
Introduction to Real-Time Systems
Frank Singhoff

Office C-202

University of Brest, France

singhoff@univ-brest.fr

University of Brest – Page 1/26

Summary

1. Some definitions.

2. Example of real-time systems.

3. Real-Time systems require specific analysis and
programming methods.

4. Summary, further readings, planning of the week.

5. References.

University of Brest – Page 2/26

Real-time systems (1)

• "Real-time systems are defined as those systems in
which the correctness of the system depends not only on
the logical result of computation, but also on the time at
which the results are produced" [STA 88].

• Properties we look for :

Functions must be predictable : the same data input
will produce the same data output.

Timing behavior must be predictable : must meet
temporal constraints (e.g. deadline, response time).

=⇒Predictable means ... we can compute the system
temporal behavior before execution time.

University of Brest – Page 3/26

Real-time systems (2)

• A real time system is NOT a system that runs quickly
... this is a system that has temporal constraints to
meet.

• Examples of temporal constraints[DOR 91, DEM 99]:

Few milliseconds for radar systems.

One second for machine-man interfaces (in an aircraft for example).

Hours for some chemical reactions.

24 hours for weather forecast.

Several months or years for some spacecrafts (Mars Express,
Voyager, ...).

University of Brest – Page 4/26

Real-time systems (3)

• Different types of real-time systems :

Hard (or critical) real-time systems: temporal
constraints MUST be met, otherwise defects could have
a dramatic impact on human life, on the environment,
on the system, ...

Soft (or non critical) real-time systems: temporal
constraints cannot (sometimes) be met without any
dramatic impact.

Opened or closed real-time systems: tasks/functions
can be launched/created at execution time?

University of Brest – Page 5/26

Real-time systems (4)

• Different types of real-time systems :

• Embedded systems : An embedded system is a computer system
designed for specific control functions within a larger system. Often with
real-time computing constraints. It is embedded as part of a complete
device often including hardware and mechanical parts (e.g. mobile phone,
aircraft, automotive, ...)

• Distributed systems : "A distributed system consists of a collection of
autonomous computers, connected through a network which enables
computers to coordinate their activities and to share resources." Coulouris
et al. [COU 94].

• Distributed systems are required:

For dependability (redundancy).

Due to physical constraints.

For efficiency (resource sharing).
University of Brest – Page 6/26

Real-time systems (5)

• Problems raised by embedded systems:

Difficult to update/correct when a software failure is
discovered (e.g. mobile phone, spacecraft).

• Problems raised by distributed systems:

Heterogeneity.

Timing behavior.

Have many different resources.

University of Brest – Page 7/26

Summary

1. Some definitions.

2. Example of real-time systems.

3. Real-Time systems require specific analysis and
programming methods.

4. Summary, further readings, planning of the week.

5. References.

University of Brest – Page 8/26

Example 1: aircraft

• Hard and closed real-time systems:

Temporal constraints: worst case response time, deadline, ... Strong requirements to
meet temporal constraints.

Resource reservation on the worst case: to be sure that resources are available when
they are required.

Closed systems : all tasks are known at design time and are launched at system’s
switch on. Resource requirements are easy to estimate.

Use of software and hardware redundancy.

Use of dedicated software and hardware components : Real-time operating system
(e.g. RTEMS), embedded processor (e. g. Leon Sparc processor).

University of Brest – Page 9/26

Example 2: multimedia on the Web

• Soft and opened real-time systems:

Processor ProcessorNetwork

Temporal constraints: worst case response time but also jitter, end to
end delay, intra-flow and inter-flow synchronization.

General purpose execution environment (e.g. PC with a windows
operating system).

Resource requirements difficult to estimate : number of flow,
bandwidth of each flow (e.g. MPEG encoder).

Can not perform worst case resource reservation.

University of Brest – Page 10/26

Others examples

• From a book on real-time systems programming :
"This book is about real-world programming ... So real-world programs
(and real-world programmers) are all around us. What characterizes all of
these real-world applications is a critical dependence on time." [GAL 95]

Transportations (train, aircraft, automotive, underground, ...).

Satellite TV decoder.

Mobile phones, MPEG3 players, cameras, ...

Monitoring services (e.g. health devices).

Robotic systems

Nuclear power plant.

...

University of Brest – Page 11/26

Summary

1. Some definitions.

2. Example of real-time systems.

3. Real-Time systems require specific analysis and
programming methods.

4. Summary, further readings, planning of the week.

5. References.

University of Brest – Page 12/26

Hard real-time system specific practices

• Real-time critical (hard) systems:

Are concurrent and synchronized applications. Need to handle time.

Have high implementation cost : temporal constraints verification,
safety, certification, dedicated software development
kits/environments.

Do not allow software maintenance: e.g. spacecrafts, mobile phones
=⇒ we cannot correct erroneous software (bugs).

May have dramatic impact on human life, on the environment, on the
system, ...

• Specific software engineering: methods, models and tools to master
software quality and development cost.
• Specific programming tools: languages, cross-compilers, operating
systems.

University of Brest – Page 13/26

Specific Software Engineering (1)

• Typical software engineering process:

Requirements = What ? Are they consistent?

Design software architecture = How ? Verification of the
timing/logical constraints. Does the architecture provide
the right answer?

Implementation = write software components.

Tests: check correctness of the software.

University of Brest – Page 14/26

Specific software Engineering (2)

• Software engineering specific practices for real-time
software:

To reduce costs: do early verification each time we
can => design step.

Use of Models and tools that automatically handle
those models.

Analysis methods:
Simulation.
Model checking. Formal methods for real-time
systems: Petri nets, timed automata, synchronous
languages, ...
Analytical approaches: real-time scheduling
analysis.

University of Brest – Page 15/26

Specific programming tools (1)

Use of monitors:
Small software size. Very deterministic systems.
Small memory footprint.
No system calls and no separate address spaces :
set of functions built as an unique executable.
Sometimes no scheduler (high critical).
Cross compilers.

University of Brest – Page 16/26

Specific programming tools (2)

• Cross-compiling:

NFS disk

Host machine Target machine

Monitor

. TCP/IP, FTP, serial link, ...

Windows/Linux

rsh

GDB rGDB

Why cross-compiling : because target has a limited amount of
resource, is composed of specific hardware/software (timing
behavior).

Host : where we compile the program.

Target : where we run the program.

University of Brest – Page 17/26

Specific programming tools (3)

• High level versus low level programming languages:

Low level languages : C or assembly languages.

High level languages: Esterel or Ada languages.

University of Brest – Page 18/26

Specific programming tools (4)

• An example of low level language: C

Largely known.

Direct access to hardware components.

But must be used with libraries for
concurrency/synchronization/timing/scheduling.

Use of language subsets (e.g. dynamic allocation).

Low portability.

Well suited for small real-time applications.

University of Brest – Page 19/26

Specific programming tools (5)

• An example of high level language: Ada

Contains real-time abstractions:
timing/concurrency/synchronization/scheduling.

Standard : semantics is well defined =⇒portability.

Separate compilation.

Safety programming (strong typing, static analysis).

Complex language which is difficult to use. Few
programmers.

Well suited for large real-time applications.

University of Brest – Page 20/26

Summary

1. Some definitions.

2. Example of real-time systems.

3. Real-Time systems require specific analysis and
programming methods.

4. Summary, further readings, planning of the week.

5. References.

University of Brest – Page 21/26

Summary and further readings (1)

Real-time systems: systems with timing constraints to
meet. Are usually concurrent systems (tasks and
synchronization).

Embedded systems and distributed systems.

Specific development process and programming
technologies: modeling and early verifications (e.g.
real-time scheduling analysis), specific operating
systems and programming languages (cross-compiler,
real-time features).

University of Brest – Page 22/26

Summary and further readings (2)

About real-time scheduling theory:

Scheduling in Real Time Systems. F. Cottet and J. Delacroix and
C. Kaiser and Z. Mammeri. 2002, John Wiley and Sons Ltd
editors.

Real-time scheduling facilities with POSIX 1003:

POSIX 4 : Programming for the Real World . B. O. Gallmeister.
O’Reilly and Associates, January 1995.

Real-time scheduling facilities with Ada:

Concurrent and Real Time programming in Ada. A. Burns and A.
Wellings. 2007, Cambridge University Press.

Building Parallel, Embedded, and Real-Time Applications with
Ada. J. W. McCormick, F. Singhoff, J. Hugues. Cambridge
University Press, July 2010.

University of Brest – Page 23/26

Summary and further readings (3)

Other books on real-time systems:

Real-Time Systems and Programming Languages. A. Burns.
2009, Addison Wesley; 4th Revised edition.

Real-Time Systems Design and Analysis. Phillip A. Laplante.
1994, Wiley-IEEE Press.

University of Brest – Page 24/26

Planning of the week
1. Monday:

Lecture: introduction, real-time scheduling (fixed priority scheduling, EDF, shared
resources).

Exercise: real-time scheduling analysis.

2. Tuesday:

Lecture: real-time programming ; C programming with POSIX/RTEMS.

Exercise: real-time scheduling (cont).

Lab: real-time programming ; C with POSIX/RTEMS.

3. Wednesday:

Lecture: real-time programming ; Ada programming with RTEMS.

Lab: real-time programming ; C with POSIX/RTEMS (cont) ; Ada RTEMS.

4. Thursday:

Lecture: real-time programming ; Ada programming with RTEMS (cont).

Lab: real-time programming ; Ada with RTEMS (cont).

5. Friday:

Lecture: real-time scheduling (architecture description languages,
multi-core/distributed systems).

Lab: real-time programming ; Ada with RTEMS (cont).
University of Brest – Page 25/26

References

[COU 94] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems—Concepts and
Design, 2nd Ed. Addison-Wesley Publishers Ltd., 1994.

[DEM 99] I. Demeure and C. Bonnet. Introduction aux systèmes temps réel. Collection
pédagogique de télécommunications, Hermès, septembre 1999.

[DOR 91] A. Dorseuil and P. Pillot. Le temps réel en millieu industriel. Edition DUNOD,
Collection Informatique Industrielle, 1991.

[GAL 95] B. O. Gallmeister. POSIX 4 : Programming for the Real World . O’Reilly and
Associates, January 1995.

[STA 88] John Stankovic. « Misconceptions about real-time computing ». IEEE Computer,
October 1988.

University of Brest – Page 26/26

	Summary
	Real-time systems (1)
	Real-time systems (2)
	Real-time systems (3)
	Real-time systems (4)
	Real-time systems (5)
	Summary
	Example 1: aircraft
	Example 2: multimedia on the Web
	Others examples
	Summary
	Hard real-time system specific practices
	Specific Software Engineering (1)
	Specific software Engineering (2)
	Specific programming tools (1)
	Specific programming tools (2)
	Specific programming tools (3)
	Specific programming tools (4)
	Specific programming tools (5)
	Summary
	Summary and further readings (1)
	Summary and further readings (2)
	Summary and further readings (3)
	Planning of the week
	References

