
monotonic algorithm and found that the average scheduling bound is usually much better
than the worst case. They concluded that a good approximation to the threshold of
schedulability for the rate monotonic algorithm is 88%. In fact, with the period
transformation method, the utilization threshold can, in principle, be arbitrarily close to 100%
[Sha 89a]. As an example of the high degree of schedulable utilization attainable with the

rate monotonic algorithm, a schedulable utilization level of 99% was achieved for the Navy’s
Inertial Navigation System [Borger 87].

• Stability Under Transient Overload. Another concern for scheduling algorithms is
transient overload, the case where stochastic execution times can lead to a desired utilization
greater than the schedulable utilization bound of the task set. To handle transient overloads,
Sha, Lehoczky, and Rajkumar describe a period transformation method for the rate
monotonic algorithm that can guarantee that the deadlines of critical tasks can be met [Sha
86].

• Aperiodic Tasks. A real-time system often has both periodic and aperiodic tasks. Strosnider
developed the Deferrable Server algorithm [Strosnider 88], which is compatible with the rate
monotonic scheduling algorithm and provides a greatly improved average response time for
soft deadline aperiodic tasks over polling or background service algorithms while still
guaranteeing the deadlines of periodic tasks.

• Resource Sharing. Although determining the schedulability of a set of periodic tasks that
use semaphores to enforce mutual exclusion has been shown to be NP-hard [Mok 83], Sha,
Rajkumar, and Lehoczky [Rajkumar 89, Sha 87] have developed a priority inheritance
protocol and derived a set of sufficient conditions under which a set of periodic tasks that
share resources using this protocol can be scheduled using the rate monotonic algorithm.

• Low Scheduling Overhead. Since the rate monotonic algorithm assigns a static priority to
each periodic task, the selection of which task to run is a simple function. Scheduling
algorithms that dynamically assign priorities, may incur a larger overhead because task
priorities have to be adjusted in addition to selecting the highest priority task to execute.

1.2.3 Scheduling Aperiodic Tasks

The scheduling problem for aperiodic tasks is very different from the scheduling problem for periodic

tasks. Scheduling algorithms for aperiodic tasks must be able to guarantee the deadlines for hard deadline

aperiodic tasks and provide good average response times for soft deadline aperiodic tasks even though the

occurrences of the aperiodic requests are nondeterministic. The aperiodic scheduling algorithm must also

accomplish these goals without compromising the hard deadlines of the periodic tasks.

Two common approaches for servicing soft deadline aperiodic requests are background processing and

polling tasks. Background servicing of aperiodic requests occurs whenever the processor is idle (i.e. not

executing any periodic tasks and no periodic tasks are pending). If the load of the periodic task set is

high, then utilization left for background service is low, and background service opportunities are

relatively infrequent. Polling consists of creating a periodic task for servicing aperiodic requests. At

regular intervals, the polling task is started and services any pending aperiodic requests. However, if no

aperiodic requests are pending, the polling task suspends itself until its next period and the time originally

allocated for aperiodic service is not preserved for aperiodic execution but is instead used by periodic

tasks. Note that if an aperiodic request occurs just after the polling task has suspended, then the aperiodic

request must wait until the beginning of the next polling task period or until background processing

resumes before being serviced. Even though polling tasks and background processing can provide time

Aperiodic Task Scheduling for RT Systems 11

for servicing aperiodic requests, they have the drawback that the average wait and response times for

these algorithms can be long, especially for background processing.

Figures 1-2 and 1-3 illustrate the operation of background and polling aperiodic service using the periodic

task set presented in Figure 1-1. The rate monotonic algorithm is used to assign priorities to the periodic

tasks yielding a higher priority for task A. In each of these examples, periodic tasks A and B both

become ready to execute at time = 0. Figures 1-2 and 1-3 show the task execution from time = 0 until

time = 20. In each of these examples, two aperiodic requests occur: the first at time = 5 and the second at

time = 12.

Task A

Task B

4 10 High

8 20 Low

 Execution Time Period Priority

Periodic Tasks:

Figure 1-1: Periodic Task Set for Figures 1-2, 1-3, 1-4, and 1-5

The response time performance of background service for the aperiodic requests shown in Figure 1-2 is

poor. Since background service only occurs when the resource is idle, aperiodic service cannot begin

until time = 16. The response time of the two aperiodic requests are 12 and 6 time units respectively,

even though both requests each need only 1 unit of time to complete.

 0 2 4 6 8 10 12 14 16 18 20

 Aperiodic
Request #1

 Aperiodic
Request #2

 Task
 Execution

Figure 1-2: Background Aperiodic Service Example

The response time performance of polling service for the aperiodic requests shown in Figure 1-3 is better

than background service for both requests. For this example, a polling server is created with an execution

time of 1 time unit and a period of 5 time units which, using the rate monotonic algorithm, makes the

polling server the highest priority task. The polling server’s first period begins at time = 0. The lower

part of Figure 1-3 shows the capacity (available execution time) of the polling server as a function of

time. As can be seen from the upward arrow at time = 0 on the capacity graph, the execution time of the

polling server is discarded during its first period because no aperiodic requests are pending. The

12 August 1990

beginning of the second polling period coincides with the first aperiodic request and, as such, the

aperiodic request receives immediate service. However, the second aperiodic request misses the third

polling period (time = 10) and must wait until the fourth polling period (time = 15) before being serviced.

Also note, that since the second aperiodic request only needs half of the polling server’s capacity, the

remaining half is discarded because no other aperiodic tasks are pending. Thus, this example

demonstrates how polling can provide an improvement in aperiodic response time performance over

background service but is not always able to provide immediate service for aperiodic requests.

 0 2 4 6 8 10 12 14 16 18 20

 Aperiodic
Request #1

 Aperiodic
Request #2

 0 2 4 6 8 10 12 14 16 18 20

Polling Server
 Capacity

 Task
 Execution

Polling Server: Execution Time = 1, Period = 5

1.0

Figure 1-3: Polling Aperiodic Service Example

The Priority Exchange (PE) and Deferrable Server (DS) algorithms, introduced by Strosnider in

[Strosnider 88], overcome the drawbacks associated with polling and background servicing of aperiodic

requests. As with polling, the PE and DS algorithms create a periodic task (usually of a high priority) for

servicing aperiodic requests. However, unlike polling, these algorithms will preserve the execution time

allocated for aperiodic service if, upon the invocation of the server task, no aperiodic requests are

pending. These algorithms can yield improved average response times for aperiodic requests because of

their ability to provide immediate service for aperiodic tasks. In particular, the DS algorithm has been

shown to be capable of providing an order of magnitude improvement in the responsiveness of

asynchronous class messages for real-time token rings [Strosnider 88]. These algorithms are called

bandwidth preserving algorithms, because they provide a mechanism for preserving the resource

bandwidth allocated for aperiodic service if, upon becoming available, the bandwidth is not immediately

needed. The PE and DS algorithms differ in the manner in which they preserve their high priority

execution time.

The DS algorithm maintains its aperiodic execution time for the duration of the server’s period. Thus,

aperiodic requests can be serviced at the server’s high priority at anytime as long as the server’s execution

time for the current period has not been exhausted. At the beginning of the DS’s period, the server’s high

priority execution time is replenished to its full capacity.

Aperiodic Task Scheduling for RT Systems 13

The DS algorithm’s method of bandwidth preservation is illustrated in Figure 1-4 using the periodic task

set of Figure 1-1. For this example, a high priority server is created with an execution time of 0.8 time

units and a period of 5 time units. At time = 0, the server’s execution time is brought to its full capacity.

This capacity is preserved until the first aperiodic request occurs at time = 5, at which point it is

immediately serviced, exhausting the server’s capacity by time = 6. At time = 10, the beginning of the

third server period, the server’s execution time is brought to its full capacity. At time = 12, the second

aperiodic request occurs and is immediately serviced. Notice that although the second aperiodic request

only consumes half the server’s execution time, the remaining capacity is preserved, not discarded as in

the polling example. Thus, the DS algorithm can provide better aperiodic responsiveness than polling

because it preserves its execution time until it is needed by an aperiodic task.

 0 2 4 6 8 10 12 14 16 18 20

 Aperiodic
Request #1

 Aperiodic
Request #2

 0 2 4 6 8 10 12 14 16 18 20

1.0DeferrableServer
 Capacity

 Task
 Execution

Deferrable Server: Execution Time = 0.8, Period = 5

0.0

Figure 1-4: Deferrable Server Example

Unlike the DS algorithm, the PE algorithm preserves its high priority execution time by exchanging it for

the execution time of a lower priority periodic task. At the beginning of the PE server’s period, the

server’s high priority execution time is replenished to its full capacity. If the highest priority execution

time available is aperiodic time (as is the case at the beginning of the PE server’s period) and aperiodic

tasks are pending, then the aperiodic tasks are serviced. Otherwise, the highest priority pending periodic

task is chosen for execution and a priority exchange occurs. The priority exchange converts the high

priority aperiodic time to aperiodic time at the assigned priority level of the periodic task. When a

priority exchange occurs, the periodic task executes at the priority level of the higher priority aperiodic

time, and aperiodic time is accumulated at the priority level of the periodic task. Thus, the periodic task

advances its execution time, and the aperiodic time is not lost but preserved, albeit at a lower priority.

Priority exchanges will continue until either the high priority aperiodic time is exhausted or an aperiodic

request occurs in which case the aperiodic time is used to service the aperiodic request. Note that this

exchanging of high priority aperiodic time for low priority periodic time continues until either the

14 August 1990

aperiodic time is used for aperiodic service or until the aperiodic time is degraded to the priority level of

background processing (this complete degradation will occur only when no aperiodic requests arrive early

enough to use the aperiodic time). Also, since the objective of the PE algorithm is to provide a low

average response time for aperiodic requests, aperiodic requests win all priority ties. At all times, the PE

algorithm uses the highest priority execution time available to service either periodic or aperiodic tasks.

The PE algorithm’s method of bandwidth preservation is demonstrated in Figure 1-5 using the periodic

task set of Figure 1-1. In this example, a high priority PE server is created with an execution time of 1

time unit and a period of 5 time units. Since the PE algorithm must manage aperiodic time across all

priority levels, the capacity of the PE server as a function of time consists of three graphs: one for each

priority level. The PE server’s priority is priority level 1 which corresponds to the highest priority level

followed by priority 2 for periodic task A and priority 3 for periodic task B. At time = 0, the PE server is

brought to its full capacity, but no aperiodic tasks are pending and a priority exchange occurs between

priorities 1 and 2. The PE server gains aperiodic time at priority 2 and periodic task A executes at priority

1. At time = 4, task A completes and task B begins. Since no aperiodic tasks are pending, another

exchange takes place between priority 2 and priority 3. At time = 5, the server’s execution time at

priority 1 is brought to its full capacity and is used to provide immediate service for the first aperiodic

request. At time = 10, the server’s priority 1 execution time is brought to full capacity and is then

exchanged down to priority 2. At time = 12, the server’s execution time at priority 2 is used to provide

immediate service for the second aperiodic request. At time = 14.5 the remaining priority 2 execution

time is exchanged down to priority 3. At time = 15, the newly replenished server time at priority 1 is

exchanged down to priority 3. Finally, at time = 17.5, the remaining PE server execution time at priority

3 is discarded because no tasks, periodic or aperiodic, are pending. Thus, the PE algorithm can also

provide improved response times for aperiodic tasks compared to the polling algorithm. An enhancement

of the PE algorithm, the Extended Priority Exchange Algorithm [Sprunt 88], has also been developed that

takes advantage of the stochastic execution times of periodic tasks to provide more high priority

execution time for aperiodic service.

The PE and DS algorithms differ in their complexity and in their effect upon the schedulability bound for

periodic tasks. The DS algorithm is a much simpler algorithm to implement than the PE algorithm,

because the DS algorithm always maintains its high priority execution time at its original priority level

and never exchanges its execution time with lower priority levels as does the PE algorithm. However, the

DS algorithm does pay a schedulability penalty (in terms of a lower schedulable utilization bound) for its

simplicity. Both algorithms require that a certain resource utilization be reserved for high priority

aperiodic service. We refer to this utilization as the server size, U , which is the ratio of the server’ss

execution time to the server’s period. The server size and type (i.e. PE or DS) determine the scheduling

bound for the periodic tasks, U , which is the highest periodic utilization for which the rate monotonicp

algorithm can always schedule the periodic tasks. Below are the equations developed in [Lehoczky

87] for U in terms of U as the number of periodic tasks approaches infinity for the PE and DSp s

algorithms:

(1)

Aperiodic Task Scheduling for RT Systems 15

 0 2 4 6 8 10 12 14 16 18 20

 Aperiodic
Request #1

 Aperiodic
Request #2

 0 2 4 6 8 10 12 14 16 18 20

1

Priority Exchange
 Server Capacity

 Task
 Execution

 0 2 4 6 8 10 12 14 16 18 20

1

 0 2 4 6 8 10 12 14 16 18 20

1

2

3

Level #1

Level #3

Level #2

Priority Exchange Server: Execution Time = 1, Period = 5

Figure 1-5: Priority Exchange Server Example

2
PE: U = lnp U +1s

(2)

U +2s
DS: U = lnp 2U +1s

Equations 1 and 2 show that for a given server size, U (0 < U < 1), the periodic schedulability bound,s s

U , for the DS algorithm is lower than it is for the PE algorithm. These equations also imply that for ap

given periodic load, the server size, U , for the DS algorithm is smaller than that for the PE algorithm.s

For example, with U = 60%, Equation 1 indicates a server size for the PE algorithm of 10% compared top

a server size for the DS algorithm of 7% given by Equation 2.

16 August 1990

