
SCADE: Synchronous design and validation of
embedded control software

Gérard Berry

Esterel Technologies
gerard.berry@esterel-technologies.com

www.esterel-technologies.com

Abstract. We describe the SCADE synchronous approach to model-
based embedded software design, validation, and implementation for
avionics, automotive, railway, and industry applications. SCADE spec-
ifications are based on block-diagrams and hierarchical state-machine
graphical models with rigorous formal specifications. The SCADE KCG
compiler is certified at the highest level of avionics certification, which
suppresses the need for generated code unit testing. The SCADE tool has
support for visual animation, test-suite coverage analysis, and formal ver-
ification. It has gateways to many other tools ranging from system-level
specification to performance analysis.

1 Introduction

We describe the SCADE synchronous methodology and toolset dedicated to
model-based embedded software design, validation, and implementation for avion-
ics, automotive, railway, and industry applications. The overall idea is to generate
correct-by-construction embeddable implementation from high-level executable
formal specifications, increasing software quality while decreasing design and
validation costs. Since the specification is executable, it can be thoroughly simu-
lated and verified before embedding. Since the implementation is automatically
generated, there are no errors introduced at the implementation phase.

The synchronous methodology is rooted in 25 years of scientific research
[3,5,10,11] and 20 years of successful industrial application. It is based upon
a conceptual model of embedded computation backed by four strong technical
cores: specific high-level rigorous graphical and textual languages, formal se-
mantics, compiling algorithms for correct-by-construction implementation, and
formal testing and verification techniques.

SCADE evolved from the SAGA tool that was originally developed in 1986
by Schneider Electric [4] for nuclear plant safety systems, as a graphical version
of the Lustre synchronous language of Caspi and Halbwachs [10]. It was then
developed further to gradually replace the Airbus SAO internal tool for airborne
software. It is now used by a large number of avionics, railway, industry, and
automotive companies for fly-by-wire, engine control, brake control, safety con-
trol, power control, alarm handling, etc. SCADE embodies the KCG compiler



from high-level designs to C that is itself certifiable at avionics DO-178B norm
highest level A. TÜV certification is also available for automotive.

Source code development is based upon the Scade1 graphical block-diagram
notation familiar to control engineers, complemented by hierarchical Safe State
Machines to describe state- or mode-oriented computations. These specification-
level notations have precise mathematical semantics. Besides making software
development more rigorous, they ease communication between engineers and
between suppliers and customers. Functional verification is performed in two
ways: conventional simulation techniques enhanced by graphical animation of
the design and model coverage analysis, and formal verification of safety prop-
erties by model checking or abstract interpretation. Functional verification is
needed only at block-diagram level, since the embeddable C code generated by
the certified KCG compiler is automatically correct and qualifiable.

The rest of the paper is organized as follows. Section 2 discusses concur-
rency and determinism issues for embedded systems and introduces the cycle-
based computation model. Section 3 presents the Scade block-diagram and state-
machine formalisms; Section 4 discusses the formal synchronous semantics. Sec-
tion 5 presents the software design and validation flow associated with SCADE,
as well as the associated tool ecosystem. We give a brief comparison with con-
ventional OS-based techniques in Section 6. We conclude in Section 7.

2 Concurrency and determinism of embedded software

Embedded software applications are very different from classical IT or net-
working applications. Instead of dealing with data files and asynchronous inter-
rupts, they deal with the control of physical phenomena through specific sensor-
actuator feedback loops and man-machine interfaces. Programs are mostly im-
plementations of control algorithms. This calls for specific description paradigms
close to the ones used in control engineering and systems engineering to design
such algorithm: block diagrams for continuous control and state machines for dis-
crete control. SCADE is directly based on these design paradigms. A comparison
with principle with conventional techniques will be given in Section 6.

2.1 The need for concurrency

Concurrency is essential for all embedded applications. Control algorithms are
most often built by assembling basic elements: samplers, integrators, filters, com-
parators, state machines, etc. These concurrent elements communicate by ex-
changing information on a time- or event-trigger basis. Here, concurrency means
cooperation. This constrats with competition-based concurrency found in oper-
ating systems or thread-based applications where concurrent processes or threads
compete to access and utilize resources.

1 We use SCADE for the development environment and Scade for the base specification
formalisms.



2.2 The need for determinism and predictability

Functional determinism is a key requirement of most embedded applications. A
system is deterministic if it always reacts in the same way to the same inputs
occurring with the same timing. On the contrary, a non-deterministic system is
allowed to react in different ways to the same inputs, actual reaction depending
on internal choices or computation timings. It is obvious that determinism is a
must to control a car or a plane: the car should not decide by itself to go right
or left. The same applies to man/machine interface or alarm handling.

Of course, deteterminism may not be a relevant requirement for other appli-
cation types. An Internet connection naturally behaves in a non-deterministic
way, and there is nothing wrong about that. In the same way, a car entertainment
system may have some local non-deterministic behavior. But one does not con-
trol a car with an Internet-like infrastructure. This is why Scade specifications
are deterministic by construction, the SCADE tools preserving determinism all
along the specification-to-implementation chain.

On the implementation side, performance predictability is key to ensure func-
tional determinism. In particular, one must ensure that internal computation
timings cannot interfere with the functional timings of the control algorithm
proper. Predictability is never an easy subject, in particular because of uncer-
tainty due to caching and speculation optimization in recent microprocessors.
But, of course, any form of added unessential non-determinism makes it even
harder. SCADE achieves predictability by generating simple sequential code from
concurrent specification using techniques described below.

2.3 The cycle-based concurrent computation model

Fig. 1. Cycle-based computation

Cycle-based computation used by SCADE is a Folk model introduced long
ago in many industrial designs to deal with embedded computation, but largely
ignored by mainstream computer science. It consists of performing a continu-
ous loop of the form pictured in Figure 1. In each cycle of this loop, there is a



strict alternation between environment actions and program actions. Once the
input sensors are read, the programs starts computing the cycle outputs and its
own memory state change. During that time, the program is blind to environ-
ment changes, ensuring interference-freedom. When the outputs are ready, or
at a given time determined by a clock, the output values are fed back to the
environment, and the program waits for the start of the next cycle.

Things are very much as in a two-game play: players play in strict alterna-
tion and each player does not interfere with the other player’s thinking. The
cycle-based model can also be viewed as a direct computer implementation of
the ubiquitous sampling-actuating model of control engineering and signal pro-
cessing.

In the implementation, there are several ways to control the cycle: time-
triggered computation starts the cycle on a regular basis; polling consists of
restarting the cycle as soon as it is over, and event-triggered computation consists
of starting the cycle whenever some even occurs. This is application-dependent
and will not be detailed further here.

2.4 Synchronous communication and its realization by cycle fusion

Fig. 2. Cycle fusion

In the cycle-based model, concurrent components communicate by exchang-
ing information during the cycle. An output computed by a component is in-
stantly broadcasted to all concurrent components that want to read it. If one
wants to implement delayed communication, one can insert elementary delay
components that output at each cycle their input at previous cycle.

Consider the concurrent cyclic components 1 an 2 in Figure 2, which specifies
a non-trivial dialogue pattern. The first component reads X and Z and writes



Y and T , while the second component reads Y and writes Z. Communication is
conceptually instantaneous: within a single cycle, Y is computed by 1 using X
and communicated from 1 to 2, which causes Z to be computed by 2 and com-
municated back to 1. Communication is performed by a logically synchronous
chain reaction, all enclosed within a single cycle representing a logical instant.

In a typical implementation, each component generates a straight-line code
to execute the actions of its cycle. Communication between concurrent com-
ponents it is realized in a very simple way by cycle fusion, see Figure 2: one
merges the statements generated by the concurrent blocks blocks into a single
straight-line code for the global cycle. Communication between the individual
tasks is performed implicitly, by an adequate interleaving of the statements that
respects inter-cycle communication dependencies. Notice that there is no over-
head for communication, which is implemented using well-controlled shared vari-
ables without any context switching. For large hierarchical designs, cycle fusion
goes across concurrent blocks and across the hierarchy, building a single sequen-
tial code from a network of components. Large-scale cycle fusion is unfeasible
by hand but it is a relatively easy task for an automatic code generator. The
SCADE compiler fully automates it and guarantees correct access to the shared
memory.

Note that cycle fusion can be extended to support full separate compiling of
blocks under some output-delay conditions not detailed here.

2.5 Determinism and predictability of cycle-based applications

Determinism is respected by construction, whatever the number of concurrent
processes may be. Performance predictability is made relatively simple by cycle
fusion, since the generated code is purely sequential and does not imply context
switches. It is limited only by the intrinsic non-determinism of modern micro-
processors due to cache access and speculative execution.

Notice that the cycle-based computation model carefully distinguishes be-
tween logical concurrency and physical concurrency. The application is described
in terms of locally cyclic and logically concurrent activities. Such logical concur-
rency makes the designer’s work much easier by breaking complex tasks into
simple ones that communicate in a simple way. However, the implementation
uses a single process at run-time. The Scade model can be extended to support
multi-process execution and physical distribution of multiple processors, see [9],
but the SCADE tool does not support this yet.

3 The Scade formalisms

For cycle-based design, SCADE provides the user with two familiar specification
formalisms: block diagrams for continuous control and hierarchical safe state
machines (SSMs) for discrete control. Both formalisms share the same view of a
computation cycle and communicate in the same way.



3.1 Block diagrams for continuous control

Fig. 3. Scade block diagram

By continuous control, we mean sampling sensors at regular time intervals,
performing signal processing computations on their values, and outputting val-
ues, computed for instance using possibly complex mathematical formulae. Sam-
pled data is continuously subject to the same transformation. In Scade, continu-
ous control is graphically specified using block diagrams such as the one depicted
in Figure 3.

Boxes are called nodes. They are concurrent objects that compute outputs
as functions of inputs, with possibly internal memory. Arrow between nodes
denote communication channels also called flows. They can carry data of any
type. All nodes share the same cycle and only communicate through the arrows.
In a cycle, communication is conceptually instantaneous: a data element sent by
a node reaches its destination in the same cycle. Primitive delay nodes such as
the FBY nodes in Figure 3 are available to beak synchrony. At initial cycle, an
FBY node ouputs its initial value. Then, at each cycle, it outputs the value of
its input at previous cycles. Any loop in the block diagram must contain at leat
one delay element.

To add some flexibility in functioning modes control, Boolean flows can be
used to control the activation of nodes. When a node N is controlled by an
activation condition Boolean flow b, N is activated in a cycle only if b is true in
the cycle.

Scade blocks are fully hierarchical: blocks at a description level can them-
selves be composed of smaller blocks interconnected by local flows. In Figure
3, the ExternalConditions block is hierarchical, and one can zoom into it with
the editor. The same base cycle is shared by all the hierarchical components.
A Boolean activation condition for a hierarchical node recursively acts on all
its sub-nodes. Scade block hierarchy is purely architectural. At compile-time a
hierarchical block occurring in a higher-level block is simply replaced by its con-
tents, conceptually removing its boundaries, and cycle fusion is peformed on the



whole flattened result. Therefore, there is no need for complex and often partial
hierarchical evaluation rules often found in other hierarchical block diagrams
formalisms.

Hierarchy makes it possible to break design complexity using a divide-and-
conquer approach and to easily reuse library blocks. There is no need to write
complex blocks directly in C or ADA, since defining them hierarchically from
smaller blocks is semantically better defined, much more readable, and just as
efficient.

3.2 Safe State Machines for discrete control

Fig. 4. Standard flat state machine diagram

By discrete control, we mean changing behavior according to external events
originating either from discrete environment input events or from internal pro-
gram events, e.g., value threshold detection. Discrete control is where the behav-
ior keeps changing, a characteristics of modal human-machine interface, display
control, alarm handling, complex functioning mode handling, or communication
protocols.

Manually adding control Boolean flows and operations to block diagrams
becomes rapidly messy when discrete control is non-trivial. One must resort to
another well-known formalism: state machines. A standard flat state machine is
pictured in Figure 4. As for a block diagram, it is composed of boxes, arrows, and
names, but with a different meaning: boxes mean states, arrows mean transitions
between states, and names denote signals exchanged with the environment. In
a transition label I/O, I denotes a trigger signal and O denotes a result signal.
If the start state of the transition is active and I occurs, the transition is fired
and O is emitted.

Flat state machines have been very extensively studied in the last 50 years,
and their theory is well-understood. However, in practice, they are not adequate



Fig. 5. A SSM hierachical state machine

even for medium-size applications, since their size and complexity tends to ex-
plode very rapidly. For this reason, richer concept of hierarchical state machines
have been introduced, the initial one being Statecharts [12]. The Scade state
machines are called Safe State Machines (SSMs), see Figure 5 for an example.
These evolved from the Esterel programming language [5] and the SyncCharts
synchronous statecharts model [2]. SSMs have been proved to be scalable to large
control systems.

SSMs are hierarchical and concurrent. States can be either simple states
or macrostates, themselves recursively containing a full SSM or a concurrent
product of SSMs. When a macrostate is active, so is the SSMs it contains. When
a macrostate is exited by taking a transition out of its boundary, the macrostate
is exited and all the active SSMs it contains are preempted whichever state they
were in. Concurrent state machines communicate by exchanging signals, which
may be scoped to the macrostate that contains them.

The definition of SSMs carefully forbids dubious constructs found in other
hierarchical state machine formalisms: transitions crossing macrostate bound-
aries, transitions that can be taken half-way and then backtracked, etc. These are
non-modular, semantically hard to define, very hard to figure out, and therefore
inappropriate for safety-critical designs. Their use is usually not recommended
by most methodological guidelines anyway.

3.3 Mixed continuous / discrete control

Large applications contain cooperating continuous and discrete control parts.
Scade makes it possible to seamlessly couple both data flow and state machine
styles. One can include SSMs into block-diagram designs to compute and prop-
agate functioning modes. Then, the discrete signals to which a SSM reacts and
which it sends back are simply transformed back-and-forth into Boolean data



flows in the block diagram on a per-cyle basis. The computation models are fully
compatible.

3.4 Scade 6: full integration of block diagrams and SSMs

The above desciption is that of Scade version 5. The new Scade 6 formalism cur-
rently under development [8] will provide the user with a full interplay between
block diagrams and state machines. In Scade 6, a state in a state machine may
contain either another state machine or a block diagram. Two block diagrams
enclosed in two exclusive states may refer to the same flow, making it possible
to implement the mode automata described in [13], where one can switch from
a continous control computation to another one for the same flows according to
Boolean conditions.

4 Formal semantics

4.1 The formal synchronous semantics

The formal theory of synchronous concurrency has been developed in the last 25
years. It extends the cycle-based intuitive model into a fully precise synchronous
computation model, which gives a strong theoretical basis to the compilation
and verification of Scade programs.

We briefly illustrate the synchronous semantics using a very simple example
in continuous control. We refer the reader to [5,10] for the formal development,
more examples, and the handling of discrete control. Consider the following
specification: given a discrete integer input flow I, output at each step the average
A of the values received so far. In basic mathematics, one would use a discrete
time index t and write the following system of iterative equations:

N0 = 1
Nt+1 = Nt + 1

T0 = I0

Tt+1 = (Tt + It+1)
At = Tt/It

Such an equation system is good enough for mathematical reasoning, but not
for software engineering that requires much more precision. In mathematical
notation, one never cares too much about what is allowed or disallowed for
indices, because the reader is assumed to be a technically skilled human being.
Making At+1 depend on At+2 instead of At is a syntactically legal mistake
that any reader readily detects. But computers are definitely unskilled and they
faithfully reproduce any mistake. Therefore, we need a precise programming
formalism in which such mistakes can be detected and rejected at compile-time.
Lustre, the root textual language of Scade, was created for this purpose. In
Lustre, the program is written below2:
2 The equivalent Scade graphical program will not be pictured here. The SCADE

compiler would actually translate it into the above Lustre textual form.



node O (I : int) outputs (A : float);
var N : int , T : int;
let

N = 1->(pre(N)+1);
T = I -> pre(T) + I;
A = T / N;

tel;

The identifiers I, N , T , and A denote data flows, which are infinite sequence
of values. For instance, the single identifier A represents the whole cycle-based
infinite sequence of inputs A0, A1, . . . , At, . . ., where t denotes the cycle index
in the computation, i.e., the logical time. Operators such as addition add se-
quences componentwise, i.e., in a synchronous way: A+B is A0+B0, A1+B1, . . .
The pre delay operator delays a sequence by one cycle: pre(A) is the sequence
−, A0, A1, . . . , At, . . ., where the first element is left uninitialized. The ‘->’ ini-
tialization operator returns its left operand at first cycle and its right operand
at further cycles. Since it increments its previous value at each cycle, the N
symbol denotes the sequence 1, 2, 3, . . ., T denotes the accumulated sum of the
input values, and A denotes the required sequence of average values. The se-
mantics of Lustre simply defines the sequences corresponding to the variables
as the solutions of the system of equations. Here, when seen as a complete flow,
N is indeed equal to 1− >(pre(N) + 1). The Lustre and Scade formalisms and
semantics extends to node activation conditions using a notion of derived clock,
see [8,10].

Using the well-defined Lustre operators, the informal system of equation has
been transformed into a fully rigorous program. By construction, there is no way
to refer to Nt+1 instead of Nt−1, since there is no operator returning a future
value at any given instant.

4.2 Logical vs. physical time

In the synchronous approach, one counts logical time only in terms of I/O cy-
cles. Synchrony simply states that events occurring in the program are viewed
as logically simultaneous if and only if they occur in the same cycle. One only
distinguishes between computations occurring in the same cycle and computa-
tions occurring in successive cycles. Therefore, at Scade specification level, the
physical time it takes to perform an addition or a division is ignored. This is
a basic separation of concerns principle: high-level specifications need not care
early on about performance-related issues. However, computing on if physical
time is required by the application, one can deal with it using an extra specific
extra input.



5 The SCADE application development flow

5.1 The SCADE Y Development Cycle

The classical software development cycle is called the V cycle. Development flows
down from systems requirements to embedded code, the lower tip of the V, while
validation flows up from embedded code unitary tests to system-level functional
tests. Three steps are particularly difficult and expensive in this cycle: the precise
specification of software requirements in a specification language, their precise
coding in an executable language, and the low-level testing phase, which is usu-
ally the most costly. For embedded software development, the SCADE process
and tools help in four ways:

– At the specification level, the transition from mathematical simulation tools
to fully precise programs suited for a qualifiable software flow is much more
direct than with classical executable language hand-coding, thanks to he
native block diagrams and state machine formalisms. This shortens the
requirement-to-specification phase.

– Embeddable C code is automatically generated from Scade descriptions by
the KCG compiler. For avionics, KCG is qualifiable at highest level A w.r.t.
DO-178B guidelines. For automotive, KCG is certified by the TÜV Sud
authority at SIL 3 level of the IEC 61508 standard and valid for the de-
velopment of software up to SIL 4. Because of this, the object code can be
considered correct-by-construction w.r.t. the source specification since the
code generator itself is qualified with the very same process as the full ap-
plication. The need for C-level unit testing vanishes.

– Since the Scade model is executable, functional verification can be performed
earlier and better. This will be detailed below.

– Because of the intrinsic performance predictability of code generation by
cycle-fusion, performance validation is also made easier. Abstract-interpre-
tation based performance evaluation tools are very useful there, see [1].

Altogether, the V cycle is transformed into the Y where the junction between
secification and inplementation is done at Scade specification level instead of C
code level. The thin bottom of the Y represents certified code generation, now
certified to be correct.

5.2 Model validation

Functional validation of an embedded system consist in checking that the system
fulfills its requirements. Validation checks can be dynamic or static, as detailed
below.

5.3 Dynamic checks and coverage analysis

Dynamic checks consist in test-suite based functional verification. A key issues
is to build an appropriate test base, providing a large set of model inputs with



minimal redundancy. This very notion is not easy to define. One usually use
various coverage criteria to measure how much a test base stresses a model and
how well it describes the possible input cases. SCADE uses an elaborate notion of
model coverage, which includes exercising conditional nodes, reaching bounds on
operators, etc. (See also the classical MCDC coverage requirements for Boolean
expression covering [7]). Generating the test suites can itself be difficult. It can be
done either manually or by extracting model boundary inputs from system-level
simulations.

5.4 Static checks

Static compile-time checks consist in basic type-checking augmented by dead
code detection and block diagram connections checking: absence of unconnected
I/O pins and absence of cyclic data dependencies.

5.5 Formal verification

Assertion-based verification performs symbolic model-checking3 to verify the
validity of user-provided temporal assertions about program behavior. Asser-
tions can either be derived from application requirements or correspond to self-
consistency defensive programming checks developed during the software design
phase. They are expressed in the Scade formalisms, technically as Boolean flows
that should never become false. Thus, the user does not need to learn specific
property-definition languages to use the verifier. Good examples of properties
to show by model-checking are regulation is active if in on state and if speed
lies between 30 and 130 km/h or the elevator never travels with the door open.
Counter-examples for false properties are automatically generated. Notice that
assertion-based verification is now routine in the hardware field. Its extension to
cycle-based designs is natural since these are akin to “software circuits”.

Abstract-interpretation based model checking checks for the absence of run-
time arithmetic exceptions or array out-of-bounds access, see [6]. It is automatic
and does not require the writing of assertions. It has been used successfully on
very large avionics projects.

Formal verification techniques complement human testing abilities very well.
In particular, they are very useful in finding nasty bugs that escape conventional
testing but do show up in production systems. We believe that formal verification
engines will continue making constant progress in the future and will become
among the most efficient anti-bug weapons.

5.6 The SCADE automotive ecosystem

A tool never solves a problem by itself. Therefore, SCADE is coupled with many
other tools acting in the systems design or software engineering areas. Designs

3 SCADE uses the Prover plug-in verification engine from Prover Technologies.



can be imported from prototypes written in mathematical simulation environ-
ments using a semi-automatic importer. UML specifications can be linked to
SCADE designs using gateways. Systems requirement are traced in the SCADE
design using links with requirement management tools. Documentation is auto-
matically generated from Scade designs.

The C code generated by SCADE for automotive applications is platform in-
dependent and MISRA compliant, which is essential for automotive applications.
It only uses a small subset of C, with no dynamic memory allocation, no pointer
arithmetic, and no loop, callable through a very simple API. for specific execu-
tion platforms, SCADE extends the API by providing a customizable wrapping
technology that allows a straightforward integration in any target environment:
wrapping to OSEK tasks or to popular RTOS tasks are available. Currently,
within the AUTOSAR consortium, the generation of AUTOSAR compliant Ba-
sic Software Modules and Software Components with SCADE is studied. This
includes the compliance with the merging automotive standard ISO 26262.

SCADE embodies other software engineering tools that intendx to make the
development flow as smooth and safe as possible. The SCADE implementer tool
makes it possible to finely control the fixed-point implementation of numeri-
cal computations for processors that do not support floating-point. Processor-
dependent C compilers are checked to adequately compile the code generated
by SCADE using a compiler verification kit that systematically compiles and
checks all possible generated C patterns.

6 Comparison with operating-systems based designs

The other prominent model for embedded control is rooted in computer engineer-
ing tradition. It consists of writing sequential tasks for individual computations
and using an operating system (OS) to schedule and run the tasks according to
various criteria. The advantage is to rely on well-tested and robust off-the-shelf
operating systems or language run-times. However, correctness issues become
very application-dependent instead of being solved once for all by the program-
ming formalism. The key issues are how the tasks are scheduled and how memory
accesses are controlled.

Preemptive dynamic scheduling solves the problem at run-time in a generic
way. However, it is a competitive concurrency model where tasks compete for
resources (processor cycles, I/O, etc.). This interference-based model introduces
a high level of nondeterminism and correctness is difficult to ensure. Shared
memory accesses have to be controlled by semaphores or similar devices, know
to be deadlock-eager and hard to check. Another potentially nasty problem is
priority inversion, where a low-priority task permanently takes precedence over
high-priority ones. For a specific system, one can show application-level deter-
minism, predictability, and scheduling safety using fancy analysis techniques,
but this is never simple.

To improve on this and provide a safer view of dynamic tasking, higher-level
rendezvous concurrency primitives have been included conventional languages



such as ADA. However, they still rely on OS-like mechanisms and consistency is
equally challenging.

Another well-known technique is fixed static scheduling, using algorithms
based on task durations, on deadlines, on priorities, etc. Tasks can be either
preemptible by other tasks or non-preemptible. This works well for a relatively
small number of components, with a reasonable preservation of determinism.
However, compared to cycle-based design, static scheduling is more difficult to
organize, hard to scale to large applications, and very sensitive to specification
changes.

Altogether, the tasking model does not help the programmer in conceptual-
izing the problem. There is no consistent way to go from a V to a Y cycle.

Of course, cycle-based computation does not rule out the need for basic OS
functions. An embedded OS is still needed to perform low-level functions such as
communication with sensors and actuators through drivers. But this is far less
complicated than full tasking, and the main cycle code remains deterministic and
predictable. Notice that a little amount of non-determinism in reading sensor
values or driving actuators at cycle boundaries may remain without danger: all
robust control algorithms do tolerate slight variations in the actual sampling or
actuating timing.

7 Conclusion

We have presented the SCADE methodology and toolset, which are based on
the synchronous computation model for embedded control software. SCADE ad-
dresses the design flow from precise specification to embedded code generation.
It is used in major industrial programs to generate qualifiable implementation
code from high-level block diagrams and state machines familiar to control en-
gineers. This implies a dramatic cost reduction in one of the most difficult and
error-prone part of systems development cycle. The use of SCADE also makes
the upper and lower part of the whole cycle easier: the input formalism is close
to classical notations used in high-level modeling, while simplicity of the gener-
ated code makes verification and implementation performance analysis simpler.
SCADE is widely used avionics, and is being used used for automotive applica-
tions such as braking systems, suspension systems, entertainment systems, alarm
systems, etc.

The mathematical model of synchronous systems on which SCADE is based
is instrumental. It guides the user in the specification process, strongly grounds
program semantics, drives compiler development and certification, and makes
formal verification of programs possible.

Acknowledgements: the author thanks the various people involved in the de-
sign, development, and usage of SCADE: P. Caspi and N. Halbwachs who created
Lustre, J-L. Bergerand and E. Pilaud who created SAGA, C. André who created
SyncCharts, F-X. Dormoy who developed SCADE, J-L. Colaço who is the main
Scade semantics and compiler architect, and the whole SCADE team.



References

1. M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache behavior prediction by
abstract interpretation. In In SAS’96, Static Analysis Symposium, LNCS 1145,
pages 52–66. Springer, 1996.

2. C. André. Representation and analysis of reactive behaviors: A synchronous ap-
proach. In Proc. CESA’96, IEEE-SMC, Lille, France, 1996.

3. Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs, Paul Le
Guernic, and Robert de Simone. The synchronous languages 12 years later. Pro-
ceedings of the IEEE, 91(1):64–83, January 2003.

4. J.L. Bergerand and E. Pilaud. Saga: a software development environment for
dependability in automatic control. In Proc. Safecomp’88. Pergamon Press, 1988.

5. Gérard Berry. The foundations of Esterel. In Proof, Language and Interaction:
Essays in Honour of Robin Milner. MIT Press, 2000.

6. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In In PLDI
2003 ACM SIGPLAN SIGSOFT Conference on Programming Language Design
and Implementation, San Diego, California, USA, pages 196–207, 2003.

7. J.J. Chilenski and S.P. Miller. Applicability of modified condition/decision cov-
erage to software testing. Software Engineering Journal, 9(5):193–200, September
1994.

8. J-L. Colaço, B. Pagano, and M. Pouzet. A conservative extension of synchronous
data-flow with state machines. In Proc. Emsoft’05, New Jersey, USA, 2005.

9. A. Girault. A survey of automatic distribution method for synchronous programs.
In F. Maraninchi, M. Pouzet, and V. Roy, editors, International Workshop on Syn-
chronous Languages, Applications and Programs, SLAP’05, ENTCS, Edinburgh,
UK, April 2005. Elsevier Science.

10. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language Lustre. In Proceedings of the IEEE, volume 79(9), pages
1305–1320, 1991.

11. Nicolas Halbwachs. Synchronous Programming of Reactive Systems. Kluwer aca-
demic Publishers, 1993.

12. David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8, 1987.

13. F. Maraninchi and Y. Rémond. Mode automata: a new domain-specific construct
for the development of safe critical systems. Science of Computer Programming,
pages 219–254, 2003.


	SCADE: Synchronous design and validation of embedded control software
	Gérard Berry

