instances with low IGD values that belong
to the range [0.0002, 0.05] and it includes about 13% over the 60 studied test
instances. Low IGD values of this second class may be asserted by the relatively
high CR values: the average CR over test instances of the second class in both
Table 7.5 and Table 7.6 are about 0.94 and 0.77 respectively. This means that
for all test instances of this second class (i.e for both test instances sizes), our
method is able to attain optimal non-dominated solutions by an average rate
about 85%.

• Third class: it is defined for test instances with relatively medium and high
IGD values that belong to the range [0.1, 0.7]. We find in this class around 32%
of the studied test instances. The average CR over test instances of the third
class in both Table 7.5 and Table 7.6 are about 0.56 and 0.53 respectively. The
comparison of these CR values with those obtained in the second class justifies
higher IGD values obtained in the third class with regard to the second one
(remind that low IGD values are preferable and indicate better convergence
and accuracy of the method).

Furthermore, the range of IGD values of this class which is between 0.1 and 0.7
(i.e. a non-tight range) may be due to the variation of the coverage ability of the
DSE process among test instances. For example, let consider from Table 7.6,
test instance 24 having an IGD of 0.1786 and test instance 29 with an IGD
of 0.6224. As we can see for both test instances, our DSE process misses 2
solutions: for test instance 24 it can reach at the best runs 9 solutions among
11 in PF true and for test instance 24 it attains at best 2 solutions among 4
in PF true. Even though the number of missed solutions is the same for both
test instances, their IGD values are different. As shown in Figure 7.4, for test
instance 24 (Subfigure 7.4a) the DSE process covers the overall Pareto area,
whereas for test instance 29 (Subfigure 7.4b) it misses a region of the search
space. That is the rationale for which test instance 29 is penalized in its IGD
value (0.6224).

The observation with problem instance 29 may due to constraints imposed on
this problem instance. Indeed, constraints may create isolated feasible regions,
which are unattainable directly by a mutation operation on a feasible solution
from other feasible regions. In such constrained search spaces, a local search
method (like the one used by PAES) could eventually fail to effectively explore
the search space [AM15].

The results obtained with the DSE process for first and second classes (that
represent 68% of the studied test instances) can be considered as fairly good,
since their IGD values are less than 0.04 and we know that the upper bound
value of normalized IGD is

√
2 (≈ 1.4142).

Moreover, we have measured the execution time of both methods for the 60
studied test instances. For the DSE process, we consider the average execution

–160–

7.3. Experiments for systems with shared resources

 14 16 18 20 22 24 26 28
 3400

 3600
 3800

 4000
 4200

 0
 10
 20
 30
 40
 50
 60
 70
 80

PFapproxPFtrue

f6

f1
f4

(a) PF true and PF approx of test instance 24
of Table 7.6

 3
 3.5

 4
 4.5

 5 100
 200

 300
 400

 500
 600

 700
 800

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

PFapprox

f4f1

f6

PFtrue

(b) PF true and PF approx of test instance 29
of Table 7.6

Figure 7.4: Comparison of the PAES coverage ability between two test instances

time over all the runs. Then, for each test instance we computed the execution
time reduction rate of the DSE process against the exhaustive method: (1 −
TPAES

TExhaustive
) · 100. The average execution time reduction rate over all the test

instances is about 74% which shows that the PAES method outperformed the
exhaustive method with respect to the execution time. Furthermore, we notice
that the execution time comparison results between the two methods are better
for instances with 10 functions than 9 functions. This may be justified as follows.
On one side, the exhaustive method spends more time for test instances with 10
functions than 9 functions, since the solutions space is larger (B10 = 115975 vs
B9 = 21147). On the other side, we run the PAES method for a fixed number of
iterations for both test instances sizes.

7.3.4 Experiment 2.3: Solution sets quality evaluation for different
resources contention levels

In Section 5.5 and Section 7.2.2, we have already evaluated our architecture
exploration method for independent functions systems by assessing the quality
of produced solution sets while varying the systems size up to 100 functions.
We have shown that our method not only scales well but also makes effectively
the architecture exploration and provides a set of promising trade-offs for the
designer. The average hypervolume was about 0.78 for test instances with 100
functions.

In this experiment, we are interested in assessing the effectiveness of our method
by investigating the quality of the generated solution sets for different resources
contention levels. The solution sets obtained in the current experiments are to
be evaluated quantitatively (by way of # non-dominated solutions in PF approx)

–161–

Chapter 7. Evaluation and Empirical Studies

and qualitatively (using the hypervolume performance indicator defined in Sec-
tion 2.3.4).

Experiment protocol and parameters settings

The parameters of the test instance generator are outlined in Table 7.7.

Table 7.7: Experiment 2.3: test instance generator parameters settings

Common parameters settings

Parameters Values

test instance size (# functions per test instance) 30

generated test instances per resources contention level 20

overall processor utilization 80%

different periods per function set, nk 5

Per resources contention level parameters settings

level1 level2 level3

resources 5 10 15

resource sharing factor, rsf 0.1 0.2 0.3

critical section ratio, csr 0.1 0.3 0.5

Experiments are performed for three resources contention levels. For each level,
20 different test instances are generated. Some parameters are set commonly for
the three resources contention levels, namely: (i) each test instance contains 30
functions, (ii) the overall processor utilization factor is set at 80%, (iii) function
periods of a particular test instance are uniformly distributed between a set of
nk = 5 different periods randomly generated. The resources contention variation
is performed by varying the number of resources, the resource sharing factor and
the critical section ratio. As shown in Table 7.7, the test instances associated
to level1 (respectively level2, level3) will have low (respectively medium, high)
resources contention level.

As Experiment 2.2 (Section 7.3.3), the current experiment also considers the three
objectives Min(f1 = #preemptions), Min(f4 = (H −

∑k
i=1 Li)) and Min(f6 =∑k

i=1 Bi) to be optimized. Test instances of each level are processed by the DSE
process for 10 independent runs. The number of PAES iterations for each run is
set at 3000.

Results interpretation

Table 7.8, Table 7.9 and Table 7.10 present the results for the processing of 20 test
instances relative to each of the three considered resources contention levels. Each

–162–

7.3. Experiments for systems with shared resources

test instance is assessed with respect to the hypervolume (average and standard
deviation values over all runs) and the size of the PF approx (average, minimum
and maximum values over all the runs). In order to ease the readability and
the analysis of the results, we sort the test instances in descending order of their
hypervolume values, in the three tables.

Table 7.8: Results relative to test instances with low resources contention level (level1)

Test

instances

Hypervolume |PFapprox|
Avg. Std. Avg. Min - Max

1 0.8487 0.0127 18.80 12 - 24

2 0.8117 0.0247 7.00 6 - 9

3 0.8015 0.0113 15.30 13 - 18

4 0.7595 0.0663 25.40 21 - 32

5 0.7357 0.1316 5.00 4 - 8

6 0.6746 0.0406 10.40 6 - 17

7 0.6551 0.0290 13.00 11 - 16

8 0.6221 0.0555 8.50 7 - 10

9 0.5868 0.0252 17.90 13 - 21

10 0.5339 0.0000 8.70 8 - 9

Test

instances

Hypervolume |PFapprox|
Avg. Std. Avg. Min - Max

11 0.0 0.0 4.00 4 - 4

12 0.0 0.0 3.00 3 - 3

13 0.0 0.0 8.00 7 - 9

14 0.0 0.0 3.80 3 - 4

15 0.0 0.0 2.40 2 - 5

16 0.0 0.0 7.00 7 - 7

17 0.0 0.0 8.10 7 - 9

18 0.0 0.0 3.00 3 - 3

19 0.0 0.0 5.80 5 - 6

20 0.0 0.0 8.30 7 - 10

Table 7.9: Results relative to test instances with medium resources contention level (level2)

Test

instances

Hypervolume |PFapprox|
Avg. Std. Avg. Min - Max

1 0.8337 0.0154 25.80 19 - 36

2 0.8336 0.0332 79.20 59 - 101

3 0.8142 0.0173 90.60 74 - 119

4 0.7896 0.0208 60.00 51 - 72

5 0.7835 0.0375 15.00 11 - 22

6 0.7723 0.0220 35.50 33 - 40

7 0.7699 0.0589 103.60 68 - 132

8 0.7420 0.0324 34.20 26 - 42

9 0.7360 0.0315 19.30 14 - 28

10 0.7275 0.0096 5.50 5 - 6

Test

instances

Hypervolume |PFapprox|
Avg. Std. Avg. Min - Max

11 0.6976 0.0396 41.80 24 - 56

12 0.6559 0.0276 25.40 22 - 28

13 0.6527 0.0498 39.40 22 - 46

14 0.6474 0.0335 64.30 50 - 99

15 0.6164 0.0400 115.20 68 - 147

16 0.6089 0.0313 19.70 16 - 23

17 0.5970 0.0505 34.40 28 - 44

18 0.5801 0.0257 82.90 62 - 98

19 0.4886 0.0015 21.00 21 - 21

20 0.4838 0.0339 21.50 16 - 28

Table 7.10: Results relative to test instances with high resources contention level (level3)

Test

instances

Hypervolume |PFapprox|
Avg. Std. Avg. Min - Max

1 0.8802 0.0041 120.70 97 - 150

2 0.8551 0.0165 145.20 117 - 158

3 0.8507 0.0109 163.20 148 - 186

4 0.8311 0.0155 30.80 23 - 35

5 0.7814 0.0252 111.10 75 - 138

6 0.7725 0.0539 96.50 50 - 148

7 0.7667 0.0129 102.90 67 - 155

8 0.7546 0.0197 75.90 63 - 88

9 0.7407 0.0453 39.60 28 - 57

10 0.7328 0.0488 141.50 128 - 160

Test

instances

Hypervolume |PFapprox|
Avg. Std. Avg. Min - Max

11 0.7298 0.0381 113.70 42 - 150

12 0.7195 0.0558 46.40 30 - 60

13 0.6866 0.0875 89.50 57 - 109

14 0.6832 0.0337 36.70 28 - 43

15 0.6700 0.0617 173.00 146 - 196

16 0.6654 0.0298 102.00 81 - 127

17 0.6538 0.0515 47.90 41 - 54

18 0.6311 0.0164 146.80 123 - 186

19 0.5723 0.0361 144.80 131 - 165

20 0.5222 0.0626 64.80 53 - 77

Let consider Table 7.8, where the resources contention level of the studied test
instances is low. We notice that hypervolume values relative to 50% of test in-
stances are in the range of [0.53, 0.84], whereas the second half of test instances

–163–

Chapter 7. Evaluation and Empirical Studies

have zero hypervolume value. Zero hypervolume value is due to the reduced
resources contention that results in zero values for the blocking time of tasks.
Accordingly, each solution in PF approx associated to these test instances has for

the objective Min(f6 =
∑k

i=1 Bi) a zero value. For these test instances, only

the objectives Min(f1 = #preemptions) and Min(f4 = (H −
∑k

i=1 Li)) present
a conflict relationship, which induces the reduction of the search space dimen-
sion. For test instances with non-zero hypervolume values (i.e. the first part of
Table 7.8), we can see that the hypervolume values are greater than 0.5 which
mean that the obtained solution sets are well spread in the part of the objective
space that has been explored.

The average hypervolume over test instances displayed in Table 7.9 and Table 7.10
are about 0.6915 and 0.7250 respectively. This is explained by the large size of
the search space associated to these test instances induced by the magnitude of
the resources contention. Hence, the number of feasible solutions is so important,
thereby resulting in large fronts. This is reinforced by the number of solutions
in the obtained fronts that is quite high: up to 147 in Table 7.9 and 196 in
Table 7.10.

Besides, when we inspect the size of PF approx in the three tables, we notice that
the number of solutions is different between runs associated to each test instance.
This variation is more acute in Table 7.9 and Table 7.10. Again, this is due to
the increase of the search space size with the resources contention rise. This will
cause a variation in the PAES behavior from one run to another for the same
test instance. For a given test instance, despite the variation in the number of
solutions between runs, the standard deviation of the hypervolume values over
the runs is relatively low (8.75% in the worst case), showing that the quality of
the produced fronts is still good and roughly stable over the different runs.

Furthermore, we have computed the execution time of the 20 test instances of
each resources contention level. Table 7.11 shows the average, the minimum and
the maximum execution time over the test instances of each resources contention
level. It gives also the simulation period (SP) of the test instances associated to
the Min and the Max execution time values of each level.

We can see in this table that for each level, the difference between the mini-
mum and the maximum execution time values is about 2h 26min, (respectively
2h 44min and 3h 45min) for level1 (respectively level2 and level3). This execu-
tion time variation is caused by the variation of the simulation period between
the generated test instances as shown in Table 7.11. In addition, we can observe
that the execution time increases when the resources contention level raises. Let
consider the maximum execution time values for each resources contention level.
We note that even though the simulation periods of level1 (SP = 27720) and
level2 (SP = 27720) are greater than the one of level3 (SP = 13860), the maxi-

–164–

7.3. Experiments for systems with shared resources

Table 7.11: Execution time computed over all test instances generated for each resource
contention level

Resources contention
level

Execution time
Avg. Min. Max.

Level1 41min 6s
6min

(SP=4620)

2h 32min 8s
(SP=27720)

Level2 1h 27min 54s
29min 13s
(SP=13860)

3h 13min 30s
(SP=27720)

Level3 3h 13min 14s
1h 17min 25s

(SP= 2520)

5h 3min 12s
(SP=13860)

mum execution time relative to level3 is more important2. The rationale here is
that the rise of the resources contention will increase the number of events to take
into consideration in the simulation, thereby spending more time to compute the
schedule of each candidate design by simulation. Besides, the shown execution
time values for the three levels indicate that our method is able to handle prob-
lem instances with reasonable system size (i.e. 30 functions for the studied test
instances) and high resources contention.

To conclude, although this experiment does not address explicitly the accuracy of
the generated fronts (contrary to Experiment 2.2, where optimal Pareto fronts can
be computed), the results in terms of hypervolume and number of solutions show
that our method performs effectively the architecture exploration for systems with
shared resources by generating a set of promising design trade-offs. For instance,
for the studied system instances with high resources contention, we have obtained
HV ∈ [0.52, 0.88] and |PF approx| ∈ [30, 173].

7.3.5 Experiment 2.4: Impact of the initial design solution choice on
the DSE process performance

The initial solution is one among key factors that influence the performance of
the MOEA [HGT05]. In all the previous experiments, we run the DSE process
by setting the initial solution to the 1-1 assignment solution. The latter corre-
sponds to an extreme design solution involving the maximum number of tasks
which promotes the laxity objective Min(f4 = (H −

∑k
i=1 Li)). The 1-1 as-

signment initial solution is quite simple and defined at very low computational
cost. However, starting the search from an extreme solution may hinder the
algorithm from reaching all solutions in PF true. For that, in Section 4.3.2, we

2Logically, for two test instances with the same size (i.e. # functions), the test instance that
have larger simulation period will take more time to be processed by DSE process.

–165–

Chapter 7. Evaluation and Empirical Studies

investigate another initial solution called preprocessed solution that assigns func-
tions to tasks following a strategy based on dependencies among functions (see
Algorithm 3). The preprocessed solution includes fewer number of tasks than the
1-1 assignment solution and is rather oriented towards the blocking time objective
Min(f6 =

∑k
i=1Bi).

In the current experiment, we want to investigate the impact of the initial solution
choice on the DSE process. We drive a set of experiments aiming at comparing
the fronts generated by running the DSE process while setting the initial solution
first to the 1-1 assignment solution and secondly to the preprocessed solution. In
the sequel of this section, first we give the experiment protocol. Then, we present
results and their interpretation.

Experiment protocol and parameters settings

This experiment is performed on the same test instances generated as part of
Experiment 2.2 (Section 7.3.3).

First, we apply the preprocessed initial solution method on each of these test
instances in order to generate a preprocessed initial solution. Then, these test
instances are proceeded by the DSE process while considering the preprocessed
initial solutions. Thereafter, IGD values are computed on the obtained fronts.
As for the 1-1 assignment initial solution, we exploit IGD values stemmed from
Experiment 2.2. Each IGD value shown in this experiment is the average over
30 independent runs of the DSE process with the considered initial solution.
Remind that IGD values are normalized (i.e. IGD ∈ [0..

√
2]) and smaller values

are preferred for this metric.

Results interpretation

Results of this experiment are illustrated through Figure 7.5 and Table 7.12. IGD
values obtained when considering 1-1 assignment initial solution are compared
against those obtained when considering the preprocessed initial solution.

Figure 7.5 provides IGD values for 9-functions test instances (Subfigure 7.5a)
and 10-functions test instances (Subfigure 7.5b). Both subfigures illustrate IGD
values associated to (i) fronts produced when considering the 1-1 assignment
initial solution (marked with blue-filled circles) and (ii) fronts produced when
considering the preprocessed initial solution (marked with red-filled triangles).

Table 7.12 indicates the number of test instances for which (1) IGD values are
the same for both initial solutions, (2) IGD values are degraded (i.e. IGD values
obtained when considering the preprocessed initial solution are larger than those
relative to the 1-1 assignment solution), and (3) IGD values are enhanced (i.e.

–166–

7.3. Experiments for systems with shared resources

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

IG
D

Test instances (with 9 functions)

PAES with 1-1 assignment initial solution PAES with preprocessed initial solution

(a) IGD values for 9-functions test instances

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

IG
D

Test instances (with 10 functions)

PAES with 1-1 assignment initial solution PAES with preprocessed initial solution

(b) IGD values for 10-functions test instances

Figure 7.5: IGD values associated to fronts produced by applying the DSE process on test
instances while setting the initial solution to (i) the 1-1 assignment solution and then (ii) the

preprocessed solution

IGD values relative to preprocessed initial solution are smaller than those rela-
tive to the 1-1 assignment solution). Table 7.12 provides also the average IGD
degradation and enhancement.

First, in both Figures 7.5a and 7.5b, we can see that test instances having a zero
IGD value with the 1-1 assignment initial solution maintain also a zero IGD value
with the preprocessed initial solution.

Besides, by looking at IGD values given in these two figures, we can notice that the
DSE process performs better when the initial solution is set to the preprocessed
solution rather than considering the 1-1 assignment as initial solution. This is
reinforced by the results given in Table 7.12 in terms of the number of test
instances for which we record an IGD enhancement (17 test instances) and the

–167–

Chapter 7. Evaluation and Empirical Studies

Table 7.12: Comparison between IGD values computed by considering the
1-1 assignment initial solution and those associated to the preprocessed initial solution

Average
(IGD1 − IGD2)

test instances

Same IGD 0.0 35 (about 58% of test instances)
IGD degradation −0.0038 7 (about 11% of test instances)
IGD enhancement 0.1871 17 (about 27% of test instances)

IGD1: IGD relative to 1-1 assignment initial solution
IGD2: IGD relative to preprocessed initial solution

average IGD enhancement (0.1871) as well. As we can observe, for test instances
22 and 27 in Figure 7.5a and test instances 23 and 30 in Figure 7.5b, IGD values
that are non-zero values with the 1-1 assignment initial solution become zero
values with the preprocessed initial solution. This means that for these test
instances, the DSE process by using the preprocessed initial solution converges
to PF true in all runs while it fails (for certain runs among the 30 performed runs)
when the initial solution is set to the 1-1 assignment solution.

However, for exactly 7 test instances we perceive a slight degradation of IGD
values (by an average of 0.0038) in the case of preprocessed initial solution with
regards to the 1-1 assignment initial solution.

We would like to underline that the preprocessed initial solution method fails to
generate an output for test instance 6 of Figure 7.5b.

The current experiment shows that the preprocessed initial solution method is
efficient to handle small-sizes systems. In order to assess its capability to handle
larger (i.e. having more functions) and more complex systems (i.e. subject to high
resources contention in addition to the timing constraints) we apply the prepro-
cessed initial solution method on test instances of Experiment 2.1 (Section 7.3.2)
and those generated as part of Experiment 2.3 (Section 7.3.4).

Table 7.13 and Table 7.14 exhibit results derived from test instances of Experi-
ment 2.1 and Experiment 2.3 respectively. Each table specifies (1) the number
of test instances for which the preprocessed initial solution method succeeds to
produce an output (i.e. a feasible solution) and (2) the number of test instances
when it fails.

Seeing results in these two tables, we note that the efficiency of the preprocessed
initial solution method decreases when the number of the system functions and
the resources contention grow. As pointed out in Table 7.13, the rate of test
instances that cannot be handled by the preprocessed initial solution method
swells from 10% for test instances generated according to the first configura-
tion parameters (see second row of Table 7.13) to 68% for test instances of the
second configuration having larger number of functions and more resources con-

–168–

7.3. Experiments for systems with shared resources

Table 7.13: Preprocessed initial solution method applied on test instances of Experiment 2.1

Test instances
configuration

test instances associated to
the success of preprocessing

initial solution

test instances associated to
the failure of preprocessing

initial solution

50 test instances:
- 20 functions
- 6 resources
- rsf = 0.2
- csr ∈ {0.1, 0.3, 0.5}

45 (90 % of test instances) 5 (10 % of test instances)

50 test instances:
- 30 functions
- 10 resources
- rsf = 0.25
- csr ∈ {0.1, 0.3, 0.5}

16 (32 % of test instances) 34 (68 % of test instances)

Table 7.14: Preprocessed initial solution method applied on test instances of Experiment 2.3

Resources contention
levels

test instances associated to
the success of preprocessing

initial solution

test instances associated to
the failure of preprocessing

initial solution

Level1 18 (90 % of test instances) 2 (10 % of test instances)
Level2 13 (65 % of test instances) 7 (35 % of test instances)
Level3 6 (30 % of test instances) 14 (70 % of test instances)

tention (see third row of Table 7.13). It is further shown in Table 7.14 that for
test instances with the same number of functions (30 functions), the ability of
the preprocessed initial solution method to generate a feasible solution falls as
resources contention increases.

The failure of the preprocessed initial solution method to produce a feasible
solution can be explained as follows. Indeed, according to Algorithm 3, when
a large and complex system is given as input, the first determined solution (i.e.
before checking the feasibility) will involve a design with few tasks and with high
resources contention. Unfortunately, such a design would lead to very narrow
tasks laxities and increased blocking-time of tasks, and worse, it may jeopardize
the system schedulability. This will lead to an infeasible solution. Additionally,
it may be difficult to reproduce a feasible solution through a mutation applied on
this infeasible solution. Accordingly, the failure rate of the preprocessed initial
solution method raises with acutely constrained systems.

Results of this experiment let us to conclude that a proper choice of the initial
solution would improve the accuracy and convergence to optimal results of our
design exploration method. Furthermore, these results provide evidence that the
method that we propose to preprocess an adequate initial solution for systems
with shared resources, is efficient for small-sizes systems. However, the efficiency
of that method decreases as resources contention and number of system functions
increase.

–169–

Chapter 7. Evaluation and Empirical Studies

7.4 Conclusion

In this chapter, we have presented results of experimental studies performed to
investigate some aspects stemmed from the addressed problem and assess the
effectiveness of our approach.

Experiments are divided into two groups according to the system model config-
uration. A first experiments group targeted systems with independent functions
following Liu & Layland task model. The second experiments group has been
achieved for systems with interacting functions through shared resources. All
the experiments were performed on synthetically generated problem instances.
For each group of experiments we have proposed a problem instance generator
dedicated to the system model under consideration.

For independent task systems, the evaluation of the proposed DSE process is
twofold. The first experiment (Experiment 1.1) assessed the accuracy of our
method by comparing its result against an exhaustive method providing exact
results. This experiment was performed on a small size test case (a system with
11 functions), since the exhaustive method can not handle problem instances with
large search spaces. It showed that the DSE process is able to converge towards
the exact Pareto front for the considered test case. For larger test instances, the
second experiment (Experiment 1.2) evaluated the quality of produced Pareto
fronts. The obtained results validate the capability of our framework to explore
a design space of assignment solutions, and provide sets of promising trade-offs
with respect to two objectives, namely Min(f1 = #preemptions) and Min(f4 =
(H −

∑k
i=1 Li)).

As for systems with interacting tasks through shared resources, four experiments
were carried out. In Experiment 2.1, we performed an empirical study aiming at
investigating the correlation between three pairs of objectives. Results of this ex-
periment showed that: two pairs of objectives namely [Min(f1 = #preemptions),
Min(f4 = (H −

∑k
i=1 Li))] and [Min(f4 = (H −

∑k
i=1 Li)), Min(f6 =

∑k
i=1Bi)]

present a conflicting relationship for more than 70% of the studied test instances
whereas for the objectives pair [Min(f1 = #preemptions), Min(f6 =

∑k
i=1Bi)]

only 46% of test instances present a conflicting relationship.

Besides, Experiment 2.2 was achieved in order to assess the accuracy of the DSE
process. The solution sets produced by our method were compared against an
exhaustive method results. The experiments for this evaluation were realized on
small size test instances. Results of this experiment showed that our method can
produce the optimal solution sets for 55% of the studied instances, and for other
instances (about 13%) results were very close to optimal solution set (i.e. test
instances with low IGD values, see Section 7.3.3). Furthermore, an execution time
comparison study pointed out that our DSE process outperforms the exhaustive
method by about 74% of an execution time reduction.

–170–

7.4. Conclusion

Experiment 2.3 was conducted for more complex systems with different resources
contention levels in order to assess the quality of produced solution sets. Results
of this experiment approved that our method made effectively the design explo-
ration and generated meaningful trade-offs. For example, with high resources
contention level, the average hypervolume and the average number of solutions
over 20 test instances were about 0.725 and 100 solutions respectively.

Finally, Experiment 2.4 was derived to explore the impact of the initial solution
choice on the DSE process performance. This experiment was performed on small
size problem instances. The DSE process using the 1-1 assignment solution that
biases the search towards the laxity objective was compared against the DSE
process while using a preprocessed solution. The latter is built through a method
called preprocessed initial solution method that we proposed. This method as-
signs functions to tasks following a strategy based on dependencies among func-
tions through shared resources. The goal is to guide the search towards a region
that promotes also the blocking-time objective. Results of this experiment re-
vealed that running the DSE process by using the preprocessed solution for the
initial solution performed better or equally well in terms of IGD values than
using the 1-1 assignment initial solution for 85% of the studied test instances.
This leads to conclude that spending some computational effort in building an
adequate initial solution is encouraged as it helps to enhance the convergence in
optimization, thereby improving the efficiency of the design exploration method.

As part of Experiment 2.4, we have assessed the robustness of the preprocessed
initial solution method towards more complex systems. This method was run on
test instances with larger size and more resources contention. However, through
results of experiments, we realized that the efficiency of that method goes down
when resources contention and system size increase. For this reason and consid-
ering further the low computational cost to build the 1-1 assignment solution,
the latter is used, so far, as initial solution for the DSE process.

–171–

Conclusion

The work presented in this thesis contributed to verification of constraints and
optimization of multiple performance criteria at early design stages of critical
real-time and embedded (RTE) systems.

In order to present our contributions in this field, we introduced, in Chap-
ters 1 and 2, the required background knowledge about RTE systems under-
lying concepts related to their timing verification, development and design. We
also presented an overview about multi-objective optimization (MOO) methods
that are of great interest when dealing with the exploration of design alternative
space regarding multiple conflicting performance criteria. Chapter 3 synthesized
the work orientation by highlighting the challenges, the work assumptions, and
the proposed contributions, then it described and discussed the related work.

Afterwards, we detailed, in Chapter 4, elements of our solution regarding the au-
tomated multi-objective design space exploration (DSE) process for the functions-
to-tasks mapping problem. In order to better master the scalability of this DSE
process, we presented, in Chapter 5, a parallel implementation of the DSE process
combined with a new selection strategy for PAES, the multi-objective evolution-
ary algorithm used by the DSE process. All the approach elements are structured
and developed in a prototype described in Chapter 6. Furthermore, in Chapter 7,
we presented several experiments conducted in order to evaluate our proposals
and drive some empirical studies.

This last chapter concludes this thesis by recalling the problem statement fol-
lowed by our key contributions. Then, it provides the main experimental results
obtained in this work. Finally, some directions for future work are outlined.

Reminder of the problem statement

This thesis dealt with mapping the functional specification (i.e. function level)
of a given RTE system towards an operational design (i.e. RTOS task level),
so as to guarantee the optimization of the system performance and its correct-
ness with respect to the timing properties. The system performance criteria are
always conflicting: an attempt to enhance one criterion leads to the degrada-
tion of others. Accordingly, RTE systems designers are faced with several design
decisions/choices and they struggled to make the most suitable decisions in order

–173–

Conclusion

to define trade-offs between conflicting performance criteria. They need to ex-
plore the design space of mapping alternatives, in order to identify those meeting
the timing constraints and answering at best to a trade-off among the conflicting
performance criteria. During this exploration process, designers must check the
feasibility of each design alternative regarding all requirements. Unfortunately,
performing this exploration process manually by enumerating all the possible de-
sign alternatives is costly, error-prone, tedious, unmanageable for a human. This
is due to the ever-increasing complexity and size of RTE systems (that may in-
clude up to several hundreds of functions) leading to a very large design space
of mapping alternatives. Indeed, the number of mapping alternatives increases
exponentially with the system size (i.e. the number of functions).

Thus, the problem we dealt with in this thesis is identified as a combinatorial
multi-objective optimization problem (MOOP) and can be summarized as follows:
How to assign the functional specification of a particular RTE application into a
specific execution platform while taking into account the timing constraints and
trade-offs among multiple conflicting performance criteria?

Contributions summary

Before outlining our contributions, we recall the real-time scheduling context and
assumptions delineating the scope of our solutions.

In this thesis, we considered hard critical real-time systems where all task dead-
lines must be met. The proposed architecture exploration method is applied on
systems that consist of a set of concurrent tasks interacting through shared re-
sources. We relied on a conventional task model based on the well-known Liu
& Layland model [LL73]. We assumed periodic synchronous tasks with implicit
deadlines running on top of a uniprocessor platform under a preemptive and
fixed-priority scheduling policy. We targeted Ravenscar compliant systems, i.e.
shared resource accesses are governed by the priority ceiling protocol (PCP) in
order to ensure the synchronization of tasks and their mutual exclusion.

To tackle issues raised by design exploration, notably the combinatorial explo-
sion of functions-to-tasks assignment alternatives and the conflicting character
of performance criteria, we automated the exploration of assignment alternatives
using a multi-objective metaheuristic in the class of Multi-Objective Evolutionary
Algorithms (MOEAs), namely the Pareto Archived Evolution Strategy (PAES).
This kind of methods, including a part of randomness, aims at finding optimal or
near-optimal solutions without exploring the whole search space, thereby produc-
ing results at reasonable computational cost. Although a metaheuristic method
does not guarantee the optimality, it is of great interest when exact methods fail
to handle large search spaces and can not find optimal solutions.

–174–

Conclusion

From the functional specification of the system under consideration, an initial
assignment alternative solution is generated manually, such as the 1-1 assignment
solution where each function is assigned to one task. This initial design alternative
is given as input to the proposed automatic multi-criteria DSE process, from
which the search procedure is launched. The PAES underlying components in
terms of encoding of solutions, mutation operator and evaluation of solutions
by means of objective functions are designed and customized according to the
addressed DSE mapping problem.

Such a MOEA-based approach needs a specific formalization of candidate design
solutions to enable their evaluation and their feasibility verification. To do so, we
defined a set of rules driving the assignment of functions into tasks. These rules
enable the formalization of candidate design alternatives by identifying task set
and resource set in terms of composition and timing parameters from their chro-
mosomal representation. The DSE process iterates different steps (evaluation,
mutation, archiving and selection) for a certain number of times in order to au-
tomatically explore the space of assignment alternatives. It is worth mentioning
that design alternatives explored during this DSE process are checked towards
a set of feasibility requirements such that the final produced design alternatives
enforce the correct system behavior and the timing constraints described in the
functional specification. The DSE process produces a Pareto set of design al-
ternatives representing the “best” trade-offs regarding the considered objectives.
From these Pareto design alternatives, designers of the system under considera-
tion would choose the most suitable one.

The second part of our contributions is about the scalability and the effectiveness
of the DSE process. First, to cope with the scalability issue, we adapted a parallel
asynchronous schema namely the well-known Master-Slave parallel paradigm to
our DSE process. With this coarse-grained approach, multiple candidate design
solutions are processed in parallel for checking constraints and evaluating objec-
tive functions. Second, we defined the so-called global selection, a new selection
strategy that aims at improving the search procedure of our DSE process, thereby
achieving better overall effectiveness, as compared to the default local selection
embedded in PAES. These proposals are particularly suitable for MOO problems
with large and variable time objective functions computation and/or constraints
verification.

To evaluate our solutions, we implemented a prototype that was embedded in
Cheddar, an existing scheduling framework. This prototype implements several
functions, each one implementing a part of our solutions. The main benefits of
the provided prototype are its reusability and the extensibility of its software
artefacts. For instance, it could be reused in different MOO problems or ex-
tended with other optimization methods. Similarly, the engine dedicated to the
specification of the functions-to-tasks assignment is reusable in the instantiation
of our DSE-specific problem with other MOO solvers, etc.

–175–

Conclusion

Main experimental results

In order to evaluate our theoretical and technical proposals and investigate some
points related to the addressed DSE mapping problem, we conducted different
experiments.

In Chapter 5, a set of experiments was devoted to assessing our proposals con-
tributing to the improvement of scalability of the DSE process. These experi-
ments were performed on synthetically generated problem instances. Their results
show improvement not only in the execution time but also in the quality of pro-
duced Pareto sets when compared to the previous sequential version of the DSE
process. For instance, with 4 slave processors, the average speed-up is about 3.5
and the average improvement rate in hypervolume is about 38.7% for problem
instances with 100 functions. The improvement captured in the produced Pareto
sets quality has been achieved thanks to the global selection strategy that we
have proposed.

In Chapter 7, experiments were divided into two groups according to the sys-
tem model configuration. A first set of experiments focused on systems with
independent functions. The second experiment group has been achieved for sys-
tems with interacting functions through shared resources. All the experiments
were performed on synthetically generated problem instances. For each group
of experiments we have proposed a problem instance generator dedicated to the
considered system model.

For independent task systems, the evaluation of the proposed DSE process was
twofold. The first experiment assessed the accuracy of our method by comparing
its results against an exhaustive method results. This experiment was performed
on a small size test case presenting small enumerable search space since the
exhaustive method can not handle problem instances with large search spaces.
Results of this experiment show that the DSE process is able to converge towards
the exact Pareto front for the considered test case. For larger test instances (with
#functions≥ 15), the second experiment evaluated the quality of produced Pareto
fronts when varying the number of functions. The obtained results validate the
capability of our framework to explore a design space of assignment solutions, and
to provide a set of promising trade-offs with respect to two objectives, namely
Min(f1 = #preemptions) and Min(f4 = (H −

∑k
i=1 Li)). For example, for test

cases with 40 functions, hypervolume3 values are between 0.5 and 0.7.

For systems with interacting tasks through shared resources, four experiments
were achieved. In the first experiment, we performed an empirical study aiming at
investigating the correlation between three pairs of objectives. Results of this ex-
periment showed that: two pairs of objectives namely [Min(f1 = #preemptions),

3Remind that the maximum value of the hypervolume metric is 1.

–176–

Conclusion

Min(f4 = (H −
∑k

i=1 Li))] and [Min(f4 = (H −
∑k

i=1 Li)), Min(f6 =
∑k

i=1 Bi)]
present a conflict relationship for more than 70% of the studied test instances
whereas for the objectives pair [Min(f1 = #preemptions), Min(f6 =

∑k
i=1 Bi)]

only 46% of test instances present a conflict relationship. Nevertheless, none of
the objective pairs presents a support relationship for a major part of the studied
test instances, since the best supporting ratio is 23% for the couple [Min(f1 =
#preemptions), Min(f6 =

∑k
i=1Bi)]. Thus, in the following introduced ex-

periments, we have considered the three objectives Min(f1 = #preemptions),
Min(f4 = (H −

∑k
i=1 Li)) and Min(f6 =

∑k
i=1 Bi).

Moreover, we assessed the accuracy of the DSE process for systems with in-
teracting tasks through shared resources. A set of experiments was carried out,
where results produced by our DSE process were compared against an exhaustive
method results. These experiments were realized on small size test instances (i.e.
with 10 functions at most). Their results exhibit that our DSE process can find
the exact Pareto front for 55% of the studied instances. And for other instances
(about 13%) results were very close to optimal solution sets since their IGD val-
ues were in the range [0.0002, 0.05]. Additionally, an execution time comparison
study points out that our DSE process outperforms the exhaustive method by
about 74% of an execution time reduction.

For systems with higher number of functions and more resources contention, an-
other evaluation was achieved in order to assess the quality of produced Pareto
sets when varying the resources contention level. Results of experiments approved
that our method made effectively the design exploration and generated meaning-
ful trade-offs with respect to three objectives, namely Min(f1 = #preemptions),
Min(f4 = (H −

∑k
i=1 Li)) and Min(f6 =

∑k
i=1Bi). For instance, with high

resources contention level, the average hypervolume and the average number
of non-dominated solutions over 20 test instances were about 0.725 and 100
non-dominated solutions respectively.

Finally, we derived an experiment aiming at investigating the impact of the initial
solution choice on the DSE process performance. In this experiment, we compared
IGD results of the DSE process by using the 1-1 assignment solution against
the same method while using a preprocessed initial solution. Results of this
experiment revealed that running the DSE process by using the preprocessed
solution for the initial solution performs better or equally well (in terms of IGD
values) than using the 1-1 assignment initial solution for 85% of the studied test
instances. This leads to conclude that spending some computational effort in
building an adequate initial solution is encouraged as it helps to enhance the
accuracy/convergence of our DSE process.

–177–

Conclusion

Future work

This work can be extended by several means.

First of all, in this thesis we have considered a uniprocessor architecture for the
execution platform with synchronous periodic tasks having implicit deadlines.
Thus, the next major improvement is to extend the proposed approach in order
to take into account characteristics of today’s RTE systems: (1) from execution
platform point of view such as: multi-core/multi-processor architecture, hier-
archy of shared memories, etc (2) and from task model point of view such as:
asynchronous and/or sporadic tasks, arbitrary deadlines, mixed criticality, prece-
dence constraints, etc. These extensions on the targeted systems require further
investigations regarding the optimization objectives, degree of freedom in the
exploration, as well as the schedulability test to check the design alternatives.

When analyzing results of experiments we have noticed that for some test in-
stances our DSE process misses a region of the search space (e.g. see Figure 7.4b).
This may due to constraints imposed on these problem instances. Indeed, con-
straints may create isolated feasible regions, which are unreachable from other
feasible regions using the proposed mutation operator. In such constrained search
spaces, a single-current solution method (like the one used by PAES) would fail
to effectively explore the search space [AM15]. Therefore, it will be interesting
to formulate the DSE mapping problem with MOO techniques other than PAES.
In this case, elements of our approach proposed in chapter 4 in terms of solutions
encoding, search operators, formalization of design alternatives and feasibility
checks can be reused when formulating our problem with other MOEAs. These
approaches can also be mixed with local search method.

Additionally, in all the performed experiments, we run the DSE process for a
fixed number of iterations. However, it should be interesting to investigate some
convergence-based termination criterion.

As for the DSE process parallel implementation, we have observed through results
of experiments that the speed-up decreases with more processors involved in the
parallel computation. This indicates a decrease in the efficiency of the parallel
method with the number of parallel processors, which may be due to the parallel
approach adopted in our work. Thus, we plan to improve the efficiency of the
parallel search model for high number of processors by investigating the solution
choice like in [COA11]. In the same regard, another direction to improve the
scalability of our DSE process concerns the reduction of the computation time
associated to the scheduling simulation. For instance, authors of [GB01] have
investigated this issue and attempted to speed up the preprocessing phase of the
simulation by adapting it for implementation in parallel environments.

Currently, we used a simple method to investigate the correlation between objec-
tives based on the Pearson coefficient (linear correlation) and associated p-value.

–178–

Conclusion

As part of our future work, we want to employ more sophisticated tools dealing
with both linear and non-linear correlations as those defined in [SDT+13, WY16].
In the same context, in view of the objectives correlation study results, we plan to
apply an objective reduction method that uses the conflict information during the
search process like in [LJCUB09, JCAT14, SDT+13, WY16]. Such methods are
defined to address many-objective problems. Hence with an objective reduction
method, it will be possible to consider all the objectives listed in Section 4.3.4
or even other user defined objectives and then non-redundant objectives will be
determined during the algorithm progress.

Furthermore, through experiments, we have realized that the initial solution
(from which the DSE process starts the search) significantly influences the perfor-
mance in terms of accuracy/convergence of the DSE process. Hence, we expect
to thoroughly investigate the choice of the initial solution in order to improve
the performance of our DSE process. This work can be also used for creating the
initial population of alternative MOEAs.

–179–

Part III

Appendices

–181–

A
Experimental Setups and Threats to

Validity

This appendix is devoted to discuss/explain the setup of certain empirical pa-
rameters in experiments presented in Chapter 5 (Section 5.5) and Chapter 7
(Sections 7.2 and 7.3). We acknowledge that, for some experiments, certain pa-
rameters such as # test instances per experiment, # PAES independent runs

per problem instance and # PAES-iterations (i.e. the stopping condition of
the algorithm) are set to relatively small values which may compromise the sta-
tistical relevance of experiments. The rationale behind adopting reduced values
of these parameters is closely related to the combinatorial complexity issue of the
problem we deal with. In fact, the design exploration problem addressed in this
thesis falls into computationally intensive MOO problems.

Despite the adoption of the parallel implementation for the DSE process (pro-
posed to cope with computational costs issue), when achieving experiments we
have realized that they require considerable time. We can refer to Table 7.11 that
exhibits some values about execution time. For instance, we can see in this table
that DSE process could take more than 5 hours to run a fairly complex problem
instance (e.g. having 30 functions and high resources contention). In addition,
given the significant number of experiments that we have planned either to eval-
uate our proposals or to perform empirical studies, considering a large number of
test instances per experiment (and/or a large number of runs per test instance
and/or a large number of PAES-iterations) will hinder us from driving a broad
range of experiments in affordable time duration.

While studying the experimental setups, we explored the literature in order to
see how experimental parameters are set in research work belonging to our fields
of interest (i.e. constrained software design exploration for RTE systems, MOO

–183–

Appendix A. Experimental Setups and Threats to Validity

problems using evolutionary methods, computationally expensive problems, etc).
In Table A.1, we give experimental setups from some related work evaluating
optimization frameworks/approaches based on heuristic methods. For these re-
lated work, we report the tackled problem, the used optimization technique, the
number of problem instances, the number of runs (or trials) for each problem in-
stances and the number of iterations (or generations) when the stopping condition
is based on a fixed number of iterations.

Table A.1: Experimental setups from related work evaluating optimization
frameworks/approaches

Reference
addressed
problem

optimization
technique

problem instances
or case studies

independent
runs

iterations
(or generations)

Rahmoun et al.
[RBP15a]

generic MOO design
exploration for RTE
systems

NSGA-II a case study ignored 100 generations

Sayuti et al.
[SI15]

task mapping
and priority assignment
for RTE NoCs systems

GA 20 test benches ignored 500 generations

Aleti et al.
[AM15]

component deployment
and architecture optimization
for RTE systems

MOEAs 30 test cases 30 runs
stopping condition not
based on # iterations

Wozniak et al.
[WMM+13]

task to runnables
mapping optimization
for AUTOSAR systems

GA
11 test cases
generated by replication

ignored
stopping condition not
based on # iterations

Koziolek et al.
[KKR11]

generic MOO design
exploration for RTE
systems

MOEAs 2 case studies 10 runs 200 iterations

Li et al.
[LEEC11]

generic MOO design
exploration for RTE
systems

MOEAs 2 case studies 15 runs 500 iterations

By observing the 4th column in Table A.1, we noted that the evaluation of each
work was performed through experiments that either rely on a relatively small
set of synthetically generated problem instances (at most 30 problem instances)
or use one or two case studies. Experiments conducted on a limited number of
problem instances that are created based on a sampling process may cause the
“threat to validity”. The complexity dictated on constrained real-world scientific
and engineering MOO problems poses a major challenge that hinders researchers
and/or practitioners to cope with this threat to validity.

The random nature of heuristic method may lead to different results in different
runs of the same problem instance. This causes another threat to validity. In
order to reduce this threat, work dealing with standard optimization techniques
(i.e. didn’t address a specific optimization problem), usually used 30 independent
runs for each problem instance. It is worth noting that experiments achieved to
evaluate this kind of research work are often performed on simple and small
problems known as “toy” problems. When optimization techniques are applied
on larger and more complex and realistic problems, sometimes for simplification
reasons, researchers and/or practitioners used a less number of runs for each
problem instance. For that reason, in some of our experiments, we restrict the
number of independent runs to 5 or 10 runs.

–184–

As for the maximum number of iterations used as a stopping condition for the
evolutionary method, again in real-world and complex problems, experiments are
usually executed with a relatively limited number of maximum iterations (or gen-
erations). For example in [SI15, LEEC11], the number of maximum generations
is set to 500. In our experiments, the number of PAES-iterations is set to 3000,
but when experiments involve a large set of problem instances with reasonable
complexity the number of iterations is limited to 2000.

To conclude, although the above mentioned threats make difficult the gener-
alization of the obtained results, the experimental results we provided already
demonstrate the feasibility of our approach on significant DSE problems. In ad-
dition, the most complex problem instances we considered in experiments repre-
sent software architectures of a reasonable complexity in the domain of real-time
embedded systems.

–185–

B
Publications

International Journal Article

RTS 2018

Rahma Bouaziz, Laurent Lemarchand, Frank Singhoff, Bechir Zalila, Mohamed
Jmaiel. Multi-Objective Design Exploration Approach for Ravenscar Real-time
Systems. Real-Time Systems, 54(2):424-483, 2018, Springer.
https : //doi.org/10.1007/s11241− 018− 9299− 6

International Conference Articles

RSP 2016

Rahma Bouaziz, Laurent Lemarchand, Frank Singhoff, Bechir Zalila, Mohamed
Jmaiel. Efficient Parallel Multi-Objective Optimization for Real-Time Systems
Software Design Exploration. In Proceedings of the 27th International Sympo-
sium on Rapid System Prototyping: Shortening the Path from Specification to
Prototype, pages 1-7, 2016, New York, NY, USA, ACM.

ICECCS 2015

Rahma Bouaziz, Laurent Lemarchand, Frank Singhoff, Bechir Zalila, Mohamed
Jmaiel. Architecture Exploration of Real-Time Systems Based on Multi-Objective
Optimization. In Proceedings of the 20th International Conference on Engineering
of Complex Computer Systems, pages 1-10, 2015, Gold Coast, Australia, IEEE.

–187–

Bibliography

[ABD+95] Neil Audsley, Alan Burns, Rob Davis, Ken Tindell, and Andy
Wellings. Real-time system scheduling. In Predictably Depend-
able Computing Systems, pages 41–52. Springer Berlin Heidel-
berg, 1995.

[ABR+93] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A.J.
Wellings. Applying new scheduling theory to static priority pre-
emptive scheduling. Software Engineering Journal, 8(5):284–292,
Sep 1993.

[AM10] Konstantinos P Anagnostopoulos and Georgios Mamanis. A port-
folio optimization model with three objectives and discrete vari-
ables. Computers & Operations Research, 37(7):1285–1297, 2010.

[AM15] Aldeida Aleti and Irene Moser. Fitness landscape characterisa-
tion for constrained software architecture optimisation problems.
In Proceedings of the 20th International Conference on Engineer-
ing of Complex Computer Systems, ICECCS ’15, pages 11–20,
Washington, DC, USA, 2015. IEEE Computer Society.

[AMK98] Elan Amir, Steven McCanne, and Randy Katz. An active service
framework and its application to real-time multimedia transcod-
ing. In ACM SIGCOMM Computer Communication Review, vol-
ume 28, pages 178–189. ACM, 1998.

[AT02] Enrique Alba and Marco Tomassini. Parallelism and evolutionary
algorithms. Evolutionary Computation, IEEE Transactions on,
6(5):443–462, 2002.

[AT15] B Annighöfer and F Thielecke. A systems architecting framework
for optimal distributed integrated modular avionics architectures.
CEAS Aeronautical Journal, 6(3):485–496, 2015.

[Bal97] F. Balarin. Hardware-Software Co-Design of Embedded Systems:
The Polis Approach. Kluwer international series in engineering
and computer science: VLSI, computer architecture, and digital
signal processing. Springer US, 1997.

–189–

Bibliography

[Bar03] Sanjoy Baruah. Dynamic- and static-priority scheduling of recur-
ring real-time tasks. Real-Time Systems, 24(1):93–128, 2003.

[BB05] Enrico Bini and Giorgio C. Buttazzo. Measuring the performance
of schedulability tests. Real-Time Systems, 30(1-2):129–154, May
2005.

[BB06] Sanjoy Baruah and Alan Burns. Sustainable scheduling analysis.
In Proceedings of the 27th IEEE International Real-Time Systems
Symposium, pages 159–168. IEEE, 2006.

[BB08] Alan Burns and Sanjoy Baruah. Sustainability in real-time
scheduling. Journal of Computing Science and Engineering,
2(1):74–97, 2008.

[BBB01] Enrico Bini, Giorgio Buttazzo, and Giuseppe Buttazzo. A hyper-
bolic bound for the rate monotonic algorithm. In Real-Time Sys-
tems, 13th Euromicro Conference on, 2001., pages 59–66. IEEE,
2001.

[BDV04] Alan Burns, Brian Dobbing, and Tullio Vardanega. Guide for the
use of the ada ravenscar profile in high integrity systems. ACM
SIGAda Ada Letters, XXIV(2):1–74, june 2004.

[BFO14] Antoine Bertout, Julien Forget, and Richard Olejnik. Minimizing
a real-time task set through task clustering. In Proceedings of
the 22nd International Conference on Real-Time Networks and
Systems, pages 23–31. ACM, 2014.

[BHM+05] Marco Bekooij, Rob Hoes, Orlando Moreira, Peter Poplavko,
Milan Pastrnak, Bart Mesman, Jan David Mol, Sander Stuijk,
Valentin Gheorghita, and Jef Van Meerbergen. Dataflow analysis
for real-time embedded multiprocessor system design. In Dy-
namic and robust streaming in and between connected consumer-
electronic devices, pages 81–108. Springer, 2005.

[BHP+08] Frédéric Boniol, Pierre-Emmanuel Hladik, Claire Pagetti,
Frédéric Aspro, and Victor Jégu. A framework for distributing
real-time functions. In International Conference on Formal Mod-
eling and Analysis of Timed Systems, volume 5215, pages 155–
169. Springer, 2008.

[BKR09] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The palla-
dio component model for model-driven performance prediction.
Journal of Systems and Software, 82(1):3–22, 2009.

–190–

Bibliography

[Bla04] Benjamin S Blanchard. System engineering management. John
Wiley & Sons, 2004.

[BLAC05] Giorgio Buttazzo, Giuseppe Lipari, Luca Abeni, and Marco Cac-
camo. Soft Real-Time Systems: Predictability vs. Efficiency (Se-
ries in Computer Science). Plenum Publishing Co., 2005.

[BLDN05] C. Bartolini, G. Lipari, and M. Di Natale. From functional blocks
to the synthesis of the architectural model in embedded real-time
applications. In Proceedings of the 11th IEEE Real Time and
Embedded Technology and Applications Symposium, pages 458–
467, March 2005.

[BMR90] Sanjoy K Baruah, Aloysius K Mok, and Louis E Rosier. Preemp-
tively scheduling hard-real-time sporadic tasks on one processor.
In Proceedings of the 11th Real-Time Systems Symposium, pages
182–190. IEEE, 1990.

[BNE07] Nicola Beume, Boris Naujoks, and Michael Emmerich. Sms-emoa:
Multiobjective selection based on dominated hypervolume. Eu-
ropean Journal of Operational Research, 181(3):1653–1669, 2007.

[BR03] Christian Blum and Andrea Roli. Metaheuristics in combinato-
rial optimization: Overview and conceptual comparison. ACM
Computing Surveys (CSUR), 35(3):268–308, 2003.

[Bur99] Alan Burns. The ravenscar profile. ACM SIGAda Ada Letters,
19(4):49–52, 1999.

[But11] Giorgio Buttazzo. Hard real-time computing systems: predictable
scheduling algorithms and applications, volume 24. Springer Sci-
ence & Business Media, 2011.

[BW94] Alan Burns and Andy J. Wellings. Hrt-hood: A structured design
method for hard real-time systems. Real-Time Systems, 6(1):73–
114, 1994.

[BW97] Alan Burns and Andrew J Wellings. Real-time systems and pro-
gramming languages. Harlow : Addison-Wesley, second edition
edition, 1997.

[BW07] Alan Burns and Andy Wellings. Concurrent and Real-Time Pro-
gramming in Ada. Cambridge University Press, New York, NY,
USA, 2007.

–191–

Bibliography

[BZ06] Matthieu Basseur and Eckart Zitzler. Handling uncertainty in
indicator-based multiobjective optimization. International Jour-
nal of Computational Intelligence Research, 2(3):255–272, 2006.

[CB11] Rajan Filomeno Coelho and Philippe Bouillard. Multi-objective
reliability-based optimization with stochastic metamodels. Evo-
lutionary computation, 19(4):525–560, 2011.

[CDJ10] Carlos A Coello Coello, Clarisse Dhaenens, and Laetitia Jour-
dan. Multi-objective combinatorial optimization: Problematic
and context. Advances in multi-objective nature inspired comput-
ing, 272:1–21, 2010.

[CF95] Christer Carlsson and Robert Fullér. Multiple criteria decision
making: The case for interdependence. Computers & Operations
Research, 22(3):251–260, 1995.

[CGG04] Annie Choquet-Geniet and Emmanuel Grolleau. Minimal schedu-
lability interval for real-time systems of periodic tasks with off-
sets. Theoretical computer science, 310(1-3):117–134, 2004.

[Che03] Albert MK Cheng. Real-time systems: scheduling, analysis, and
verification. John Wiley & Sons, 2003.

[CLVV07] Carlos A. Coello Coello, Gary B. Lamont, and David A. Van Veld-
huizen. Evolutionary algorithms for solving multi-objective prob-
lems. Springer Science & Business Media, 2007.

[COA11] José C Calvo, Julio Ortega, and Mancia Anguita. Comparison
of parallel multi-objective approaches to protein structure predic-
tion. The Journal of Supercomputing, 58(2):253–260, 2011.

[CP00a] Erick Cantu-Paz. Efficient and accurate parallel genetic algo-
rithms, volume 1. Springer Science & Business Media, 2000.

[CP00b] Antoine Colin and Isabelle Puaut. Worst case execution time
analysis for a processor with branch prediction. Real-Time Sys-
tems, 18(2-3):249–274, 2000.

[CSB90] H. Chetto, M. Silly, and T. Bouchentouf. Dynamic scheduling of
real-time tasks under precedence constraints. Real-Time Systems,
2(3):181–194, 1990.

[CWC+17] Jin-Hee Cho, Yating Wang, Ray Chen, Kevin S Chan, and Anan-
thram Swami. A survey on modeling and optimizing multi-
objective systems. IEEE Communications Surveys & Tutorials,
2017.

–192–

Bibliography

[DB11] Robert I Davis and Alan Burns. A survey of hard real-time
scheduling for multiprocessor systems. ACM computing surveys
(CSUR), 43(4):35, 2011.

[Deb01] Kalyanmoy Deb. Multi-objective optimization using evolutionary
algorithms, volume 16. John Wiley & Sons, 2001.

[Deb08] Kalyanmoy Deb. Introduction to evolutionary multiobjective op-
timization. In Multiobjective Optimization, pages 59–96. Springer,
2008.

[Der74] Michael L Dertouzos. Control robotics: The procedural control
of physical processes. IFIP Congress, 1974.

[DH92] K. Driscoll and K. Hoyme. The airplane information management
system: an integrated real-time flight-deck control system. In
IEEE Real-Time Systems Symposium, pages 267–270, 1992.

[DMG97] G De Michell and Rajesh K Gupta. Hardware/software co-design.
Proceedings of the IEEE, 85(3):349–365, 1997.

[DPAM02] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Me-
yarivan. A fast and elitist multiobjective genetic algorithm: Nsga-
ii. Evolutionary Computation, IEEE Transactions on, 6(2):182–
197, 2002.

[DS06] Kalyanmoy Deb and D Saxena. Searching for pareto-optimal
solutions through dimensionality reduction for certain large-
dimensional multi-objective optimization problems. In Proceed-
ings of the World Congress on Computational Intelligence, pages
3352–3360, 2006.

[EAP17] Andrea Enrici, Ludovic Apvrille, and Renaud Pacalet. A model-
driven engineering methodology to design parallel and distributed
embedded systems. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 22(2):34, 2017.

[EG00] Matthias Ehrgott and Xavier Gandibleux. A survey and anno-
tated bibliography of multiobjective combinatorial optimization.
Or Spectrum, 22(4):425–460, 2000.

[EG04] Matthias Ehrgott and Xavier Gandibleux. Approximative solu-
tion methods for multiobjective combinatorial optimization. Top,
12(1):1–63, 2004.

–193–

Bibliography

[EGP16] Matthias Ehrgott, Xavier Gandibleux, and Anthony Przybylski.
Exact Methods for Multi-Objective Combinatorial Optimisation,
pages 817–850. Springer New York, 2016.

[FG12] Peter H Feiler and David P Gluch. Model-based engineering with
AADL: An Introduction to the SAE architecture analysis & design
language. Addison-Wesley, 2012.

[FKTZ05] Carlos M Fonseca, Joshua D Knowles, Lothar Thiele, and Eckart
Zitzler. A tutorial on the performance assessment of stochastic
multiobjective optimizers. In Proceedings of the 3rd International
Conference on Evolutionary Multi-Criterion Optimization, vol-
ume 216, page 240, 2005.

[FMB+09] Simon Fürst, Jürgen Mössinger, Stefan Bunzel, Thomas Weber,
Frank Kirschke-Biller, Peter Heitkämper, Gerulf Kinkelin, Kenji
Nishikawa, and Klaus Lange. Autosar–a worldwide standard is
on the road. In the 14th International VDI Congress Electronic
Systems for Vehicles, Baden-Baden, volume 62, 2009.

[FSP+14] Christian Fotsing, Frank Singhoff, Alain Plantec, Vincent Gaudel,
Stéphane Rubini, Shuai Li, Hai Nam Tran, Laurent Lemarchand,
Pierre Dissaux, and Jérôme Legrand. Cheddar architecture de-
scription language. Lab-STICC technical report., 2014.

[FSV99] Alberto Ferrari and Alberto Sangiovanni-Vincentelli. System de-
sign: Traditional concepts and new paradigms. In Computer De-
sign, 1999.(ICCD’99) International Conference on, pages 2–12.
IEEE, 1999.

[GB01] Joël Goossens and Sanjoy Baruah. Multiprocessor preprocess-
ing algorithms for uniprocessor on-line scheduling. In Distributed
Computing Systems, 2001. 21st International Conference on.,
pages 219–226. IEEE, 2001.

[GC97] Mitsuo Gen and Runwei Cheng. Genetic Algorithms and Engi-
neering Design. John Wiley & Sons, 1997.

[GF00] Xavier Gandibleux and Arnaud Freville. Tabu search based pro-
cedure for solving the 0-1 multiobjective knapsack problem: the
two objectives case. Journal of Heuristics, 6(3):361–383, 2000.

[GGCG16] Joël Goossens, Emmanuel Grolleau, and Liliana Cucu-Grosjean.
Periodicity of real-time schedules for dependent periodic tasks
on identical multiprocessor platforms. Real-Time Systems,
52(6):808–832, 2016.

–194–

Bibliography

[GH99] Tomas Gal and Thomas Hanne. Consequences of dropping
nonessential objectives for the application of mcdm methods. Eu-
ropean Journal of Operational Research, 119(2):373–378, 1999.

[GM01] Joel Goossens and Christophe Macq. Limitation of the hyper-
period in real-time periodic task set generation. In Proceedings
of the Real-Time Embedded Systems, 2001.

[GMCH07] Carlos Garćıa-Mart́ınez, Oscar Cordón, and Francisco Herrera.
A taxonomy and an empirical analysis of multiple objective ant
colony optimization algorithms for the bi-criteria tsp. European
Journal of Operational Research, 180(1):116–148, 2007.

[GSP+11] Vincent Gaudel, Frank Singhoff, Alain Plantec, Stéphane Ru-
bini, Pierre Dissaux, and Jérôme Legrand. An ada design pattern
recognition tool for aadl performance analysis. In ACM SIGAda
Ada Letters, volume 31, pages 61–68. ACM, 2011.

[GTT02] Sébastien Gérard, François Terrier, and Yann Tanguy. Using the
model paradigm for real-time systems development: Accord/uml.
Advances in object-oriented information systems, pages 260–269,
2002.

[HCFDC09] Eduardo R Hruschka, Ricardo José Gabrielli Barreto Campello,
Alex Alves Freitas, and AC Ponce Leon F De Carvalho. A survey
of evolutionary algorithms for clustering. IEEE Transactions on
Systems, Man, and Cybernetics Part C, 39(2):133–155, 2009.

[Hea02] Steve Heath. Embedded systems design. Newnes, 2002.

[HGT05] Christian Haubelt, Jürgen Gamenik, and Jürgen Teich. Initial
population construction for convergence improvement of moeas.
In Proceedings of the 3rd International Conference on Evolu-
tionary Multi-Criterion Optimization, EMO’05, pages 191–205.
Springer-Verlag, 2005.

[JC09] Antonio Jaimes and Carlos Coello. Applications of parallel plat-
forms and models in evolutionary multi-objective optimization.
Biologically-inspired optimisation methods, pages 23–49, 2009.

[JCAT14] Antonio López Jaimes, Carlos A Coello Coello, Hernán Aguirre,
and Kiyoshi Tanaka. Objective space partitioning using conflict
information for solving many-objective problems. Information
Sciences, 268:305–327, 2014.

–195–

Bibliography

[JP86] Mathai Joseph and Paritosh Pandya. Finding response times in
a real-time system. The Computer Journal, 29(5):390–395, 1986.

[KC99] Joshua Knowles and David Corne. The pareto archived evolution
strategy: A new baseline algorithm for pareto multiobjective op-
timisation. In Evolutionary Computation, 1999. CEC 99. Pro-
ceedings of the 1999 Congress on, volume 1, pages 98–105. IEEE,
1999.

[KC00a] Joshua D. Knowles and David W. Corne. Approximating the
nondominated front using the pareto archived evolution strategy.
Evolutionary Computation, 8(2):149–172, 2000.

[KC00b] Joshua D Knowles and David W Corne. M-paes: A memetic
algorithm for multiobjective optimization. In Evolutionary Com-
putation, 2000. Proceedings of the 2000 Congress on, volume 1,
pages 325–332. IEEE, 2000.

[KDVVDW97] Bart Kienhuis, Ed Deprettere, Kees Vissers, and Pieter Van
Der Wolf. An approach for quantitative analysis of application-
specific dataflow architectures. In Application-Specific Systems,
Architectures and Processors, 1997. Proceedings., IEEE Interna-
tional Conference on, pages 338–349. IEEE, 1997.

[KDWV02] Bart Kienhuis, Ed F. Deprettere, Pieter van der Wolf, and
Kees A. Vissers. A methodology to design programmable em-
bedded systems - the y-chart approach. In Embedded Processor
Design Challenges: Systems, Architectures, Modeling, and Simu-
lation - SAMOS, pages 18–37. Springer-Verlag, 2002.

[KKR11] Anne Koziolek, Heiko Koziolek, and Ralf Reussner. Peropteryx:
automated application of tactics in multi-objective software archi-
tecture optimization. In Proceedings of the joint ACM SIGSOFT
conference–QoSA and ACM SIGSOFT symposium–ISARCS on
Quality of software architectures–QoSA and architecting critical
systems–ISARCS, pages 33–42. ACM, 2011.

[KM91] T-W Kuo and Aloysius K Mok. Load adjustment in adaptive
real-time systems. In Real-Time Systems Symposium, 1991. Pro-
ceedings., Twelfth, pages 160–170. IEEE, 1991.

[KNRSV00] Kurt Keutzer, A Richard Newton, Jan M Rabaey, and Al-
berto Sangiovanni-Vincentelli. System-level design: orthogonal-
ization of concerns and platform-based design. IEEE transac-
tions on computer-aided design of integrated circuits and systems,
19(12):1523–1543, 2000.

–196–

Bibliography

[Kop97] Hermann Kopetz. Real-time systems: design principles for dis-
tributed embedded applications. Springer US, 1997.

[KTJ06] Rakesh Kumar, Dean M Tullsen, and Norman P Jouppi. Core
architecture optimization for heterogeneous chip multiprocessors.
In Proceedings of the 15th international conference on Parallel ar-
chitectures and compilation techniques, pages 23–32. ACM, 2006.

[LA15] Francisco Luna and Enrique Alba. Parallel multiobjective evo-
lutionary algorithms. In Springer Handbook of Computational
Intelligence, pages 1017–1031. Springer, 2015.

[LEEC11] Rui Li, Ramin Etemaadi, Michael TM Emmerich, and Michel RV
Chaudron. An evolutionary multiobjective optimization ap-
proach to component-based software architecture design. In IEEE
Congress on Evolutionary Computation, pages 432–439. IEEE,
2011.

[LHG13] Juan C López, Román Hermida, and Walter Geisselhardt. Ad-
vanced techniques for embedded systems design and test. Springer
Science & Business Media, 2013.

[LJCCC08] Antonio López Jaimes, Carlos A Coello Coello, and Debrup
Chakraborty. Objective reduction using a feature selection tech-
nique. In Proceedings of the 10th Annual Conference on Genetic
and Evolutionary Computation, pages 673–680. ACM, 2008.

[LJCUB09] Antonio López Jaimes, Carlos A. Coello Coello, and Jesús E.
Uŕıas Barrientos. Online Objective Reduction to Deal with Many-
Objective Problems, pages 423–437. Springer Berlin Heidelberg,
April 2009.

[LL73] Chung Laung Liu and James W Layland. Scheduling algorithms
for multiprogramming in a hard-real-time environment. Journal
of ACM, 20(1):46–61, January 1973.

[LLP+09] Rongshen Long, Hong Li, Wei Peng, Yi Zhang, and Minde Zhao.
An approach to optimize intra-ecu communication based on map-
ping of autosar runnable entities. In Embedded Software and Sys-
tems, 2009. ICESS’09. International Conference on, pages 138–
143. IEEE, 2009.

[LLS07] Insup Lee, Joseph YT Leung, and Sang H Son. Handbook of
real-time and embedded systems. CRC Press, 2007.

–197–

Bibliography

[LM80] Joseph Y-T Leung and ML Merrill. A note on preemptive schedul-
ing of periodic, real-time tasks. Information Processing Letters,
11(3):115–118, 1980.

[LNA06] Francisco Luna, Antonio J Nebro, and Enrique Alba. Parallel
evolutionary multiobjective optimization. In Parallel Evolution-
ary Computations, pages 33–56. Springer, 2006.

[LSD89] J. Lehoczky, Lui Sha, and Y. Ding. The rate monotonic schedul-
ing algorithm: exact characterization and average case behav-
ior. In IEEE Real Time Systems Symposium, pages 166–171, Dec
1989.

[LT99] Panta Lučic and Dušan Teodorovic. Simulated annealing for the
multi-objective aircrew rostering problem. Transportation Re-
search Part A: Policy and Practice, 33(1):19–45, 1999.

[LVDWVD01] Paul Lieverse, Pieter Van Der Wolf, Kees Vissers, and Ed Depret-
tere. A methodology for architecture exploration of heterogeneous
signal processing systems. Journal of VLSI signal processing sys-
tems for signal, image and video technology, 29(3):197–207, 2001.

[LW82] Joseph Y-T Leung and Jennifer Whitehead. On the complexity of
fixed-priority scheduling of periodic, real-time tasks. Performance
Evaluation, 2(4):237–250, 1982.

[LW08] Y. Li and C. Wen. Task construction with temporal consistency
for embedded control software design. In International Sympo-
sium on Computer Science and Computational Technology, vol-
ume 1, pages 76–79, Dec 2008.

[MJH13] Hamid Masoud, Saeed Jalili, and Seyed Mohammad Hossein
Hasheminejad. Dynamic clustering using combinatorial particle
swarm optimization. Applied intelligence, 38(3):289–314, 2013.

[MKT09] Andreas Menychtas, Dimosthenis Kyriazis, and Konstantinos
Tserpes. Real-time reconfiguration for guaranteeing qos provi-
sioning levels in grid environments. Future Generation Computer
Systems, 25(7):779–784, 2009.

[MLF08] Hugo Macedo, Peter Larsen, and John Fitzgerald. Incremental
development of a distributed real-time model of a cardiac pacing
system using vdm. FM 2008: Formal Methods, pages 181–197,
2008.

–198–

Bibliography

[MNBSL12] Aurélien Monot, Nicolas Navet, Bernard Bavoux, and Françoise
Simonot-Lion. Multisource software on multicore automotive
ecuscombining runnable sequencing with task scheduling. IEEE
Transactions on Industrial Electronics, 59(10):3934–3942, 2012.

[Mok83] Aloysius K. Mok. Fundamental design problems of distributed
systems for the hard-real-time environment. PhD dissertation,
Massachusetts Institute of Technology, 1983.

[MPAI16] Florin Maticu, Paul Pop, Christian Axbrink, and Mafijul Is-
lam. Automatic Functionality Assignment to AUTOSAR Multi-
core Distributed Architectures. Society of Automotive Engineers,
Incorporated, 2016.

[MSH11] John W. McCormick, Frank Singhoff, and Jrme Hugues. Building
parallel, embedded, and real-time applications with Ada, volume 1.
Cambridge University Press, 2011.

[MTPG11] Chokri Mraidha, Sara Tucci-Piergiovanni, and Sebastien Gerard.
Optimum: a marte-based methodology for schedulability analysis
at early design stages. ACM SIGSOFT Software Engineering
Notes, 36(1):1–8, 2011.

[MWTP+13] Asma Mehiaoui, Ernest Wozniak, Sara Tucci-Piergiovanni,
Chokri Mraidha, Marco Di Natale, Haibo Zeng, Jean-Philippe
Babau, Laurent Lemarchand, and Sébastien Gerard. A two-step
optimization technique for functions placement, partitioning, and
priority assignment in distributed systems. ACM SIGPLAN No-
tices, 48(5):121–132, 2013.

[NIS02] The Economic Impact of Inadequate Infrastructure for Software
Testing. Number Planning Report 02-3. National Institute Of
Standards & Technology, May 2002.

[NLTA05] A.J. Nebro, F. Luna, E.-G. Talbi, and E. Alba. Parallel Multi-
objective Optimization, pages 371–394. John Wiley & Sons, Inc.,
2005.

[OBM14] Melih Ozlen, Benjamin A Burton, and Cameron AG MacRae.
Multi-objective integer programming: An improved recursive
algorithm. Journal of Optimization Theory and Applications,
160(2):470–482, 2014.

[OJS03] Tatsuya Okabe, Yaochu Jin, and Bernhard Sendhoff. A critical
survey of performance indices for multi-objective optimisation.

–199–

Bibliography

In Evolutionary Computation, 2003. CEC’03. The 2003 Congress
on, volume 2, pages 878–885. IEEE, 2003.

[OMG08] OMG. A UML Profile for MARTE: Modeling and Analysis of
Real-Time Embedded systems. available at www.omgmarte.
org/Documents/Specifications/08-06-09.pdf, June
2008.

[Osy78] Andrzej Osyczka. An approach to multicriterion optimization
problems for engineering design. Computer Methods in Applied
Mechanics and Engineering, 15(3):309–333, 1978.

[Ouh13] Yassine Ouhammou. Model-based framework for using advanced
scheduling theory in real-time systems design. Phd thesis, ISAE,
Toulouse, France, 2013.

[PF07] Robin C. Purshouse and Peter J. Fleming. On the evolutionary
optimization of many conflicting objectives. IEEE Transactions
on Evolutionary Computation, 11(6):770–784, 2007.

[PFB+11] Claire Pagetti, Julien Forget, Frédéric Boniol, Mikel Cor-
dovilla, and David Lesens. Multi-task implementation of multi-
periodic synchronous programs. Discrete Event Dynamic Sys-
tems, 21(3):307–338, 2011.

[PH98] J. C. Palencia and M. G. Harbour. Schedulability analysis for
tasks with static and dynamic offsets. In Proceedings of the 19th

IEEE Real-Time Systems Symposium, Madrid, Spain, 1998.

[Pin04] Alessandro Pinto. Metropolis design guidelines. Electronics Re-
search Laboratory, College of Engineering, University of Califor-
nia, 2004.

[RBP15a] S. Rahmoun, E. Borde, and L. Pautet. Multi-objectives refine-
ment of aadl models for the synthesis embedded systems (mu-
ramses). In Proceedings of the 20th International Conference on
Engineering of Complex Computer Systems, pages 21–30, Dec
2015.

[RBP15b] Smail Rahmoun, Etienne Borde, and Laurent Pautet. Automatic
selection and composition of model transformations alternatives
using evolutionary algorithms. In Proceedings of the 9th European
Conference on Software Architecture Workshops, page 25. ACM,
2015.

–200–

www.omgmarte.org/Documents/Specifications/08-06-09.pdf
www.omgmarte.org/Documents/Specifications/08-06-09.pdf

Bibliography

[Rot64] Gian-Carlo Rota. The number of partitions of a set. The Amer-
ican Mathematical Monthly, 71(5):498–504, May 1964.

[RS04] Christine Rochange and Pascal Sainrat. Vers une prédictibilité
temporelle des processeurs haute-performance. RTS Embedded
Systems, 2004.

[RSC06] Margarita Reyes-Sierra and CA Coello Coello. Multi-objective
particle swarm optimizers: A survey of the state-of-the-art. Inter-
national journal of computational intelligence research, 2(3):287–
308, 2006.

[RVLB15] Nery Riquelme, Christian Von Lücken, and Benjamin Baran. Per-
formance metrics in multi-objective optimization. In Comput-
ing Conference (CLEI), 2015 Latin American, pages 1–11. IEEE,
2015.

[SAA+04] Lui Sha, Tarek Abdelzaher, Karl-Erik Arzen, Anton Cervin,
Theodore Baker, Alan Burns, Giorgio Buttazzo, Marco Caccamo,
John Lehoczky, and Aloysius K. Mok. Real time scheduling the-
ory: A historical perspective. Real-Time Systems, 28(2-3):101–
155, Nov-Dec, 2004.

[SCCM15] Salah Eddine Saidi, Sylvain Cotard, Khaled Chaaban, and Kevin
Marteil. An ilp approach for mapping autosar runnables on
multi-core architectures. In Proceedings of the 2015 Workshop
on Rapid Simulation and Performance Evaluation: Methods and
Tools, page 6. ACM, 2015.

[Sch06] D. C. Schmidt. Guest editor’s introduction: Model-driven engi-
neering. Computer, 39(2):25–31, Feb 2006.

[SDT+13] Dhish Kumar Saxena, João A Duro, Ashutosh Tiwari, Kalyanmoy
Deb, and Qingfu Zhang. Objective reduction in many-objective
optimization: Linear and nonlinear algorithms. IEEE Transac-
tions on Evolutionary Computation, 17(1):77–99, 2013.

[SGNJ08] Anna Syberfeldt, Henrik Grimm, Amos Ng, and Robert I John. A
parallel surrogate-assisted multi-objective evolutionary algorithm
for computationally expensive optimization problems. In Evolu-
tionary Computation, 2008. CEC 2008.(IEEE World Congress
on Computational Intelligence). IEEE Congress on, pages 3177–
3184. IEEE, 2008.

–201–

Bibliography

[SI15] M Norazizi Sham Mohd Sayuti and Leandro Soares Indrusiak.
Simultaneous optimisation of task mapping and priority assign-
ment for real-time embedded nocs. In The 23rd Euromicro Inter-
national Conference onParallel, Distributed and Network-Based
Processing (PDP), pages 692–695. IEEE, 2015.

[SKW00] Manas Saksena, Panagiota Karvelas, and Yun Wang. Automatic
synthesis of multi-tasking implementations from real-time object-
oriented models. In Proceedings of the 3rd IEEE International
Symposium on Object-Oriented Real-Time Distributed Computin
(ISORC), pages 360–367. IEEE, 2000.

[SLNM04] F. Singhoff, J. Legrand, L. Nana, and L. Marcé. Cheddar: A
flexible real time scheduling framework. Ada Lett., XXIV(4):1–8,
November 2004.

[SLS95] J.K. Strosnider, J.P. Lehoczky, and L. Sha. The deferrable server
algorithm for enhanced aperiodic responsiveness in hard real-time
environments. IEEE Transactions on Computers, 44(1):73–91,
1995.

[SLS05] Françoise Simonot-Lion and Ye-Qiong Song. Design and valida-
tion process of in-vehicle embedded electronic systems. In Richard
Zurawski, editor, The Embedded Systems Handbook. CRC Press -
Taylor&Francis, 2005.

[SPR+15] Frank Singhoff, Alain Plantec, Stéphane Rubini, Hai-Nam Tran,
Vincent Gaudel, Jalil Boukhobza, Laurent Lemarchand, Shuai
Li, Etienne Borde, Laurent Pautet, et al. Teaching real-time
scheduling analysis with cheddar. In 9ème édition de lEcole dEté
Temps Réel, 2015.

[SRL90] Lui Sha, Ragunathan Rajkumar, and John P Lehoczky. Priority
inheritance protocols: An approach to real-time synchronization.
IEEE Transactions on Computers, 39(9):1175–1185, 1990.

[SSL89] Brinkley Sprunt, Lui Sha, and John Lehoczky. Aperiodic
task scheduling for hard-real-time systems. Real-Time Systems,
1(1):27–60, Jun, 1989.

[Sta88] John A Stankovic. Misconceptions about real-time comput-
ing: A serious problem for next-generation systems. Computer,
21(10):10–19, 1988.

[SV02] Alberto Sangiovanni-Vincentelli. Defining platform-based design.
EEDesign of EETimes, 2002.

–202–

Bibliography

[SVDN07] Alberto Sangiovanni-Vincentelli and Marco Di Natale. Embedded
system design for automotive applications. Computer, 40(10),
2007.

[TDB+14] S Tucker Taft, Robert A Duff, Randall L Brukardt, Erhard Ploed-
ereder, Pascal Leroy, and Edmond Schonberg. Ada 2012 reference
manual. Language and standard libraries: International standard
ISO/IEC 8652/2012 (E), volume 8339. Springer, 2014.

[Tei12] Jürgen Teich. Hardware/software codesign: The past, the
present, and predicting the future. Proceedings of the IEEE,
100(Special Centennial Issue):1411–1430, 2012.

[TKK+98] Jorma Taramaa, Munish Khurana, Pasi Kuvaja, Jari Lehtonen,
Markku Oivo, and Veikko Seppanen. Product-based software
process improvement for embedded systems. In Proceedings of
the 24th Euromicro Conference, volume 2, pages 905–912. IEEE,
1998.

[TMO+08] El-Ghazali Talbi, Sanaz Mostaghim, Tatsuya Okabe, Hisao
Ishibuchi, Günter Rudolph, and Carlos A Coello Coello. Paral-
lel approaches for multiobjective optimization. In Multiobjective
Optimization, pages 349–372. Springer, 2008.

[TRA17] Hai Nam TRAN. Cache memory aware priority assignment and
scheduling simulation of real-time embedded systems. PhD disser-
tation, Bretagne Occidentale University, 2017.

[UT94] Ekunda Lukata Ulungu and Jacques Teghem. Multi-objective
combinatorial optimization problems: A survey. Journal of Multi-
Criteria Decision Analysis, 3(2):83–104, 1994.

[UTFT99] EL Ulungu, JFPH Teghem, PH Fortemps, and D Tuyttens. Mosa
method: a tool for solving multiobjective combinatorial opti-
mization problems. Journal of multicriteria decision analysis,
8(4):221, 1999.

[VVL98a] David A Van Veldhuizen and Gary B Lamont. Evolutionary com-
putation and convergence to a pareto front. In Late breaking pa-
pers at the genetic programming 1998 conference, pages 221–228,
1998.

[VVL98b] David A. Van Veldhuizen and Gary B. Lamont. Multiobjective
evolutionary algorithm research: A history and analysis. Techni-
cal report, Citeseer, 1998.

–203–

Bibliography

[WMM+13] Ernest Wozniak, Asma Mehiaoui, Chokri Mraidha, Sara Tucci-
Piergiovanni, and Sébastien Gerard. An optimization approach
for the synthesis of autosar architectures. In The 18th IEEE Con-
ference on Emerging Technologies & Factory Automation, pages
1–10. IEEE, 2013.

[Wol03] Wayne Wolf. A decade of hardware/software codesign. Computer,
36(4):38–43, 2003.

[WS06] Shige Wang and Kang G Shin. Task construction for model-
based design of embedded control software. IEEE Transactions
on Software Engineering, 32(4):254–264, 2006.

[WY93] Peter H Westfall and S Stanley Young. Resampling-based multiple
testing: Examples and methods for p-value adjustment, volume
279. John Wiley & Sons, 1993.

[WY16] Handing Wang and Xin Yao. Objective reduction based on
nonlinear correlation information entropy. Soft Computing,
20(6):2393–2407, 2016.

[XP00] Jia Xu and David Lorge Parnas. Priority scheduling versus pre-
run-time scheduling. Real-Time Systems, 18(1):7–23, 2000.

[ZG11] Ming Zhang and Zonghua Gu. Optimization issues in mapping
autosar components to distributed multithreaded implementa-
tions. In The 22nd IEEE International Symposium on Rapid Sys-
tem Prototyping (RSP), pages 23–29. IEEE, 2011.

[Zit01] Eckart Zitzler. Spea2: Improving the strength pareto evolution-
ary algorithm for multiobjective optimization. EUROGEN 2001,
Evolutionary Methods for Design, Optimization and Control with
Applications to Industrial Problems, 2001.

[ZT98] Eckart Zitzler and Lothar Thiele. Multiobjective optimization
using evolutionary algorithmsa comparative case study. In In-
ternational Conference on Parallel Problem Solving from Nature,
pages 292–301. Springer, 1998.

[ZTL+03] Eckart Zitzler, Lothar Thiele, Marco Laumanns, Carlos M Fon-
seca, and Viviane Grunert Da Fonseca. Performance assessment
of multiobjective optimizers: An analysis and review. IEEE
Transactions on evolutionary computation, 7(2):117–132, 2003.

–204–

Bibliography

[ZZZ+08] Qingfu Zhang, Aimin Zhou, Shizheng Zhao, Ponnuthurai Na-
garatnam Suganthan, Wudong Liu, and Santosh Tiwari. Mul-
tiobjective optimization test instances for the cec 2009 special
session and competition. University of Essex, Colchester, UK
and Nanyang technological University, Singapore, special session
on performance assessment of multi-objective optimization algo-
rithms, technical report, 264, 2008.

–205–

 Ecole Doctorale
 Sciences et Technologies

Thèse de DOCTORAT
Ingénierie des Systèmes

Informatiques

N° d’ordre: 6817

République Tunisienne
Ministère de l’Enseignement Supérieur,

de la Recherche Scientifique
et de la Technologie

Université de Sfax

École Nationale d’Ingénieurs de Sfax

Multi-Objective Optimization and Design Space Exploration

of Critical Real-Time Systems

 Rahma BOUAZIZ FRIKHA

الأمر الذي يشكل ،الممكنة التصاميم من الى عدد كبير يؤدى الأنظمة الآنية بالغة الأهمية وتعقيدالنمو المستمر في حجم : الخلاصة

 للأنظمة الغير وظيفيةأن تلبّي مجموعة من القيود التصاميم. يجب على هذه التصميم عند لاتخاذ أفضل القراراتللمصممين تحديا كبيرا

القابلة التصاميملاستكشاف عملية، نقترح في هذه الاطروحة. عديد من معايير الأداء المتضاربةتحقيق التوازن بين ال مع الحرص على

 والقائمة على تقنية الاستخدام الأمثل متعدد الأهداف بتوظيف قمنا ،لتحقيق هذا توفيق بين معايير الأداء. أفضلالتي تبرز و للتنفيذ
تطرّقنا إلى وبالإضافة إلى ذلك، .مؤشرات عناصر التصاميم مجموعة من القواعد لتحديد إرساءب ا قمناكم .الخوارزميات التطورية

 .على أساس البرمجة المتوازية ائمةقمعالجة رفع قابلية وكفاءة عملية استكشاف التصاميم باقتراح صياغة لهذه العملية

Résumé : La croissance de la taille et de la complexité des systèmes temps-réel critiques conduit à un

nombre important d’architectures possibles ce qui pose un défi majeur pour les concepteurs lors de la

prise des décisions de conception. Ces architectures doivent vérifier les contraintes non-fonctionnelles du

système tout en tenant en compte différents critères de performances généralement orthogonaux. Nous

proposons dans cette thèse, un processus d'exploration architecturale qui fournit un ensemble

d'architectures réalisables et répondant au mieux aux compromis entre les critères de performance. Pour

ce faire, nous formulons le problème à l’aide d’une technique d'optimisation multi-objectif basée sur les

algorithmes évolutifs. Afin de formaliser les alternatives d’architectures explorées pendant le processus,

un ensemble de règles est défini permettant de déterminer les paramètres des entités de l’architecture. En

outre, nous abordons le problème du passage à l’échelle et l'efficacité du processus d'exploration en

l’adaptant pour une implémentation dans des environnements parallèles.

Abstract: The increasing complexity and scale of critical real-time systems leads to a large number of

possible architectures which poses a major challenge for designers when making design decisions. These

architectures must meet the system non-functional constraints while balancing multiple conflicting

performance criteria. We propose in this thesis, a design space exploration process that provides a set of

feasible architectures answering at best to trade-offs between performance criteria. To do so, we

formulate the problem using multi-objective optimization technique based on evolutionary algorithms. In

order to formalize design alternatives explored during the process, a set of rules are defined allowing to

compute parameters of the design entities. Furthermore, we address the scalability and the effectiveness

of design exploration process by adapting it for implementation in parallel environments.

القيود ،الخوارزميات التطورية ،متعدد الأهداف الاستخدام الأمثل ،التصاميمفضاء استكشاف ،الأنظمة الآنية بالغة الأهمية المفاتيح:

 .للمهام الجدول الزمني تقييم الزمنية،

Mots clés: Systèmes temps-réel critiques, Exploration de l’espace des architectures, Optimisation

multi-objective, Algorithmes évolutif, Contraintes temporelles, analyse d’ordonnancement

Key-words: Critical real-time systems, Design space exploration, Multi-objective optimization,

Evolutionary algorithms, Timing constraints, Scheduling analysis

	Cover Page
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Algorithms
	Introduction
	I Research Foundations and State of the Art
	Real-Time Embedded Systems: Terminology, Principles and Scheduling Theory
	Introduction
	RTE systems: definitions and classification
	Definitions
	Classification

	Internal structure of RTE systems
	Hardware platform
	Software structure

	Real-time scheduling
	Real-time tasks: definitions and temporal properties
	Task set characteristics and classifications
	Scheduler and scheduling policies

	Real-time scheduling analysis
	Scheduling analysis principles
	Schedulability tests for Ravenscar RTE systems

	Conclusion

	RTE Systems Design and Optimization: Background and Basic Concepts
	Introduction
	Development and design of RTE systems
	Software development process
	Hardware/software interface co-design
	Design phase: Y-chart design paradigm

	Multi-objective optimization (MOO)
	Fundamental concepts and terminology in MOO
	Techniques for solving MOOPs
	Multi-objective evolutionary algorithms (MOEAs)
	MOEAs performance metrics

	Conclusion

	Work Orientation and Related Work
	Introduction
	Problem statement
	RTE systems development challenges
	Difficulty and importance of the design phase

	Context of work
	Assumptions of the work
	System models and notations

	Contributions outline
	Automatic multi-criteria DSE process
	Mastering scalability and effectiveness of the DSE process
	Prototype implementation
	Empirical studies

	Related work
	Functions to tasks mapping approaches
	Multi-criteria design space exploration approaches

	Conclusion

	II Contributions
	Multi-Criteria Design Space Exploration Process
	Introduction
	Problem formulation using a MOEA approach
	Pareto archived evolution strategy (PAES)
	PAES adaptation for multi-criteria DSE process

	Exploration operators
	Encoding of solutions
	Initial design solution
	Mutation operator
	Objective functions

	Formalization of design alternatives
	One function assigned to one task
	Several functions assigned to the same task

	Design alternatives feasibility verification
	Impact of the assignment method on the schedulability
	Schedulability analysis of design alternatives
	Functions-to-tasks assignment constraint
	Feasibility checks algorithm

	Conclusion

	Towards Scalable and Efficient Design Exploration Process
	Introduction
	Basic background to parallel MOEAs (pMOEAs)
	Motivations for parallelizing MOEAs
	Main parallel models used in pMOEAs
	Discussion

	Related work on PAES parallelization
	Parallel formulation of our DSE process
	Master-slave parallel asynchronous adaptation for PAES
	Global selection: a new selection strategy for PAES

	Experiments and evaluation
	Performance assessment metrics
	Solution sets quality evaluation: global selection Vs. local selection
	Scalability and effectiveness evaluation of the parallel DSE process

	Conclusion

	Prototype Implementation of the Design Exploration Process
	Introduction
	Prototype overview
	Cheddar framework
	Cheddar-ADL for modeling RTE systems
	Cheddar scheduling analysis features
	Utilization scenarios of Cheddar framework

	Prototype implementation
	Optimizers library
	Functions-to-tasks assignment library
	Problem instance generator
	Tools

	Conclusion

	Evaluation and Empirical Studies
	Introduction
	Experiments for independent tasks systems
	Experiment 1.1: Accuracy/convergence evaluation for small-sizes test instances
	Experiment 1.2: Solution sets quality evaluation for different test instance sizes

	Experiments for systems with shared resources
	Test instance generator
	Experiment 2.1: Empirical study of the correlation between objectives
	Experiment 2.2: Accuracy/convergence evaluation for small-sizes test instances
	Experiment 2.3: Solution sets quality evaluation for different resources contention levels
	Experiment 2.4: Impact of the initial design solution choice on the DSE process performance

	Conclusion

	Conclusion
	III Appendices
	Experimental Setups and Threats to Validity
	Publications

	Bibliography
	Cover Page 2

